
ON AUSLANDER-REITEN COMPONENTS OF ALGEBRAS

WITHOUT EXTERNAL SHORT PATHS

ALICJA JAWORSKA, PIOTR MALICKI, AND ANDRZEJ SKOWROŃSKI
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Abstract. We describe the structure of semi-regular Auslander-Reiten com-

ponents of artin algebras without external short paths in the module category.
As an application we give a complete description of self-injective artin algebras
whose Auslander-Reiten quiver admits a regular acyclic component without
external short paths.

1. Introduction and the main results

Throughout the paper, by an algebra we mean a basic connected artin algebra over
a commutative artin ring K. For an algebra A, we denote by modA the category
of finitely generated right A-modules and by radA the radical of modA, generated
by all non-isomorphisms between indecomposable modules in modA. Then the
infinite radical rad∞A of modA is the intersection of all powers radiA, i > 1, of radA.
By a result of Auslander [2], rad∞A = 0 if and only if A is of finite representation
type, that is, there are in modA only finitely many indecomposable modules up to
isomorphism. Moreover, we denote by ΓA the Auslander-Reiten quiver of A and by
τA and τ−A the Auslander-Reiten translations DTr and TrD in modA, respectively.
We do not distinguish between an indecomposable module X in modA and the
corresponding vertex {X} in ΓA. Moreover, by a component of ΓA we mean a
connected component of the quiver ΓA.

The Auslander-Reiten quiver ΓA of an algebra A is an important combinatorial
and homological invariant of its module category modA. Frequently, algebras can
be recovered from the graph structure, for example the shape of components, of
their Auslander-Reiten quivers. Further, very often the behaviour of components
of the Auslander-Reiten quiver ΓA of an algebra A in the category modA leads
to essential homological information on A, allowing to determinate A and modA
completely. Recall that a component C of an Auslander-Reiten quiver ΓA is called
regular if C contains neither a projective module nor an injective module, and semi-
regular if C does not contain both a projective module and an injective module. By
general theory (see [26], [27], [62]), every regular component C of ΓA is either of the
form Z∆, for a locally finite acyclic valued quiver ∆, or a stable tube ZA∞/(τ

r),
for some r > 1. More generally (see [27]), every semi-regular component C of ΓA

is either a full translation subquiver of such a translation quiver Z∆ (acyclic case)
or is a ray tube, obtained from a stable tube by a finite number (possibly empty)

2010 Mathematics Subject Classification. Primary 16G10, 16G70; Secondary 16D50.
The research supported by the Research Grant N N201 269135 of the Polish Ministry of Science

and Higher Education.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of Nicolaus Copernicus University

https://core.ac.uk/display/214932776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 ALICJA JAWORSKA, PIOTR MALICKI, AND ANDRZEJ SKOWROŃSKI

of ray insertions, or a coray tube, obtained from a stable tube by a finite number
(possibly empty) of coray insertions.

A prominent role in the representation theory of algebras is played by the gener-
alized standard Auslander-Reiten components. Following [47] a component C of an
Auslander-Reiten quiver ΓA is called generalized standard if rad∞A (X,Y ) = 0 for all
modules X and Y in C. It has been proved in [47] that every generalized standard
component C of ΓA is almost periodic, that is, all but finitely many τA-orbits in C
are periodic. Distinguished classes of generalized standard components are formed
by the Auslander-Reiten quivers of all algebras of finite representation type, the
connecting components of tilted algebras [17] (respectively, double tilted algebras
[34], generalized double tilted algebras [35]), the separating families of tubes of
quasi-tilted algebras of canonical type [24], [25], or more generally, separating fam-
ilies of almost cyclic coherent components of generalized multicoil algebras [30].
The acyclic generalized standard components have been described completely in
[46]. In particular, the regular acyclic generalized standard components are exactly
the connecting components of tilted algebras given by regular tilting modules [47].
On the other hand, the description of the support algebras of arbitrary generalized
standard components is an exciting but difficult problem (see [53], [55]). Namely,
it is shown in [53] and [55] that every algebra Λ over a field K is a factor algebra
of an algebra A (even symmetric algebra) with ΓA having a sincere generalized
standard stable tube. Another interesting open problem is to find handy criteria
for an almost periodic Auslander-Reiten component to be generalized standard.
For stable tubes (respectively, almost acyclic components) such handy criteria have
been established in [39], [47], [53] (respectively, [29], [34], [35], [46]).

In this paper we are concerned with the structure of components of the Auslander-
Reiten quiver ΓA of an algebra A having an ordered interaction with other com-
ponents of ΓA. Following [33], by an external short path of a component C of ΓA

we mean a sequence X → Y → Z of non-zero non-isomorphisms between indecom-
posable modules in modA with X and Z in C but Y not in C. We mention that
every component C of ΓA without external short paths has the important prop-
erty: the additive category add(C) of C is closed under extensions in modA. For a
component C of ΓA, we denote by annA(C) the annihilator of C in A, that is, the
intersection of the annihilators annA(X) = {a ∈ A|Xa = 0} of all modules X in C.
A component C of ΓA with annA(C) = 0 is called faithful. We note that annA(C)
is an ideal of A, C is a faithful component of ΓA/ annA(C), and every simple right
(A/ annA(C))-module occurs as a composition factor of a module in C.

We are now in a position to formulate the main results of the paper.

Theorem 1.1. Let A be an algebra, C a component of ΓA without projective mod-
ules and external short paths, and B = A/ annA(C). Then one of the following
statements holds:

(i) B is a tilted algebra of the form EndH(T ), where H is a hereditary algebra
and T is a tilting H-module without non-zero preinjective direct summands,
and C is the connecting component CT of ΓB determined by T .

(ii) B is the opposite algebra of an almost concealed canonical algebra and C is
a faithful coray tube of a separating family of coray tubes of ΓB.

Theorem 1.2. Let A be an algebra, C a component of ΓA without injective mod-
ules and external short paths, and B = A/ annA(C). Then one of the following
statements holds:
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(i) B is a tilted algebra of the form EndH(T ), where H is a hereditary al-
gebra and T is a tilting H-module without non-zero preprojective direct
summands, and C is the connecting component CT of ΓB determined by T .

(ii) B is an almost concealed canonical algebra and C is a faithful ray tube of a
separating family of ray tubes of ΓB.

Corollary 1.3. Let A be an algebra, C a regular component of ΓA without external
short paths, and B = A/ annA(C). Then one of the following statements holds:

(i) B is a tilted algebra of the form EndH(T ), where H is a hereditary algebra
and T is a regular tilting H-module, and C is the connecting component CT
of ΓB determined by T .

(ii) B is a concealed canonical algebra and C is a stable tube of a separating
family of stable tubes of ΓB.

We would like to mention that, by a result of Ringel [41], a hereditary algebra
H admits a regular tilting module T if and only if H is neither of Dynkin type nor
Euclidean type and has at least three pairwise non-isomorphic simple modules (see
also [6], [7], [44, Section XVIII.5] for constructions of regular tilting modules over
wild hereditary algebras). We refer to [22] for constructions of regular connecting
components of tilted algebras and stable tubes of concealed canonical algebras
having all indecomposable modules with every simple module occuring arbitrary
many times as a composition factor. Moreover, we refer to [50] for results on the
composition factors of modules in generalized standard stable tubes.

As an immediate consequence of Theorems 1.1 and 1.2 we obtain the following
fact.

Corollary 1.4. Let A be an algebra and C be a semi-regular component of ΓA

without external short paths. Then C is a generalized standard component of ΓA.

We exhibit in Section 2 (Example 2.6) an Auslander-Reiten component without
external short paths which is not generalized standard. It would be interesting to
know when an Auslander-Reiten component without external short paths is gener-
alized standard. This question can be interpreted in the following way. Following
[48], a component quiver ΣA of an algebra A has the components of ΓA as the
vertices and two components C and D of ΓA are linked in ΣA by an arrow C → D if
rad∞A (X,Y ) ̸= 0 for some modules X in C and Y in D. In particular, a component
C of ΓA is generalized standard if and only if ΣA has no loop at C. Therefore, we

ask when, for a component C of ΓA, the absence of short cycles C // Doo in ΣA

with C ̸= D forces the absence of loop C ee at C in ΣA.
It has been proved in [47, Theorem 3.6] that the Auslander-Reiten quiver ΓA

of an algebra A has at most finitely many acyclic regular generalized standard
components. Hence, we obtain the following immediate consequence of the above
results.

Corollary 1.5. Let A be an algebra. Then all but finitely many components of ΓA

without external short paths are stable tubes.

A crucial role in our proofs of Theorems 1.1 and 1.2 is played by the following
theorem describing the components without external short paths in the Auslander-
Reiten quivers of quasi-tilted algebras. Recall that the quasi-tilted algebras are
those of the form EndH(T ) for tilting objects T in hereditary abelian Ext-finite
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categories H, or equivalently, the algebras Λ of global dimension at most two and
with every indecomposable module in modΛ of the projective dimension or the
injective dimension at most one [16].

Theorem 1.6. Let A be a quasi-tilted algebra and C a component of ΓA. The
following statements are equivalent:

(i) C has no external short path.
(ii) C is almost periodic.
(iii) C is generalized standard.
(iv) C is either a preprojective component, a preinjective component, a ray tube,

a coray tube, or a connecting component (in case A is a tilted algebra).

We would like to mention that, in general, there are many generalized standard
(even faithful) components having external short paths, for example the faithful
generalized standard stable tubes over generalized canonical (but not canonical)
algebras introduced in [53] (see also [55]). On the other hand, Theorem 1.6 leads
to a similar characterization of components without external short paths in the
Auslander-Reiten quivers of generalized double tilted algebras investigated in [34],
[35]. In particular, it is the case for all algebras A with all but finitely many inde-
composable modules in modA of the projective dimension (respectively, injective
dimension) at most one [49]. We refer also to [54] for a characterization of the class
of algebras consisting of the quasi-tilted algebras and generalized double tilted alge-
bras. Finally, we also mention that Theorem 1.6 leads to a similar characterization
of components without external short paths in the Auslander-Reiten quivers of al-
gebras having separating families of almost cyclic coherent components, where the
connecting components have to be replaced by the generalized multicoils (see [30]
for details). On the other hand, it is not clear if every Auslander-Reiten component
without external short paths is almost periodic.

