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ABSTRACT 

The natural bioactive compound damnacanthal inhibits several tyrosine kinases. Herein, we 

show that -in fact- damancanthal is a multi kinase inhibitor. A docking and molecular dynamics 

simulation approach allows getting further insight on the inhibitory effect of damnacanthal on 

three different kinases: vascular endothelial growth factor receptor-2, c-Met and focal adhesion 

kinase. Several of the kinases targeted and inhibited by damnacanthal are involved in 

angiogenesis. Ex vivo and in vivo experiments clearly demonstrate that, indeed, damnacanthal 

is a very potent inhibitor of angiogenesis. A number of in vitro assays contribute to determine 

the specific effects of damnacanthal on each of the steps of the angiogenic process, including 

inhibition of tubulogenesis, endothelial cell proliferation, survival, migration and production of 

extracellular matrix remodeling enzyme. Taken altogether, these results suggest that 

damancanthal could have potential interest for the treatment of cancer and other angiogenesis-

dependent diseases. 
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1. Introduction 

 Angiogenesis is a hallmarks of cancer, a crucial step in the transition of tumors from a 

dormant state to a malignant state, and playing an essential role in tumor growth, invasion and 

metastasis [1]. In addition, many non-neoplastic pathologies are related to an upregulated 

angiogenesis [2,3]. For these reasons, there is a current genuine interest in the search for new 

angiogenesis inhibitors as an interesting approach for the treatment of cancer and other 

angiogenesis-dependent diseases. Some antiangiogenic compounds have already been approved 

for the treatment of cancer, blindness and other angiogenesis-dependent diseases [3-5]. 

 Angiogenesis is a complex process that begins in response to an angiogenic stimulus 

with the activation of the normally quiescent endothelial cells. As a consequence, endothelial 

cells undergo a series of phenotypic changes, including the release of proteases that will allow 

them to degrade the basal membrane and subjacent extracellular matrix and migrate. Activated 

endothelial cells can proliferate and avoid apoptosis,  and finally will differentiate forming a 

new capillary. In principle, any compound able to inhibit any of these steps could be a candidate 

for the pharmacological inhibition of angiogenesis [4]. Preclinical and clinical results seem to 

indicate that a multitargeted approach could produce better results in antiangiogenic therapy [6]. 

Our research group actively searches for, identifies and characterizes new natural bioactive 

compounds with multitargeted antiangiogenic effects [7-14]. 

 Damnacanthal (3-hydroxy-1-methoxy-anthraquinone-2-aldehyde, see its chemical 

structure in Figure 1S in supplementary material) is a natural bioactive compound initially 

isolated from the phenolic phase of noni roots, although it is also present in its fruit, as well as 

in other Rubiaceae plants [15,16]. Damnacanthal total synthesis has already  been reported [17]. 

Damnacanthal is characterized as the most potent known selective inhibitor of p56Ick tyrosine 

kinase [18], a protein activity with a key role in the chemotactic response of T cells to CXCL12 

[19]. Additionally, damnacanthal is also able to inhibit other tyrosine kinases (PDGFR, erbB2, 

EGFR and insulin receptor) with IC50 values in the micromolar concentration range [18]. These 

additional effects of damnacanthal could be related to its reported antitumoral effects [20-22]. 
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Very recently, our group has found that damnacanthal is also a potent inhibitor of c-Met and 

behaves as an antitumoral agent against hepatocellular carcinoma [23]. 

 In order to get a deeper insight on the bioactivities of damanacanthal, we have screened 

it against a panel of 25 kinases, showing its potentital as a multi-kinase inhibitor targeting 16 of 

these tested kinases. Docking analysis and molecular dynamics simulations throw new light  on 

this multi-kinase targeting by damnacanthal. Since some of the tyrosine kinases targeted by 

damnacanthal are involved in the regulation of angiogenesis, in the present work we analyze the 

potential of damnacanthal as a new antiangiogenic drug. Our results show for the first time that, 

indeed, damnacanthal inhibits angiogenesis in vitro, ex vivo and in vivo targeting several steps 

of the process. 

