This is the author's version of an article that has been published ARITH24. Changes were made to this version by the
publisher prior to publication. The final version of record is available at http://ieeexplore.ieee.org/document/8023087

Normalizing or Not Normalizing? An Open
Question for Floating-Point Arithmetic in
Embedded Systems

Sonia Gonzalez-Navarro, Javier Hormigo
Universidad de Malaga, Andalucia Tech,
Departamento de Arquitectura de Computadores, Campus de Teatinos s/n, 29071 Malaga, Espafia
Email: sonia@ac.uma.es, fjhormigo@uma.es

Abstract—Emerging embedded applications lack of a specific
standard when they require floating-point arithmetic. In this
situation they use the IEEE-754 standard or ad hoc variations
of it. However, this standard was not designed for this purpose.
This paper aims to open a debate to define a new extension
of the standard to cover embedded applications. In this work,
we only focus on the impact of not performing normalization.
We show how eliminating the condition of normalized numbers,
implementation costs can be dramatically reduced, at the expense
of a moderate loss of accuracy. Several architectures to implement
addition and multiplication for non-normalized numbers are
proposed and analyzed. We show that a combined architecture
(adder-multiplier) can halve the area and power consumption of
its counterpart IEEE-754 architecture. This saving comes at the
cost of reducing an average of about 10 dBs the Signal-to-Noise
Ratio for the tested algorithms. We think these results should
encourage researchers to perform further investigation in this
issue.

Index Terms—Normalization,
floating-point, standard.

embedded systems, DSP,

I. INTRODUCTION

After 30 years the IEEE-754 standard [1] is at last gen-
eralized and almost compulsory for any Floating-Point (FP)
design. On the other hand, until recently, FP formats had
been considered too expensive to implement for digital signal
processing (DSP) and other embedded applications. For this
reason, fixed-point formats had been used instead. However,
the increase in the complexity of the algorithms and new
embedded applications have led engineers to start utilizing FP
formats in the implementation of these applications. Due to the
fact that IEEE-754 standard is completely generalized, this one
has been usually used, sometimes with slight modifications, to
implement those applications. However, the IEEE-754 stan-
dard was designed for general purpose processor applications
and the requirements for embedded applications not always
are the same. In fact, there are many different variations of the
IEEE-754 standard defined by different companies to support
these new requisites. As a consequence, there are many similar
formats close to IEEE-754 but incompatible among them. We
believe it is time to open a debate to define a new extension of
the standard to cover embedded applications. With this paper,
we aim to provide a step on this direction.

One of the main characteristics of the IEEE-754 standard for
binary numbers is the representation of the normal numbers.

To make the encoding of normal numbers unique, the value
of the significand D is maximized by increasing/decreasing
the exponent until 1 < D < 2. This operation is commonly
known as normalization, and it has to be carried out after every
arithmetic operation (if necessary).

However, normalizing the results of each operation implies
a significant overhead in hardware implementation. In fact,
there are some companies that have already proposed special
FP format which do not always perform normalization to
improve hardware costs. As examples, Altera (Intel FPGA)
and Synopsys which have developed fused FP data-path [2]
and Flexible Floating-Point [3], respectively. In this paper we
also study a FP format without compulsory normalization, but
from a different perspective. Specifically, we keep the same
number of bits instead of keeping the same accuracy. Hence,
since normalization allows taking advantage of all the bits
included in the significand, removing normalization will cause
some accuracy loss.

Accuracy vs reproducibility trade-off is not new in embed-
ded applications. There are different approaches to do that, but
most of them have been subsumed under the term approximate
computing [4]. Thus, the avoidance of normalization could
be considered as approximate computing since an important
area and power consumption savings could be obtained, but
at the cost of some accuracy loss and lack of reproducibility.
Nevertheless, neither the reduction in hardware cost nor the
loss of accuracy have been thoroughly studied (or measured)
in embedded systems yet.

Consequently, the main goal of this paper is twofold: to
study how normalization affects the quality of the results in
embedded system applications and to measure the improve-
ment in hardware implementation when using non-normalized
FP formats. We want to clarify that this paper does not pretend
to propose a new FP format, but just to study whether it is
beneficial to include normalization in the definition of a new
FP format specially designed for embedded systems. Thus,
this work has to be seen as a small contribution to define this
format, but not a complete new format proposal.

