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Memory in a nonlocally damped oscillator
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Abstract

We analyze the new equation of motion for the damped oscillator. It differs from the standard

one by a damping term which is nonlocal in time and hence it gives rise to a system with memory.

Both classical and quantum analysis is performed. The characteristic feature of this nonlocal

system is that it breaks local composition low for the classical Hamiltonian dynamics and the

corresponding quantum propagator.
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1 Introduction

The damped harmonic oscillator is one of the simplest quantum systems displaying the dissipation
of energy. Moreover, it is of great physical importance and has found many applications especially
in quantum optics. For example it plays a central role in the quantum theory of lasers and masers
[1, 2, 3]. The standard Hilbert space formulation of Quantum Mechanics gives rise to the unitary
evolution with no room for dissipative behavior. The usual approach to include dissipation is the
quantum theory of open systems [4, 5, 6, 7, 8]. In this approach the dynamics of a quantum system is
no longer unitary but it is defined by a semigroup of completely positive maps in the space of density
operators [9].

Another strategy to describe dissipative quantum systems is based on the old idea of Bateman [10].
Bateman has shown that in order to apply the standard canonical formalism of classical mechanics
to dissipative and non-Hamiltonian systems, one can double the number of degrees of freedom, so
as to deal with an effective isolated classical Hamiltonian system. In this approach the new degrees
of freedom may be interpreted as variables describing a reservoir. Applying this idea to a damped
harmonic oscillator one obtains a pair of damped oscillators (so called Bateman’s dual system): a
primary one and its time reversed image. The Bateman dual Hamiltonian has been rediscovered by
Morse and Feshbach [11] and Bopp [12] and the detailed quantum mechanical analysis was performed
by Feshbach and Tikochinski [13]. The quantum Bateman system was then analyzed by many authors
(see for the historical review [14]). Recently it was investigated in connection with quantum field
theory and quantum groups [15] (see also [16, 17]). Finally, the detailed analysis of spectral properties
of the Bateman system was recently performed in [18, 19] (see also [20]). For other approaches to
quantization of damped oscillator see also recent papers [21, 22, 23].
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In the present paper we propose a different approach. Instead of analyzing the standard equation
of motion for the damped oscillator

ẍ+ 2γẋ+ ω2x = 0 , (1)

where γ is a positive damping constant, and ω is a frequency of the undamped motion, we shall study
a modified equation

ẍ+ 2γ tanh(γ(t− t0))ẋ + ω2x = 0 , (2)

where t0 is an arbitrary constant. It is clear that in the limit ‘γt → ∞’, formula (2) reproduces
the standard equation (1). Therefore, both dynamics may differ for short times only, that is, for ‘t’
satisfying

t≪ 1/γ .

What is the origin of (2)? It turns out that both (1) and (2) give the same frequency of oscillations
of the damped motion1

Ω =
√

ω2 − γ2 . (3)

Moreover, there is no other linear equation of motion with this property. Interestingly, equation (2)
introduces additional parameter t0. It turns out that t0 is responsible for an effective memory, that
is, in addition to a ‘local time t’ evolution governed by (2) ‘remembers’ about its history at t0. It
means that the initial value problem for (2) has to be supplemented by initial data x(t0) = x0 and
ẋ(t0) = v0. There is a crucial difference between (1) and (2): the initial data for the standard ‘local’
equation may be provided for arbitrary initial moment of time. It is no longer true for the modified
‘nonlocal’ equation: now the initial moment necessarily equals t0. Changing initial moment t0 one
changes the corresponding equation (2) and hence the whole evolution of our damped system. This
property is responsible for a peculiar feature of (2). The composition law for classical dynamics is no
longer true, that is, evolution from t0 to t1, and then from t1 to t2 differs from the direct evolution
from t0 to t2.