From Drozd’s Tame and Wild Theorem [10] the class of finite dimensional alge-
bras over an algebraically closed field K may be divided into two disjoint classes.
One class consists of the tame algebras for which the indecomposable modules oc-
cur, in each dimension d, in a finite number of discrete and a finite number of
one-parameter families. The second class is formed by the wild algebras whose rep-
resentation theory ‘comprises’ the representation theories of all finite dimensional
algebras over K. Among the tame algebras we may distinguish the classes of al-
gebras of polynomial growth [45] (respectively, domestic [9], [45]) for which there
exists a positive integer m such that the indecomposable modules occur, in each
dimension d, in a finite number of discrete and at most dm (respectively, at most
m) one-parameter families. Moreover, it has been proved by Crawley-Boevey [8]
that, for a tame algebra A, all but finitely many indecomposable A-modules of any
fixed dimension d lie in stable tubes of rank one. We refer to [44, Chapter XIX] for
precise definitions and properties of tame and wild algebras.

The following result is an immediate consequence of Corollary 1.3, Theorem 1.6,
the above theorem of Crawley-Boevey, and the fact that the tilted algebras given
by regular tilting modules and the concealed canonical algebras of wild type are
wild.
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Corollary 1.7. Let A be a finite dimensional tame algebra over an algebraically
closed field K and C a regular component of ΓA without external short paths. Then
C is a stable tube and A/ annA(C) is a tame concealed algebra or a tubular algebra.

Moreover, we have also the following consequence of Corollary 1.3, Theorem 1.6,
[8], [39], [45, Lemma 3.6] and [52, Theorem A and Corollary B].

Corollary 1.8. Let A be a finite dimensional tame algebra over an algebraically
closed field K such that no component of ΓA has an external short path. Then the
following facts hold.

(i) A is of polynomial growth.
(ii) A is a domestic algebra if and only if all but finitely many components of

ΓA are stable tubes of rank one.

It would be important to know if a finite dimensional algebra A over an alge-
braically closed field K with every component in ΓA without external short paths is
actually a tame algebra. On the other hand, if for such an algebra A every compo-
nent in ΓA is generalized standard, then rad∞A (X,X) = 0 for any indecomposable
module X in modA, and consequently A is a tame algebra (see [51, Proposition
3.3]). Hence we obtain, by Corollary 1.8, the following fact.

Corollary 1.9. Let A be a finite dimensional algebra over an algebraically closed
field K such that the component quiver ΣA of A has no short cycles ◦ // ◦oo and
no loops ◦ dd . Then A is a tame algebra of polynomial growth.

As an application of Corollary 1.3 and results established in [12], [37] and [56],
[57], [58], we obtain a complete description of all self-injective algebras whose
Auslander-Reiten quiver admits a regular acyclic component without external short
paths.

Theorem 1.10. Let A be a self-injective algebra. The following statements are
equivalent.

(i) ΓA admits a regular acyclic component C without external short paths.

(ii) A is isomorphic to an orbit algebra B̂/(φν2
B̂
), where B̂ is the repetitive cate-

gory of a tilted algebra B of the form EndH(T ), for some hereditary algebra
H and a regular tilting H-module T , νB̂ is the Nakayama automorphism of

B̂, and φ is a positive automorphism of B̂.

We refer to [12] for the representation theory of orbit algebras B̂/G of the repet-

itive categories B̂ of tilted algebras B of wild type and infinite cyclic automorphism

groups G of B̂. We also note that the problem of describing the self-injective al-
gebras whose Auslander-Reiten quiver admits a stable tube without external short
paths is more difficult, because the stable tubes occur in families of quasi-tubes.
We refer to [18] for a wide class of self-injective algebras having infinitely many
stable tubes without external short paths.

The paper is organized as follows. In Section 2 we prove Theorem 1.6 and recall
the related background on tilted algebras and quasi-tilted algebras of canonical
type. In Section 3 we provide the proofs of Theorems 1.1 and 1.2, showing that every
algebra whose Auslander-Reiten quiver admits a faithful semi-regular component
without external short paths is a quasi-tilted algebra, and then applying Theorem
1.6. The final Section 4 is devoted to the proof of Theorem 1.10 and the related
background on the orbit algebras of repetitive categories of algebras.
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For background on the representation theory we refer to the books [1], [5], [14],
[39], [43] and [44].

2. Proof of Theorem 1.6

In the proof of Theorem 1.6 we need translation subquivers of the Auslander-
Reiten quivers of special type. Let A be an algebra, C a component of ΓA andM an
indecomposable module in C. Then the left cone (→M) ofM is the full translation
subquiver of C formed by all predecessors of M in C and the right cone (M →) of
M is the full translation subquiver of C formed by all successors of M in C.

It has been proved in [15] that the class of quasi-tilted algebras consists of the
tilted algebras [17] (endomorphism algebras of tilting modules over hereditary alge-
bras) and the quasi-tilted algebras of canonical type [25] (endomorphism algebras
of tilting objects in hereditary abelian categories whose bounded derived category
is equivalent to the bounded derived category of a canonical algebra in the sense
of Ringel [39], [42]). Accordingly, we will divide the proof of Theorem 1.6 into two
cases: the tilted case and the canonical case.

Let H be a hereditary algebra, QH the valued quiver of H, and T a multiplicity-
free tilting module in modH, that is, Ext1H(T, T ) = 0 and T is a direct sum
of n pairwise non-isomorphic indecomposable H-modules with n the rank of the
Grothendieck group K0(H) of H. Consider the associated tilted algebra B =
EndH(T ) of type QH . Then the tilting module T determines the torsion pair
(F(T ), T (T )) in modH, with the torsion-free part F(T ) = {X ∈ modH|HomH(T,X) =
0} and the torsion part T (T ) = {X ∈ modH|Ext1H(T,X) = 0}, and the split-
ting torsion pair (Y(T ),X (T )) in modB, with the torsion-free part Y(T ) = {Y ∈
modB|TorB1 (Y, T ) = 0} and the torsion part X (T ) = {Y ∈ modB|Y ⊗B T = 0}.
Moreover, by the Brenner-Butler theorem, the functor HomH(T,−) : modH →
modB induces an equivalence of T (T ) with Y(T ), and the functor Ext1H(T,−) :
modH → modB induces an equivalence of F(T ) with X (T ) (see [1], [17]). Further,
the images HomH(T, I) of the indecomposable injective modules I in modH via
the functor HomH(T,−) belong to one component CT of ΓB , called the connecting
component of ΓB determined by T , and form a faithful section ∆T

∼= Qop
H of CT .

The section ∆T of CT has the distinguished property: it connects the torsion-free
part Y(T ) with the torsion part X (T ), because every indecomposable predecessor
of a module HomH(T, I) from ∆T in modB lies in Y(T ) and every indecomposable
successor of a module τ−B HomH(T, I) in modB lies in X (T ). We have also the
following properties of the connecting component CT established in [40]:

• CT contains a projective module if and only if T admits a preinjective
indecomposable direct summand;

• CT contains an injective module if and only if T admits a preprojective
indecomposable direct summand;

• CT is regular if and only if T is regular.

We also mention that the Auslander-Reiten quiver ΓH of H has the decomposition

ΓH = P(H) ∨R(H) ∨Q(H),

where P(H) is the preprojective component containing all indecomposable projec-
tive H-modules, Q(H) is the preinjective component containing all indecomposable
injective H-modules, and R(H) is the family of all regular components. Moreover,
we have
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• If QH is a Dynkin quiver, then R(H) is empty and P(H) = Q(H).
• If QH is a Euclidean quiver, then P(H) ∼= (−N)Qop

H , Q(H) ∼= NQop
H and

R(H) is an infinite family of pairwise orthogonal generalized standard sta-
ble tubes [39], [43].

• If QH is a wild quiver, then P(H) ∼= (−N)Qop
H , Q(H) ∼= NQop

H and R(H)
is an infinite family of regular components of type ZA∞ [3], [38], [44].

LetH be a hereditary algebra not of Dynkin type and T a multiplicity-free tilting
H-module from the additive category add(P(H)) of the preprojective component
P(H) of ΓH . Then B = EndH(T ) is called a concealed algebra of type QH . A
concealed algebra B = EndH(T ) is called a tame concealed algebra if QH is a
Euclidean quiver, and a wild concealed algebra if QH is a wild quiver.

The following fact proved by Baer [6] (see also [44, Theorem XVIII.2.6]) will be
important for our considerations.

Lemma 2.1. Let H be a wild hereditary algebra, and X, Y be two indecomposable
modules in R(H). Then there is a positive integer m such that HomH(X, τ rHY ) ̸= 0
for all integers r > m.

We will prove now Theorem 1.6 in the tilted case.

Proposition 2.2. Let H be a hereditary algebra, T a multiplicity-free tilting H-
module, B = EndH(T ) the associated tilted algebra, and C a component of ΓB. The
following statements are equivalent:

(i) C has no external short path.
(ii) C is almost periodic.
(iii) C is generalized standard.
(iv) C is either a preprojective component, a preinjective component, a ray tube,

a coray tube, or the connecting component CT .

