Optimal entanglement witnesses for two qutrits

Dariusz Chruściński and Gniewomir Sarbicki
Institute of Physics, Nicolaus Copernicus University, Grudzia̧dzka 5/7, 87-100 Toruń, Poland

Abstract

We provide a proof that entanglement witnesses considered recently in 11 are optimal.

In a recent paper [1] we analyzed z class of entanglement witnesses (EW) given by

$$
W[a, b, c]=\left(\begin{array}{ccc|ccc|ccc}
a & \cdot & \cdot & \cdot & -1 & \cdot & \cdot & \cdot & -1 \tag{1}\\
\cdot & b & \cdot \\
\cdot & \cdot & c & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & c & \cdot & \cdot & \cdot & \cdot & \cdot \\
-1 & \cdot & \cdot & \cdot & a & \cdot & \cdot & \cdot & -1 \\
\cdot & \cdot & \cdot & \cdot & \cdot & b & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & b & \cdot & \cdot \\
\cdot & c & \cdot \\
-1 & \cdot & \cdot & \cdot & -1 & \cdot & \cdot & \cdot & a
\end{array}\right)
$$

where to make the picture more transparent we replaced zeros by dots (for simplicity we skipped the normalization factor which is not essential). One proves the following result [2]

Theorem 1. $W[a, b, c]$ defines an entanglement witness if and only if

1. $0 \leq a<2$,
2. $a+b+c \geq 2$,
3. if $a \leq 1$, then $b c \geq(1-a)^{2}$.

Moreover, being $E W$ it is indecomposable if and only if $b c<(2-a)^{2} / 4$.
In particular we analyzed [1] a subclass of EWs defined by

$$
\begin{equation*}
0 \leq a \leq 1, \quad a+b+c=2, \quad b c=(1-a)^{2} . \tag{2}
\end{equation*}
$$

The corresponding EWs $W[b, c]:=W[2-b-c, b, c]$ belong to the ellipse on $b c$-plane - see Fig. 1. It was conjectured [1] that $W[b, c]$ are optimal. In the present paper we show that this conjecture is true.

Theorem 2. EWs $W[b, c]$ defined by (2) are optimal.

Figure 1: A convex set of EWs $W[b, c]$. A line $b=c$ corresponds to decomposable EW. Special points: (i) and (ii) Choi EWs, (iii) EW corresponding to reduction map, (v) positive operator with $b=c=0$, (iv) decomposable EW with $b=c=1 / 3$.

Proof: let us define

$$
\begin{equation*}
\mathcal{P}_{b c}=\left\{x \otimes y \in \mathbb{C}^{3} \otimes \mathbb{C}^{3} \mid\langle x \otimes y| W[b, c]|x \otimes y\rangle=0\right\} . \tag{3}
\end{equation*}
$$

It is well known [3] that if the set $\mathcal{P}_{b c}$ spans the entire Hilbert space $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$, then $W[b, c]$ is an optimal EW. If we find a set of vectors $y \in \mathbb{C}^{3}$ such that the 3×3 matrix

$$
\begin{equation*}
W_{y}[b, c]:=\operatorname{Tr}_{2}\left(W[b, c] \cdot \mathbb{I}_{3} \otimes|y\rangle\langle y|\right), \tag{4}
\end{equation*}
$$

is singular, then for each vector x_{y} belonging to the kernel of $W_{y}[b, c]$ the product vector $x_{y} \otimes y$ belongs to $\mathcal{P}_{b c}\left(\operatorname{Tr}_{2}\right.$ denotes a partial trace over the second factor in $\left.\mathbb{C}^{3} \otimes \mathbb{C}^{3}\right)$. The matrix $W_{y}[b, c]$ is given by the formula