Now, the quantum system corresponding to (2) may be easily constructed. Our damped system
turns out to be governed by nonlocal Hamiltonian and hence the standard composition law for quantum
propagators

K(x2, t2;x0, t0) =

∫

dx1K(x2, t2;x1, t1)K(x1, t1;x0, t0) , (4)

does not hold. We stress that the local composition law (4) is satisfied by the quantum propagator
derived from the standard equation (1) via well known Caldirola-Kanai approach [24, 25]. The vio-
lation of (4) defines the basic difference between two descriptions based on (1) and (2), respectively.
We hope that our analysis sheds new light on this old problem.

2 Hamiltonian formulation

There were many attempts for hamiltonian formulation of Newton equation for systems with one
degree of freedom (see e.g. [25, 26, 27, 28, 29]). It is well known that (1) may be derived from the so
called Caldirola-Kanai Hamiltonian [24, 25]

H(x, p, t) =
1

2
m0ω

2x2 e2γt +
1

2m0
p2 e−2γt . (5)

1Throughout the paper we assume ω > γ.
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It is clear that Caldirola-Kanai Hamiltonian may be considered as the standard Hamiltonian of the
harmonic oscillator with time-dependent mass given by

m(t) = m0e
2γt . (6)

Consider now a family of Hamiltonians with an arbitrary time-dependent mass m(t):

H(x, p, t) =
p2

2m(t)
+

1

2
m(t)ω2x2 . (7)

The corresponding Newton equation reads as follows

ẍ+
ṁ(t)

m(t)
ẋ+ ω2x = 0 . (8)

Let us assume that in the asymptotic regime ‘γt→ ∞’, equation (8) reproduces the standard equation
(1), that is

κ(t) :=
1

2

ṁ(t)

m(t)
−→ γ . (9)

To solve (8) one represents complexified x(t) as follows

x(t) = λ(t) eiφ(t) , (10)

and obtains the following equations for time-dependent real quantities λ, φ and κ:

λ̈− λφ̇2 + 2κλ̇+ ω2λ = 0 , (11)

φ̈λ+ 2φ̇λ̇+ 2κφ̇λ = 0 , (12)

where we omitted explicit time-dependence. Now, we make our basic assumption that φ̇ = Ω with Ω
defined in (3). Equation (12) reduces then to

λ̇+ κλ = 0 ,

and hence equation (11) implies
Ω2 = ω2 − κ2 − κ̇ ,

which together with (3) gives finally
κ̇+ κ2 = γ2 .

The above equation has the following solutions

κ(t) = γ tanh(γ(t− t0)) or κ(t) = ±γ , (13)

with t0 being an integration constant. Note, however, that due to (9) the solution κ(t) = −γ is not
acceptable. It is clear that κ(t) = γ corresponds to the Caldirola-Kanai model with m(t) = e2γt,
whereas κ(t) = γ tanh(γ(t− t0)) gives rise to our new equation (2) described by a Hamiltonian with
time-dependent mass

m(t) = m0 cosh2(γ(t− t0)) , (14)

satisfying m(t0) = m0. We may therefore interpret (2) as a Newton equation for a particle with
constant mass m0 under the action of the time dependent nonlocal force

F (t; t0) = −2m0γ tanh(γ(t− t0))ẋ −m0ω
2x ,

or as a Newton equation for a particle with time-dependent nonlocal mass (14) under the action of
perfectly local force −m0ω

2x.
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3 Classical dynamics

Consider now classical Hamiltonian dynamics generated by (8) with m(t) defined in (14). It is given
by

(

x(t)
p(t)

)

= Λnew(t; t0)

(

x0

p0

)

, (15)

where the 2 × 2 matrix

Λnew(t; t0) =

(

Λnew
xx Λnew

xp

Λnew
px Λnew

pp

)

