On partially entanglement breaking channels

Dariusz Chruściński and Andrzej Kossakowski Institute of Physics, Nicolaus Copernicus University, Grudziądzka 5/7, 87–100 Toruń, Poland

Abstract

Using well known duality between quantum maps and states of composite systems we introduce the notion of Schmidt number of a quantum channel. It enables one to define classes of quantum channels which partially break quantum entanglement. These classes generalize the well known class of entanglement breaking channels.

1 Introduction

In quantum information theory [1] a quantum channel is represented by a completely positive trace preserving map (CPT) between states of two quantum systems living in \mathcal{H}_A and \mathcal{H}_B . Consider $\mathcal{H}_A = \mathcal{H}_B = \mathbb{C}^d$. Then the states of both systems are defined by semi-positive elements from $M_d \cong \mathbb{C}^d \otimes \mathbb{C}^d$. Due to the Kraus-Choi representation theorem [2] any CPT map

$$\Phi : M_d \longrightarrow M_d , \qquad (1)$$

may be represented by

$$\Phi(\rho) = \sum_{\alpha} K_{\alpha} \rho K_{\alpha}^* , \qquad (2)$$

where the Kraus operators $K_{\alpha} \in M_d$ satisfies trace-preserving condition $\sum_{\alpha} K_{\alpha}^* K_{\alpha} = I_d$. It is, therefore, clear that all the properties of Φ are encoded into the family K_{α} . In the present paper we show how the structure of Φ depends upon the rank of Kraus operators. In particular it is well known [3, 4] that if all K_{α} are rank one then Φ defines so called entanglement breaking channel (EBT), that is, for any state ρ from $M_d \otimes M_d$, $(\mathrm{id}_d \otimes \Phi)\rho$ is separable in $M_d \otimes M_d$.

Definition 1 We call a channel (1) an r-partially entanglement breaking channel (r-PEBT) iff for an arbitrary ρ

$$SN[(id_d \otimes \Phi)\rho] \le r$$
, (3)

where $SN(\sigma)$ denotes the Schmidt number of σ .

Clearly, EBT channels are 1–PEBT. Let us recall [5] that

$$SN(\sigma) = \min_{p_k, \psi_k} \left\{ \max_k SR(\psi_k) \right\} , \qquad (4)$$

brought to you by DCORE

where the minimum is taken over all possible pure states decompositions

$$\sigma = \sum_{k} p_k \left| \psi_k \right\rangle \langle \psi_k | ,$$

with $p_k \ge 0$, $\sum_k p_k = 1$ and ψ_k are normalized vectors in $\mathbb{C}^d \otimes \mathbb{C}^d$. The Schmidt rank $\mathrm{SR}(\psi)$ denotes the number of non-vanishing Schmidt coefficients in the Schmidt decomposition of ψ . This number characterizes the minimum Schmidt rank of the pure states that are needed to construct such density matrix. It is evident that $1 \le \mathrm{SN}(\rho) \le d$ and ρ is separable iff $\mathrm{SN}(\rho) = 1$. Moreover, it was proved [5] that the Schmidt number is non-increasing under local operations and classical communication.

Let us denote by S_k the set of density matrices on $\mathbb{C}^d \otimes \mathbb{C}^d$ that have Schmidt number at most k. One has $S = S_1 \subset S_2 \subset \ldots \subset S_d = \mathcal{P}$ with S and \mathcal{P} being the sets of separable and all density matrices, respectively. Recall, that a positive map $\Lambda : M_d \longrightarrow M_d$ is k-positive, if $(\mathrm{id}_k \otimes \Lambda)$ is positive on $M_k \otimes M_d$. Due to Choi [6] Λ is completely positive iff it is d-positive. Now, Λ is k-positive iff $(\mathrm{id}_d \otimes \Lambda)$ is positive on S_k . The set of k-positive maps which are not (k + 1)-positive may be used to construct a Schmidt number witness operator W which is non-negative on all states in S_{k-1} , but detects at least one state ρ belonging to S_k [7, 8] (see also [9]), i.e.

$$\operatorname{Tr}(W\sigma) \ge 0$$
, $\sigma \in S_{k-1}$, (5)

and there is a $\rho \in S_k$ such that $\operatorname{Tr}(W\rho) < 0$.