Proof. We start with the general view on the module category modB due to results
established in [19], [20], [21], [28], [61]. Let ∆ = ∆T be the canonical section of
the connecting component CT determined by T . Hence, ∆ = Qop for Q = QH .
Then CT admits a finite (possibly empty) family of pairwise disjoint full translation
(valued) subquivers

D(l)
1 , ...,D(l)

m ,D(r)
1 , ...,D(r)

n

such that the following statements hold:

(a) For each i ∈ {1, ...,m}, there is an isomorphism of translation quiversD(l)
i

∼=
N∆(l)

i , where ∆
(l)
i is a connected full valued subquiver of ∆, and D(l)

i is
closed under predecessors in CT .

(b) For each j ∈ {1, ..., n}, there is an isomorphism of translation quiversD(r)
j

∼=
(−N)∆(r)

j , where ∆
(r)
j is a connected full valued subquiver of ∆, and D(r)

j

is closed under successors in CT .
(c) All but finitely many indecomposable modules of CT lie in

D(l)
1 ∪ ... ∪ D(l)

m ∪ D(r)
1 ∪ ... ∪ D(r)

n .
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(d) For each i ∈ {1, ...,m}, there exists a tilted algebra B
(l)
i = End

H
(l)
i
(T

(l)
i ),

where H
(l)
i is a hereditary algebra of type (∆

(l)
i )op and T

(l)
i is a multiplicity-

free tilting H
(l)
i -module without preinjective indecomposable direct sum-

mands such that
• B

(l)
i is a quotient algebra of B, and hence there is a fully faithful

embedding modB
(l)
i ↪→ modB,

• D(l)
i coincides with the torsion-free part Y(T

(l)
i )∩C

T
(l)
i

of the connect-

ing component C
T

(l)
i

of Γ
B

(l)
i

determined by T
(l)
i .

(e) For each j ∈ {1, ..., n}, there exists a tilted algebra B
(r)
j = End

H
(r)
j

(T
(r)
j ),

whereH
(r)
j is a hereditary algebra of type (∆

(r)
j )op and T

(r)
j is a multiplicity-

free tilting H
(r)
j -module without preprojective indecomposable direct sum-

mands such that
• B

(r)
j is a quotient algebra of B, and hence there is a fully faithful

embedding modB
(r)
j ↪→ modB,

• D(r)
j coincides with the torsion part X (T

(r)
j ) ∩ C

T
(r)
j

of the connecting

component C
T

(r)
j

of Γ
B

(r)
j

determined by T
(r)
j .

(f) Y(T ) = add(Y(T
(l)
1 ) ∪ ... ∪ Y(T

(l)
m ) ∪ (Y(T ) ∩ CT )).

(g) X (T ) = add((X (T ) ∩ CT ) ∪ X (T
(r)
1 ) ∪ ... ∪ X (T

(r)
n )).

(h) The Auslander-Reiten quiver ΓB has the disjoint union form

ΓB = (
m∪
i=1

YΓ
B

(l)
i

) ∪ CT ∪ (
n∪

j=1

XΓ
B

(r)
j

),

where
• for each i ∈ {1, ...,m}, YΓ

B
(l)
i

is the union of all components of Γ
B

(l)
i

contained entirely in Y(T
(l)
i ),

• for each j ∈ {1, ..., n}, XΓ
B

(r)
j

is the union of all components of Γ
B

(r)
j

contained entirely in X (T
(r)
j ).

Moreover, we have the following description of the components of ΓB contained in
the parts YΓ

B
(l)
i

and XΓ
B

(r)
j

:

(1) If ∆
(l)
i is a Euclidean quiver, then YΓ

B
(l)
i

consists of a unique preprojective

component P(B
(l)
i ) of Γ

B
(l)
i

and an infinite family T B
(l)
i of pairwise orthog-

onal generalized standard ray tubes. Further, P(B
(l)
i ) coincides with the

preprojective component P(C
(l)
i ) of a tame concealed quotient algebra C

(l)
i

of B
(l)
i .

(2) If ∆
(l)
i is a wild quiver, then YΓ

B
(l)
i

consists of a unique preprojective com-

ponent P(B
(l)
i ) of Γ

B
(l)
i

and an infinite family of components obtained from

the components of the form ZA∞ by a finite number (possibly empty) of

ray insertions. Further, P(B
(l)
i ) coincides with the preprojective component

P(C
(l)
i ) of a wild concealed quotient algebra C

(l)
i of B

(l)
i .
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(3) If ∆
(r)
j is a Euclidean quiver, then XΓ

B
(r)
j

consists of a unique preinjective

component Q(B
(r)
j ) of Γ

B
(r)
j

and an infinite family of pairwise orthogo-

nal generalized standard coray tubes. Further, Q(B
(r)
j ) coincides with the

preinjective component Q(C
(r)
j ) of a tame concealed quotient algebra C

(r)
j

of B
(r)
j .

(4) If ∆
(r)
j is a wild quiver, then XΓ

B
(r)
j

consists of a unique preinjective com-

ponent Q(B
(r)
j ) of Γ

B
(r)
j

and an infinite family of components obtained from

the components of the form ZA∞ by a finite number (possibly empty) of

coray insertions. Further, Q(B
(r)
j ) coincides with the preinjective compo-

nent Q(C
(r)
j ) of a wild concealed quotient algebra C

(r)
j of B

(r)
j .

It follows from the above facts that the preprojective components, preinjective
components, ray tubes and coray tubes of ΓB are generalized standard, without
external short paths, and clearly are almost periodic. On the other hand, the
components of ΓB obtained from the components of the form ZA∞ by ray insertions
or coray insertions are not almost periodic, and hence are not generalized standard,
by the general result [47, Theorem 2.3]. Therefore, it remains to show that all these
components have external short paths. We have two cases to consider.

Assume C is an acyclic component of ΓB with infinitely many τB-orbits con-
tained in the torsion-free part Y(T ) of modB. Then it follows from (1) and (2)

that there is i ∈ {1, ...,m} such that ∆
(l)
i is a wild quiver and C is a component

of the Auslander-Reiten quiver Γ
B

(l)
i

of the tilted algebra B
(l)
i = End

H
(l)
i
(T

(l)
i )

with H
(l)
i a wild hereditary algebra of type (∆

(l)
i )op and T

(l)
i a multiplicity-free

tilting H
(l)
i -module without preinjective indecomposable direct summands. Since

YΓ
B

(l)
i

contains infinitely many components different from the preprojective com-

ponent P(B
(l)
i ), we may choose a regular component D in YΓ

B
(l)
i

different from C.
Clearly, D is of the form ZA∞. Now it follows from [20, Theorem 1] that there

exist regular components C̃ and D̃ in Γ
H

(l)
i

and indecomposable modules X ∈ C,

Y ∈ D, X̃ ∈ C̃ and Ỹ ∈ D̃ such that the functor F
(l)
i = Hom

H
(l)
i

(T
(l)
i ,−) :

modH
(l)
i → modB

(l)
i induces equivalences of the additive categories of the left

cones F
(l)
i : add(→ X̃)

∼ // add(→ X) and F
(l)
i : add(→ Ỹ )

∼ // add(→ Y ).

Moreover, we have F
(l)
i (τ

H
(l)
i

M) = τ
B

(l)
i

F
(l)
i (M) and F

(l)
i (τ

H
(l)
i

N) = τ
B

(l)
i

F
(l)
i (N)

for all modules M in (→ X̃) and N in (→ Ỹ ). Applying now Lemma 2.1, we

obtain that there exist positive integers r and s such that Hom
H

(l)
i
(X̃, τ r

H
(l)
i

Ỹ ) ̸= 0

and Hom
H

(l)
i

(τ r
H

(l)
i

Ỹ , τs
H

(l)
i

X̃) ̸= 0. Hence we get Hom
B

(l)
i

(X, τ r
B

(l)
i

Y ) ̸= 0 and

Hom
B

(l)
i
(τ r

B
(l)
i

Y, τs
B

(l)
i

X) ̸= 0, and consequently an external short pathX → τ r
B

(l)
i

Y →

τ s
B

(l)
i

X of C in modB
(l)
i , and so in modB, because B

(l)
i is a quotient algebra of B

and there is a fully faithful embedding modB
(l)
i ↪→ modB.

Assume C is an acyclic component with infinitely many τB-orbits contained in
the torsion part X (T ) of modB. Then it follows from (3) and (4) that there
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is j ∈ {1, ..., n} such that ∆
(r)
j is a wild quiver and C is a component of the

Auslander-Reiten quiver Γ
B

(r)
j

of the tilted algebra B
(r)
j = End

H
(r)
j

(T
(r)
j ) with

H
(r)
j a wild hereditary algebra of type (∆

(r)
j )op and T

(r)
j a multiplicity-free tilt-

ing H
(r)
j -module without preprojective indecomposable direct summands. Since

XΓ
B

(r)
j

contains infinitely many components different from the preinjective com-

ponent Q(B
(r)
j ), we may choose a regular component D in XΓ

B
(r)
j

different from

C. Note that D is of the form ZA∞. We know also that the preinjective com-

ponent Q(B
(r)
j ) coincides with the unique preinjective component Q(C

(r)
j ) of a

wild concealed quotient algebra C(r)
j of B

(r)
j . Then C

(r)
j = End

Λ
(r)
j

(V
(r)
j ), where

Λ
(r)
j is a wild hereditary algebra and V

(r)
j is a multiplicity-free tilting module from

add(P(Λ
(r)
j )). In particular, the functor Hom

Λ
(r)
j

(V
(r)
j ,−) : modΛ

(r)
j → modC

(r)
j

induces an equivalence add(R(Λ
(r)
j ))

∼ // add(R(C
(r)
j )) of the categories of reg-

ular modules over Λ
(r)
j and C

(r)
j . Applying Lemma 2.1, we conclude that for any

indecomposable modules M and N in R(C
(r)
j ) there exists a positive integer p

such that Hom
C

(r)
j

(M, τ s
C

(r)
j

N) ̸= 0 for all integers s > p. On the other hand,

it follows from [20, Theorem 1] that there exist indecomposable modules X ∈ C
and Y ∈ D such that the left cones (→ X) of C and (→ Y ) of D consist en-

tirely of indecomposable C
(r)
j -modules and the restriction of τ

B
(r)
j

to the left cones

(→ X) and (→ Y ) coincides with τ
C

(r)
j

. Hence, the left cone (→ X) of C is the

left cone (→ X̃), with X̃ = X, of a component C̃ of type ZA∞ of Γ
C

(r)
j

, and the

left cone (→ Y ) of D is the left cone (→ Ỹ ), with Ỹ = Y , of a component D̃
of type ZA∞ of Γ

C
(r)
j

. Observe that C̃ ≠ D̃ since C ≠ D. Then there exist pos-

itive integers p and q such that Hom
B

(r)
j

(X, τp
B

(r)
j

Y ) = Hom
C

(r)
j

(X, τp
C

(r)
j

Y ) ̸= 0

and Hom
B

(r)
j

(τp
B

(r)
j

Y, τ q
B

(r)
j

X) = Hom
C

(r)
j

(τp
C

(r)
j

Y, τ q
C

(r)
j

X) ̸= 0. Therefore, we get an

external short path X → τp
B

(r)
j

Y → τ q
B

(r)
j

X of C in modB
(r)
j , and so in modB,

because B
(r)
j is a quotient algebra of B and there is a fully faithful embedding

modB
(r)
j ↪→ modB.