,

reads as follows

Λnew
xx =

cos(Ω(t− t0))

cosh(γ(t− t0))
, Λnew

xp =
1

m0Ω

sin(Ω(t− t0))

cosh(γ(t− t0))
, (16)

and

Λnew
px = −m0

[

Ω cosh(γ(t− t0)) sin(Ω(t− t0)) + γ sinh(γ(t− t0)) cos(Ω(t− t0))
]

, (17)

Λnew
pp = Ω cosh(γ(t− t0)) cos(Ω(t− t0)) −

γ

Ω
sinh(γ(t− t0)) sin(Ω(t− t0)) . (18)

The crucial feature of (15) is that it breaks the local composition law

Λ(t2; t0) = Λ(t2; t1) ◦ Λ(t1; t0) , (19)

for t0 ≤ t1 ≤ t2, that is, formula (19) does not hold for Λ = Λnew.
Let us compare our new evolution (15) with the classical dynamics of the Caldirola-Kanai system.

Note, that we may trivially change the formula (6) for time-dependent mass

m(t) = m0e
2γ(t−t0) , (20)

without affecting the equation of motion. Now, these two models contain additional parameter t0.
One easily finds for the corresponding Caldirola-Kanai dynamics ΛCK(t; t0):

ΛCK
xx =

[

cos(Ω(t− t0)) +
γ

Ω
sin(Ω(t− t0))

]

e−γ(t−t0), (21)

ΛCK
xp =

1

m0Ω
sin(Ω(t− t0))e

−γ(t−t0), (22)

ΛCK
px = −m0Ω

(

1 +
γ2

Ω2

)

sin(Ω(t− t0))e
γ(t−t0), (23)

ΛCK
pp =

[

cos(Ω(t− t0)) −
γ

Ω
sin(Ω(t− t0))

]

eγ(t−t0). (24)

One may check that ΛCK satisfies

ΛCK(t2; t0) = ΛCK(t2; t1) ◦ ΛCK(t1; t0) , (25)

for t0 ≤ t1 ≤ t2. Note, that computing ΛCK(t2, t1) one applies (21)–(24) with t0 replaced by t1, and
m0 replaced by m1 := m(t1) = m0e

2γ(t1−t0). Then formula (25) easily follows as a simple consequence
of ea+b = eaeb. It is no longer true if we replace (20) by (14).
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Finally, let us compare both approaches in the simplified situation corresponding to pure dissipa-
tion, that is, ω = 0. In this case the corresponding formula for Λnew(t; t0) considerably simplifies

Λnew
0 (t; t0) =

(

1 (m0γ)
−1 tanh(γ(t− t0))

0 1

)

. (26)

However, Λnew
0 still breaks (19). In the case of Caldirola-Kanai dynamics one finds

ΛCK
0 (t; t0) =

(

1 (m0γ)
−1 sinh(γ(t− t0)) e

−γ(t−t0)

0 1

)

. (27)

Note, that in a asymptotic regime γt −→ ∞ one obtains

Λnew
asympt =

(

1 (m0γ)
−1

0 1

)

, ΛCK
asympt =

(

1 (2m0γ)
−1

0 1

)

, (28)

that is, both dynamics have different asymptotic states: (x0 +p0/(m0γ), p0) and (x0 +p0/(2m0γ), p0)
for the Caldirola-Kanai system.

4 Quantum propagator

Consider now a quantum propagator corresponding to Hamiltonian (7) with m(t) given by (14). Since
the Hamiltonian is quadratic in (x, p) one easily finds for the propagator (see e.g. [32])

K(x, t;x0, t0) = N(t− t0)A(x, t;x0, t0) ·B(x, t; t0) , (29)

where

A(x, t;x0, t0) = exp

{

i

2~

m0Ω

sin(Ω(t− t0))

[

(x2
0 + x2) cos(Ω(t− t0)) − 2x0x cosh(γ(t− t0))

]

}

,

B(x, t; t0) = exp

{

i

2~
m0x

2 sinh(γ(t− t0))

sin(Ω(t− t0))

[

Ω cos(Ω(t− t0)) sinh(γ(t− t0))