In the next section we investigate basic properties of PEBT channels. Then in section 4 we generalize the discussion to multipartite entangled states.

2 Properties of PEBT channels

Using well know duality between quantum CPT maps (1) and states of the composite quantum system living in $\mathbb{C}^d \otimes \mathbb{C}^d$ [10, 11] we may assign a Schmidt number to any CPT map. Take any CPT map Φ and define a state [12]

$$\rho_{\Phi} = (\mathrm{id}_d \otimes \Phi) P_d^+ , \qquad (6)$$

where $P_d^+ = |\psi_d^+\rangle\langle\psi_d^+|$ with $\psi_d^+ = d^{-1/2}\sum_k e_k \otimes e_k$ being a maximally entangled state in $\mathbb{C}^d \otimes \mathbb{C}^d$ (e_k ; $k = 1, 2, \ldots, d$ denote the orthonormal base in \mathbb{C}^d).

Definition 2 A Schmidt number of Φ is defined by

$$SN(\Phi) = SN(\rho_{\Phi}) , \qquad (7)$$

where ρ_{Φ} stands for the 'dual' state defined in (6).

Actually, in [11] a CPT map $\Phi : M_d \longrightarrow M_d$ was called an r-CPT iff $SN(\Phi) \leq r$. We show that r-PEBT channels are represented by r-CPT maps.

Note, that using Kraus decomposition (2) we may express the Schmidt number of Φ in analogy to (4) as follows:

$$SN(\Phi) = \min_{K_{\alpha}} \left\{ \max_{\alpha} \operatorname{rank} K_{\alpha} \right\} .$$
(8)

The analogy between (4) and (8) is even more visible if we make the following observation: any vector $\psi \in \mathbb{C}^d \otimes \mathbb{C}^d$ may be written as $\psi = \sum_{i,j=1}^d x_{ij}e_i \otimes e_j$ and hence, introducing a ψ -dependent operator $F \in M_d$ such that $x_{ij} = \langle j|F|i \rangle$, one has

$$\psi = \sum_{i=1}^{d} e_i \otimes F e_i .$$
(9)

Using the maximally entangled state ψ_d^+ it may be rewritten in perfect analogy to (6):

$$\psi = \sqrt{d} \left(\mathrm{id}_d \otimes F \right) \psi_d^+ \ . \tag{10}$$

Clearly, the above formula realizes an isomorphism between $\mathbb{C}^d \otimes \mathbb{C}^d$ and M_d . Note, that the normalization condition $\langle \psi | \psi \rangle = 1$ implies $\operatorname{Tr}(F^*F) = 1$. Moreover, two vectors ψ_1 and ψ_2 are orthogonal iff the corresponding operators F_1 and F_2 are trace-orthogonal, i.e. $\operatorname{Tr}(F_1^{\dagger}F_2) = 0$. It is evident that $\operatorname{SR}(\psi) = \operatorname{rank} F$. Moreover, the singular values of F are nothing but the Schmidt coefficients of ψ . Hence, the separable pure states from $\mathbb{C}^d \otimes \mathbb{C}^d$ correspond to rank one operators from M_d .

Consider now the corresponding one-dimensional projector $|\psi\rangle\langle\psi|$. It may be written as

$$|\psi\rangle\langle\psi| = \sum_{i,j=1}^{d} e_{ij} \otimes F e_{ij} F^* , \qquad (11)$$

with $\operatorname{Tr}(F^{\dagger}F) = 1$. In (11) a rank one operator $e_{ij} \in M_d$ equals to $|i\rangle\langle j|$ in Dirac notation. Hence the Schmidt class S_k may be defined as follows: $\rho \in S_k$ iff

$$\rho = \sum_{\alpha} p_{\alpha} P_{\alpha} , \qquad (12)$$

with $p_{\alpha} \ge 0$, $\sum_{\alpha} p_{\alpha} = 1$ and

$$P_{\alpha} = \sum_{i,j=1}^{d} e_{ij} \otimes F_{\alpha} e_{ij} F_{\alpha}^{*} , \qquad (13)$$

with rank $F_{\alpha} \leq k$, and $\operatorname{Tr}(F_{\alpha}F_{\alpha}^*) = 1$. That is, S_k is a convex combination of one dimensional projectors corresponding to F's of rank at most k.