This paper is organized as follows. Section II summarizes
the related work found in the literature and Section III exposes
the characteristics of the evaluated format. In Section IV we
propose several adders and multipliers to operate with this

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the
IEEE by emailing pubs-permissions@ieee.org.

format, which are validated through software in Section V
and through synthesis in Section VI. The conclusions of this
work are shown in Section VII.

II. RELATED WORK

Several approaches have been proposed to reduce the cost of
implementing FP numbers on application specific design. Most
of them have been proposed in the context of FPGAs, since
they allow low development cost and flexibility to explore
different designs. They are usually modifications of the IEEE-
754 standard.

The proposals with the slightest modifications are probably
Xilinx FP implementations [5] and Flopoco [6]. These keep
most of the characteristics of the standard, but adapting them
to FPGA requirements. The main differences are flexible bit-
width of the significand and exponent, no subnormal-number
support, and only “round-to-nearest even” rounding mode.
Besides those, Flopoco uses two additional bits to encode
special cases [6].

Since barrel-shifters map poorly on FPGA, several academic
works propose the use of high-radix digit for the significand in
order to reduce the cost of the shifter implementation [7][8].
These approaches require larger significand to keep the same
accuracy as the standard.

A more aggressive approach is the proposal of Altera by
mean of fused FP data-path [2][9]. This solution aims the
implementation of dedicated FP data-path where several FP
operations are chained. A compiler automatically reduces
the number of alignments and normalizations required by
consecutive operations and adjusts the significand bit-width
to accommodate the bit growths. Therefore, this intermediate
format is not normalized. An average of 50% saving in both
area and latency is reported, and the results are overall more
accurate than the IEEE FP standard implementation.

More recently an even more radical approach has been
proposed by Synopsys, but targeting ASIC implementation
instead of FPGA. In this case, the proposed FP format, called
Flexible Floating-Point (FFP) is radically different to the IEEE
standard [3]. The main characteristics of FFP are: the bit-
width of both significand and exponent are flexible; moreover,
they are represented using two’s complements instead of Sign-
Magnitude (SM) and excess, respectively; seven status flags
are appended to the number to indicate special cases and
other circumstances; and, one’s complement is also allowed to
represent the significand. Besides those, significand does not
need to be in normalized form, and rounding is not usually
applied since significand size could be accommodated to avoid
loss of accuracy.

In all these approaches the main goal is to achieve more
optimized circuits but providing the same as, or more accuracy
than, that of the IEEE standard. As a consequence, most of
them expand the number of bits used to represent the numbers.
This increase may not be a problem when considering cheap
memory available (as in FPGAs) or a specific-application
data-path design with no intermediate results saved to mass
memory storage. However, in this work we address a different

situation where micro-controllers or specialized processing
units are used, but intermediate storage and communication is
also fundamental. Thus, our goal will be to improve hardware
implementation but keeping the same bit-width as that of the
IEEE-754 standard.

III. CHARACTERISTICS OF A NON-NORMALIZED FP
FORMAT

To study how normalization affects accuracy and hardware
implementation, we evaluate a format that keeps most of the
characteristics of the binary IEEE-754 standard format, except
for the necessity of all numbers being normalized. But this
change forces us to consider also other ones.

First, if numbers are not always normalized, the leading one
could not be implicitly stored. This change directly produces
a loss of precision, because the significand of our format
actually has one bit less. On the other hand, due to this explicit
representation of all bits, denormal numbers are naturally
handled without needing a special treatment and the same
happens with the zero value.

Another important change compared to the IEEE standard is
the rounding mode. We consider only a fixed rounding mode.
We have studied two cases: round-toward-zero (truncation) and
round-to-nearest, but the latter implemented by using Half-
Unit Biased (HUB) numbers [10]. Those were selected in
order to keep rounding as simple as possible, since none of
them require any additional operations, but simply discarding
the Least Significant Bits (LSBs). HUB FP approach appends
an Implicit Least Significant Bit (ILSB) set to one, allowing
rounding-to-nearest by truncation and two’s complement by
bit-wise inversion [11].

Besides these main changes to the standard, it seemed
sensible to not consider the other special values, i.e., NaN
and infinity. First, this facilitates the implementation of this
non-normalized format, and mainly, we do not think they
are very useful for the target applications (although if these
special values were required, they could be included in the
format). Then, they are not implemented in the architectures
for either non-normalized or IEEE numbers (for the latter we
also omit denormal numbers). Consequently, we do not think
the inclusion of these special cases would change significantly
the conclusions derived from this work.

