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Quantum states with strong positive partial transpose
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We construct a large class of bipartite M ⊗N quantum states which defines a proper subset of
states with positive partial transposes (PPT). Any state from this class is PPT but the positivity of
its partial transposition is recognized with respect to canonical factorization of the original density
operator. We propose to call elements from this class states with strong positive partial transposes
(SPPT). We conjecture that all SPPT states are separable.
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Quantum entanglement is one of the most remark-
able features of quantum mechanics and it leads
to powerful applications like quantum cryptography,
dense coding and quantum computing [1, 2].

One of the central problems in the theory of quan-
tum entanglement is to check whether a given den-
sity matrix describing a quantum state of the com-
posite system is separable or entangled. Let us recall
that a state represented by a density operator ρ liv-
ing in the Hilbert space HA ⊗HB is separable iff ρ
is a convex combination of product states, that is,

ρ =
∑

k pkρ
(A)
k ⊗ ρ

(B)
k , with {pk} being a probability

distribution, and ρ
(A)
k , ρ

(B)
k are density operators de-

scribing states of subsystem A and B, respectively [3].
There are several operational criteria which enable

one to detect quantum entanglement (see e.g. [2] for
the recent review). The most famous Peres-Horodecki
criterion [4, 5] is based on the partial transposition:
if a state ρ is separable then its partial transposition
ρTA = (T⊗ 1l)ρ is positive (such states are called PPT
state). The structure of this set is of primary impor-
tance in quantum information theory. Unfortunately,
this structure is still unknown, that is, one may eas-
ily check whether a given state is PPT but we do not
know how to construct a general quantum state with
PPT property.

Recently [6, 7] we proposed large classes of states
where the PPT property is very easy to check. In the
present Letter we propose a new class of states which
are PPT by the very construction. This construction
is based on the block structure of any density matrix
living in the tensor product HA ⊗HB, that is, a den-
sity matrix in CM ⊗CN may be considered as M ×M
matrix with N × N blocks. Partial transposition is
an operation which acts on blocks and we show how
to organize blocks to have a density matrix with PPT
property. We propose to call PPT states constructed
this way a strong PPT states (SPPT). Interestingly,

known examples of SPPT states turn out to be sep-
arable. This observation supported by some numeri-
cal investigations encouraged us to conjecture that all
SPPT states are separable.

The Letter is organized as follows: for pedagogical
reason we start with M = 2 and arbitrary (but finite)
N . This construction easily generalizes for arbitrary
M > 2. We finish with some conclusions.

1. 2⊗N systems. Such systems are of primary
importance in quantum information theory and they
were extensively analyzed in [8]. It is clear that an
(unnormalized) state of a bipartite system living in
C2 ⊗CN may be considered as a block 2 × 2 matrix
with N × N blocks. Positivity of ρ implies that ρ =
X†X for some 2N ×2N matrix X. Again, this matrix
may be considered as a block 2 × 2 matrix with N ×
N blocks. Consider now the following class of upper
triangular block matrices X:

X =

(
X1 SX1

0 X2

)
, (1)

with arbitrary N × N matrices X1, X2 and S. One
finds

ρ = X†X =

(
X†

1X1 X†
1SX1

X†
1S†X1 X†

1S†SX1 + X†
2X2

)
, (2)

and its partial transposition is given by

ρTA =

(
X†

1X1 X†
1S†X1

X†
1SX1 X†

1S†SX1 + X†
2X2

)
. (3)

Clearly, ρ is PPT iff there exists Y such that ρTA =
Y†Y. The choice of Y (if it exists) is highly
nonunique. Note, however, that there is a ‘canoni-
cal’ candidate for 2N × 2N matrix Y defined by (1)

http://arXiv.org/abs/0710.1934v1


with S replaced by S†, that is

Y =

(
X1 S†X1

0 X2

)
, (4)

and hence

Y†Y =

(
X†

1X1 X†
1S†X1

X†
1SX1 X†

1SS†X1 + X†
2X2

)
. (5)

Now, we say that a state ρ = X†X with X defined in
(1) has strong positive partial transpose (SPPT)
iff ρTA = Y†Y with Y defined in (4).

It is therefore clear that a 2⊗N state ρ is SPPT if
and only if

X†
1S†SX1 = X†

1SS†X1 . (6)

Note, that if S is normal, i.e. S†S = SS†, then ρ is
necessarily SPPT. It was proved in [8] that if the rank
of ρ is N , then PPT implies separability. Now, any
PPT ρ of rank N may be constructed via (2) with
X1 = I, X2 = 0 and a normal matrix S giving rise to
(so called canonical 2⊗N form [8])

ρ =

(
I S

S† S†S

)
.

