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Abstract—In this paper we investigate the impact of line-
of-sight (LoS) condition in the ergodic spectral efficiency of
cellular networks. To achieve this goal, we have considered the
κ-µ shadowed model, which is a general model that provides an
excellent fit to a wide set of propagation conditions. To overcome
the mathematical complexity of the analysis, we have split the
analysis between large and small-scale effects. Building on the
proposed framework, we study a number of scenarios that range
from heavily-fluctuating LoS to deterministic-LoS. Finally, we
shed light on the interplay between fading severity and spectral
efficiency by means of the amount of fading.

Index Terms—Wireless communications, average spectral effi-
ciency, κ-µ shadowed fading model, amount of fading

I. INTRODUCTION

A promising approach to cope with the ever-increasing
capacity demand in cellular networks is to increase the base
station (BS) density, which reduces the link distances, and
thus improve overall system performance [1]. Therefore, the
possibility of having a line-of-sight (LoS) transmission is
higher, and not only in typical rural areas, but also in urban
scenarios.

The distribution of the Signal to Interference plus Noise
Ratio (SINR) on a wireless link is an important basis for
studying the capacity in a cellular network. Nevertheless, the
uncertainty of the locations of both BSs and users, and the
high number of interfering BSs complicate the problem at
hand. The mathematical analysis using Poisson Point Process
(PPP) has proved to be a powerful and accurate tool for the
research in these fields [2, 3]. This approach captures the
spatial randomness of wireless networks and allows to include
other sources of uncertainties such as fading and shadowing.

In these environments, reflections, diffraction and scattering
lead to a complex propagation scenario for the signal travelling
from a transmitter to a receiver. To deal with it, a widely
used approximation is to classify the propagation mechanisms
in large-scale phenomena (characteristics over hundreds of
wavelengths) and small-scale phenomena (on the order of
a wavelength). This separation relies on the fact that, for
a representative amount of time, the large-scale phenomena
remain essentially unchanged and only small-scale variations
arise. This fact was exploited in [4] to develop a framework
that splits the analysis in two parts: i) the large-scale analysis,

based on the concept of local average SINR; and ii) the small
scale analysis, which focused on Rayleigh fading.

Small-scale analysis relies on statistical models that at-
tempt to reproduce the variations of the channel effects. The
κ-µ shadowed model, introduced in [5], has proven to be a
powerful and general model that covers propagation conditions
ranging from very favorable to worse-than-Rayleigh fading.
The model considers the received signal as formed by one or
several groups of multipath signals, each being able to have
a main component whose amplitude can fluctuate. It includes
Rayleigh, Rice, Rice shadowed, Nakagami-m, κ-µ and η-µ
as particular cases [6, 7]. Changing its fading parameters (κ,
µ and m), the model can study non-line-of-sight scenarios
(NLoS) and line-of-sight scenarios (LoS) with different char-
acteristics.

The potential of generalized fading models to obtain insights
about wireless networks in realistic propagation conditions has
been proven with a number of recent works. The analysis of
cellular systems with κ-µ shadowed fading has been firstly
analyzed with the aid of stochastic geometry in [8]. In [9],
the outage probability and spectral efficiency is extended for
the case of Device-to-Device (D2D) communications under
cellular and D2D modes. The case of 5G heterogeneous
cellular networks is investigated in [10].

In this work, we follow a different approach than those
in [8–10], which was presented in [4] for Rayleigh fading
(i.e., for NLoS set-ups). We extend their work by assuming a
wider set of propagation conditions using the κ-µ shadowed
fading model. Several LoS scenarios, with deterministic and
fluctuating main components and different associated powers,
are studied and compared with NLoS environments.

More specifically, in this paper we provide the following
contributions:

1) We extend the approach in [4] to consider κ-µ shadowed
fading and investigate the effect of LoS in the spectral
efficiency, through several scenarios that range from
heavily fluctuating LoS to large deterministic LoS.

2) We derive a closed-form expression for the amount of
fading (AoF) of the κ-µ shadowed fading model.

3) We analyze the interplay between fading severity and
spectral efficiency by means of the AoF.
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4) We study the effect of the main parameters of the fading
distribution on the spectral efficiency and AoF.