 

 

2. Materials and methods 

 

 Supplementary materials and methods (including in vitro kinase inhibition assay, 

docking and molecular dynamics simulations, network and functional enrichment analysis, as 

well as the whole set of in vivo, ex vivo and in vitro assays of angiogenesis, as well as qPCR 

assays with the primers used in this study and listed in Table S1) are included in SI "Materials 

and Methods" (supplementary material). 

 

2.1. Cell culture 

 Bovine aortic endothelial (BAE) cells were isolated from bovine aortic arches as 

previously described [24] and maintained in Dulbecco´s modified Eagle´s medium (DMEM) 

containing glucose (1g/L), glutamine (2mM), penicillin (50 IU/mL), streptomycin (0.05 

mg/mL), and amphotericin (1.25 mg/L) supplemented with 10% FBS (DMEM/10% FBS). 

Human umbilical vein endothelial (HUVE) cells were isolated from umbilical cords as 

previously described [25] and grown on gelatin-coated dishes in Medium 199 containing 10 

mM HEPES, 20% fetal calf serum, glutamine (2 mM) heparin (100 µg/mL) and endothelial cell 
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growth supplement (30 µg/mL). Two immortalized human endothelial cell lines kindly supplied 

by Dr. Arjan W. Griffioen (Maastrich Universtiy,  The Netherlands) were used during this 

study: human umbilical vein endothelial cells (RF-24) and human microvascular endothelial 

cells (HMEC). These immortalized cell lines have been previously characterized [26]. Both 

immortalized human endothelial cell lines were grown in RPMI 1640 medium supplemented 

with glutamine (2mM), penicillin (50 IU/mL), streptomycin (0.05 mg/mL), and amphotericin 

(1.25 mg/L) supplemented with 10% fetal bovine serum, and 10% human serum. Human dermal 

lymphatic microvascular endothelial cells (HMVEC-dLy) were purchased from the American 

Type Culture Collection (ATCC, Rockville, MD, USA). Cells were cultured in EGM-2 MV 

Bullet Kit from Lonza Inc. (Walkersiville, MD, USA) in a humidified atmosphere (5%CO2). 

Cells were passaged upon reaching confluence with Trypsin-EDTA solution. To maintain 

normal growth, hMVEC-dLy cells were used at passage from 3-7 for all experiments. All cell 

cultures were maintained at 37°C under a humidified 5% CO2 atmosphere. 

 

2.2. In vivo angiogenesis assays 

 In this study three different in vivo angiogenesis assays have been used: the 

choriallantoic membrane assay, the Matrigel plug assay and a zebrafish angigoenesis assay. 

Details on how these in vivo assays were performed are provided in SI Materials and Methods. 

 

2.3.Statistical analysis 

 Results are expressed as mean±SD. Statistical significance was determined using the 

two-sided Student t-test. Values of P< 0.05 were considered to be statistically significant. 

 

3. Results 

 

3.1. Damnacanthal inhibits in vitro receptor tyrosine kinases involved in angiogenesis 

 We started our study by carrying out a blind in vitro screening of damnacanthal against 

a panel of 25 kinase activities (see Table S2 in supplementary material). Damnacanthal (10 µM) 
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inhibited more than 50% of the in vitro activity of 16 kinases, including 8 angiogenesis-related 

tyrosine-kinases: VEGFR1-3, FGFR1, 2 and 4, c-Met and EGFR  

 The set of 16 kinases inhibited by damanacanthal was used as a seed to perform simple 

network analysis by using several tools, as described in SI section "Network analysis" 

(supplementary material). The results of this analysis pointed to the involvement of 

damnacanthal in the inhibition of angiogenesis. 

 

3.2. Docking analysis contributes to explain the wide spectrum of damnacanthal as a multi-

kinase inhibitor 

We have used docking and molecular dynamics simulations to determine plausible 

binding modes of damnacanthal into the ATP-binding sites of VEGFR2, FAK and c-Met 

receptors. The selected structures of VEGFR2 and c-Met correspond to the unbound 

phosphorylated state, which resemble the overall conformation and structural features of 

activated kinases [27,28] [29]. In both structures, the active site is accessible after the activation 

loop is ejected upon autophosphorylation of one or more tyrosine residues in its sequence. The 

structure of FAK is  co-crystallized with ATP and corresponds to the unphosphorylated state. 