Due to normality of S it does belong to our class, i.e.
any rank N PPT state in 2⊗N is both SPPT and
separable. Another example of SPPT states is pro-
vided by hermitian (and hence normal) S. It implies
ρTA = ρ. It is well known [8] that for 2⊗N systems
this condition is sufficient for separability. Hence, for
2⊗N case all states defined by arbitrary X1 , X2 and
arbitrary but hermitian S are SPPT from (6) and sep-
arable due to [8].

Consider other well known examples in 2⊗N . The
celebrated Werner state [3] in 2⊗ 2 is SPPT if and
only if it is maximally mixed, i.e. 1

4 I⊗ I. The same
is true for the isotropic state in 2⊗2. The seminal
Horodecki entangled PPT state [5] in 2⊗ 4 parame-
terized by b ∈ [0, 1] belongs to our class iff b = 0 (for
b = 0, 1 Horodecki state is separable). In a recent
paper [7] we constructed a class of so called circulant
states in N ⊗N . For N = 2 they are given by

ρ =




a11 0 0 a12

0 b11 b12 0

0 b21 b22 0

a21 0 0 a22


 , (7)

where [aij ] and [bij ] are 2 × 2 positive matrices. Par-
tially transposed ρ has the same structure but with

[aij ] and [bij ] replaced by [ãij ] and [̃bij ]

ã =

(
a11 b21

b12 a22

)
, b̃ =

(
b11 a21

a12 b22

)
.

Now, ρ is PPT iff ã ≥ 0 and b̃ ≥ 0. It is not difficult
to see that a circulant 2⊗ 2 PPT state is SPPT iff
|a12| = |b12|. A nice example of circulant state is
provided by orthogonally invariant state [9], that is,
a 2-qubit state ρ satisfying U ⊗Uρ = ρU ⊗U , with
U ∈ U(2) and U = U :

ρ =
1

4




a + 2b · · 2b − a

· a + 2c a − 2c ·

· a − 2c a + 2c ·

2b − a · · a + 2b


 , (8)

where a, b, c ≥ 0 and a + b + c = 1. It is easy to see
that ρ is PPT iff b, c ≤ 1/2 [9]. Moreover, ρ is SPPT
iff it is PPT and b = c. Hence SPPT states define a
1-parameter family within 2-parameter class of PPT
states.

2. General M ⊗N systems. The above construc-
tion may be easily generalized for an arbitrary bipar-
tite system living in CM ⊗CN . Now, a state ρ may
be considered as an M ×M matrix with entries being
N ×N matrices. Positivity of ρ implies that ρ = X†X

for some MN ×MN matrix X — a block M ×M ma-
trix with N ×N blocks. Let us consider the following
class of upper triangular block matrices X: diagonal
blocks Xii = Xi and Xij = SijXi for i < j

X =




X1 S12X1 S13X1 . . . S1MX1

0 X2 S23X2 . . . S2MX2

...
...

. . .
...

...

0 0 0 XM−1 SM−1,MXM−1

0 0 0 0 XM




,

where Xk and Sij (i < j) are N ×N matrices. Simple
calculation gives for diagonal blocks

ρ11 = X†
1X1 ,

ρ22 = X†
1S†

12S12X1 + X†
2X2 ,

ρ33 = X†
1S†

13S13X1 + X†
2S†

23S23X2 + X†
3X3 ,

... (9)

ρMM =

M−1∑

k=1

X†
kS†

kMSkMXk + X†
MXM ,

2



Off-diagonal blocks are defined as follows: for i = 1

ρ1j = X†
1S1jX1 , (10)

and for 1 < i < j

ρij =

i−1∑

k=1

X†
kS†

kiSkjXk + X†
i SijXi . (11)

Partially transposed ρTA is therefore given by the fol-
lowing block matrix: diagonal blocks

ρTA

ii = ρii , (12)

and off-diagonal blocks: for i = 1

ρTA

1j = ρ†j1 = X†
1S†

1jX1 , (13)

and for 1 < i < j

ρTA

ij = ρ†ji =
i−1∑

k=1

X†
kS†

kjSkiXk + X†
i S†

ijXi . (14)

Now, in analogy to 2⊗N case we say that ρ is SPPT
iff ρTA = Y†Y where Y is given by the following
‘canonical’ block matrix

Y =




X1 S†
12X1 S†

13X1 . . . S†
1MX1

0 X2 S†
23X2 . . . S†

2MX2

...
...

. . .
...

...

0 0 0 XM−1 S†
M−1,MXM−1

0 0 0 0 XM




.