Theorem 1 A quantum channel $\Phi \in r$ -PEBT iff $SN(\Phi) \leq r$.

Proof. Note, that $SN(\Phi) \leq r$ iff there exists a Kraus decomposition such that all Kraus operators K_{α} satisfy rank $K_{\alpha} \leq r$. Indeed, using (2) and (13) one has

$$(\mathrm{id}_d \otimes \Phi) P_d^+ = \sum_{i,j=1}^d e_{ij} \otimes \Phi(e_{ij}) = \sum_\alpha p_\alpha P_\alpha ,$$

with

$$p_{\alpha} = \frac{1}{d} \operatorname{Tr}(K_{\alpha}^{\dagger} K_{\alpha}) , \qquad F_{\alpha} = \frac{1}{\sqrt{dp_{\alpha}}} K_{\alpha} .$$

The above relations simply translate the isomorphism between states and CPT maps in terms of operators K_{α} and F_{α} . Suppose now that Φ is *r*-PEBT and let ρ be an arbitrary state in M_d

$$\rho = \sum_{\beta} p_{\beta} \sum_{i,j=1}^{d} e_{ij} \otimes F_{\beta} e_{ij} F_{\beta}^{*} ,$$

with arbitrary $F_{\alpha} \in M_d$ such that $\operatorname{Tr}(F_{\alpha}F_{\alpha}^*) = 1$. One has

$$(\mathrm{id}_d \otimes \Phi)\rho = \sum_{\alpha,\beta} p_{\alpha\beta} \sum_{i,j=1}^d e_{ij} \otimes \widetilde{F}_{\alpha\beta} e_{ij} \widetilde{F}^*_{\alpha\beta} , \qquad (14)$$

with

$$p_{\alpha\beta} = \frac{1}{d} \operatorname{Tr}(K_{\alpha}K_{\alpha}^{*}) p_{\beta} , \quad \widetilde{F}_{\alpha\beta} = \sqrt{\frac{dp_{\beta}}{p_{\alpha\beta}}} K_{\alpha}F_{\beta} ,$$

where K_{α} are Kraus operators representing an r-CPT map Φ satisfying rank $K_{\alpha} \leq r$. Now,

$$\operatorname{rank}(K_{\alpha}F_{\beta}) \leq \min\{\operatorname{rank}K_{\alpha}, \operatorname{rank}F_{\beta}\} \leq r$$

and hence $(\operatorname{id}_d \otimes \Phi) \rho \in S_r$. The converse follows immediately. As a corollary note that since rank $(K_{\alpha}F_{\beta}) \leq \operatorname{rank} F_{\beta}$ one finds

$$\operatorname{SN}((\operatorname{id}_d \otimes \Phi) \rho) \le \operatorname{SN}(\rho) ,$$
 (15)

which shows that indeed SN does not increase under a local operation defined by $id_d \otimes \Phi$.

Theorem 2 A map Φ is r-CPT iff $\Lambda \circ \Phi$ is CPT for any r-positive map Λ .

Proof. Suppose that Φ is r-CPT and take an arbitrary k-positive Λ :

$$\left(\mathrm{id}_d \otimes \Lambda \circ \Phi\right) P_d^+ = \left(\mathrm{id}_d \otimes \Lambda\right) \left[\left(\mathrm{id}_d \otimes \Phi\right) P_d^+ \right] \ge 0 ,$$

since $(\operatorname{id}_d \otimes \Phi) P_d^+ \in S_r$. Conversely, let $\Lambda \circ \Phi$ be CPT for any *r*-positive Λ , then $(\operatorname{id}_d \otimes \Lambda \circ \Phi) P_d^+ \geq 0$ implies that $(\operatorname{id}_d \otimes \Phi) P_d^+ \in S_r$ and hence Φ is *r*-CPT. Actually, the same is true for $\Phi \circ \Lambda$.