Nevertheless, the activation loop is also disordered, and the binding site is therefore accessible 

[30]. In all cases, the binding pockets are mostly comprised by hydrophobic residues in the 

glycine-rich loop and hinge region. The inhibitor binds in the same location in all three 

receptors, but its orientation significantly varies between them (see Figure 1). A detailed  

analysis of the structural features of the receptor-inhibitor complexes resulting from the MD 

simulations is provided in SI section " Detailed description and discussion of the docking and 

molecular dynamic results " (supplementary material).  

 

3.3. Damnacanthal inhibits ex vivo and in vivo angiogenesis 

 To analyze the global effects of damnacanthal on angiogenesis, we next made use of an 

ex vivo assay and three in vivo models. 
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 In the ex vivo assay, the capability of new vessel formation from rat aortic ring explants 

was evaluated after 6 and 14 days of incubation in the absence or presence of 12.5 µM 

damnacanthal. Figure 2A shows that in the absence of damnacanthal (controls), aortic rings 

were able to generate a dense microvessel outgrowth in a collagen matrix. In contrast, the 

presence of 12.5 µM damnacanthal completely abrogated this microvessel outgrowth. 

 The chicken chorioallantoic membrane (CAM) assay was selected as our first approach 

to determine the in vivo antiangiogenic activity of damnacanthal because this is a widely used 

and accessible system to study angiogenesis. Figure 2B shows that in untreated CAMs 

(controls), blood vessels form a dense and spatially-oriented branching network of vascular 

structures of decreasing diameter as they branch. The inhibitory effect of damnacanthal is 

revealed by an inhibition of the ingrowth of new vessels in the area covered by the 

methylcelluose disc. In fact, doses as low as 0.5 nmol/disk strongly inhibited angiogenesis 

(decreasing the number of small blood vessels to a 25% of those observed in the areas of control 

CAMs under the control methylcellulose discs without damnacanthal) under the area occupied 

by the methylcellulose disks in half of the tested CAMs.  Furthermore, the peripheral vessels 

(relative to the position of the disk) tended to grow centrifugally, avoiding the treated area, with 

an overall decrease in vascular density and even disruption of preformed vessels within the 

treated area. 

 The in vivo antiangiogenic activity of damnacanthal was confirmed by using the 

intradermal Matrigel plug model. Our results show that this compound caused a strong 

inhibition of the FGF2-mediated cell invasion in the Matrigel plug (Figure 2C). The Matrigel 

plugs without FGF2 were colorless showing their absence of vasculature, whereas the Matrigel 

plugs containing FGF2 were apparently red, due to neovascularization. Matrigels containing 

FGF2 with 50 µM damnacanthal were only partially red, due to a decreased blood vessel 

formation. The hemoglobin contents in the plugs as indicator of neovascularization confirmed 

the inhibitory effect of damnacanthal. 

 The third in vivo experimental approach used to evaluate the effects of damnacanthal on 

angiogenesis was the use of embryos from a transgenic line of zebrafish driving the GFP 
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expression in the endothelium. Throughout the development of the zebrafish embryos, 

intersegmental vessels sprout and grow upward from the aorta, and then, the tips join by 

anastomosis to form a dorsal vein. The lack of formation of the last intersegmental vessels in 

the presence of a test compound is interpreted and accepted as a sign of its antiangiogenic 

effect. Damnacanthal concentrations as low as 1 µM were enough to inhibit the formation of 

some of the last intersegmental blood vessels (Figure 2D). 

 

3.4. Damnacanthal inhibits tubule-like structures formation by endothelial cells grown on 

Matrigel 

 In the screening programs carried out in our lab, test compounds are initially selected by 

their ability to inhibit the formation of "tubule-like" structures by endothelial cells grown on 

Matrigel. This assay simulates the final event of angiogenesis, where endothelial cells form a 

three-dimensional network of new tubes. This is a quantitative and reliable in vitro angiogenesis 

assay that can be adapted for high throughput use [31]. Figure 3A shows representative images 

of controls, as well as damnacanthal treatments at the lowest doses at which there was a 

complete inhibition of the formation of "tubule-like" structures on Matrigel for each endothelial 

cell type tested. For BAEC, we observed signficant inhibitory effects only for 40 µM 

damnacanthal, whereas for human endothelial cells complete inhibition was observed at 20 µM 

damnacanthal in the case of HMEC and at 5 µM damnacanthal in the case of RF-24 cells.  At 

lower concentrations, damnacanthal was able to produce a partial inhibitory effect in a dose-

response manner (Figure 3B).  