We note that although the proofs in the two considered cases are similar, the
applied results concerning the structure of left cones of acyclic components in Y(T )
and X (T ) are different. �

Let Λ be a canonical algebra in the sense of Ringel [42] (see also [39]). Then
the valued quiver QΛ of Λ has a unique sink and a unique source. Denote by Q∗

Λ

the valued quiver obtained from QΛ by removing the unique source of QΛ and the
arrows attached to it. Then Λ is said to be a canonical algebra of Euclidean type
(respectively, of tubular type, of wild type) if Q∗

Λ is a Dynkin quiver (respectively,
a Euclidean quiver, a wild quiver). We refer to [60, Theorems 3.1 and 3.2] for
the shapes of the valued quivers of canonical algebras of Euclidean and tubular
type. The general shape of the Auslander-Reiten quiver ΓΛ of Λ, described in [42,
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Sections 3 and 4], is as follows:

ΓΛ = PΛ ∨ T Λ ∨QΛ,

where PΛ is a family of components containing a unique preprojective component
P(Λ) and all indecomposable projective Λ-modules, QΛ is a family of components
containing a unique preinjective component Q(Λ) and all indecomposable injective
Λ-modules, and T Λ is an infinite family of pairwise orthogonal generalized standard
faithful stable tubes separating PΛ from QΛ, and with all but finitely many stable
tubes of rank one. An algebra C of the form EndΛ(T ), where T is a multiplicity-
free tilting module from the additive category add(PΛ) of PΛ is said a concealed
canonical algebra of type Λ. More generally, an algebra B of the form EndΛ(T ),
where T is a multiplicity-free tilting module from the additive category add(PΛ ∪
T Λ) of PΛ ∪ T Λ is said to be an almost concealed canonical algebra of type Λ.

We note the following statements:

• The class of concealed canonical algebras of Euclidean types coincides with
the class of concealed algebras of Euclidean types (tame concealed algebras).

• The class of almost concealed canonical algebras of Euclidean types coin-
cides with the class of tilted algebras of the form EndH(T ), where H is a
hereditary algebra of a Euclidean type and T is a multiplicity-free tilting
H-module without preinjective indecomposable direct summands.

• The class of the opposite algebras of almost concealed canonical algebras
of Euclidean types coincides with the class of tilted algebras of the form
EndH(T ), where H is a hereditary algebra of a Euclidean type and T is
a multiplicity-free tilting H-module without preprojective indecomposable
direct summands.

An almost concealed canonical algebra B of a tubular type is called a tubular
algebra. It is known that then the opposite algebra Bop of B is also a tubular
algebra. The shape of the Auslander-Reiten quiver ΓB of a tubular algebra B,
described by Ringel (see [39, Chapter 5], [42, Sections 3 and 4]), is as follows:

ΓB = P(B) ∨ T B
0 ∨ (

∨
q∈Q+

T B
q ) ∨ T B

∞ ∨Q(B),

where Q+ is the set of positive rational numbers, P(B) is a preprojective compo-
nent with a Euclidean section, Q(B) is a preinjective component with a Euclidean
section, T B

0 is an inifnite family of pairwise orthogonal generalized standard ray
tubes containing at least one indecomposable projective B-module, T B

∞ is an infinite
family of pairwise orthogonal generalized standard coray tubes containing at least
one indecomposable injective B-module, and each T B

q , for q ∈ Q+, is an infinite
family of pairwise orthogonal generalized standard faithful stable tubes. Moreover,
every component of ΓB has no external short path in modB.

We will need also an analogue of Lemma 2.1 for the canonical algebras of wild
type.

Let Λ be a canonical algebra of wild type. Then it follows from [16], [23] and
[25] that there exist hereditary abelian categories H(Λ) and T (Λ) such that the
following statements hold:

• The bounded derived category Db(modΛ) of Λ has a decomposition

Db(modΛ) =
∨
m∈Z

(H(Λ)[m] ∨ T (Λ)[m]) = Db(H(Λ)∗)
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with H(Λ) = H(Λ)[0], T (Λ) = T (Λ)[0], and H(Λ)∗ = add(H(Λ) ∨ T (Λ)).
• H(Λ) is the additive category of infinitely many components of the form
ZA∞.

• T (Λ) is the additive category of an infinite family of pairwise orthogonal
generalized standard stable tubes.

• Every concealed canonical algebra C of type Λ is of the form EndH(Λ)(T )
for a tilting object T in H(Λ).

• Every almost concealed canonical algebraB of type Λ is of the form EndH(Λ)∗(T
∗)

for a tilting object T ∗ in H(Λ)∗.

Then the following lemma is a direct consequence of [23, Theorem 2.7].

Lemma 2.3. Let Λ be a concealed canonical algebra of wild type, and X,Y be
two indecomposable objects in H(Λ). Then there is a positive integer m such that
HomH(Λ)(X, τ

r
H(Λ)Y ) ̸= 0 for all r > m.

We will prove now Theorem 1.6 in the canonical case.

Proposition 2.4. Let B be a quasi-tilted algebra of canonical type and C a com-
ponent of ΓB. The following statements are equivalent:

(i) C has no external short path.
(ii) C is almost periodic.
(iii) C is generalized standard.
(iv) C is either a preprojective component, a preinjective component, a ray tube,

or a coray tube.

Proof. We start with the general view on the module category modB due to results
established in [25, Sections 3 and 4] and [31]. There are an almost concealed
canonical algebra B(r) = EndΛ(r)(T (r)) and the opposite algebra B(l) of an almost
concealed canonical algebra EndΛ(l)(T (l)), for canonical algebras Λ(l) and Λ(r) and

tilting modules T (l) ∈ add(PΛ(l) ∨ T Λ(l)

) and T (r) ∈ add(PΛ(r) ∨ T Λ(r)

), such that
B(l) and B(r) are quotient algebras of B. Moreover, the Auslander-Reiten quiver
ΓB of B has the disjoint union form

ΓB = PB ∨ T B ∨QB ,

where

(a) T B is a family of pairwise orthogonal generalized standard semi-regular
tubes (ray and coray tubes) separating PB from QB .

(b) PB = PB(l)

is a family of components consisting entirely of indecompos-
able B(l)-modules and containing all indecomposable projective B-modules
which are not in T B .

(c) PB contains a unique preprojective component P(B) of ΓB , and P(B) =
P(B(l)) coincides with a unique preprojective component P(C(l)) of the
Auslander-Reiten quiver ΓC(l) of a connected concealed quotient algebra
C(l) of B(l), and hence of B.

(d) QB = QB(r)

is a family of components consisting entirely of indecomposable
B(r)-modules and containing all indecomposable injective B-modules which
are not in T B .

(e) QB contains a unique preinjective component Q(B) of ΓB , and Q(B) =
Q(B(r)) coincides with a unique preinjective component Q(C(r)) of the
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Auslander-Reiten quiver ΓC(r) of a connected concealed quotient algebra
C(r) of B(r), and hence of B.

Moreover, we have the following description of components of ΓB contained in the
parts PB and QB :

(1) If B(l) is of Euclidean type, then PB = P(B).
(2) If B(l) is of tubular type, then

PB = P(B(l)) ∨ T B(l)

0 ∨ (
∨

q∈Q+

T B(l)

q ).

(3) If B(l) is of wild canonical type, then every component of PB different from
the preprojective component P(B) = P(B(l)) = P(C(l)) is obtained from
a component of the form ZA∞ by a finite number (possibly empty) of ray
insertions, and there are infinitely many components of this type in PB .

(4) If B(r) is of Euclidean type , then QB = Q(B).
(5) If B(r) is of tubular type, then

QB = (
∨

q∈Q+

T B(r)

q ) ∨ T B(r)

∞ ∨Q(B(r)).

(6) If B(r) is of wild canonical type, then every component of QB different from
the preinjective component Q(B) = Q(B(r)) = Q(C(r)) is obtained from
the component of the form ZA∞ by a finite number (possibly empty) of
coray insertions, and there are infinitely many components of this type in
QB .

It follows from the above facts that the preprojective components, preinjective
components, ray tubes, and coray tubes of ΓB are generalized standard, without
external short paths, and clearly are almost periodic. On the other hand, the
components of ΓB obtained from the components of the form ZA∞ by ray insertions
or coray insertions are not almost periodic, and hence are not generalized standard,
again by [47, Theorem 2.3]. Therefore, it remains to show that all these components
have external short paths. We have two cases to consider.