To introduce another class of quantum operations let us recall the notion of co-positivity: a map Λ is *r*-co-positive iff $\tau \circ \Lambda$ is *r*-positive, where τ denotes transposition in M_d . In the same way Φ is completely co-positive (CcP) iff $\tau \circ \Phi$ is CP. Let us define the following convex subsets in $M_d \otimes M_d$: $S^r = (\operatorname{id}_d \otimes \tau) S_r$. One obviously has: $S^1 \subset S^2 \subset \ldots \subset S^n$. Note, that $S^1 = S_1 = S$ and $S_n \cap S^n$ is a set of all PPT states.

Now, following [11] we call a CcPT map Φ an (r, s)-CPT if

$$(\mathrm{id}_d \otimes \Phi) P_d^+ \in S_r \cap S^s , \qquad (16)$$

that is

$$\rho_{\Phi} \in S_r \quad \text{and} \quad (\mathrm{id}_d \otimes \tau) \rho_{\Phi} \in S_s$$

Hence, if ρ_{ϕ} is a PPT state, then Φ is (r, s)-CPT for some r and s. In general there is no relation between (r, s)-CPT and (k, l)-CPT for arbitrary r, s and k, l. However, one has

$$(1,1)$$
-CPT $\subset (2,2)$ -CPT $\subset \ldots \subset (n,n)$ -CPT ,

and (n, n)-CPT \equiv CPT \cap CcPT.

Theorem 3: A map Φ is (r, s)-CPT iff for any *r*-positive map Λ_1 and *s*-co-positive map Λ_2 the composite map $\Lambda_1 \circ \Lambda_2 \circ \Phi$ is CPT.

3 Examples

Example 1: Let us consider so called isotropic state in *d* dimensions

$$\mathcal{I}_{\lambda} = \frac{1-\lambda}{d^2} I_d \otimes I_d + \lambda P_d^+ , \qquad (17)$$

with $-1/(d^2 - 1) \leq \lambda \leq 1$. It is well known [13] that \mathcal{I}_{λ} is separable iff $\lambda \leq 1/(d + 1)$. Now, let $\Psi: M_d \longrightarrow M_d$ be an arbitrary positive trace preserving map and define a CPT map Φ_{λ} by

$$(\mathrm{id}_d \otimes \Phi_\lambda) P_d^+ = (\mathrm{id}_d \otimes \Psi) \mathcal{I}_\lambda \ . \tag{18}$$

One easily finds

$$\Phi_{\lambda}(\rho) = \frac{1-\lambda}{d} \operatorname{Tr} \rho I_d + \lambda \Psi(\rho) .$$
(19)

Clearly, for $\lambda \leq 1/(d+1)$ (i.e. when \mathcal{I}_{λ} is separable) Φ_{λ} is (1,1)-CPT, i.e. both Φ_{λ} and $\tau \circ \Phi_{\lambda}$ are EBT.

Example 2: Let us rewrite an isotropic state \mathcal{I}_{λ} in terms of fidelity $f = \text{Tr}(\mathcal{I}_{\lambda} P_{d}^{+})$:

$$I_f = \frac{1-f}{d^2 - 1} (I_d \otimes I_d - P_d^+) + f P_d^+ .$$
⁽²⁰⁾

It was shown in [5] that $SN(\mathcal{I}_f) = k$ iff

$$\frac{k-1}{d} < f \le \frac{k}{d} . \tag{21}$$

Defining a CPT map Φ_f

$$(\mathrm{id}_d \otimes \Phi_f) P_d^+ = \mathcal{I}_f , \qquad (22)$$

one finds

$$\Phi_f(\rho) = \frac{1-f}{d^2-1} \operatorname{Tr} \rho I_d + \frac{d^2f-1}{d^2-1} \rho .$$
(23)