$$
\begin{aligned}
& W_{y}[b, c]=\left[\begin{array}{ccc}
a\left|y_{1}\right|^{2}+b\left|y_{2}\right|^{2}+c\left|y_{3}\right|^{2} & y_{1}^{*} y_{2} & y_{1}^{*} y_{3} \\
y_{2}^{*} y_{1} & c\left|y_{1}\right|^{2}+a\left|y_{2}\right|^{2}+b\left|y_{3}\right|^{2} & y_{2}^{*} y_{3} \\
y_{3}^{*} y_{1} & y_{3}^{*} y_{2} & b\left|y_{1}\right|^{2}+c\left|y_{2}\right|^{2}+a\left|y_{3}\right|^{2}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
(a+1)\left|y_{1}\right|^{2}+b\left|y_{2}\right|^{2}+c\left|y_{3}\right|^{2} & 0 & 0 \\
0 & c\left|y_{1}\right|^{2}+(a+1)\left|y_{2}\right|^{2}+b\left|y_{3}\right|^{2} & 0 \\
0 & 0 & b\left|y_{1}\right|^{2}+c\left|y_{2}\right|^{2}+(a+1)\left|y_{3}\right|^{2}
\end{array}\right]-\left|y^{*}\right\rangle\left\langle y^{*}\right|
\end{aligned}
$$

Let us observe, that for any a, b, c satisfying Theorem 1 and $y=\left[e^{i \alpha}, e^{i \beta}, e^{i \gamma}\right]$ one finds

$$
W_{y}[b, c]=\operatorname{diag}\left[e^{-i \alpha}, e^{-i \beta}, e^{-i \gamma}\right]\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right] \operatorname{diag}\left[e^{i \alpha}, e^{i \beta}, e^{i \gamma}\right]
$$

This matrix has rank 2 and its 1 -dim. kernel is spanned by the vector $x_{y}=\left[e^{-i \alpha}, e^{-i \beta}, e^{-i \gamma}\right]$. Hence we have the following continuous family of product vectors

$$
\begin{equation*}
x_{y} \otimes y=\left[1, e^{i(\beta-\alpha)}, e^{i(\gamma-\alpha)}, e^{i(\alpha-\beta)}, 1, e^{i(\gamma-\beta)}, e^{i(\alpha-\gamma)}, e^{i(\beta-\gamma)}, 1\right] \tag{5}
\end{equation*}
$$

Note that this family spans at most 7 -dimensional subspace of $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$. To show, that this subspace is exactly 7 -dimensional, it suffices to consider the following set of (α, β, γ)

$$
\begin{equation*}
(0,0,0), \quad(0,0, \pi), \quad(0, \pi, 0), \quad(0, \pi, \pi), \quad(0,0, \pi / 2), \quad(0, \pi / 2,0), \quad(0, \pi / 2,-\pi / 2) . \tag{6}
\end{equation*}
$$

Consider now $y=\left(0, y_{2}, y_{3}\right)$. One has

$$
W_{y}[b, c]=\left[\begin{array}{ccc}
b\left|y_{2}\right|^{2}+c\left|y_{3}\right|^{2} & 0 & 0 \\
0 & a\left|y_{2}\right|^{2}+b\left|y_{3}\right|^{2} & -y_{2}^{*} y_{3} \\
0 & -y_{3}^{*} y_{2} & c\left|y_{2}\right|^{2}+a\left|y_{3}\right|^{2}
\end{array}\right] .
$$

Its determinant is given by the formula:

$$
\operatorname{det} W_{y}[b, c]=\left(b\left|y_{2}\right|^{2}+c\left|y_{3}\right|^{2}\right)\left(a b\left|y_{2}\right|^{4}+\left(a^{2}+a c-1\right)\left|y_{2}\right|^{2}\left|y_{3}^{2}\right|+b c\left|y_{3}\right|^{4}\right) .
$$

We are looking for $y \in \mathbb{C}^{3}$, that the determinant vanishes.

$$
\text { Case 1: } b, c \neq 0 .
$$

Now, the first term is always positive and so the second term has to vanish. Taking $\|y\|=1$, one can replace $\left|y_{3}\right|^{2}$ by $1-\left|y_{2}\right|^{2}$. The second term reads as follows

$$
\begin{equation*}
a(4-3 a)\left|y_{2}\right|^{4}+2 a(a-b-1)\left|y_{2}\right|^{2}+a b=0 . \tag{7}
\end{equation*}
$$