 Since one of the kinases targeted by damanacanthal is VEGFR3, which plays a key role 

in lymphangiogenesis, we also wanted to test whether damanacanthal is able to inhibit 

lymphatic vessel formation. Figure 3C shows that damnacanthal is also able to partially inhibit 

the formation of "tubule-like" structures by lymphatic endothelial cell immersed in collagen.  

 Figure 3D shows the effects of damanacanthal added to endothelial cells after the 

formation of "tubule-like" structures on Matrigel. These data suggest that damanacanthal can 

also behave as a vascular disruption agent.  
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3.5. Damnacanthal inhibits endothelial cell proliferation and survival 

 Angiogenesis involves the local proliferation of activated endothelial cells. To 

investigate the ability of damnacanthal to inhibit the growth of serum-activated endothelial 

cells, we made use of the MTT assay. Figure 4A shows that damnacanthal inhibited the growth 

of the three types of endothelial cells tested yielding typical survival curves with half-maximal 

inhibitory concentration values (IC50) within the micromolar range (Table 1). Figure 4B shows 

that damnacanthal was also able to inhibit lymphatic endothelial cell growth (with a IC50 value 

of 31±3 µM), thus reinforcing the afore-mentioned suggestion that damnacanthal can inhibit not 

only angiogenesis but also lymphangiogenesis. 

 Flow cytometric cell cycle analysis of damnacanthal-treated endothelial cells after 

propidum iodide staining allowed detecting significant increases in the apoptotic sub G1 

populations with increasing damnacanthal concentrations (Figure 4C). This effect was 

accompanied by decreases in the G2/M population. The most potent effect was observed in 

BAEC whereas the weakest effects were detected in HMEC (Figure 4C).  

 The proapoptotic effect of damanacanthal on endothelial cells was further demonstrated 

by using the Annexin V/7AAD assay (Figure 5A) and by in vitro determination of caspase 3/7 

activity (Figure 5B). To get some additional insights on specific molecular targets of 

damnacanthal involved  in endothelial cell proliferation and survival, we carried out Western 

blot analysis of proteins extracted from control and damnacanthal-treated HUVEC. ERK1/2 and 

Akt are two of the most relevant signaling pathways controlling endothelial cell proliferatin and 

survival in angiogenesis [32]. Therefore, we examined the effect of 50 µM damnacanthal on the 

HGF-induced phosphorylation of ERK1/2 and Akt in HUVEC. Figure 5C shows a partial 

inhibition of the phosphorylation of both ERK 1 and 2 and a more potent inhibitory effect of 

damnacanthal on the phosphorylation of Akt. 
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3.6. Damnacanthal inhibits endothelial cell attachment to fibronectin  

 During angiogenesis, actively proliferating endothelial cells must migrate into their 

surrounding space by a double action of extracellular matrix (ECM) reearrangement and 

adhesive contacts with components of this ECM. To test whether damnacanthal was able to 

affect endothelial cell adhesion to ECM components, we carried out an adhesion assay on 

fibronectin after 24-h treatment. Figure 6A shows that damnacanthal partially inhibited the 

adhesion of human endothelial cells to fibronectin.  

 Since endothelial cells attach to fibronectin through their integrin a5, we also tested 

whether damnacanthal was able to affect the levels of integrin a5. Figure 6B shows that 

damancanthal decreases the levels of integrin a5, as determined by flow cytometry. 

 

3.7. Damnacanthal inhibits endothelial cell potential to migrate and remodel extracellular 

matrix 

 The scratch "wound healing" assay was used to study the effect of damnacanthal on the 

overall migratory potential of endothelial cells. Figure 7A shows that 50 µM damncanthal was 

able to inhibit partially endothelial cell migration as photografically recorded 7 h after the 

scratch "wounds" were made. The most potent effect were observed on BAEC. Incubations 

were extended up to 24 h after scratch "wounding", a time at which the inhibitory effects of 

damnacanthal were more evident even at concentrations lower than 10 µM (Figure 7B). Figures 

7C and 7D shows that 50 µM damnacanthal also partially inhibited the invasive potential of 

human endothelial cells through a layer of Matrigel in the invasion assay. 