The remainder of this paper is structured as follows. Section
II introduces the network model and the κ-µ shadowed fading
model, together with the selection of scenarios to study. In
Section III, we present the spectral efficiency expressions
used and the results for LoS and NLoS scenarios. We also
consider the AoF as an easy way to foresee the capacity
behavior associated to a certain set of propagation conditions.
The impact of the fading parameters of κ-µ shadowed channel
model is analyzed in Section IV. Finally, conclusions are drawn
in Section V.

II. SYSTEM MODEL

We here assume a system model for the downlink of a
cellular system similar to the one recently introduced in [4].
Thus, we consider a cellular network set-up with omnidirec-
tional antennas, where the signals are subject to path loss
with exponent η > 2 and shadowing, and all BSs experience
the same η. The BSs are spatially distributed following a
PPP model, so the shadowing is implicitly captured by the
Poisson nature of the network. The analysis focuses on the
typical user, which is a randomly selected user. Thanks to
Slivnyak’s theorem, this user can be considered to be placed
at the origin without loss of generality [2]. Let us denote by
rk the distance between such an user and the kth BS, being
r0 < ... < rk < rk+1 < .... So, the serving BS for the user of
interest is the one located at r0.

We will assume that the user and the BSs have a single
antenna, so the communication is SISO. The signal received
by the user at symbol n is [4]:

y [n] =

√
P r−η0 H0 [n] s0 [n] + z [n] (1)

with

z [n] =

∞∑
k=1

√
P r−ηk Hk [n] sk [n] + υ [n] (2)

where P is the power measured at 1m from the BS transmitter;
sk ∼ Nc(0, 1) is the signal transmitted by the kth BS, Hk is
the associated fading coefficient ({Hk}∞k=0 are independent
and of unit power) and z is the aggregate interference from
the rest of BSs plus thermal noise, ν ∼ Nc(0, N0). As justified
in [4], z can be accurately approximated as Gaussian, giving
up the small-scale variations in its power.

This makes possible to define the instantaneous SINR over
a symbol, conditioned on {rk}∞k=0, as [4]:

SINR =
P r−η0 |H0|2

P
∞∑
k=1

r−ηk +N0

= ρ |H0|2 (3)

where ρ, related to the large scale, can be seen as the local-
average SINR for the typical user (over the small-scale fading
only, hence it is valid for a region small enough to consider
that the large-scale behavior, pathloss and the conventional
notion of shadowing, do not change significantly). Therefore,
the separation between large-scale propagation phenomena and

small-scale multipath fading largely relaxes the complexity of
the system characterization.

With all the previous considerations, an approximation to
the ergodic spectral efficiency can be written as [4]:

C = E

log2

1 +
P r−η0 |H0|2

P
∞∑
k=1

r−ηk +N0


 (4)

with C ≤ Cexact, being Cexact the achievable spectral
efficiency if the BS would know the fading states of all the
interfering links [4, 11]. Since this situation is not realistic in
practical systems, we will focus on C according to (4) in this
work. Henceforth, this approximation will be used whenever
talking about spectral efficiency.

As opposed to [4], where Rayleigh fading was assumed,
we here aim to consider more advanced fading models that
allow for including the effect of LoS propagation between the
BS and the user. Thus, for the small-scale fading we assume
the popular and versatile κ-µ shadowed fading model1 [5, 12]
with parameters:
• µ: the number of clusters.
• κ: the ratio between the power of the dominant (LoS)

components and the power of the scattered waves.
• m: the fluctuation degree of the dominant (LoS) compo-

nents.
The κ-µ shadowed fading model is well-suited for propa-

gation conditions in a wide spectrum, and includes as special
cases simpler and widespread models as Rayleigh, Nakagami,
Rician, or Rician Shadowed just to name a few. In order
to analyze the impact in the capacity when there is a LoS
component, we will define several propagation scenarios:
NLoS, conventional (deterministic) LoS, and fluctuating LoS,
which correspond to values of the fading parameters presented
in Table I. In all cases, for the sake of simplicity, we suppose
a single cluster (i.e. µ=1). Later, in section IV, the impact of
each of the three fading parameters will be further investigated.