Summarizing, in this paper we use a format similar to
binary32 [1], that we evaluate in two versions. In the regular
version the format includes: one sign bit (S), 8 bits of
exponent (F) and 23 bits of significand (D) with 22 fractional
bits, which value is calculated always following this equation
(—=1)%- D - 2(E=127) (there are not special cases). To calculate
the value of the HUB version, the previous equation is used
but appending the ILSB to D (i.e. the significand has the
form {D, 1} where {, } denotes a concatenation operator). The
evaluated format could be straightforwardly extended to other
bit-width, but in this paper we will focus on 32-bit size.

IV. ARITHMETIC UNITS FOR NON-NORMALIZED FP
NUMBERS

In this section we present different architectures to sim-
plify the implementation of the main arithmetic operations,
addition and multiplication, for non-normalized FP numbers.
Since normalization is not compulsory (but could be used),
designers could trade accuracy off for implementation cost.
We have investigated several architectures that are relatively
straightforward although more complex ones could be figured
out.

A. Adders for non-normalized FP numbers

Fig. 1 (eliminating grey boxes) shows a basic adder archi-
tecture, that we denote as A1, to manage non-normalized num-
bers. Comparing it with an IEEE compliant adder, basically,
the normalization circuit (leading-one detector and left-shifter)
and rounding circuit are removed in this approach. However,
a one-position right-shifting and an increment of the exponent
are still performed if the result of the fixed-point addition
produces an overflow. Another option to remove this selective
shifting could be to consider that an overflow always occurs
at the fixed-point adder and to perform always a right-shifting
(hardwired) of the addition result. In this case, we lose the
LSB of the result if actually no overflow occurs.

sign(d) Mﬂ

mtl m+1
1
arlt b ‘ INC (cond.
Two’s complement,, .
ADDER l
Ez

Fig. 1. Architecture of the non-normalized Al adder. HW added for HUB
adder version in grey area

Due to the fact that numbers may be non-normalized, it is
complicated to calculate the sign of the result of the fixed-
point addition in advance for input operands with different
sign. If only exponents are compared, even if one operand
has an exponent clearly higher than the other, it could happen
that the operand with the highest exponent were smaller than
the other operand because the difference between significands
could also be very significant. Therefore, an absolute value
operation has to be performed after the fixed-point addition.

Consequently, in our basic adder design, the operand with
the lowest exponent is the one that is always two’s comple-
mented when it is necessary. A sign bit is incorporated to
the significands (m + 1 bits), before adding them. For the
two’s complement operation a conditional bit inverter is used
to perform the one’s complement and a sticky bit calculation
after alignment to decide whether the input carry at the fixed-
point adder should be set to one or zero. If the result of the
addition is negative, a complete two’s complement operation
is carried out at the output of the fixed-point adder. Next, the
result is right-shifted one position and the exponent is updated
if an overflow has been detected.

We have to note that there is no detection of the underflow
exception. Normalization is not performed, so no subtraction
to the exponent is taken. Thus, the result of the FP operation
could be zero, but no underflow could occur.

A possible optimization to this design is to incorporate the
rounding to nearest operation, taking the advantage of the
two’s complement operation in the absolute value module. So
we could have the better rounding mode simply by fusing both
operations. However, we prefer to explore the HUB format
which allows to change the two’s complement circuits for a
conditional bit inverter and at the same time produce round-to-
nearest operation at not additional cost. In Fig. 1 grey boxes
represent the hardware added to implement the HUB version
of Al, denoted as A1H. Using the HUB approach, the ILSB
has to be appended to the input significands and the absolute
value operation is simplified, because bit inversion produces
two’s complement.

We also test intermediate solutions, where left-shifting is
performed but only for a few bits. Fig. 2 shows this new adder
that we denote as A2 (A2H for HUB version). Comparing it
with Al, the A2 design has a special leading zero detector,
which detects up to two leading zeros at the output of the
absolute value circuit. Furthermore, it has a barrel shifter that
can perform a one-position right-shifting (in case of detecting
overflow) and left-shifting up to 2-bit positions. This will
increase the area and the delay of the critical path, but it will
improve the error figures as we will see in section V. In this
architecture the exponent has to be decremented when left-
shifting is performed, and therefore underflow could happen.
Although it is not depicted in Fig. 2, this situation is detected
in the design and the result flushes to zero.