 MMP-2 and uPA are two ECM-remodeling enzymes produced and secreted by 

endothelial cells that play an essential role in angiogenesis allowing the migration and invasion 

of endothelial cells into its surrounding space [33-35]. Gelatin and casein zymographies are 

simple and sensitive techniques to quantify the effects of tested compounds on MMP-2 and uPA 

levels, respectively. Figure 8A shows that damnacanthal is able to inhibit both the production 

and the secretion of BAEC, RF-24 and HMEC endothelial cell MMP-2 in a dose-response 

manner, as determined by the gelatin zymography assay. Quantitative data for results obtained 
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with this assay are provided in Figure 8B. On the other hand, damnacanthal was also able to 

inhibit endothelial cell uPA in a dose-response manner, as determined with both conditioned 

media and cell extracts from HMEC by using a casein zymography assay (see typical results in 

Figure 8C and quantitative data in Figure 8D). Table 2 summarizes data obtained by using 

qPCR to determine the relative levels of expression of mRNAs for MMPs, TIMPs, uPA and 

PAI. These data show that damnacanthal treatment decreased the (MMP-1/2)/TIMP and 

uPA/PAI ratios. 

 

4. Discussion 

 In the present work, we have shown that damnacanthal is an  in vitro inhibitor of several 

tyrosine kinase activities involved in angiogenesis and that damnacanthal effectively inhibits ex 

vivo, in vivo and in vitro angiogenesis.  

It was known that damnacanthal can block T cell chemotaxis [19] through its extremely 

potent inhibition of p56Ick tyrosine kinase activity [18]. However, at concentrations in the 

micromolar range, damnacanthal can also inhibit other tyrosine kinases that are more related to 

cancer, such as PDGFR, erbB2, EGFR and insulin receptor [18]. In fact, several antitumoral 

effects have been previously reported for damnacanthal [20-22]. Our group has added c-Met to 

the list of tyrosine kinases targeted by damnacanthal [23]. Furthermore, several effects of 

damnacanthal on Hep G2 hepatocellular carcinoma suggested that damnacanthal is a new 

inhibitor of c-Met with potential utility for hapatocellular carcinoma treatment [23]. The present 

report confirms the previously described inhibitory effects of damnacanthal on EGFR [20] and 

c-Met [23] and shows that other 6 kinases are also inhibited by damnacanthal: VEGFR1-3 and 

FGFR1, 2 and 4. All these tyrosine kinases are involved in angiogenesis [36,37]. Therefore, the 

anti-angiogenic effects of damnacanthal could be expected. Furthermore, the simple network 

and functional enrichment analyses herein carried out reinforce this suggestion that 

damancanthal could exert anti-angiogenic effects through its targeting of tyrosine kinase 

activities. 
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Tyrosine kinases inhibitors are structurally diverse, but most of them share a common 

mechanism of action based on the inhibition of the catalytic phosphate transfer, by occupying 

the ATP binding site in the protein [38]. The kinase catalytic domain has an overall conserved 

bilobal structure, arranged into two well-differentiated N- and C-terminal domains linked by the 

so-called kinase “hinge” region [27]. ATP binds into the cleft formed between the N- and C-

terminal lobes and interacts with several residues in the hinge region. The docking experiments 

and molecular dynamics simulation performed in this work show a plausible binding mode of 

damnacanthal to the kinase domains of VEGFR2 and c-Met receptors, and FAK. In all three 

cases, the inhibitor is mainly stabilized by hydrophobic interactions with residues in the glycine-

rich loop and ATP-binding site, and by specific interactions with amino acids in the hinge 

region (Figure 1). In summary, our results in docking and molecular dynamic studies show that 

damnacanthal partially occludes the ATP-binding site of the VEGFR2 and c-Met receptors, and 

FAK, and provide structural information of the protein-inhibitor interaction in every case. 