III. SPATIAL AVERAGE OF THE SPECTRAL EFFICIENCY

The ergodic spectral efficiency of a user with γ̄ = ρ as its
local-average SINR can be computed using [12]:

C (ρ) = log2 (e)

M∑
i=0

Cie
1/(ρ Ω̂i)

mi−1∑
k=0

Γ
(
−k, 1

/(
ρ Ω̂i

))
(
ρ Ω̂i

)k
(5)

where Ωi = γ̄
_

Ωi = ρ
_

Ωi, Ci, M and mi are given in [Table
I, [12]].

The achievable spectral efficiency for a user at the origin
versus the distance to the serving BS is presented in Fig. 1.
It shows the scenarios in Table I for an interference-limited

1We must clarify that the term shadowing in the κ-µ shadowed fading
distribution is not linked to the conventional notion of large-scale shadowing.
Instead, this model captures any sort of amplitude fluctuation in the specular
waves that may occur in a smaller-scale. Thus, the use of such model is
coherent with the ergodic setting here analyzed.



Table I: Propagation scenarios to study

Scenario µ κ m

NLoS
(Rayleigh)

1 0 ∞ (20)

Heavily-Fluctuating LoS: hfLoS
(Rician shadowed)

1 10 2

Mildly-Fluctuating LoS: mfLoS
(Rician shadowed)

1 10 5

Low Deterministic LoS: ldLoS
(Rician)

1 1 ∞ (20)

Medium Deterministic LoS: mdLoS
(Rician)

1 3 ∞ (20)

Large Deterministic LoS: dLoS
(Rician)

1 10 ∞ (20)
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Figure 1: Spectral efficiency vs r0 for scenarios in Table I.

network with 100 interfering BSs, η = 3.8 and λ = 2 BSs/km2

[4].
As the user moves away from the serving BS, the signal

arriving at the receiver is weaker and, therefore, spectral
efficiency is decreased. For distances above 400m, the absolute
difference between spectral efficiency among NLoS and LoS
scenarios is almost negligible, but the relative difference is
maintained. If we measure the impact of LoS condition with
respect to the NLoS case as:

impact (%) =
CxLoS − CNLoS

CNLoS
× 100

where xLOS denotes any of the scenarios listed in Table I, the
impact in spectral efficiency for dLoS in Fig.1 is above 10%
for all the distances, moving from 14.7% for r0 = 300 m to
10.7% for r0 = 450 m.

The path loss exponent, η, also plays an important role. The
higher η, the larger attenuation in the environment, so there
is less aggregate interference and higher spectral efficiency,
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Figure 2: Spectral efficiency vs r0 for scenarios NLoS and dLoS in Table I
for η = 3.5 and η = 4.2.

as shown in Fig.2. The relative increase in spectral efficiency
for r0 = 150 m from η = 3.5 to η = 4.2 is 29.1% for NLoS
and 32% for dLoS. The impact of dLoS is between 10% and
15% for all the distances from the serving BS and the set of
η studied.

The above values are computed conditioned to a specific
network spatial realization. However, it is of interest to provide
a single quantity that represents the spectral efficiency of the
whole network. This corresponds to the average of all per-user
spectral efficiencies in any realization of the network, named
as the spatially average ergodic spectral efficiency [4]:

C̄ =

∞∫
0

C (θ) dFρ (θ) (6)

For interference-limited Poisson networks, the cumulative
distribution function Fρ() can be approximated by [eq. 22,
[4]]:

Fρ (θ) ' es∗/θ 0 ≤ θ ≤ s∗

log(1−sincδ)

Fρ (θ) ≈ 1− sincδ s∗

log(1−sincδ) ≤ θ ≤ 1

Fρ (θ) = 2− θ−δsincδ θ ≥ 1

(7)

There is also a slightly more accurate approximation, [eq.18,
[4]], but it is much more complex for further analytical
calculations. In Fig. 3, it is shown the spatially average ergodic
spectral efficiency obtained using [eq.18, [4]], [eq.22, [4]] and
PPP Monte Carlo simulations, for NLoS and dLoS scenarios.
The improvement from NLoS to dLoS is around 11-12%
within the three methods. There are just slight differences in
the results, so that it is justified to rely on (7) henceforth to
obtain C̄ due to its greater simplicity. The values obtained by
(7) are slightly pessimistic compared to those using [eq.18,
[4]], but insightful enough to understand the impact of LoS in
the average ergodic spectral efficiency. Besides, both are lower
bounds of the actual average spectral efficiency obtained using
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Figure 3: Spatially average ergodic spectral efficiency as a function of η
for NLoS and dLoS scenarios, with two approximations for Fρ() [eq.(18),
eq.(22), [4]]. Markers correspond to Monte Carlo simulations.