B. Multipliers for non-normalized FP numbers

Fig. 3 (without grey boxes) shows the simplest multipier
where the significand of the result is obtained taken the m
Most Significant Bits (MSBs) of the fixed-point multiplication
(performing truncation) and no normalization is carried out.
We denote this multiplier as M. Grey boxes in Fig. 3 represents
the hardware added to implement the HUB version of the M
multiplier that we call MH. The ILSBs are appended to each
input significand and consequently the fixed-point multiplier
is one-bit wider. Excluding this, the circuit remains the same,
but the result is a HUB number rounded to nearest.

Ex Ey

Exponent
Difference

sign(d) Mﬂ

Exponent

~ Update
Two’s complement, :
ADDER l

Ez

c

Fig. 2. Architecture of the optimized non-normalized A2 adder. HW added
for HUB adder version in grey

‘moE T

Multiplier
2m+2
n (MSB)
Mz Ez

Fig. 3. Architecture of the non-normalized M multiplier. HW added for HUB
multiplier version in grey

In these architectures (M and MH), it is assumed that
the MSB of the result of the fixed-point multiplication is
always one. From here on, we denote to this situation as
that an overflow of the multiplication has occurred. Under this
assumption, the exponent is always incremented and the result
of the multiplication is right-shifted one position (simply by
taking the m MSB of the result). This assumption simplifies
hardware but at the cost of losing one bit of precision when
overflow does not occur (which is the most likely situation).
Thus, we have implemented another multiplier, shown in Fig.
4, that we denote as M2. In M2 the right-shifting and the
increment of the exponent is carried out only when an overflow
of the multiplication is really detected. Again, grey boxes
represent the additional circuit for the HUB version, that we
denote as M2H.

Multiplication of non-normalized numbers may degrades
strongly the accuracy of the results, since the number of
leading zeros of the result is the addition of the number
of leading zeros of each input operand. Therefore, we may
think of normalizing (at least partially) the output of the
multiplier to keep the accuracy of the computation within

Mx My E y
B]
Exponent
Addition

Multiplier

ovf

2m+2

= | Exponent+1

RI1-SHIFTER

7.

Fig. 4. Architecture of the non-normalized M2 multiplier. HW added for
HUB multiplier version in grey

reasonable limits. As we said above, the number of leading
zeros at the multiplier output could be calculated by counting
them at the input operands. Fig. 5 depicts a general design
of a multiplier performing normalization using this scheme
(grey boxes are only used in the HUB version). Two Leading
Zero Detectors (LODs) are used to count the number of
leading zeros of each input significand in parallel with the
multiplication. In addition, a barrel left-shifter is added at the
output of multiplier.

We explored different options for this scheme. Concretely,
besides the complete normalization, we studied two different
approaches for partial normalization to reduce the impact of
the normalization circuit. Consequently, although the architec-
ture remains the same, both the LOD circuit and the left-shifter
circuit are different in each approach. These two approaches
always consider overflow of the multiplication as in M.

In one approach, we implement a more roughly normaliza-
tion using higher radix than two (digits of x-bits), to count
zeros and to perform the shifting. This is accomplished by
introducing x-input OR-gates before counting the zeros and
eliminating the multiplexors with the least amount of shifting
at the barrel-shifter. This approach produces lighter circuits but
with less accuracy. Changing the number of bits per digits,
we can balance implementation cost and accuracy, being 1-
bit per digit, a complete normalization circuit. We denote
these multipliers as MRx (MRxH, for HUB version), where x
denotes the number of bits per digit.

A different strategy is to use radix-2 but limiting the
maximum number of left-shifting positions, similarly to A2
adder. As we will see in the next section, even allowing
very few shifting positions, this partial normalization has a
great impact on accuracy. In this case, the number of zeros
counted in each input significand is limited to x bits and, as a
consequence, the number of left-shifting positions is bounded
to 2x bits. We call these multipliers as MLx (MLxH, for HUB
version), where x denotes the maximum number of shifting
positions allowed.

We have to note that multiplication of small operands
may produce underflow when the exponent of the result is
calculated. This situation is detected and the result is flushed to
zero, which is a desirable behavior for the target applications.
Although this detection is not shown in the previous figures,

[

Multiplier

Exponent
pdate

Fig. 5. Architecture of the non-normalized MRx and MLx multipliers. Symbol
* denotes specific function of the circuits. HW added for HUB multipliers in

grey

it has been implemented in all multipliers.