This map is k-CPT iff f satisfies (21) and hence it represents an r-PEBT channel. Example 3: Consider

$$\rho = \sum_{\alpha=1}^{d^2} p_\alpha \sum_{i,j=1}^d e_{ij} \otimes F_\alpha e_{ij} F_\alpha^* , \qquad (24)$$

where

$$p_{\alpha} \ge 0$$
, $\sum_{\alpha=1}^{d^2} p_{\alpha} = 1$, $F_{\alpha} = \frac{U_{\alpha}}{\sqrt{d}}$, (25)

and U_{α} defines a family of unitary operators from U(d) such that

$$\operatorname{Tr}(U_{\alpha} U_{\beta}^{*}) = \delta_{\alpha\beta} , \qquad \alpha, \beta = 1, 2, \dots, d^{2} .$$
(26)

The corresponding 'dual' quantum channel Φ is given by

$$\Phi(\sigma) = \sum_{\alpha=1}^{d^2} K_{\alpha} \sigma K_{\alpha}^* , \qquad (27)$$

with $K_{\alpha} = \sqrt{p_{\alpha}} U_{\alpha}$. Note, that for $p_{\alpha} = 1/d^2$ one obtains a completely depolarizing channel, i.e.

$$\frac{1}{d^2} \sum_{\alpha=1}^{d^2} U_{\alpha} e_{ij} U_{\alpha}^* = \delta_{ij} .$$
(28)

Now, following [14] consider a map

$$\Lambda_{\mu}(\sigma) = I_d \operatorname{Tr} \sigma - \mu \sigma , \qquad (29)$$

which is k (but not (k+1))-positive for

$$\frac{1}{k+1} \le \mu \le \frac{1}{k} \ . \tag{30}$$

One has

$$(\mathrm{id}_{d} \otimes \Lambda_{\mu})\rho = \sum_{\alpha=1}^{d^{2}} p_{\alpha} \sum_{i,j=1}^{d} e_{ij} \otimes \left[I_{d} \operatorname{Tr}(F_{\alpha} e_{ij} F_{\alpha}^{*}) - \mu F_{\alpha} e_{ij} F_{\alpha}^{*} \right]$$
$$= \frac{1}{d} I_{d} \otimes I_{d} - \sum_{\alpha=1}^{d^{2}} \mu p_{\alpha} \sum_{i,j=1}^{d} e_{ij} \otimes F_{\alpha} e_{ij} F_{\alpha}^{*}$$
$$= \frac{1}{d} \sum_{\alpha=1}^{d^{2}} (1 - d\mu p_{\alpha}) \sum_{i,j=1}^{d} e_{ij} \otimes F_{\alpha} e_{ij} F_{\alpha}^{*}, \qquad (31)$$

where we have used (28). It is therefore clear that if for some $1 \le \alpha \le d^2$, $p_{\alpha} > 1/(d\mu)$ and μ satisfies (30), then $SN(\rho) \ge k + 1$. Equivalently, a 'dual' quantum channel (27) belongs to $\{d-PEBT - k-PEBT\}$.

4 PEBT channels and multipartite entanglement

Consider now a multipartite entangled state living in $\mathcal{H} = (\mathbb{C}^d)^{\otimes N}$ for some $N \geq 2$. Any $\psi \in \mathcal{H}$ may be written as follows:

$$\psi = \sum_{i_1,\dots,i_K=1}^d e_{i_1} \otimes \dots \otimes e_{i_K} \otimes F(e_{i_1} \otimes \dots \otimes e_{i_K}) , \qquad (32)$$

where F is an operator

$$F : (\mathbb{C}^d)^{\otimes K} \longrightarrow (\mathbb{C}^d)^{\otimes N-K}$$
,

and $1 \leq K \leq N-1$. Again, normalization of ψ implies $\operatorname{Tr}(F^*F) = 1$. Clearly, such representation of ψ is highly non-unique. One may freely choose K and take K copies of \mathbb{C}^d out of $(\mathbb{C}^d)^{\otimes N}$. Any specific choice of representation depends merely on a specific question we would like to ask. For example (32) gives rise to the following reduced density matrices:

$$\rho_B = \operatorname{Tr}_A |\psi\rangle\langle\psi| = \operatorname{Tr}_{12\dots K} |\psi\rangle\langle\psi| = FF^* \in M_d^{\otimes N-K} , \qquad (33)$$

and

$$\rho_A = \operatorname{Tr}_B |\psi\rangle\langle\psi| = \operatorname{Tr}_{K+1\dots N} |\psi\rangle\langle\psi| = F^*F \in M_d^{\otimes K} .$$
(34)