We use here relations $b c=(a-1)^{2}$ and $a=2-b+c$. One also assume that $b<c$ (the case $c<b$ may be treated in the same way using a symmetry $b \longleftrightarrow c$ (1). One obtains the following formulae for b and c

$$
b=\frac{1}{2}\left(2-a-\sqrt{4 a-3 a^{2}}\right), \quad c=\frac{1}{2}\left(2-a+\sqrt{4 a-3 a^{2}}\right)
$$

The discriminant of the quadratic equation (for $\left|y_{2}\right|^{2}$) vanishes (it can not be positive due to the fact that $W[b, c]$ is an EW) and one easily solves (7) to get

$$
\left|y_{2}\right|^{2}=\frac{1+b-a}{4-3 a} .
$$

The vector y is then equal (after calculating $\left|y_{3}\right|^{2}$, we drop the normalization):

$$
\begin{equation*}
y=\left[0, \sqrt{1+b-a}, \sqrt{3-b-2 a} e^{i \phi}\right]=:\left[0, p, q e^{i \phi_{1}}\right] . \tag{8}
\end{equation*}
$$

For such y, the kernel of $W_{y}[b, c]$ is spanned by the vector

$$
\begin{equation*}
x_{y}=\left[0, y_{2}^{*} \cdot y_{3}, a\left|y_{2}\right|^{2}+b\left|y_{3}\right|^{2}\right]=:\left[0, r e^{i \phi_{1}}, s\right] \tag{9}
\end{equation*}
$$

The numbers p, q, r, s are nonzero and depend only on parameters a, b, c. Let

$$
\Psi^{(1)}:=x_{y} \otimes y=\left[0,0,0,0, p r e^{i \phi_{1}}, p s, 0, q r e^{2 i \phi_{1}}, q s e^{i \phi_{1}}\right] .
$$

Because of the cyclic symmetry of the problem, one can find the similar product vectors for $y_{2}=0$ and $y_{3}=0$:

$$
\begin{aligned}
& \Psi^{(2)}=\left[q s e^{i \phi_{2}}, 0, q r e^{2 i \phi_{2}}, 0,0,0, p s, 0, p r e^{i \phi_{2}}\right], \\
& \Psi^{(3)}=\left[p r e^{i \phi_{3}}, p s, 0, q r e^{2 i \phi_{3}}, q s e^{i \phi_{3}}, 0,0,0,0\right] .
\end{aligned}
$$

Now, it turns out that 7 vectors from the family (5) generated by a set (6) plus two arbitrary vectors from the family $\left(\Psi^{(1)}, \Psi^{(2)}, \Psi^{(3)}\right)$ defines a basis in $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$. Indeed, taking 7 vectors from (5) and $\Psi^{(1)}, \Psi^{(2)}$ one obtains the following 9×9 matrix:

$$
\left[\begin{array}{ccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \tag{10}\\
1 & 1 & -1 & 1 & 1 & -1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\
1 & -1 & -1 & -1 & 1 & -1 & -1 & 1 & 1 \\
1 & 1 & i & 1 & 1 & i & -i & -i & 1 \\
1 & i & 1 & -i & 1 & -i & 1 & i & 1 \\
1 & i & -i & -i & 1 & -1 & i & i & 1 \\
0 & 0 & 0 & 0 & p r e^{i \phi_{1}} & p s & 0 & q r e^{2 i \phi_{1}} & q s e^{i \phi_{1}} \\
q s e^{i \phi_{2}} & 0 & q r e^{2 i \phi_{2}} & 0 & 0 & 0 & p s & 0 & p r e^{i \phi_{2}}
\end{array}\right] .
$$