V. QUALITY OF THE RESULTS WHEN OPERATING WITH
NON-NORMALIZED NUMBERS

Using non-normalized numbers implies loss of accuracy
compared to IEEE standard due to several factors. First, one
bit of precision is directly lost due to the lack of the implicit
leading one. Second, when adding two numbers using the basic
architecture, it is lost as many significant bits as the minimum
between the positions shifted for alignment and the number
of leading zeros in the significand with the highest exponent.
Similarly, when multiplying, the sum of leading zeros of both
significands equals the number of bits lost.

In this section we analyze the impact on final accuracy
when implementing several basic DSP algorithms. To do
this, we have designed the architectures presented in the
previous section using VHDL. Using these arithmetic units
we have designed an embedded system in a Xilinx Zyng-
7010 FPGA which contains an ARM dual-core Cortex” -
A9 processor, such that the designed 32-bit arithmetic unit
for non-normalized numbers works as a coprocessor. Specific
functions have been designed to allow mapping addition and
multiplication into the coprocessor, along with conversions
from/to IEEE FP standard.

We proceed as follows: the target algorithm is imple-
mented using C programming language for double precision
FP numbers (double) to use it as reference implementation;
moreover, the same function is implemented for both IEEE
32-bit precision (float) using the regular processor and 32-
bit non-normalized format using the coprocessor; the results
of both 32-bit implementations are compared with the double
precision results, calculating the error in terms of signal-to-
noise ratio (SNRyp = 10 - logyo (> 42/ > (y — v')?), where
y is the reference signal, and 3’ is the signal to be evaluated).

This experiment has been carried out for several copro-
cessors with different combination of adders and multipliers.
Specifically, we tested two adders: Al which only implement
one-bit right shifting of the output significand, and A2 which
also performs up to 2-bit left shifting for partial normalization.
These adders are combined with several multipliers: M, the
simplest multiplier without any shifting of the output; MRx

160,00

140,00
120,00 _ EAIM2H

100,00 AIMH
80,00 ~ EAIMRIH
60,00 uA2M2H
40,00
2000 A2ML6H

0,00 - L L - - — A2MH

100,00 150,00 200,00 AIM

AIMR1

m |EEE

dBs

10,00 20,00 30,00 40,00 50,00

Number of orders

Fig. 6. SNR of FIR filters for different arithmetic architectures

which includes left shifting of the output significand using
x-bit digits; MLx which performs left shifting of the output
significand up to x-bit positions; and M2 which only imple-
ments 1-bit right-shift when an overflow of the multiplication
occurs. Moreover, all these architectures could be regular or
using HUB numbers (H). For instance the approach AIMR4H
uses the HUB versions of adder Al and multiplier M with 4-
bit digit normalization. The decrement of the SNR when using
all these approaches is studied below.

First, we start with FIR filter implementations because
they are extensively used in DSP applications. We have
run several experiments using low-pass filters with different
cut-off frequencies and a wide range of orders. A linear
chirp signal ranging between [—1,1] plus a random signal
ranging between [—0.1,0.1] is used as input signal, which is
a typical input signal to test low-pass filters. Fig. 6 shows
some results obtained for the same cut-off frequency and
different numbers of orders. Although, we have tested all
approaches, this figure only represents the most significant
ones in order to explain the following conclusions. First, HUB
approaches (rounding-to-nearest) perform much better than
regular ones (truncation). The latter has significantly lower
SNR from the beginning and this difference clearly goes up
with the number of orders. In contrast, the difference of SNR
between HUB and IEEE approaches remains similar. It seems
that the higher accuracy reduction is mainly caused by the
truncation. Second, normalization of the multiplier output does
not affect the results. That may be explained by the fact that
all multiplications are performed over normalized operands,
because these are the signal input and the filter coefficient
and they come directly from a conversion of an IEEE number.
Therefore no improvement could be expected by normalizing
the multiplier result. Finally, utilizing A2 greatly improves
the results whereas M2 improves them slightly, and as a
consequence, A2M2H provides the better results being on
average about 10 dBs lower than the IEEE ones.