A slightly different way to represent ψ reads as follows

$$\psi = \sum_{i_1,\dots,i_{N-1}=1}^d e_{i_1} \otimes \dots \otimes e_{i_{N-2}} \otimes e_{i_{N-1}} \otimes F_{i_1\dots i_{N-2}} e_{i_{N-1}} , \qquad (35)$$

where

$$F_{i_1...i_{N-2}}$$
 : $\mathbb{C}^d \longrightarrow \mathbb{C}^d$,

for any $i_1, \ldots, i_{N-2} = 1, 2, \ldots, d$. Now, normalization of ψ implies

$$\sum_{i_1,\dots,i_{N-2}=1}^{d} \operatorname{Tr} \left(F_{i_1\dots i_{N-2}}^* F_{i_1\dots i_{N-2}} \right) = 1 .$$
(36)

One has the following relation between different representations:

$$\langle e_{i_N} | F_{i_1 \dots i_{N-2}} | e_{i_{N-1}} \rangle = \langle e_{i_1} \otimes \dots \otimes e_{i_{N-1}} | F | e_{i_N} \rangle .$$
(37)

Example 4. For N = 3 we have basically three representations:

.

$$\psi = \sum_{i=1}^{d} e_i \otimes F e_i , \qquad (38)$$

$$\psi = \sum_{i,j=1}^{d} e_i \otimes e_j \otimes F'(e_i \otimes e_j) , \qquad (39)$$

and

$$\psi = \sum_{i,j=1}^{d} e_i \otimes e_j \otimes F_i e_j , \qquad (40)$$

with

$$F : \mathbb{C}^d \longrightarrow (\mathbb{C}^d)^{\otimes 2}, \quad F' = F^T : (\mathbb{C}^d)^{\otimes 2} \longrightarrow \mathbb{C}^d, \quad F_i : \mathbb{C}^d \longrightarrow \mathbb{C}^d.$$

As an example take d = 2 and let us consider two well known 3-qubit states [15]:

$$|\text{GHZ}\rangle = \frac{1}{\sqrt{2}} \left(|000\rangle + |111\rangle\right) , \qquad (41)$$

and

$$|W\rangle = \frac{1}{\sqrt{3}} (|100\rangle + |010\rangle + |001\rangle) .$$
 (42)

One finds for GHZ–state:

$$F' = (F_1, F_2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} = F^T , \qquad (43)$$

and for W-state:

$$\widetilde{F}' = (\widetilde{F}_1, \widetilde{F}_2) = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \widetilde{F}^T .$$
(44)

Note, that for both states $\operatorname{rank}(F) = \operatorname{rank}(\widetilde{F}) = 2$. There is, however, crucial difference between F_i and \widetilde{F}_i : $\operatorname{rank}(F_i) = 1$, whereas $\operatorname{rank}(\widetilde{F}_1) = 2$. Both states possess genuine 3–qubit entanglement. The difference consists in the fact that GHZ–state is 2–qubit separable whereas W–state is 2–qubit entangled [16]:

$$\rho_{23}^{\text{GHZ}} = \text{Tr}_1 |\text{GHZ}\rangle \langle \text{GHZ}| = \sum_{k=0}^1 \sum_{i,j=0}^1 e_{ij} \otimes F_k e_{ij} F_k^* , \qquad (45)$$

with SN($\rho_{23}^{\rm GHZ}$) = 1 ,

and

$$\rho_{23}^{\mathrm{W}} = \mathrm{Tr}_1 |\mathrm{W}\rangle \langle \mathrm{W}| = \sum_{k=0}^{1} \sum_{i,j=0}^{1} e_{ij} \otimes \widetilde{F}_k \, e_{ij} \, \widetilde{F}_k^* \,, \qquad (46)$$

with SN(ρ_{23}^{W}) = 2.