Monte Carlo simulations.
We now evaluate the average spectral efficiency for the set

of scenarios previously defined in Table I. LoS scenarios under
study can be classified in fluctuating LoS and deterministic
LoS. The former is related to situations where there is a
large power in the main components (κ = 10) but with
several fluctuation degrees: heavy (m = 2), mild (m = 5)
and nearly zero or deterministic2 (m = 20). The latter is
related to environments where there is no fluctuation in the
main components (m = 20) but its power can be low (κ = 1),
medium (κ = 3) or high (κ = 10).

Fig. 4 and Fig. 5 show the spatially average spectral
efficiency for LoS fluctuating scenarios and deterministic ones
respectively. In both cases, all the results are confined within
the minimum corresponding to NLoS and the maximum to
dLoS. As previously indicated, simulated values obtained
through Monte Carlo simulations provide slightly larger results
due to the approximation for C used in (4).

After inspecting the results, it is easy to observe which
scenario leads to a higher C̄. For example, for η = 4,
C̄mfLoS = 2.18 bit/s/Hz and C̄mdLoS = 2.13 bit/s/Hz, so
mfLoS is better. However, it would be desirable to establish
a relationship between the fading parameters (and ultimately,
the fading severity) and the capacity degradation. We aim to
illustrate such effect by using the classical metric known as
Amount of Fading (AoF) [13].

The AoF is a simple performance measure for de-
scribing the severity of fading in wireless systems,
AoF = V ar[γ]/(E[γ])2, defined as the ratio between the
variance and the squared mean of the signal power γ. For
statistic channel models, AoF can be evaluated by means of

2As justified in [12], the LoS fluctuation becomes deterministic as m →
∞. In practice, it suffices to consider sufficiently large m (i.e. m = 20) for
approximating the deterministic LoS case (i.e. Rician fading).
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Figure 4: Spatially average ergodic spectral efficiency as a function of η for
NLoS and fluctuating LoS scenarios. Markers correspond to Monte Carlo
simulations.
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Figure 5: Spatially average ergodic spectral efficiency as a function of η for
NLoS and deterministic LoS scenarios. Markers correspond to Monte Carlo
simulations.

the moment-generating function (MGF) of γ as [13]:

AoF =
d2Mγ (s)

/
ds2
∣∣
s=0
− (dMγ (s)/ds)

2
∣∣∣
s=0

(dMγ (s)/ds)
2
∣∣∣
s=0

(8)

Following this, for κ-µ shadowed fading model the AoF
admits the following closed-form expression:

AoF =
1

µ

1 + 2κ

(1 + κ)
2 +

1

m

κ2

(1 + κ)
2

=
1

µ

[
1− κ2

(1 + κ)
2

]
+

1

m

κ2

(1 + κ)
2 (9)

This AoF ranges from 0 (no fading) to 2. For the case of
integer fading parameters m and µ, the maximum AoF is 1,



Table II: κ-µ shadowed parameters, AoF and spatially averaged spectral
efficiency

µ κ m AoF C̄η=3.5 C̄η=4.2

NLoS 1 0 ∞ (20) 1 1.60 2.15

1 10 1 1 1.60 2.15

ldLoS 1 1 ∞ (20) 0.76 1.64 2.20

hfLoS 1 10 2 0.59 1.69 2.26

1 3.77 5 0.50 1.70 2.28

2 0 ∞ (20) 0.50 1.71 2.30

mdLoS 1 3 ∞ (20) 0.47 1.71 2.30

mfLoS 1 10 5 0.34 1.75 2.34

dLoS 1 10 ∞ (20) 0.21 1.78 2.38

5 0 ∞ (20) 0.20 1.79 2.39

3 3.10 10 0.20 1.79 2.39

coincident with the Rayleigh case. An easy way to foresee
which scenario will provide a larger spectral efficiency could
be calculating its corresponding AoF. As we can observe in
Table II, the lower the AoF, the better the capacity. We can
also see that scenarios with equivalent AoF, have a similar
spectral efficiency.