In another experiment we use a very simple Kalman filter
that approximates a constant value through a set of noisy
measurements. As input signal, a random number ranging
between [—0.1,0.1] plus 0.5 is used. We should note this
algorithm requires a division which has been implemented
by conversion to IEEE standard. Table I shows the SNR
obtained for all architectures tested. It can be observed that,
in this case, any kind of normalization in either the adder or

TABLE I
SNR OBTIANED FOR KALMAN FILTER IMPLEMENTATIONS

IEEE HUB no HUB
1462 || A1 [A2 Al
M 00 [1355 0.0
M2 || 1338 | 1359 | 1240
MRI [[1339 [1355 | 1230
MR4 || 1320 | 1355 | 123.0
MR8 || 13 | 1355 13
MLA4 || 1339 [1355 | 1234
ML6 || 133.9 | 1355 | 1232

multiplier is compulsory in order to obtain acceptable results.
This normalization could be very limited as in A2 adder, but
if there is no normalization or this one is not fine enough, the
results may be catastrophic like happens to AIM or AIMRS.
Again, the best results are achieved by A2M2H, but any
architecture using A2 adder obtain very close results. Similarly
to FIR filters, HUB architectures perform much better than
regular ones, which indicates that using rounding-to-nearest
seems crucial for these applications.

Finally, we implemented IIR low-pass filters using both
direct-form I and II implementations for different cut-off
frequencies and orders. The same input signal as that of
the FIR filters is used. Fig. 7 shows the SNR obtained for
IIR filter implementations using direct-form II. Only these
results are shown because, although the results of direct-form
I are different, they are similar compared in relative terms of
accuracy.

This new experiment confirms several conclusions extracted
from the previous ones, mainly that HUB approaches provide
much better results and that the approaches using A2 adder
give significantly higher SNR than the ones using A1, specially
A2M2H. Although the influence of normalization on multipli-
ers is negligible if A2 adder is used, it is very significant in
architectures using Al. To study in details this, Fig. 8 shows
the SNR obtained for these latter architectures. As expected,
MR1 obtains the best results which gradually and quickly goes
down when x (the number of bits per digit) goes up. For the
case of MLx, accuracy remains very similar to MR1 until the
moment that the complexity of the designs exceeds a threshold
and the accuracy falls off dramatically.

 IEEE
HA1IM2H
= AIMH
HA1IMR1IH
mA2M2H

uA2MH
A2MR1H
A1IM
A1IMR1

Order of the filter

Fig. 7. SNR of IIR filters for different arithmetic architectures

160,0
140,0
120,0 |
100,0
80,0 |
60,0 -
40,0
20,0 1

00
-20,0 1 2 3 4 5 6 7 8 9 10

= A1MH

= A1IMR1H
= AIMR2H

dBs

= A1MR4H
= A1IMR8H
mA1IML4H

A1MLEH

Order of the filter

Fig. 8. SNR of IIR filters for Al and different multipliers architectures

V1. IMPLEMENTATION RESULTS AND COMPARISON

All adder and multiplier designs presented in section III
have been synthesized using Synopsys Design Compiler Ultra
H-2013.03-SP2 and the TSMC 65nm library with default cell
activity and typical-case” operating conditions in which the
temperature is 25°C' and voltage Vzg = 1.0V. The area
and power estimations provided by this tool is presented in
this section. In this paper we only analyze combinational
implementations, but different results may be expected for
pipelining ones, which will be study in future works.

9000

—3p— [EEE Adder
8000(| ...@ue: ATH
- Al
7000
== A2H
__ 6000} =©—A2

N
€ 5000

T 4000+

o
< 3000

L Pt i - ‘:‘—“___'.-- |
T T L
1000 .1

0

250 500 750
Frequencies (Hz)

Fig. 9. Area of 32-bit adders

25

—2y— |EEE Adder
@ AMH

2¢(=0 Al o1
=@ =A2H 4
-0 =A2 P

Frequencies (MHz)

Fig. 10. Power consumption of 32-bit adders

The area and power consumption for the 32-bit adders are
shown in Fig. 9 and Fig. 10, respectively. From these results,
we observe that the HUB adders have less area and consume
less power than their counterpart regular ones. This could be

caused by the simplification of the two’s complement opera-
tion for HUB approaches. We should remind HUB solutions
also has better accuracy (see section V). Comparing them with
the IEEE one, all architectures significantly reduce area, and
this reduction increases with the frequency, ranging from 40%
to 58% at 250 MHz and from 62% to 78% at 750 MHz. Similar
reduction is observed for the power consumption although in
a slightly less amount. This area and power reduction is due to
the elimination of normalization and rounding circuits. Being a
single-path architecture, these logic elements are in the critical
path which explains the high area growth at 750 MHz (the
maximum frequency for IEEE architecture). However, thanks
to the reduction in the critical path, all proposed architectures
can work at 1GHz. Even working at this frequency, they reduce
the area and power up to 70% and 60%, respectively, compared
to the IEEE architecture at 750 MHz.