If N = 2K any state vector $\psi \in (\mathbb{C}^d)^{\otimes N} = (\mathbb{C}^d)^{\otimes K} \otimes (\mathbb{C}^d)^{\otimes K}$ may be represented by (32) with

$$F : (\mathbb{C}^d)^{\otimes K} \longrightarrow (\mathbb{C}^d)^{\otimes K} .$$
(47)

Hence, an arbitrary state ρ from $M_d^{\,\otimes\,K} \otimes M_d^{\,\otimes\,K}$ reads as follows

$$\rho = \sum_{\alpha} p_{\alpha} \sum_{i_1,\dots,i_K=1}^d \sum_{j_1,\dots,j_K=1}^d e_{i_1j_1} \otimes \dots \otimes e_{i_Kj_K} \otimes F_{\alpha}(e_{i_1j_1} \otimes \dots \otimes e_{i_Kj_K}) F_{\alpha}^* .$$
(48)

Clearly, $SN(\rho) \leq r$ iff $rank(F_{\alpha}) \leq r$ for all F_{α} appearing in (48). Then the corresponding quantum channel

$$\Phi : M_d^{\otimes K} \longrightarrow M_d^{\otimes K} , \qquad (49)$$

possesses Kraus decomposition with $K_{\alpha} = \sqrt{d^{K} p_{\alpha}} F_{\alpha}$ and hence is *r*-PEBT. For other aspects of multipartite entanglement se e.g. [17].

Acknowledgments

This work was partially supported by the Polish State Committee for Scientific Research Grant Informatyka i inżynieria kwantowa No PBZ-Min-008/P03/03.

References

- M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000
- [2] K. Kraus, States, Effects and Operations: Fundamental Notions of Quantum Theory, Springer-Verlag, 1983
- [3] M. Horodecki, P. Shor and M.B. Ruskai, Rev. Math. Phys 15, 629 (2003)
- [4] M.B. Ruskai, Rev. Math. Phys. 15, 643 (2003)
- [5] B. Terhal and P. Horodecki, Phys. Rev. A **61**, 040301 (2000)
- [6] M.-D. Choi, Lin. Alg. Appl. 10, 285 (1975)
- [7] A. Sanpera, D. Bruss and M. Lewenstein, Phys. Rev. A **63**, 050301(R) (2001)
- [8] F. Hulpke, D. Bruss, M. Lewenstein and A. Sanpera, Quant. Inf. Comp. 4, 207 (2004)
- [9] J. Eisert and H.J. Briegel, Phys. Rev. A **64** (2001) 022306
- [10] K. Zyczkowski and I. Bengtsson, Open Syst. Inf. Dyn. 11, 3 (2004)
- [11] M. Asorey, A. Kossakowski, G. Marmo and E.C.G. Sudarshan, Open Syst. Inf. Dyn. 12, 319 (2005)
- [12] A. Jamiołkowski, Rep. Math. Phys. 3, (1972)
- [13] M. Horodecki and P. Horodecki Phys. Rev. A 59, 4206 (1999)
- [14] J. Tomiyama, Lin. Alg. Appl. 69 (1985) 169
 T. Takasaki and J. Tomiyama, Math. Z. 184 (1983) 101
- [15] D.M. Greenberger, M. Horne and A. Zelinger, in *Bell's theorem*, *Quantum Theory and Conceptions of the Universe*, edited by M. Kafatos (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 69.
- [16] J.K. Korbicz, J.I. Cirac and M. Lewenstein, Phys. Rev. Lett. 95 (2005) 120502
- [17] W. Dür, J.I. Cirac and R. Tarrach, Phys. Rev. Lett. 83 (1999) 3562;
 W. Dür and J.I. Cirac, Phys. Rev. A 61 (2000) 042314;
 A. V. Thapliyal, Phys Rev. A 59 (1999) 3336;
 H.A. Carteret, A. Higuchi and A. Sudbery, J. Math. Phy. 41 (2000) 7932