Assume C is an acyclic component of ΓB with infinitely many τB-orbits con-
tained in the part PB . Then, applying (1)-(3), we conclude that B(l) is of wild
canonical type and C is obtained from a component of the form ZA∞ by a finite
number (possibly empty) of ray insertions. Since PB contains infinitely many com-
ponents we may also choose in PB a regular component D (of the form ZA∞)
different from C. Then it follows from the dual of [31, Theorem 3.4] that there are

components C̃ and D̃ of the form ZA∞ in the Auslander-Reiten quiver ΓH(Λ(l)) of

the hereditary abelian category H(Λ(l)), associated to the wild canonical algebra

Λ(l), indecomposable modules X ∈ C and Y ∈ D, indecomposable objects X̃ ∈ C̃
and Ỹ ∈ D̃, and a functor F (l) : H(Λ(l)) → modB(l) which induces equivalences

of the additive categories of the left cones F (l) : add(→ X̃)
∼ // add(→ X) and

F (l) : add(→ Ỹ )
∼ // add(→ Y ) , such that F (l)(τH(Λ(l))M) = τB(l)F (l)(M) and

F (l)(τH(Λ(l))N) = τB(l)F (l)(N) for all indecomposable objects M ∈ (→ X̃) and

N ∈ (→ Ỹ ). Applying Lemma 2.3, we obtain that there exist positive integers r and

s such that HomH(Λ(l))(X̃, τ
r
H(Λ(l))

Ỹ ) ̸= 0 and HomH(Λ(l))(τ
r
H(Λ(l))

Ỹ , τsH(Λ(l))
X̃) ̸= 0.
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Hence we get HomB(l)(X, τ rB(l)Y ) ̸= 0 and HomB(l)(τ rB(l)Y, τ
s
B(l)X) ̸= 0, and con-

sequently an external short path X → τ r
B(l)Y → τs

B(l)X of C in modB(l), and

hence in modB, because B(l) is a quotient algebra of B and there is a fully faithful
embedding modB(l) ↪→ modB.

Assume C is an acyclic component of ΓB with infinitely many τB-orbits con-
tained in the part QB . Then, applying (4)-(6), we conclude that B(r) is of wild
canonical type and C is obtained from a component of the form ZA∞ by a fi-
nite number (possibly empty) of coray insertions. Since QB contains infinitely
many components, we may choose in QB a regular component D (of the form
ZA∞) different from C. Moreover, by [31, Theorem 6.1], the connected concealed
quotient algebra C(r) of B(r) such that Q(C(r)) is a unique preinjective com-
ponent of ΓB , is a wild concealed algebra. Hence, C(r) = EndH(r)(T (r)) for a
wild hereditary algebra H(r) and a multiplicity-free tilting H(r)-module from the
additive category add(Q(H(r))) of the preinjective component Q(H(r)) of ΓH(r) .
In particular, the functor Ext1H(r)(T (r),−) : modH(r) → modC(r) induces an

equivalence add(R(H(r)))
∼ // add(R(C(r))) of the categories of regular mod-

ules over H(r) and C(r). Applying Lemma 2.1, we conclude that for any inde-
composable modules M and N in R(C(r)) there exists a positive integer p such
that HomC(r)(M, τ s

C(r)N) ̸= 0 for all integers s > p. On the other hand, it fol-
lows from [31, Theorem 6.4] that there exist indecomposable modules X ∈ C and
Y ∈ D such that the left cones (→ X) of C and (→ Y ) of D consist entirely of
indecomposable C(r)-modules and the restriction of τB(r) to the left cones (→ X)
and (→ Y ) coincides with τC(r) . Hence, the left cone (→ X) of C is the left

cone (→ X̃), with X = X̃, of a component C̃ of type ZA∞ of ΓC(r) , and the left

cone (→ Y ) of D is the left cone (→ Ỹ ), with Ỹ = Y , of a component D̃ of the

form ZA∞ of ΓC(r) . Note that C̃ ≠ D̃ since C ̸= D. Then there exist positive
integers p and q such that HomB(r)(X, τ

p
B(r)Y ) = HomC(r)(X, τ

p
C(r)Y ) ̸= 0 and

HomB(r)(τ
p
B(r)Y, τ

q
B(r)X) = HomC(r)(τ

p
C(r)Y, τ

q
C(r)X) ̸= 0. Therefore, we obtain an

external short path X → τp
B(r)Y → τ q

B(r)X of C in modB(r), and so in modB,

because B(r) is a quotient algebra of B and there is a fully faithful embedding
modB(r) ↪→ modB.

We note also that although the proofs in the two considered cases are similar,
the applied results concerning the structure of left cones of acyclic components in
PB and QB are different. �

The following corollary is a direct consequence of Propositions 2.2 and 2.4.

Corollary 2.5. Let B be a quasi-tilted algebra. The following statements are equiv-
alent.

(i) No component of ΓB has an external short path.
(ii) The component quiver ΣB is acyclic.
(iii) Every component of ΓB is generalized standard.
(iv) ΓB is almost periodic.

We end this section with an example showing that an Auslander-Reiten compo-
nent without external short paths is not necessarily generalized standard.
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Example 2.6. Let K be an algebraically closed field, Q the quiver

6
ξ //

δ

��

7

η
��

1 4
γ

����
��

�

3

α
^^=====

β����
��

�

2 5
σ

^^=====

I the ideal in the path algebra KQ of Q generated by the elements δα, δβ, ξη and
ηγ, and A = KQ/I the associated bound quiver algebra. We denote by H the path
algebra K∆ of the full subquiver ∆ of Q given by the vertices 1, 2, 3, 4, 5 and the
arrows α, β, γ, σ. Further, let Ω be the quiver obtained from Q by removing the
arrow η, J the ideal of the path algebra KΩ of Ω generated by δα and δβ, and
B = KΩ/J the associated bound quiver algebra. Then H is a hereditary algebra

of Euclidean type D̃4 whose Auslander-Reiten quiver ΓH consists of a preprojective
component P(H), a preinjective component Q(H), and a P1(K)-family T H =
(T H

λ )λ∈P1(K) of pairwise orthogonal generalized standard stable tubes, the three

tubes T H
∞ , T H

0 , T H
1 of rank 2, and the remaining tubes T H

λ , λ ∈ P1(K) \ {0, 1,∞},
of rank 1 (we refer to [43, Theorem XIII.2.9] for a detailed description of the stable
tubes of ΓH). In particular, the simple H-module S3 at the vertex 3 lies on the
mouth of a stable tube, say T H

1 of rank 2. Further, B is a tubular (branch) extension
(see [39, (4.7)] or [44, Chapters XV-XVII]) of H, involving the simple module S3,

which is a tilted algebra of Euclidean type D̃6 such that the Auslander-Reiten quiver
ΓB of B has disjoint union form

ΓB = P(B) ∨ T B ∨Q(B),

where P(B) = P(H) is a unique preprojective component, Q(B) is a unique
preinjective component containing all indecomposable injective B-modules and
T B = (T B

λ )λ∈P1(K) is a P1(K)-family of pairwise orthogonal generalized stan-

dard ray tubes with T B
λ = T H

λ for λ ∈ P1(K) \ {1}, and T B
1 is a ray tube ob-

tained from the stable tube T H
1 by insertion of two rays, containing the indecom-

posable projective B-module P6 and P7 at the vertices 6 and 7. Moreover, we
have HomB(T B ,P(B)) = 0, HomB(Q(B), T B) = 0, HomB(Q(B),P(B)) = 0, and
HomB(P(B), T B

λ ) ̸= 0, HomB(T B
λ ,Q(B)) ̸= 0 for all λ ∈ P1(K). Observe also that

B is the quotient algebra of A by the ideal generated by the coset η+I of the arrow
η, and hence we have the fully faithful embedding modB ↪→ modA. Then using
the canonical equivalences modA

∼−−→ repK(Q, I) and modB
∼−−→ repK(Ω, J) (see

[1, Theorem III.1.6]) we easily infer that there is only one indecomposable mod-
ule in modA which is not in modB, namely the 2-dimensional projective-injective
module P7 = I4 whose socle is the simple module S4 at the vertex 4 and whose top
is the simple module S7 at the vertex 7. Therefore, the Auslander-Reiten quiver
ΓA of A has the disjoint union form

ΓA = P(A) ∨ T A ∨ C,

where P(A) = P(B) = P(H) is a preprojective component, T A = (T A
λ )λ∈P1(K)\{1} =

(T B
λ )λ∈P1(K)\{1} is a family of pairwise orthogonal generalized standard stable
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tubes, and C is the component of the form below, obtained by gluing the ray
tube T B

1 and the preinjective component Q(B) by the projective-injective module
P7 = I4,
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where the modules along the vertical dashed lines have to be identified. We note
that HomA(C,D) = 0 for any component D of ΓA different from C, and hence C has
no external short path in modA. On the other hand, the canonical monomorphism
from the simple A-module S7 to its injective envelope I7 in modA belongs to
rad∞A (S7, I7), and so the component C is not generalized standard.

3. Proofs of Theorems 1.1 and 1.2

The aim of this section is to provide the proof of Theorem 1.1. Observe that
Theorem 1.2 follows from Theorem 1.1 applied to the opposite algebra Aop of A.

Let A be an algebra. Following [4] a module M in modA is said to be the
middle of a short chain if there is some indecomposable module X in modA with
HomA(X,M) ̸= 0 and HomA(M, τAX) ̸= 0. We note that if M and N are inde-
composable modules in modA with the same composition factors and M is not the
middle of a short chain, then M and N are isomorphic (see [4], [36]).

The following lemma follows from [33, Lemma 1.3] (see also [36, Theorem 1.6]).

Lemma 3.1. Let A be an artin algebra, M a module in modA and X an inde-
composable module in modA which is not isomorphic to a direct summand of M .
Assume that HomA(X,M) ̸= 0 and HomA(M, τAX) ̸= 0. Then there is a short
path Y → V → Z in modA, where Y and Z are indecomposable direct summands
of M , and V = X or V is an indecomposable direct summand of the middle term
E of an Auslander-Reiten sequence 0 → τAX → E → X → 0 in modA.

