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Dariusz Chruściński and Andrzej Kossakowski
Institute of Physics, Nicolaus Copernicus University,

Grudzia̧dzka 5/7, 87–100 Toruń, Poland

Abstract

We provide a new class of positive maps in matrix algebras. The construction is based
on the family of balls living in the space of density matrices of n-level quantum system.
This class generalizes the celebrated Choi map and provide a wide family of entanglement
witnesses which define a basic tool for analyzing quantum entanglement.

1 Introduction

One of the most important problems of quantum information theory [1] is the characterization
of mixed states of composed quantum systems. In particular it is of primary importance to
test whether a given quantum state exhibits quantum correlation, i.e. whether it is separable
or entangled. For low dimensional systems there exists simple necessary and sufficient condi-
tion for separability. The celebrated Peres-Horodecki criterium [2, 3] states that a state of a
bipartite system living in C2 ⊗C2 or C2 ⊗C3 is separable iff its partial transpose is positive.
Unfortunately, for higher-dimensional systems there is no single universal separability condition.

The most general approach to separability problem is based on the following observation [4]:
a state ρ of a bipartite system living in HA ⊗HB is separable iff Tr(Wρ) ≥ 0 for any Hermitian
operator W satisfying Tr(WPA ⊗PB) ≥ 0, where PA and PB are projectors acting on HA and
HB, respectively. Recall, that a Hermitian operator W ∈ B(HA ⊗HB) is an entanglement
witness [4, 5] iff: i) it is not positively defined, i.e. W � 0, and ii) Tr(Wσ) ≥ 0 for all separable
states σ. A bipartite state ρ living in HA ⊗HB is entangled iff there exists an entanglement
witness W detecting ρ, i.e. such that Tr(Wρ) < 0. Clearly, the construction of entanglement
witnesses is a hard task. It is easy to construct W which is not positive, i.e. has at leat one
negative eigenvalue, but it is very difficult to check that Tr(Wσ) ≥ 0 for all separable states σ.

The separability problem may be equivalently formulated in terms positive maps [4]: a state
ρ is separable iff (1l⊗Λ)ρ is positive for any positive map Λ which sends positive operators
on HB into positive operators on HA. Positive maps play important role both in physics and
mathematics providing generalization of ∗-homomorphism, Jordan homomorphism and condi-
tional expectation. Normalized positive maps define an affine mapping between sets of states of
C∗-algebras. Unfortunately, in spite of the considerable effort (see e.g. [6]–[16]), the structure of
positive maps (and hence also the set of entanglement witnesses) is rather poorly understood.
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In the present paper we construct a new class of positive maps using the family of balls con-
tained in the space of density matrices of n-level quantum system. Our construction generalizes
a class of maps introduced in [12].

The paper is organized as follows: in the next Section we introduce a family of balls in the
space of quantum states. We show that each faithful state (i.e. strictly positive density operator)
serves as a center of the ball. In particular ball centered at the maximally mixed state ρ0 = I/n
possesses a maximal radius [n(n− 1)]−1/2. Section 3 provides positive maps with values in the
corresponding ball. Composing with affine maps they give rise to the wide class of positive maps
discussed in Section 4. Finally, in Section 5 we illustrate our construction for n = 3 and provide
generalization of the celebrated Choi map [7]. A brief discussion is included in the last section.

2 A family of balls

Let us consider the space of quantum states Sn corresponding to n-level quantum system, i.e.
the space of density operators living in the Hilbert space H = Cn. It defines a convex subset of
the linear space of Hermitian operators

Hn = { a ∈Mn(C) | a∗ = a } , (2.1)

where Mn(C) denotes the space of n × n complex matrices. Recall, that Hn is a real Hilbert
space equipped with the scalar product (a, b) = tr(ab) and the norm ||a||2 = (a, a). Now, let
ρ̃ ∈ Sn be a strictly positive density matrix, i.e. its spectral decomposition has the following
form

ρ̃ = λ̃1P1 + λ̃2P2 + . . .+ λ̃nPn , (2.2)

where
λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n > 0 . (2.3)