As mentioned above, since these kinases inhibited by damnacanthal are related to 

angiogenesis, the anti-angiogenic effects of damnacanthal could be expected. In fact, this was 

consistently confirmed by four different experimental approaches, an ex vivo and three in vivo 

assays. The ex vivo aortic ring assay recapitulates the events of endothelial cell proliferation, 

migration and the capillary-like tube formation from aortic explants in a collagen matrix [39]. In 

this assay, damnacanthal concentrations ≥12.5 µM completely inhibited angiogenesis. In the 

CAM and zebrafish in vivo angiogenesis assays, damnacanthal behaves as a potent 

antiangiogenic compound at doses and concentrations even lower than those reported for other 

strong angiogenesis inhibitors [7,14,40,41]. In contrast, in the in vivo Matrigel plug assay 50 

µM damnacanthal induced only a partial inhibition of angiogenesis, as previously reported by us 

in the case of aeroplysinin-1 [7].  

 In the present work we have also tested the specific effects of damnacanthal in each of 

the sequential steps of events that take part during the angiogenic process. Potential unspecific 

cytotoxic effects of damnacanthal were discarded in all the in vitro experiments with the 

obvious exception of the cell growth and survival assays by carrying our parallel control assays 
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of in vitro toxicity, as described in the detailed Material and Methods (supplementary material). 

A detailed discusion of the results obtained from in vitro experiments is provided in SI section 

"Detailed discussion of the in vitro results" (supplementary material). These results clearly show 

that damnacanthal affects both the proliferation and survival of endothelial cells, decreases the 

adhesiveness, as well as the migratory and invasive potential of endothelial cells and inhibits the 

final differentiation of endothelial cells to form new vessels. Most of these in vitro experiments 

were carried out with three diffeent types of endothelial cells: primary cultures of boviene aorta 

endothelial cells (BAEC), immortalized human umbilical vein endothelial cells (RF-24) and 

immortalized human microvascular endothelial cells (HMEC). These three types of endothelial 

cells correspond to great, middle and small vessels and exhibited different sensitivities to 

damnacanthal in different in vitro assays. For instance, damnacanthal-treated RF-24 cells 

showed the highest inhibitory effects in the tubulogenesis and the adhesion-to-fibronectin 

assays and in the levels of the MMP-2 extracellular remodeling enzyme. On the other hand, 

BAEC showed the lowest IC50 values in the MTT cell growth assay and the highest counting 

number in the subG1 subpopulation cells. These and other differences in cell type sensitivities 

might suggest some differential specificities for damnacanthal against the angiogenic behavior 

of endothelial cells derived from vessels of different sizes and origins. This posibility deserves 

to be further explored in the future, since its confirmation could have pharmacological interest. 

Some of our in vitro results also suggest that damancanthal could have not only anti-angiogenic 

effects, but could also behave as an anti-lymphangiogenic as well as an anti-vascular compound. 

However, these observations should be taken with caution, since more detailed investigations 

would be required to confirm or refuse these suggestions in a similar way to that used by us and 

others to confirm that toluquinol is an anti-lymphangiogenic compound [42]. 

  In conclusion, taking the obtained results altogether the present work clearly shows that 

damnacanthal behaves as a multikinase inhibitor and a multitargeted antiangiogenic drug, 

suggesting that it could have high potential pharmacological interest for the treatment of 

angiogenesis-dependent diseases, including cancer. Future pre-clinical studies to test its actual 
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therapeutical potential seem warranted. Furthermore, the possibility of defining future synthetic 

derivatives with even better activities and performance deserves to be explored. 
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Table 1⏐ IC50 values. Half-maximal inhibitory concentration (IC50) values 
calculated from dose-response curves as the concentration of compound 

yielding 50% of control cell survival. They are expressed as means ± SD of 
three independent experiments. 
 

  
Cell line IC50 (µM) 

HMEC 46,01 ± 1,42 

RF-24 18,75 ± 0,2 

BAEC 9,88 ± 0,61 
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Table 2⏐ Effects of damnacanthal on the expression levels of extracellular 
matrix proteases and their inhibitors in endothelial cells. Relative 
expression levels of messengers in damnacanthal-treated endothelial cells 
quantified by qPCR are given as percentages with respect to the corresponding 
expression levels in control, untreated cells. Data are means±S.D. of three 
independent experiments. 
 