− γ sin(Ω(t− t0)) cosh(γ(t− t0))
]}

, (30)

and the normalization factor is given by

N(t− t0) =

√

m0Ω cosh(γ(t− t0))

2πi~ sin(Ω(t− t0))
. (31)

Note, that when γ = 0 the factor B equals to 1 and one recovers standard propagator for the harmonic
oscillator [30]. On the other hand when ω = 0, that is, in a pure damping case, formula (29) reduces
to

K0(x, t;x0, t0) = N0(t− t0) exp
{ iγ

2~

m0(x − x0)
2

tanh(γ(t− t0))

}

, (32)

with

N0(t− t0) =

√

γm0

2πi~ tanh(γ(t− t0))
. (33)
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For γ = 0 formula (32) reproduces quantum propagator for a free particle [30]. Interestingly, the
formula (32) for a quantum propagator for a particle undergoing linear damping was recently derived
by Kochan [31] by using purely geometrical considerations. Here we showed that it may be derived
via standard methods by taking suitable nonlocal Hamiltonian with memory. In [31] the formula for a
full propagator of the damped oscillator was also presented which however differs from (29). Actually,
Kochan propagator is given by

KKochan(x, t;x0, t0) = N(t− t0)A(x, t;x0, t0) , (34)

and therefore differs from (29) only by a factor B(x, t; t0). Both propagators K and KKochan produce
the same limits for γ = 0 (harmonic oscillator) and for (γ = 0 & ω = 0) (free particle). Observe that
B(x, t; t0) produces only an additional phase factor at the final position ‘x’. Therefore both formulae
give the same results for a mean position of a particle: starting from the initial wave function ψ(x0, t0)
one finds

ψ(x, t; t0) =

∞
∫

−∞

K(x, t;x0, t0)ψ(x0, t0)dx0 , (35)

and

ψKochan(x, t; t0) =

∞
∫

−∞

KKochan(x, t;x0, t0)ψ(x0, t0)dx0 =
1

B(x, t; t0)
ψ(x, t; t0) , (36)

and hence

〈x(t; t0)〉 =

∞
∫

−∞

x |ψ(x, t; t0)|
2dx =

∞
∫

−∞

x |ψKochan(x, t; t0)|
2dx . (37)

It is easy to show that 〈x(t; t0)〉 satisfies our modified nonlocal equation (2):

d2

dt2
〈x(t; t0)〉 + 2γ tanh(γ(t− t0))

d

dt
〈x(t; t0)〉 + ω2〈x(t; t0)〉 = 0 . (38)

In the Appendix we show that this additional phase factor B(x, t; t0) may be eliminated by a suitable
canonical transformation. The price we pay for a simpler formula for a propagator is the much more
complex form of the Hamiltonian which apart from the standard quadratic terms x2 and p2 contains
also a mixed term xp (see Appendix).

Let us compare the above formulae with the propagator for the Caldirola-Kanai system. One
easily finds the CK propagator corresponding to m(t) given by (20)

KCK(x, t;x0, t0) = NCK(t− t0) exp
{ i

2~
m0

[

γ
(

x2
0e

2γt0 − x2e2γt
)

+ Ω cot(Ω(t− t0))
(

x2
0e

2γt0 + x2e2γt
)

− 2
Ω

sin(Ω(t− t0))
xx0e

γ(t+t0)
]}

, (39)

where the normalization factor

NCK(t− t0) =

√

m0Ω eγ(t−t0)

2πi~ sin(Ω(t− t0))
. (40)
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Again (39) correctly reproduces both the propagator for the harmonic oscillator (for γ = 0) and the
propagator for the free particle (γ = 0 and ω = 0). However, for pure damping both propagators are
different.