A set of rank 1 projectors P = {P1, P2, . . . , Pn} defines a simplex Σ(P) ⊂ Sn, and the condition
(2.3) implies that ρ̃ belongs to the interior of Σ(P). Note, that ρ̃ may be rewritten as follows

ρ̃ = λ1P1 + λ2P2 + . . .+ λn−1Pn−1 + λn
I
n
, (2.4)

where
λi = λ̃i − λ̃n ≥ 0 ; i = 1, . . . , n − 1 , (2.5)

and
λn = nλ̃n > 0 . (2.6)

Let Fi be a (n− 2)-dimensional face of Σ(P), i.e. a set

Fi(P) =
{ n∑

k=1

pkPk ⊂ Σ(P)
∣∣∣ pi = 0

}
, (2.7)

and for any a ∈ Hn and r > 0 denote by Bn(a, r) the following ball

Bn(a, r) = {x ∈ Hn | ||a− x|| ≤ r } ⊂ Hn . (2.8)
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Theorem 1 For any r ≤ rmax := λn/
√
n(n− 1) one has Bn(ρ̃, r) ⊂ Σ(P). Moreover, a

maximal ball Bn(ρ̃, rmax) is tangent to the face Fn(P).

Remark. In the special case when ρ̃ ≡ ρ0 = I/n, one has λn = 1 and rmax = 1/
√
n(n− 1)

defines a ball Bn(ρ0, rmax) inscribed in each simplex P = {P1, . . . , Pn} [12], that is, this ball is
tangent to each face Fi(P).

Proof. Take an arbitrary point ρα ∈ Fn(P), i.e.

ρα = α1P1 + . . .+ αn−1Pn−1 , (2.9)

with αi ≥ 0, and α1 + . . .+ αn−1 = 1. Let us compute a distance between ρ̃ and ρα

D( α) := ||ρ̃− ρα||2 . (2.10)

One finds

D(α) = (α1 − λ1)
2 + . . .+ (αn−1 − λn−1)

2 − λ2
n

n
. (2.11)

To find a minimum of D(α) we treat α1, . . . , αn−2 as independent variables (αn−1 = 1 − α1 −
. . .− αn−2). The condition for a local extremum

∂D(α)

∂αi
= 0 ; i = 1, . . . , n− 2 , (2.12)

gives rise to the following system of linear equations

n−2∑

j=1

Aij α
∗

j = βi ; i = 1, . . . , n− 2 , (2.13)

where the (n− 2) × (n− 2) matrix A reads as follows

Aij =

{
n− 2 ; i = j

1 ; i 6= j
, (2.14)

and
βi = 1 + λi − λn−1 ; i = 1, . . . , n− 2 . (2.15)

Finding the inverse matrix

A−1
ij =

{ n−2

n−1
; i = j

−1
n−1

; i 6= j
, (2.16)

one obtains for the solution

α∗

i = λi +
λn

n− 1
; i = 1, . . . , n− 1 . (2.17)

Inserting α
∗ = (α∗

1, . . . , α
∗

n−1) into (2.11) one finds

r2max := D( α
∗) =

λ2
n

n(n− 1)
, (2.18)

which ends the proof. 2
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3 From balls to positive maps

Let us consider the following linear map

ϕµ : Mn(C) −→ Mn(C) , (3.1)

defined by
ϕµ(a) := µa+ (1 − µ)ρ̃ tr a , (3.2)

with a real parameter µ. Note, that
ϕµ(ρ̃) = ρ̃ , (3.3)

and
trϕµ(a) = tr a . (3.4)

It is clear that if µ ∈ [0, 1] then ϕµ is a CP map being a convex combination of two CP maps.
Our aim is to prove the following

Theorem 2 If µ satisfies
|µ| ≤ µmax , (3.5)

where
µmax :=

rmax√
1 + λ2

1 + . . . + λ2
n−1 − λ2

n/n
, (3.6)

and rmax is defined in (2.18), then ϕµ is a positive map.