140001 == |EEE Mult.
=0+ MH
12000 _:_‘ M
+=@ = MR1H Radl i
10000 - g MR1 R” Ll
N’E‘ M2H
S 8000r M2 5
© . s Tl w -
g 6000 - . Ty ol _.2*
»_u---::-:—-:’\“- l i
4000 E=
2000 - i
0 ‘ ‘ ‘ ‘
250 500 750 1000
Frequencies (Hz)
Fig. 11. Area of 32-bit multipliers
10 T
—ap— [EEE Mult.
' =0=MH
8t =q='M o
l\\°\lMR1H \\‘
—_ ' ‘.4 1 MR1
% 6 M2H]
= M2
g
S 4r N>
a ” A |
\ - ‘;ﬁ | -
2t P L
Y
0 N . . .
250 500 750 1000

Frequencies (MHz)

Fig. 12. Power consumption of 32-bit multipliers

In the case of the multipliers, from Fig. 11 and 12 we can
observe that the improvement in this case is not as greater as
the one obtained for the adders. In fact, the area and power
consumption of MR1 (which carries out full normalization)
are significantly greater than the IEEE multiplier for some
frequencies. That is because the IEEE multiplier does not
have a normalization circuit whereas MR1 has a complete
shifter and two LODs. However, the rest of architectures
achieve an area and power reduction up to 25% at 250,

and up to 60% at 1GHz. This reduction mostly comes from
the elimination of the rounding logic including the sticky
bit computation. In contrast to the adders, HUB multiplier
architectures consume significantly more area and power than
their regular counterparts, due to the inclusion of the ILSB in
the fixed-point multiplier.

For clarity, not all architectures with limited normalization
(MRx and MLXx) are represented in the previous figures, but
their numbers are between the ones of M and MR1. The area
and power consumption of the HUB ones are presented in
Fig. 13 and Fig. 14 for further study. It can be seen that
MLx architectures have much less implementation cost than
MRx. The LODs of MLx only check the x MSBs whereas the
ones of MRx need the previous step of OR gates and a more
complicated barrel shifter, depending on x. Therefore, taking
into account that they have similar accuracy (see section V),
MLxs seem better options than MRxs.

14000 g ;VIR1H —
—@— MR4H
12000 - —— MRSH b
== ML4H
10000 | = =+ ML6H i
NA ———
€ gooof S S A= |
o
© 6000t g
<
4000} g
2000 g

250 500 750 1000
Frequencies (Hz)

Fig. 13. Area of some HUB multipliers with partial normalization (MRx and
MLx)

10

Power (mW)

1000

250 500 750
Frequencies (MHz)

Fig. 14. Power consumption of some HUB multipliers with partial normal-
ization (MRx and MLXx)

To estimate the implementation results in a complete sys-
tem, we also compare the combined results, i.e. having one
adder and one multiplier. This estimate will vary if there is a
different adders/multipliers ratio. Fig. 15 shows the total area
required for implementing several significant combinations.
Similarly, Fig. 16 shows the power consumption for these
combinations. As expected the regular approaches require a
little less area than HUB ones. However, we focus on the
latter due to the poor error performance of the former.

All combinations achieve an important area reduction com-
pared to the IEEE implementation, and this reduction rises
when the frequency increases. This reduction ranges from
12% to 32% at 250MHz and from 22% to 56% at 750MHz.
Considering the power reduction, it is slightly lower, ranging
from 4% to 27% at 250 MHz and from 18% to 51% at
750MHz. As expected, among the proposed architectures,
A2MRI1H has the worst implementation results. In contrast,
AIMH requires the minimum area and power, but its error
performance is the poorest. The combination with the lowest
error, A2M2H, achieves a very significant reduction ranging
from 25% to 48% for the area and from 23% to 47% for
the power. Similarly, A2MH gets the highest area and power
reduction among the set of combinations that include A2 and
have the same error performance. A2MH provides slightly less
accuracy (an average of 1dB less) and also a slight reduction
of area and power compared to A2M2H, ranging from 1.3%
and 13% for the area and from 2.3% to 6.3% for the power.