The next proposition will reduce the proof of Theorem 1.1 to Theorem 1.6.

Proposition 3.2. Let A be an algebra, C a semi-regular component of ΓA without
external short paths, and B = A/ annA(C). Then B is a quasi-tilted algebra.
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Proof. We may assume (by duality) that C is without projective modules. Since C
is a component of ΓB with annB(C) = 0, we may also assume that annA(C) = 0.
We choose a module M in the additive category add(C) of C such that annA(M) =
annA(C) = 0 (see [33, Lemma 1.1]). Then there are a monomorphism A→Mr and
an epimorphism Ms → D(A) in modA, for some positive integers r and s (see [1,
Lemma VI.2.2]).

We prove first that gl.dimA 6 2. Take an indecomposable projective module
P in modA and an indecomposable direct summand X of the radical radP of P .
Observe that X is not in C since there is an irreducible homomorphism X → P
and P is not in C. On the other hand, we have HomA(X,M) ̸= 0 because there
is a monomorphism A → Mr and P is a direct summand of A. We claim that
pdAX 6 1. Assume pdAX > 2. Then we have HomA(D(A), τAX) ̸= 0 (see [1,
Lemma IV.2.7] or [39, (2.4)]), and hence HomA(M, τAX) ̸= 0, because there is
an epimorphism Ms → D(A) in modA. Thus M is the middle of a short chain
X →M → τAX with M in add(C) and X, τAX not in C. Applying Lemma 3.1, we
conclude that there is a short path Y → V → Z, where Y and Z are indecomposable
direct summands of M , and V = X or V is an indecomposable direct summand of
the middle term E of an Auslander-Reiten sequence

0 → τAX → E → X → 0

in modA. Since X is not in C, V is also not in C, and so Y → V → Z is an
external short path of C, a contradiction. Hence, indeed pdAX 6 1. This shows
that pdA radP 6 1, and consequently gl.dimA 6 2.

Let N be an indecomposable module in modA. We claim that pdAN 6 1 or
idAN 6 1. We have two cases to consider. Assume first that N belongs to C. We
prove that then idAN 6 1. Suppose idAN > 2. Then HomA(τ

−
AN,A) ̸= 0 (see

again [1, Lemma IV.2.7] or [39, (2.4)]), and so HomA(τ
−
AN,P

′) ̸= 0 for an inde-
composable projective right A-module P ′. Clearly, we have also HomA(P

′, Z) ̸= 0
for an indecomposable direct summand Z of M , because there is a monomorphism
A→Mr. Therefore, since C is without projective modules, we obtain a short path
τ−AN → P ′ → Z in modA with τ−AN and Z in C and P ′ not in C, and so an external
short path of C, a contradiction. Hence, indeed idAN 6 1.

Assume now that N is not in C and idAN > 2. We claim that then pdAN 6
1. We show first that pdA τ

−
AN 6 1. Assume pdA τ

−
AN > 2. Then we have

HomA(D(A), N) = HomA(D(A), τA(τ
−
AN)) ̸= 0, and consequently HomA(M,N) ̸=

0, because there is an epimorphism Ms → D(A) in modA. On the other hand, the
assumption idAN > 2 gives HomA(τ

−
AN,A) ̸= 0. This implies HomA(τ

−
AN,M) ̸=

0, because there is a monomorphism A→Mr in modA. Observe also that N and
τ−AN are not isomorphic to a direct summand ofM , since N and τ−AN are not in C.
Therefore, applying Lemma 3.1 to the short chain τ−AN → M → N , we conclude
that there is in modA an external short path U → V →W of C, where U andW are
indecomposable direct summands of M , and V = τ−AN or V is an indecomposable
direct summand of the middle term F of an Auslander-Reiten sequence

0 → N → F → τ−AN → 0

in modA, a contradiction. Hence, indeed pdA τ
−
AN 6 1. Take now an indecom-

posable direct summand L of the middle term F of the above Auslander-Reiten
sequence. We claim that pdA L 6 1. Choose an irreducible homomorphism
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f : L → τ−AN in modA. By general theory we know that f is either a proper
monomorphism or a proper epimorphism. Hence we have two cases to consider.

Assume f is a monomorphism. Then we have in modA a short exact sequence

0 → L→ τ−AN → R→ 0,

and hence an exact sequence of functors

Ext2A(τ
−
AN,−) → Ext2A(L,−) → Ext3A(R,−)

on modA. Since pdA τ
−
AN 6 1 and gl.dimA 6 2, we have Ext2A(τ

−
AN,−) = 0 and

Ext3A(R,−) = 0, which leads to Ext2A(L,−) = 0, or equivalently, to pdA L 6 1.
Assume f is an epimorphism. Then HomA(τ

−
AN,M) ̸= 0 forces HomA(L,M) ̸=

0. Assume pdA L > 2. Then HomA(D(A), τAL) ̸= 0, and hence HomA(M, τAL) ̸=
0, because there is an epimorphism Ms → D(A) in modA. Therefore, M is the
middle term of a short chain L → M → τAL with L and τAL not in C, since N is
not in C. Applying Lemma 3.1, we conclude that there is an external short path of
C of the form S → V → T , where S and T are indecomposable direct summands
of M , and V = L or V is an indecomposable direct summand of the middle term
G of an Auslander-Reiten sequence

0 → τAL→ G→ L→ 0

in modA, a contradiction. Hence we obtain that pdA L 6 1. Summing up, we have
in modA a short exact sequence

0 → N → F → τ−AN → 0

with pdA F 6 1. Since gl.dimA 6 2, we have an epimorphism of functors Ext2A(F,−) →
Ext2A(N,−), and hence Ext2A(F,−) = 0 forces Ext2A(N,−) = 0. This proves that
pdAN 6 1.

Therefore, A is a quasi-tilted algebra. �

We complete now the proof of Theorem 1.1.
Let A be an algebra, C a component of ΓA without projective modules and external
short paths, and B = A/ annA(C). It follows from Proposition 3.2 that then B is a
quasi-tilted algebra. Moreover, C is a faithful component of ΓB . We have two cases
to consider.

Assume C is acyclic. Then it follows from Propositions 2.2 and 2.4 (and their
proofs) that B is a tilted algebra EndH(T ), for a hereditary algebra H and a
multiplicity-free tilting H-module T , and C is the connecting component CT of ΓB

determined by T . Further, since C = CT is without projective modules, we conclude
also that T has no non-zero preinjective direct summands. We note that C = CT
is a preinjective component if and only if T is a preprojective tilting H-module, or
equivalently, B is a concealed algebra. Clearly, the component C = CT is regular if
and only if T is a regular tilting H-module.

Assume C contains an oriented cycle. Since C is without projective modules,
it follows from the general result of Liu [27, Theorem 2.5] that C is a coray tube.
Hence B is a quasi-tilted algebra with a faithful coray tube C. Applying Proposi-
tions 2.2 and 2.4 (and their proofs) and [25, Theorem 3.4] we infer that B is the
opposite algebra of an almost concealed canonical algebra and C is a coray tube
of a separating family T B of coray tubes of ΓB . We note that, if C contains an
injective module, then the remaining coray tubes of T B are stable tubes. On the
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other hand, C is a regular component if and only if the algebra B = A/ annA(C) is
a concealed canonical algebra.

4. Proof of Theorem 1.10

Let B be an algebra and 1B = e1+ . . .+en a decomposition of the identity 1B of B
into a sum of pairwise orthogonal primitive idempotents. The repetitive category of

B is the self-injective locally bounded K-category B̂ with the objects em,i, m ∈ Z,
i ∈ {1, . . . , n}, the morphism K-modules defined as follows

B̂(em,i, er,j) =


ejBei, r = m

D(eiBej), r = m+ 1

0, otherwise,

and the composition of morphisms in B̂ is given by the B-B-bimodule structures

on B and D(B). We denote by νB̂ the Nakayama automorphism of B̂ defined
by νB̂(em,i) = em+1,i for all m ∈ Z, i ∈ {1, . . . , n}. An automorphism φ of the

K-category B̂ is said to be:

• positive if, for each pair (m, i) ∈ Z× {1, . . . , n}, we have φ(em,i) = ep,j for
some p ≥ m and some j ∈ {1, . . . , n};

• rigid if, for each pair (m, i) ∈ Z × {1, . . . , n}, we have φ(em,i) = em,j for
some j ∈ {1, . . . , n};

• strictly positive if it is positive but not rigid.

A group G of automorphisms of the K-category B̂ is said to be admissible if G acts

freely on the set of objects of B̂ and has finitely many orbits. Following Gabriel [13]

we may then consider the orbit boundedK-category B̂/G, where the objects are the

G-orbits of objects of B̂, and hence the basic connected self-injective artin algebra⊕
(B̂/G) given by the direct sum of all morphism K-modules in B̂/G. We will

identify B̂/G with
⊕

(B̂/G) and call the orbit algebra of B̂ with respect to G. We
note that the infinite cyclic group (νB̂) generated by the Nakayama automorphism

νB̂ of B̂ is admissible and the orbit algebra B̂/(νB̂) is isomorphic to the trivial
extension B nD(B) of B by D(B). We refer to [59, Theorem 5.3] for a criterion

on a self-injective algebra A to be of the form B̂/(φνB̂) with B an algebra and φ a

positive automorphism of B̂.
The implication (ii)⇒(i) in Theorem 1.10 follows from the part (iii) of the fol-

lowing proposition.

Proposition 4.1. Let B be a tilted algebra of the form EndH(T ) for a hereditary
algebra H and a regular tilting H-module T , CT the connecting component of ΓB

determined by T , ψ a positive automorphism of B̂ and A = B̂/(ψνB̂) the orbit

algebra of B̂ with respect to the infinite cyclic group generated by ψνB̂. Then the
following statements hold.