Proof. For any rank 1 projector P one has

λn

n
≤ tr(ρ̃P ) ≤ λn

n
+ (λ1 + . . . + λn−1) . (3.7)

Now, for any ρ ∈ Sn

||ρ̃− ρ|| ≤ max
P

||ρ̃− P || , (3.8)

where the maximum is taken over all rank 1 projectors P ∈ Sn. Now

||ρ̃− P ||2 = ||ρ̃||2 + ||P ||2 − 2tr(ρ̃P ) ≤ ||ρ̃||2 + 1 − 2
λn

n
. (3.9)

Moreover, one easily finds

||ρ̃||2 = λ2
1 + . . . λ2

n−1 +
λ2

n

n
+ 2

λn

n
(λ1 + . . .+ λn−1)

= λ2
1 + . . . λ2

n−1 + 2
λn

n
− λ2

n

n
, (3.10)

and hence one obtains the following bound for the distance between ρ̃ and P

||ρ̃− P ||2 ≤ λ2
1 + . . . λ2

n−1 + 1 − λ2
n

n
. (3.11)
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Now, let us compute the corresponding distance between ρ̃ and ϕµ(ρ) for an arbitrary state
ρ ∈ Sn. Since

ρ̃− ϕµ(ρ) = µ(ρ̃− ρ) , (3.12)

one has

max
ρ

||ρ̃− ϕµ(ρ)||2 = µ2 max
ρ

||ρ̃− ρ||2 ≤ µ2

(
1 − λ2

n

n
+ λ2

1 + . . . + λ2
n−1

)
. (3.13)

Now, assume that

µ2

(
1 − λ2

n

n
+ λ2

1 + . . .+ λ2
n−1

)
≤ r2max =

λ2
n

n(n− 1)
. (3.14)

It implies that for any ρ ∈ Sn an image ϕµ(ρ) ∈ Bn(ρ̃, rmax) and hence ϕ̃ is a positive map.
Formula (3.14) is equivalent to (3.5) which ends the proof. 2

Remark. In the special case when ρ̃ ≡ ρ0 = I/n, one has λn = 1 and

µmax =
1

n− 1
, (3.15)

which reproduces the result of [12].
Figure 1 shows the action of ϕµ with |µ| = µmax for n = 3, i.e. ϕµ(Pk) = P ′

k. The figure
on the left corresponds to µ > 0 and the map ϕµ is completely positive being a sum of two
completely positive maps. The figure on the right corresponds to µ < 0 and the the map ϕµ is
positive but not CP.

4 Composing with affine maps

Having define a map ϕµ with a property that ϕµ(ρ) ∈ Bn(ρ̃, rmax) for all density operators
ρ ∈ Sn let us observe that we may compose it with an arbitrary affine map which maps a ball
Bn(ρ̃, rmax) into itself, i.e. if

ψ : Bn(ρ̃, rmax) −→ Bn(ρ̃, rmax) , (4.1)

then ψ ◦ ϕµ maps all density matrices from Sn into Bn(ρ̃, rmax). Denote by Affn a set of affine
maps (T, t) : Rn −→ Rn which map the closed unit balls into itself, i.e.

(T, t)x := Tx + t , (4.2)

where T ∈ Mn(R) and t ∈ Rn represents translation. Now, Affn being a compact convex set it
is entirely determined by its extremal elements.

Proposition 1 The extremal elements Extr Affn are defined by

T = R1ΛR2 , t = R1c , (4.3)
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Figure 1: The action of ϕµ for n = 3. It maps Pk into P ′

k. On the left µ > 0 and ϕµ is CP, on
the right µ < 0 and ϕµ is positive but not CP.

where R1, R2 ∈ O(n), Λ is diagonal with eigenvalues

λ1 = . . . = λn−1 =
λn

κ
=

√
1 − δ2(1 − κ2) ,

with 0 ≤ κ ≤ 1 and 0 < δ ≤ 1 . Finally, c = (c1, . . . , cn) reads as follows

c1 = . . . = cn−1 = 0 , cn = δ(1 − κ2) .