It is clear that blocks (Y†Y)ij are defined by the

same formulae as (X†X)ij with Sij replaced by S†
ij

— formulae (9)–(11). Therefore, the SPPT condition
ρTA = Y†Y is equivalent to:

• for j = 2, . . . , M

j−1∑

k=1

X†
kS†

kjSkjXk =

j−1∑

k=1

X†
kSkjS

†
kjXk , (15)

• for 2 ≤ i < j = 3, . . . , M

i−1∑

k=1

X†
kS†

kjSkiXk =

i−1∑

k=1

X†
kSkiS

†
kjXk . (16)

In particular the above conditions are satisfied if

SkiS
†
kj = S†

kjSki , (17)

for k < i ≤ j. Formula (17) shows that there are
1
2M(M − 1) normal matrices Sij (i < j) such that

each matrix Ski commutes with S†
kj for i < k. It

introduces 1
6 (M−1)M(M+1) independent conditions

for matrices Sij . For M = 2 it reduces to exactly one
condition (6) for one matrix S. The special class of
SPPT states corresponds to a family of hermitian (and
hence normal) matrices Sij satisfying

[Ski , Skj ] = 0 , k < i ≤ j .

In this case one simply has ρTA = ρ .
Let us analyze known examples of M ⊗N states

belonging to our class of SPPT states. Now, the situ-
ation is much more complicated since our knowledge
about general M ⊗N case is very limited.

Example 1) Similarly as in 2⊗ 2 case both Werner
and isotropic states in N ⊗N are SPPT iff they are
maximally mixed.

Example 2) The seminal Horodecki 3⊗ 3 PPT but
entangled state [5] is SPPT if and only if a = 0 (in
this case it is separable).

Example 3) In [6] we have proposed a class of N ⊗N
states defined as follows

ρ =

N∑

i,j=1

aij |ii〉〈jj| +

N∑

i6=j=1

bij |ij〉〈ij| , (18)

where [aij ] is N×N positive matrix and bij (i 6= j) are
positive coefficients. It was shown [6] that ρ is PPT
iff |aijaji| ≤ b2

ij for i 6= j. It turns out that this class
contains many well known PPT states (for example
an isotropic state are there). If N = 3 this state has
the following block form (to have more transparent
picture we represent zeros by dots)

ρ =




a11 · · · a12 · · · a13

· b12 · · · · · · ·

· · b13 · · · · · ·

· · · b21 · · · · ·

a21 · · · a22 · · · a23

· · · · · b23 · · ·

· · · · · · b31 · ·

· · · · · · b32 ·

a31 · · · a32 · · · a33




.
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It is clear that ρ is SPPT iff aij = 0 for i 6= j, that is, ρ
is diagonal and hence separable. We stress that both
Werner and isotropic states do belong to this class.

Example 4) In a recent paper [7] we proposed a
class of so called circulant PPT states in N ⊗N . It
is easy to show that for odd N circulant PPT states
are SPPT if and only if they are diagonal (hence sep-
arable). However, for even N we may have circulant
states with more complicated structure (cf. [7]). Cir-
culant SPPT state for N = 2 was already presented
in (7). It is not difficult to show that again SPPT
property implies separability.

Conclusions. We constructed a large class of PPT
states in CM ⊗CN — we called them SPPT states
since they satisfy one extra condition which is strong
enough to guarantee PPT. All known to us examples
of such states turn out to be separable. Moreover,
we have strong numerical evidence (realignment cri-
terion) that SPPT states in C3 ⊗C3 are separable.
Therefore, we are encouraged to conjecture that all
SPPT states are separable. If this conjecture is true
it gives rise to new sufficient criterion for separability:
if ρ is SPPT, then it is separable.

Note, that constructed states give rise to new family
of quantum channels Φ : MM (C) −→ MN(C), where
MK(C) denotes a set of K × K complex matrices. If

eij = |i〉〈j| denotes a base in MM (C), then the action
of the channel corresponding to state ρ is given by

Φ(eij) = ρij , (19)

where ρij defined in (9)–(11) are elements from
MN (C). Now, if our conjecture about SPPT states
is true any quantum channel defined via (19) corre-
sponding to SPPT state ρ is entanglement breaking
[10, 11] (see also [12] for classification of channels), i.e.
(1lM ⊗Φ)P+

M is separable, where P+
M denotes a pro-

jector onto maximally entangled state in CM ⊗CM .
Therefore, as a byproduct we derive a large class of
entanglement breaking quantum channels.

In a recent paper [13] authors developed new nec-
essary and sufficient criterion for separability which is
based on the existence of a set of normal commuting
matrices. SPPT states may therefore provide a lab-
oratory of states where the methods of [13] may be
applied. They may shed new light on the intricate
structure of quantum states of composed systems.
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