(i) B is a quotient algebra of A.
(ii) CT is a generalized standard regular component of ΓA.
(iii) CT has no external short path in modA if and only if ψ = φνB̂ for a positive

automorphism φ of B̂.

Proof. The statement (i) follows from the definition of the orbit algebra B̂/(ψνB̂)
and the positivity of ψ. In order to show the statements (ii) and (iii), we present
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the structure of ΓB̂ and mod B̂ established in [12, Section 3] (see also [37, Section
2]).

Let Q = QH be the valued quiver of H and ∆ = Qop. Then ∆ is a wild
quiver with at least 3 vertices, since we have the regular tilting H-module T . Ap-
plying [12, Theorem 3.5] we conclude that there exist tilted convex subcategories

B+ = EndH(T+) and B− = EndH(T−) of B̂, for a tilting H-module T+ without
non-zero preinjective direct summands and a tilting H-module T− without non-
zero preprojective direct summands, such that for the shifts B+

2q = B−
2q = νq

B̂
(B),

B+
2q+1 = νq

B̂
(B+), B−

2q+1 = νq
B̂
(B−), q ∈ Z, of B, B+ and B− inside B̂, the following

statements hold:

(a) The Auslander-Reiten quiver ΓB̂ of B̂ has the disjoin union form

ΓB̂ =
∨
q∈Z

(Cq ∨Rq),

where νB̂(Cq) = Cq+2, νB̂(Rq) = Rq+2, HomB̂(Rq, Cq) = 0, for any q ∈
Z, and HomB̂(Cp ∨ Rp, Cq ∨ Rq) = 0 for all p > q. Moreover, each Cq
separates

∨
p<q(Cp∨Rp) from Rq ∨ (

∨
p>q(Cp∨Rp)) and each Rq separates∨

p<q(Cp ∨Rp) ∨ Cq from
∨

p>q(Cp ∨Rp).

(b) For each q ∈ Z, C2q is the regular connecting component CT of ΓB+
2q

(respec-

tively, ΓB−
2q
) of the form Z∆ determined by the regular tilting H-module

T .
(c) For each q ∈ Z, C2q+1 is an acyclic component with the stable part Cs

2q+1

of the form Z∆, the torsion-free part Y(T+) ∩ CT+ of the connecting com-
ponent CT+ of ΓB+

2q+1
= ΓB+ determined by T+ is a full translation sub-

quiver of C2q+1 which is closed under predecessors, and the torsion part
X (T−) ∩ CT− of the connecting component CT− of ΓB−

2q+1
= ΓB− deter-

mined by T− is a full translation subquiver of C2q+1 which is closed under
successors.

(d) For each q ∈ Z, Rq is an infinite family of components whose stable parts
are of the form ZA∞, and the simple composition factors of modules in Rq

are simple B−
q -modules or simple B+

q+1-modules.

(e) For eachm ∈ Z, the indecomposable projective-injective B̂-modules Pm+1,i =

em+1,iB̂ = νB̂(em,iB̂) = νB̂(Pm,i), i ∈ {1, . . . , n}, lie in R2m ∨ C2m+1 ∨
R2m+1.

Moreover, we claim that the following fact holds.

(f) For each q ∈ Z, the family of components Rq contains at least one inde-

composable projective-injective B̂-module.

Assume that Rq, for some q ∈ Z, consists entirely of regular compo-
nents of the form ZA∞. Then it follows from the above description of ΓB̂
that in the Auslander-Reiten quiver ΓB of the tilted algebra B = EndH(T )
either all indecomposable projective B-modules lie in the unique prepro-
jective component P(B) or all indecomposable injective B-modules lie in
the unique preinjective component Q(B). Hence, ΓB admits at least two
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components having a section of type ∆, one of them the regular connecting
component CT . On the other hand, by a result due to Ringel [40, Lectures
2 and 3], if the Auslander-Reiten quiver ΓB contains at least two compo-
nents with complete sections then B is a concealed algebra, a contradiction.

We note the following obvious consequence of the description of the sim-

ple composition factors of indecomposable B̂-modules presented above.

(g) For each q ∈ Z, we have HomB̂(C2q, Cp ∨ Rp) = 0 for all p ≥ 2q + 2. In
particular, we obtain that HomB̂(C0, Cp ∨Rp) = 0 for all p ≥ 2.

We prove now that:

(h) For each q ∈ Z and all but finitely many indecomposable modules X in

C2q, there exists a short path in mod B̂ of the form X → P → Z with an
indecomposable projective-injective module P in R2q+1 and Z in C2q+3.

Since Cp+2 = νB̂(Cp) and Rp+2 = νB̂(Rp) for each p ∈ Z, we may as-
sume that q = 0. It is known (see [22, Lemma 4.1] and [37, Lemma 1.8])
that all but finitely many indecomposable modules in the regular connect-
ing component C0 = CT of the tilted algebra B = EndH(T ) are sincere
B-modules. Further, the simple B-modules are exactly the socles of the

indecomposable projective B̂-modules P1,i = e1,iB̂, i ∈ {1, . . . , n}, which
are exactly the indecomposable projective-injective B̂-modules located in
R0∨C1∨R1. Applying (f) we conclude that there is i ∈ {1, . . . , n} such that
P1,i belongs to R1. Then, for an arbitrary sincere indecomposable module
X in C0, we have HomB̂(X,P1,i) ̸= 0, since the socle of P1,i is a composi-
tion factor of X. Moreover, we have a canonical non-zero homomorphism
f : P1,i → P2,i = νB̂(P1,i), since the top of P1,i is the socle of P2,i. Observe
that P2,i lies in R3 = νB̂(R1). Finally, since the component C3 separates∨

p<3(Cp ∨Rp) from R3 ∨ (
∨

p>3(Cp ∨Rp)) in mod B̂, we conclude that the
homomorphism f factors through a module M from the additive category
add(C3) of C3. In particular, we obtain a short path X → P → Z with
P = P1,i in R1 and Z an indecomposable module in C3.

Consider now the push-down functor [13] Fλ : mod B̂ → modA associated to the

Galois covering F : B̂ → B̂/(ψνB̂). Since, by the properties (a) - (d), the repetitive

category B̂ is locally support-finite, we conclude by the density theorem of [11]
that the push-down functor Fλ is dense. In particular, by [13, Theorem 3.6], the
Auslander-Reiten quiver ΓA of A is the orbit quiver ΓB̂/(ψνB̂) of ΓB̂ with respect to
the induced action of (ψνB̂) on ΓB̂ . In fact, for g = ψνB̂ , G = (g), and the induced

action of G on mod B̂ (see [13]), the push-down functor Fλ : mod B̂ → modA
induces isomorphisms of K-modules⊕

r∈Z
HomB̂(U, g

rV )
∼−−→ HomB̂(Fλ(U), Fλ(V ))

for all indecomposable modules U and V in mod B̂. Since g = ψνB̂ with ψ a

positive automorphism of B̂ and νB̂(C0) = C2, we conclude that CT = C0 = Fλ(C0)
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is a regular component of ΓA consisting entirely of indecomposable B-modules.
Then CT is a generalized standard component of ΓA, because CT is a generalized
standard component of ΓB , and B = A/ annA(C). This shows the required property
(ii).

For (iii), assume first that ψ = φνB̂ for a positive automorphism φ of B̂. Then

g = φν2
B̂

and g(CT ) = g(C0) = Cp for some p ≥ 4. Hence, applying (a) and (g), we

conclude that there is no short path in mod B̂ of the form X → Y → Z with X in
C0, Z in grC0 and Y not in grC0, for any r ∈ Z. This shows that CT = Fλ(C0) has
no external short path in modB. On the other hand, if g = ψνB̂ is not of the form

φν2
B̂

with φ a positive automorphism of B̂, then g(C0) = C2 or g(C0) = C3. In the

first case, CT = Fλ(C0) is a sincere regular component in modA, and then we have
an external short path X → Q→ X of CT for an arbitrary sincere indecomposable
module X in CT and Q an arbitrary indecomposable projective-injective A-module.
For g = ψνB̂ with g(C0) = C3, we conclude from (h) that there is an external short
path Fλ(X) → Fλ(P ) → Fλ(Z) of CT = Fλ(C0) = Fλ(C3) for some modules X ∈ C0,
Z ∈ C3 and an indecomposable projective-injective A-module Fλ(P ) ∈ Fλ(R1).
Therefore, the equivalence (iii) holds. �

We complete now the proof of Theorem 1.10 by showing that the implication
(i)⇒(ii) also holds.