There is a crucial difference between K and KCK. The Caldirola-Kanai propagator satisfies local
composition law

KCK(x2, t2;x0, t0) =

∫

dx1KCK(x2, t2;x1, t1)KCK(x1, t1;x0, t0) . (41)

It is no longer true for K defined in (29). Therefore, as in the classical case memory term encoded
into dynamical equation is responsible for the breaking of the local composition law for the quantum
evolution.

Finally, let us consider a damped (without oscillations) evolution of the initial Gaussian wave
packet

ψ0(x; t0) = C e−(x−x0)
2/σ+ip0x/~ . (42)

One easily finds for the probability density ρ(x, t; t0) = |ψ(x, t; t0)|
2:

ρ(x, t; t0) =
|C|2

√

σ(t− t0)/σ
exp

[

−2
(x− x(t))2

σ(t− t0)

]

, (43)

where x(t) is given by the classical formula

x(t) = x0 + p0
tanh(γ(t− t0))

m0γ
, (44)

and

σ(t− t0) = σ

[

1 +

(

~ tanh(γ(t− t0))

m0σγ

)2
]

. (45)

It shows that the presence of the damping term modifies the way the initial way function spreads in
time. Note, that in the asymptotic regime one obtains

ρasympt(x; t0) =
|C|2

√

σasympt/σ
exp

[

−2
(x− xasympt)

2

σasympt

]

, (46)

with the classical formula for the asymptotic position

xasympt = x0 +
p0

m0γ
, (47)

and asymptotic dispersion

σasympt = σ

[

1 +
(

~

m0γσ

)2
]

. (48)

It is therefore clear that the damping prevents the wave function from the total spreading. An
initial Gaussian probability density ρ0(x; t0) cannot ‘spread more’ than ρasympt(x; t0). A similar
phenomenon appears for Caldirola-Kanai dynamics with different asymptotic state

xCK
asympt = x0 +

p0

2m0γ
, (49)

but with the same asymptotic dispersion σasympt given by (48).
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5 Conclusions

We performed an analysis of the new equation of motion for the damped oscillator (2). It differs from
the standard one by a damping term – 2γ tanh(γ(t−t0))ẋ – which is non-local in time and nonlinear in
the damping constant γ. The new parameter t0 introduces effective memory. For long time behavior
t≫ 1/γ one recovers standard equation with a damping term – 2γẋ. Both classical and quantum anal-
ysis is performed. The characteristic feature of this nonlocal system is that it breaks local composition
law for the classical Hamiltonian dynamics and the corresponding quantum propagator. Interestingly,
the same propagator was recently derived in [31]. Without referring to Hamiltonian formulation and
using purely geometric methods the author of [31] derived the corresponding propagator starting
from the standard equation (1). We have shown that the corresponding classical limit leads to the
new damping equation (2). Therefore, we conclude that the quantum nonlocal propagator derived in
[31] does originate in nonlocal equation (2). Finally, it was shown that the purely damped behavior
modifies well known property of the free quantum dynamics leading to the perfect spreading of the
initial wave function. It is no longer true when the dissipation is present. Now, instead of the perfect
spreading there is an asymptotic state giving rise to the asymptotic probability density (46).

Appendix

Using a general formula for a propagator corresponding to quadratic Hamiltonian (see e.g. [32]) one
easily finds that

H(x, p, t) =
1

2
µ(t)p2 + ν(t)xp +

1

2
λ(t)x2, (A.1)

with

µ(t) =
1

m0 cosh2(γ(t− t0))
(A.2)

and

ν(t) = tanh(γ(t− t0))
(

Ω
tanh(γ(t− t0))

tan(Ω(t− t0))
− γ

)

, (A.3)

λ(t) = m0Ω
2

{

2γ

Ω

tanh(γ(t− t0))

tan(Ω(t− t0))
+

1 − [1 + tanh2(γ(t− t0))] cos2(Ω(t− t0))

sin2(Ω(t− t0))

}

, (A.4)

produces (34), that is, it annihilates additional phase factor B(x, t; t0) out of (29).
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