For the proof see [17]. Note, that (T, rt) maps a ball with radius r into itself provided (T, t) ∈
Affn. Denote by Aff0

n a subset of Affn corresponding to κ = 0. It is clear that

Extr Aff0
n = { (T, t) ∈ Affn : T ∈ O(n) , t = 0 } . (4.4)

It is convenient to introduce an orthonormal basis in Hn: f = (f1, . . . , fn2
−1) and fn2 = I/

√
n,

such that (fα, fβ) = δαβ . It implies that tr fα = 0 for α = 1, . . . , n2 − 1. Now, any element
a ∈ Hn may be decomposed as follows

a =
I
n

tr a+ 〈f ,a〉 , (4.5)
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with a = (a1, . . . , an2
−1) ∈ Rn2

−1 , aα = tr(fαa) , and 〈f ,a〉 =
∑n2

−1

α=1
fαaα. In particular one

has

ρ̃ =
I
n

+ 〈f , x̃〉 , (4.6)

and

a′ := ϕµ(a) =
I
n

tr a+ 〈f ,a′〉 , (4.7)

due to trϕµ(a) = tr a. Now, if a′ ∈ B(ρ̃, rmax) we may shift a′ by ‘−x̃ tra’, apply an affine
map (T, rmaxt) and then shift back by ‘x̃ tra’. As a result one obtains again an element a′′ ∈
B(ρ̃, rmax). Therefore, the main result of this section may be summarized by the following

Theorem 3 For |µ| ≤ µmax every affine map (T, t) ∈ Affn2−1 induces a positive trace preserv-
ing map

ϕµ[T, t] : Mn(C) −→ Mn(C) ,

defined by
ϕµ[T, t](a) = ρ̃ tr a+ 〈f , (T, rmaxt)(a

′ − x̃tra)〉 , (4.8)

where x̃ and a′ are given by (4.6) and (4.7), respectively.

Remark 1 Actually, we have constructed the action of ϕµ[T, t] only for hermitian elements.
However, due to the linearity one obviously has

ϕµ[T, t](a) = ϕµ[T, t](a1) + i ϕµ[T, t](a2) , (4.9)

where a = a1 + ia2 is an arbitrary element from Mn(C) with a1, a2 ∈ Hn.

Remark 2 If ρ̃ = I/n, then one recovers a family of positive maps constructed in [12].

5 Example: generalized Choi map

Our basic formula (4.8) does depend upon an orthonormal basis fα. Now, let {e1, . . . , en} denote
the eigen-basis of ρ̃, that is, ρ̃ei = λ̃iei. Let us construct f = (f1, . . . , fn2

−1) as the following
generators of SU(n)

(f1, . . . , fn2
−1) = (dℓ, uij , vij) ,

with ℓ = 1, . . . , n− 1 , and 1 ≤ i < j ≤ n : dℓ generate Cartan subalgebra

dℓ =
1√

ℓ(ℓ+ 1)

( ℓ∑

k=1

ekk − ℓeℓ+1,ℓ+1

)
, (5.1)

and

uij =
1√
2

(eij + eji) , vij =
1√
2 i

(eij − eji) , (5.2)

where eij := |ei〉〈ej |.
To illustrate our general scheme let us consider n = 3 and take an affine transformation

from a set Extr Aff0
8, i.e. (T, t) with T ∈ O(8) and t = 0. Let us introduce the following set of

coordinates in R8:
xℓ = tr(adℓ) , ℓ = 1, 2 , (5.3)
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and
xij = tr(auij), yij = tr(avij) , 1 ≤ i < j ≤ 3 . (5.4)

Now, let T be a rotation from O(8) given by

x′1 = x1 cosα− x2 sinα ,

x′2 = x1 sinα+ x2 cosα ,

x′ij = −xij , (5.5)

y′ij = −yij .