IV. IMPACT OF κ-µ SHADOWED MODEL PARAMETERS ON
THE AVERAGE SPECTRAL EFFICIENCY

In this section, the impact of each of the fading parameters
(µ, κ, m) on the spatially averaged spectral efficiency will be
analyzed. For the sake of brevity, we will consider a fixed
value of η = 3.8, as the behavior for other values of η is
formally equivalent.

A. Impact of µ

All the scenarios in Table I are represented by a single
cluster. Here, the influence of increasing the number of clusters
µ is studied. Note that the parameter µ can also be regarded
as the number of diversity branches in a multiantenna receiver
based on maximal ratio combining (MRC). The remainder
parameters are set to: LoS scenarios (κ = 1, 3, 10) with high
fluctuation (m = 2) and no fluctuation (m = 20), and NLoS
situation (κ = 0, m = 20). For all of them, µ has a positive
impact on C̄, especially from 1 to 5, as shown in Fig. 6.
Deterministic LoS and NLoS environments tend to a similar
maximum C̄ as µ increases, whereas, with high fluctuation, it
depends on κ value. This also can be interpreted looking at the
AoF expression in (9), where the first term loses importance
as µ increases and the second one, which depends inversely
on m, grows with κ. Fluctuating LoS scenarios get lower C̄
than NLoS for µ > 2.

B. Impact of m

This parameter only affects to LoS scenarios, as it represents
a potential fluctuation in the dominant specular (or LoS) com-
ponents, due to rapid human-body shadowing. Such fluctuation
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Figure 6: Impact of µ on the spatially averaged spectral efficiency (η = 3.8).
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is higher as m decreases. The remainder parameters are set to:
LoS environments (κ = 3, 10) with number of clusters µ = 1,
3, 5, and NLoS scenario (κ = 0, µ = 1). It is straightforward to
see that increasing m implies increasing C̄, because the LoS
fluctuation diminishes. The effect of m is more noteworthy
for higher values of κ, as shown in Fig. 7. This makes sense
as for a larger κ, the amount of power arriving from the
dominant specular components is more relevant, and hence
any fluctuation has a relatively larger impact. For m < 5, the
impact is considerable, but for greater m, changes are slight,
especially above 20 where they can be considered almost
negligible. We also note that NLoS situations are clearly not
affected by m, as expected.

C. Impact of κ

Here the influence of increasing the power of the main
components is studied, from a NLoS environment (κ = 0)
towards higher LoS ones. The remainder parameters are set
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to: fluctuation LoS degree (high, m = 2; none, m = 20) and
number of clusters (µ = 1, 3, 5). For scenarios with a single
cluster, as those in Table I, the higher the κ, the better the C̄, as
shown in Fig. 8. But for multicluster situations (µ > 1), when
m is high enough, κ has a positive impact, but for low m, it
is just the opposite, and C̄ decreases with κ. The change of
tendency happens when µ = m, as observed in [7]. In the AoF
expression in (9), this corresponds to AoF = 1/m, where the
model equals to Nakagami-m fading. The minimum value of
κ that approaches the maximum C̄ decreases with the number
of clusters.

To further understanding how AoF is related to the behavior
of C̄, Fig. 9 presents the corresponding AoFs for the different
propagation scenarios considered in Fig. 8. As the AoF is
a measure of fading severity, evolution of the AoF and the
capacity are inversely proportional.

V. CONCLUSION

In this paper, the impact of LoS signals on the spatially
average spectral efficiency has been analyzed using the κ-µ
shadowed fading model. The analysis has relied on the fact that
the large-scale and small-scale fading variations can be split
to simplify the mathematical treatment of the problem. With
this approach, we have investigated the effect of LoS in the
spectral efficiency, through several scenarios that range from
heavily fluctuating LoS to deterministic LoS. Additionally,
this analysis has shed light on the interplays between fading
severity and spectral efficiency through the AoF. Finally,
we have studied the effect of the main parameters of the
fading distribution on the spectral efficiency and AoF. Future
extensions of this work include the analytical derivation of the
spectral efficiency expressions here simulated, together with
the consideration of different state-of-the-art fading models.
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