Its determinant reads

$$
(-32+160 i) e^{i\left(\phi_{1}+\phi_{2}\right)}\left[(q s)^{2}+(p r)^{2}-q s p r\right],
$$

and is different from zero except $q s=p r=0$. Note, however, that for $b, c \neq 0$ one has $q s, p r \neq 0$.

$$
\text { Case 2: } b=0, c=1
$$

Now, the determinant reads

$$
\operatorname{det} W_{y}[b, c]=\left|y_{1}\right|^{2}\left|y_{2}\right|^{4}+\left|y_{2}\right|^{2}\left|y_{3}\right|^{4}+\left|y_{3}\right|^{2}\left|y_{1}\right|^{4}-3\left|y_{1}\right|^{2}\left|y_{2}\right|^{2}\left|y_{3}\right|^{2} .
$$

If one of coordinates, say y_{1} is zero, then the determinant is equal $\left|y_{2}\right|^{2}\left|y_{3}\right|^{4}$ and vanishes only if y_{2} or y_{3} vanishes, so the only vectors y with at least one zero coordinate for which $W_{y}[b, c]$ vanishes are

$$
\begin{equation*}
\Phi^{(1)}:=[1,0,0] \otimes[0,0,1], \quad \Phi^{(2)}:=[0,1,0] \otimes[1,0,0], \quad \Phi^{(3)}:=[0,0,1] \otimes[0,1,0] . \tag{11}
\end{equation*}
$$

Now we will look for the remaining vectors and we assume that all coordinates are non-zero. Dividing the determinant by $\left|y_{1}\right|^{2}\left|y_{2}\right|^{2}\left|y_{3}\right|^{2}$ and gets the following equation

$$
\frac{\left|y_{2}\right|}{\left|y_{3}\right|}+\frac{\left|y_{3}\right|}{\left|y_{1}\right|}+\frac{\left|y_{1}\right|}{\left|y_{2}\right|}-3=0 .
$$

Its LHS is nonnegative and vanishes only for $\left|y_{1}\right|=\left|y_{2}\right|=\left|y_{3}\right|$, and hence

$$
y=\left[e^{i \alpha}, e^{i \beta}, e^{i \gamma}\right], \quad x_{y}=\left[e^{-i \alpha}, e^{-i \beta}, e^{-i \gamma}\right],
$$

and one gets again the 7 -dimensional family of vectors (5). However, vectors $\Phi^{(k)}$ are not linearly independent from (5). Therefore, \mathcal{P}_{01} spans only 7 -dim. subspace of $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$.

Actually, one obtains $\Phi^{(k)}$ from $\Psi^{(k)}$ in the limit $b \rightarrow 0$. Let us recall that the determinant of 10 vanishes only when $q s=p r=0$. Now, $p=s=0$ when $b=0$ and $c=1$, whereas $q=r=0$ when $b=1$ and $c=0$. Hence, apart from two witnesses corresponding to Choi maps $W[1,0]$ and $W[0,1]$, the remaining EWs have spanning property, i.e. $\mathcal{P}_{b c}$ spans $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$, and hence they are optimal.

As this paper was completed we were informed by professors Kil-Chan Ha and Seung-Hyeok Kye that they provided an independent proof of optimality [4]. Moreover, they proved [5] that all witnesses $W[b, c]$ are exposed (and hence extremal) except $W[1,1], W[1,0]$ and $W[0,1]$.

References

[1] D. Chruściński and F.A. Wudarski, Geometry of entanglement witnesses for two qutrits, arXiv:1105.4821.
[2] S. J. Cho, S.-H. Kye, and S. G. Lee, Linear Algebr. Appl. 171, 213 (1992).
[3] M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki, Phys. Rev. A 62, 052310 (2000).
[4] K.-C. Ha and S.-H. Kye, One parameter family of indecomposable optimal entanglement witnesses arising from generalized Choi maps, arXiv:1107.2720.
[5] K.-C. Ha and S.-H. Kye, Entanglement witnesses arising from exposed positive linear maps, arXiv:1108.0130.