4

x 10
2 ‘
—p |EEE
18] va @ ATMH 1
AN - NTY e |
: A1TM2H gt
1.4}| =@ = A2MH R agtag I
& A2M2H ST
€ 1.2F| =@+ A2MR1H e
= == A2MR1 D 2@
g e e
< o8} 2 ‘.’.':s}---""""'":g
pre
06 @ El.=: 1
0.4} 1
0.2 ‘ : ‘ ‘
250 500 750 1000
Frequencies (Hz)
Fig. 15. Combined adder+multiplier area
10 : ; ‘ ‘
—2p— |IEEE
@ AMH
8H < AM
A1M2H
~ ' =0= ' A2MH
2 6f A2M2H
£ ' =0= ' A2MR1H
5] = B = A2MR1
g af
o
2t i

250 500 750 1000
Frequencies (MHz)

Fig. 16. Combined adder+multiplier power consumption

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the impact in both implemen-
tation results and accuracy when eliminating the requirement
of normalization in FP formats. We have provided several new
architectures to add and multiply non-normalized numbers and
their implementation results. We have shown the accuracy

degradation produced by implementing a few basic DSP
algorithm using these architectures. Using round-to-nearest,
in this case through HUB approach, is fundamental to keep
errors bounded. Having some normalization at the adder output
improves results significantly, even if this normalization were
very limited. Similarly, detection of significand overflow in
adders and multipliers is also fundamental.

We should highlight that using a non-normalized format
has others important drawbacks besides lost of accuracy. First,
it makes reproducibility among different architectures almost
impossible. Second, comparison of numbers costs much more
because it needs a previous normalization. However, these
drawbacks are not a problem for many embedded applications.

This work should be seen as an encouragement for per-
forming further investigation on this area. We plan to measure
accuracy on more complex algorithms. This study should be
also carried out for different bit-width (half or double pre-
cision), pipelined architectures, and different implementation
technology like FPGA. As a further step to define a new
extension of the FP standard, other aspects of the format
should be studied like sign representation of the significand
and exponent.

ACKNOWLEDGMENT

This work has been supported by the following Spanish
projects: TIN2013-42253-P, TIN2016-80920-R, JA2012_P12-
TIC-1470 and TIC-1692.

REFERENCES

[1]1 IEEE Std 754-2008 (Revision of IEEE Std 754-1985), IEEE Standard
for Floating-Point Arithmetic, 2008.

[2] M. Langhammer, “Floating point datapath synthesis for FPGAs,” in
Proceedings - 2008 International Conference on Field Programmable
Logic and Applications, FPL, 2008, pp. 355-360.

[3] Synopsys, “DWFC Flexible Floating Point Overview,” no. August, pp.
1-6, 2016.

[4] S. Mittal and Sparsh, “A
Approximate Computing,” ACM Computing Surveys, vol. 48,
no. 4,62, pp. 1-33, mar 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2891449.2893356

[5] Xilinx, “LogiCORE IP floating-point operator v7.0, product guide,
PG060,” www.xilinx.com/support/documentation, 2014.

[6] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” Design Test of Computers, IEEE, vol. 28, no. 4, pp.
18-27, July 2011.

[71 A. Ehliar, “Area efficient floating-point adder and multiplier with IEEE-
754 compatible semantics,” in Field-Programmable Technology (FPT),
2014 International Conference on, Dec 2014, pp. 131-138.

[8] J. Villalba, J. Hormigo, F. Corbera, M. Gonzalez, and E. Zapata,
“Efficient floating-point representation for balanced codes for FPGA
devices,” in Computer Design (ICCD), 2013 IEEE 31st Int. Conf. on,
Oct 2013, pp. 272-277.

[9] M. Langhammer and T. VanCourt, “FPGA floating point datapath
compiler,” in Proceedings - IEEE Symposium on Field Programmable
Custom Computing Machines, FCCM 2009, 2009, pp. 259-262.

[10] J. Hormigo and J. Villalba, “New formats for computing with real-
numbers under round-to-nearest,” IEEE Transactions on Computers,
vol. 65, no. 7, pp. 2158-2168, 2016.

, “Measuring Improvement When Using HUB Formats to Imple-

ment Floating-Point Systems under Round-to-Nearest,” IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 6,

pp. 2369-2377, 2016.

Survey of Techniques for

[11]