Let A be a self-injective algebra such that ΓA admits a regular acyclic component
C without external short paths in modA. Then it follows from Corollary 1.4 that
C is a generalized standard component of ΓA. Let I be the annihilator annA(C)
of C in A and B = A/I. We may choose a set e1, ..., en of pairwise orthogonal
primitive idempotents of A such that 1A = e1 + ... + en and {ei|1 6 i 6 m}, for
some m 6 n, is the set of all idempotents in {ei|1 6 i 6 n} which are not contained
in I. Then e = e1 + ... + em is an idempotent of A such that e + I is the identity
1B of B, uniquely determined by I up to an inner automorphism of A, called the
residual identity of B = A/I. Moreover, B ∼= eAe/eIe. Further, it follows from
Corollary 1.3 that B is a tilted algebra of the form EndH(T ), for a (wild) hereditary
algebra H and a regular tilting H-module T , and C is the connecting component
CT of ΓB determined by T . In particular, the valued quiver QB of B is acyclic.
Applying [56, Proposition 2.3 and Theorem 5.1], we obtain also that Ie = lA(I)
and eI = rA(I), where lA(I) and rA(I) denote the left annihilator and the right
annihilator of I in A, respectively, and soc(A) is contained in I. We note that by
a theorem of Nakayama [32] the left socle soc(AA) and right socle soc(AA) of A
coincide, and are denoted by soc(A), which is an ideal of A. Observe that IeI = 0,
and so Ie is a right B-module and eI is a left B-module. In fact, by [56, Proposition
2.3], Ie is an injective cogenerator in modB and eI is an injective cogenerator in
modBop = B −mod (the category of finitely generated left B-modules). We have
also leAe(I) = eIe = reAe(I), and so I is a deforming ideal in the sense of [56, (2.1)].
The canonical isomorphism of algebras eAe/eIe → A/I allows to consider I as an
(eAe/eIe)− (eAe/eIe)-bimodule. Denote by A[I] the direct sum (eAe/eIe)⊕ I of
K-modules with the multiplication

(b, x) · (c, y) = (bc, by + xc+ xy)

for b, c ∈ eAe/eIe and x, y ∈ I. Then, by [56, Theorem 4.1], A[I] is a basic
connected self-injective artin algebra with the identity (e+eIe, 1A−e), and the same
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Nakayama permutation as A. We note that {(ei+eIe, 0)|1 6 i 6 m}∪{(0, ej)|m <
j 6 n} is a complete set of pairwise orthogonal idempotents of A[I] whose sum
is the identity 1A[I] of A[I]. Further, by identifying x ∈ I with (0, x) ∈ A[I], we
may consider I as an ideal of A[I]. Then e = (e + eIe, 0) is a residual identity of

A[I]/I = eAe/eIe
∼−−→ A/I, eA[I]e = (eAe/eIe) ⊕ eIe and the canonical algebra

epimorphism eA[I]e → eA[I]e/eIe is a retraction. Finally, IeI = (0, IeI) = 0 and
Ie = lA[I](I), eI = rA[I](I). Applying now [57, Theorem 3.8] we conclude that A[I]

is isomorphic to the orbit algebra B̂/(ψνB̂) for a positive automorphism ψ of B̂.
It follows also from [56, Theorem 4.1] that there is a canonical algebra isomor-

phism ϕ : A[I]/ soc(A[I]) → A/ soc(A). Observe that soc(A[I]) = soc(I) = soc(A),
since soc(A) and soc(A[I]) are contained in I. In particular, we obtain the isomor-
phism ϕ∗ : mod(A[I]/ soc(A[I])) → mod(A/ soc(A)) of module categories, induced
by ϕ. Note that the regular component C = CT of ΓA consists entirely of B-modules,
and hence is a component of the Auslander-Reiten quiver ΓA/ soc(A) of A/ soc(A).
Clearly, C is a regular acyclic component of ΓA/ soc(A) without external short paths
in mod(A/ soc(A)). Denote by C′ the regular acyclic component of the Auslander-
Reiten quiver ΓA[I]/ soc(A[I]) of A[I]/ soc(A[I]) such that ϕ∗(C′) = C. In fact, we

have I = annA[I](C′) and A[I]/I ∼= eAe/eIe
∼−−→ A/I = B canonically, so C′ is the

regular connecting component of the tilted algebra eAe/eIe, isomorphic to B. We
claim that C′ has no external short path in modA[I]. Suppose there is a short path
X → Y → Z in modA[I] with X and Z in C′ but Y not in C′. Obviously, if Y is
not a projective module in A[I], then Y is a module in mod(A[I]/ soc(A[I])), and
we obtain an external short path ϕ∗(X) → ϕ∗(Y ) → ϕ∗(Z) of C in modA, a contra-
diction. Assume Y = P is an indecomposable projective, hence injective, module
in modA[I]. Then there is an indecomposable projective-injective module Q in
modA such that ϕ∗(P/ soc(P )) = Q/ soc(Q). Since the Nakayama permutations of
the algebras A[I] and A coincide, we conclude also that ϕ∗(soc(P )) = soc(Q) and
ϕ∗(top(P )) = top(Q).

Further, since there are non-zero homomorphisms X → P and P → Y in
modA[I], we conclude that soc(P ) is a simple composition factor of X and top(P )
is a simple composition factor of Y . But then soc(Q) is a simple composition factor
of ϕ∗(X) and top(Q) is a simple composition factor of ϕ∗(Z). Hence we obtain a
short path ϕ∗(X) → Q→ ϕ∗(Z) in modA, with ϕ∗(X) and ϕ∗(Z) in C = CT and Q
not in C, because Q is projective and C is regular. Thus C admits an external short
path in modA. Summing up, C′ is a regular acyclic component of ΓA[I]/ soc(A[I])

without external short paths in mod(A[I]/ soc(A[I])).

Therefore, applying Proposition 4.1 to B̂/(ψνB̂), isomorphic to A[I], we conclude

that A[I] is isomorphic to B̂/(φν2
B̂
) for a positive automorphism φ of B̂. Invoking

now the structure of the Auslander-Reiten quiver of B̂/(ψνB̂) = B̂/(φν2
B̂
) described

in the proof of Proposition 4.1, we conclude that, for any indecomposable projective-
injective module P in modA[I], the top top(P ) of P is not isomorphic to the socle
soc(P ) of P . Since the Nakayama permutations of A and A[I] coincide, we conclude
that for any indecomposable projective-injective module Q in modA, we have that
the top(Q) of Q is not isomorphic to the socle soc(Q) of Q. In particular, if ν is
the Nakayama permutation of A (so of the set {1, . . . , n}), and ei is a primitive
summand of e (so i ∈ {1, . . . ,m}) then ei ̸= eν(i). Applying [58, Proposition 3.2]
we then conclude that the algebras A and A[I] are isomorphic. Therefore, A is
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isomorphic to B̂/(φν2
B̂
). This proves that the implication (i)⇒(ii) in Theorem 1.10

holds.
We end this section with comments concerning the structure of the Auslander-

Reiten quivers of self-injective algebras having regular acyclic components without
external short paths.

Let H be a wild hereditary algebra, T a multiplicity-free regular tilting H-
module, B = EndH(T ) the associated tilted algebra, φ a positive automorphism

of B̂, and A = B̂/(φν2
B̂
). Moreover, let Q = QH be the valued quiver of H

and ∆ = Qop. We use the notation introduced in the proof of Proposition 4.1
for description the structure of the Auslander-Reiten quiver ΓB̂ of the repetitive

category B̂ of B. Since the push-down functor Fλ : mod B̂ → modA, associated to

the Galois covering F : B̂ → B̂/(φν2
B̂
), is dense and preserves the Auslander-Reiten

sequences, we conclude that ΓA = ΓB̂/(φν2
B̂
) = ΓB̂/(φν

2
B̂
) and may be visualised as

follows

Fλ(C0) = Fλ(Cm) &%
'$

&%
'$

Fλ(R0)Fλ(Rm−1)

@
@

@@

@
@

@@Fλ(C1)�
�

��

�
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'$
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'$
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��@
@

@@

@
@

@@

. . .

for a positive integerm ≥ 4, where, for each i ∈ {0, 1, . . . ,m−1}, Fλ(Ci) is an acyclic
component with the stable part of the form Z∆ and Fλ(Ri) is an infinite family of
components with the stable parts of the form ZA∞, containing at least one inde-
composable projective module and a simple module. Concerning the distribution
of simple and projective modules in the components Fλ(Ci), i ∈ {0, 1, . . . ,m − 1},
we have two cases (see [12, Section 5]).
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Case 1. The connecting component CT of ΓB contains a simple B-module. Then

m = 2r, for r ≥ 2, φν2
B̂

= ϱνr
B̂

for a rigid automorphism ϱ of B̂, the components

Fλ(C2i), i ∈ {0, 1, . . . , r− 1}, are regular and contain a simple A-module, while the
components Fλ(C2i+1), i ∈ {0, 1, . . . , r − 1}, contain a projective module but not a
simple module.

We also mention there is always a regular tilting H-module T ∗ such that the
connecting component CT∗ of the tilted algebra B∗ = EndH(T ∗) determined by T ∗

contains a simple B∗-module (see [12, Proposition 2.5]). For a concrete example of
such tilted algebra we refer to [22, Example 6.2].

Case 2. The connecting component CT of ΓB does not contain a simple B-
module. Then all components Fλ(Ci), i ∈ {0, 1, . . . ,m−1}, are regular and without
simple modules, and consequently all simple and projective modules are located in
the parts Fλ(Ri), i ∈ {0, 1, . . . ,m − 1}. We note that it is an open problem if in
this case m is even, or equivalently, φνB̂ = ϱνr

B̂
for some positive integer r ≥ 2 and

a rigid automorphism ϱ of B̂.
We also mention that, by [22, Corollary 4], there are infinitely many pairwise

non-isomorphic tilted algebras B∗ = EndH(T ∗) given by regular tilting H-modules
T ∗ such that the connecting component CT∗ of ΓB∗ determined by T ∗ does not
contain simple modules.

Finally, we note that all regular components of the form Z∆ in ΓA have no
external short paths. Similarly, for m ≥ 5, all non-regular components with the
stable parts Z∆ in ΓA have no external short paths. On the other hand, for m = 4
and CT containing a simple module, the non-regular components Fλ(C1) and Fλ(C3)
have external short paths in modA.
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[25] H. Lenzing and A. Skowroński, Quasi-tilted algebras of canonical type, Colloq. Math. 71
(1996) 161-181.

[26] S. Liu, The degrees of irreducible maps and the shapes of the components of the Auslander-

Reiten quivers, J. London Math. Soc. 45 (1992) 32-54.
[27] S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. 47

(1993) 405-416.
[28] S. Liu, The connected components of the Auslander-Reiten quiver of a tilted algebra, J.

Algebra 161 (1993) 505-523.
[29] S. Liu, Tilted algebras and generalized standard Auslander-Reiten components, Arch. Math.

(Basel) 61 (1993) 12-19.
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