In this parametrization the map

ϕµmax
[α] : M3(C) −→ M3(C) ,

has the following form

ϕµmax
[α](eii) =

3∑

j=1

Λijejj , (5.6)

ϕµmax
[α](eij) = −µmaxeij , i 6= j , (5.7)

where
Λij = µmaxΛ

0
ij + Λ1

ij , (5.8)

with Λ0 being a circulant matrix defined by

Λ0 =




η1 η2 η3

η3 η1 η2

η2 η3 η1


 , (5.9)

where the matrix elements ηi depend upon the parameter α in the following way

η1(α) =
2

3
cosα ,

η2(α) = −1

3
(cosα+

√
3 sinα) , (5.10)

η3(α) =
1

3
(− cosα+

√
3 sinα) ,

and

Λ1 =




ξ1 ξ1 ξ1
ξ2 ξ2 ξ2
ξ3 ξ3 ξ3


 , (5.11)

with

ξ1 = λ1 +
λ3

3
− µmax

[
λ1η1(α) + λ2η2(α)

]
,

ξ2 = λ2 +
λ3

3
− µmax

[
λ1η3(α) + λ2η1(α)

]
, (5.12)

ξ3 =
λ3

3
− µmax

[
λ1η2(α) + λ2η3(α)

]
.
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Note that
η1(α) + η2(α) + η2(α) = 0 , (5.13)

and
ξ1 + ξ2 + ξ3 = λ1 + λ2 + λ3 = 1 . (5.14)

The matrix Λ0 is universal, i.e. it does not depend upon the invariant state ρ̃.

Remark 3 If ρ̃ = I/3, then

ξ1 = ξ2 = ξ3 =
1

3
, (5.15)

and the matrix Λ is circulant and stochastic (hence doubly stochastic). For ρ̃ 6= I/3, it is no
longer circulant but ΛT is stochastic.

Remark 4 The map ϕµmax
[α = π/3] reduces for ρ̃ = I/3 to the celebrated Choi map [7] defined

by

ϕChoi(eii) =

3∑

j=1

ΛChoi
ij ejj , (5.16)

ϕChoi(eij) = −1

2
eij , i 6= j , (5.17)

where the doubly stochastic matrix ΛChoi is defined by

ΛChoi =
1

2




1 1 0
0 1 1
1 0 1


 . (5.18)

Finally, let us note that the corresponding entanglement witness

W [α] = 3(id⊗ϕµmax
[α])P+

3 ,

where P+
3 denotes the maximally entangled state in C3 ⊗C3, reads as follows

W [α] = µmax




a1 · · · −1 · · · −1
· b1 · · · · · · ·
· · c1 · · · · · ·
· · · c2 · · · · ·
−1 · · · a2 · · · −1
· · · · · b2 · · ·
· · · · · · b3 · ·
· · · · · · · c3 ·
−1 · · · −1 · · · a3




, (5.19)

where the α-dependent coefficients are given by

ai =
η1(α) + ξi
µmax

, bi =
η2(α) + ξi
µmax

, ci =
η3(α) + ξi
µmax

. (5.20)
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It is clear that ai, bi, ci ≥ 0 and

ai + bi+1 + ci+2 =
1

µmax

, (5.21)

for i = 1, 2, 3 (mod 3). The above class of entanglement witnesses belongs to a class of bipartite
operators studied in [18]. Note, that W [α] defines true entanglement witness iff it is not positive,
i.e. possesses at least one negative eigenvalue, that is, the following 3 × 3 matrix




a1 −1 −1
−1 a2 −1
−1 −1 a3




is not positive. It is easy to see that if ρ̃ = I/3, then W [α] is never positive. However, it is no
longer true for the general invariant state ρ̃.

6 Conclusions

We introduced a new class of positive maps in the matrix algebra Mn(C) using a family of balls
in the space of density operators of n-level quantum system. Each map has an invariant state
ρ̃ which defines the center of the ball. If ρ̃ = I/n, i.e. the map is unital, our construction
generalizes the family of positive maps introduced in [12]. In particular for n = 3 it generalizes
the celebrated Choi map [7]. As is well know positive maps which are not completely positive
provide a basic tool to study quantum entanglement. Therefore our method provides new class
of entanglement witnesses.

Presented construction guarantees positivity but says nothing about indecomposability and/or
optimality [19]. Both indecomposable and optimal positive maps are crucial in detecting and
classifying quantum entanglement. Therefore, the analysis of positive maps based on the family
of balls deserves further study.

We stress that the structure off balls discussed in this paper may be easily introduced for the
composed n⊗n system. In this case it generalizes well known ball of separable states centered
at I/n2 [20]. It would be interesting to investigate properties of quantum states belonging to
other (not necessary central) balls.
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