 
 

 MMP-1 MMP-2 TIMP-1 TIMP-4 uPA PAI-1 

HMEC  38.1 ± 12.4 47.1 ± 5.3 149.6 ± 8.1 167.3 ± 24.1 46.1 ± 10.1 61.1 ± 11.3 

RF-24 2.0 ± 0.1 91.0 ± 1.9 2788.1 ± 240.8 2930.5 ± 1202.0 188.1 ± 22.1  30.4 ± 13.5 
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Figure legends 

Figure 1. Interaction of damnacanthal with the kinase domains of three different 
tyrosine kinases. Final structure of the complexes generated between damnacantal and 
the kinase domains of VEGFR2 (purple), FAK (orange) and c-Met (teal). Receptor 
structures are shown in cartoon whereas damnacantal is shown as spheres. A close-up 
view of the binding pocket is also shown for each system, in which damnacantal is 
depicted as light grey sticks. Key residues in the binding site of each protein are 
highlighted as sticks. 
 
Figure 2. Damnacanthal inhibits angiogenesis ex vivo and in vivo. A) Aortic ring ex 
vivo assay was performed as described in Materials and Methods. Representative 
photographs of aortic rings (lateral view) after 14 days of incubation in a 3D collagen 
gel overlaid with complete medium in the absence (control) or presence of 20 ng/mL 
VEGF, and with 12.5 µM damnacanthal. B) Effect of DC (0.5 nmol/disk) on in vivo 
angiogenesis, as determined by the chorioallantoic membrane (CAM) assay. Areas 
covered by disks are delimited by dashed circles. Arrows point to rebound of vessels 
outward from the treated area. Asterisks indicate disrupted vessels. Experiments were 
carried out as described in Materials and Methods (bar=1000µm). C) Representative 
Matrigel plugs that contained no FGFb, FGFb alone, or FGF plus 50 µM damnacanthal 
were photographed. Total hemoglobin content in the Matrigel plugs was quantified as 
an indicator of blood vessels formation. Data are expressed as means ± SD of at least 
four animals. Symbol indicates significant differences between control- untreated and 
treated cells (*, p < 0.05). D) Inhibition of zebrafish intersegmental vessels by 
damnacanthal. Transgenic TGfli1:EGFPy1 zebrafish embryos, which show green 
fluorescent protein (GFP) expression in endothelial cells, were incubated in the absence 
or presence of damnacanthal. Blood vessel morphology was recorded by fluorescence 
microscopy. Zebrafish intersegmental vessel assay was carried out with different doses 
of damnacanthal, as described in Materials and Methods (bar=50µm). 

Figure 3. Damnacanthal decreases “tubule-like” structures in both endothelial and 
lymphatic cells, and disrupts pre-formed endothelial “tubule-like” structures.  A) 
Representative photographs of control (untreated) and damnacanthal-treated endothelial 
cells on Matrigel. B) Quantitative analysis of "tubules" formed in endothelial cells 
treated with 2.5 and 5 µM damnacanthal. C) Representative photographs of control 
(untreated) and damnacanthal-treated lymphatic cells in a collagen matrix. Quantitative 
analysis of data is provided for the full range of tested damnacanthal concentrations in 
lymphatic cells. D) Representative photographs of control (untreated) and 
damnacanthal-treated endothelial cells in the “tubule-like” structure disruption assay. 
Quantitative analysis of data is provided for the full range of tested damnacanthal 
concentrations in endothelial cells. Quantitative data are mean ± SD for three 
independent experiments. Significant differences between control-untreated and treated 
cells: *, p < 0.05; **, p < 0.01; ***, p < 0.005; **** p < 0.001. 
 
Figure 4. Damnacanthal decreases endothelial and lymphatic cells survival. A) 
Survival curve of endothelial cells in the presence of damnacanthal as determined by the 
MTT method. B) Survival curve of lymphatic cells in the presence of damnacanthal as 
determined by the MTT method. C) Effect of damnacanthal on endothelial nuclear 
morphology. Endothelial cells were grown on covers, treated with the indicated 
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concentrations of damnacanthal for 14 h, fixed with formalin, stained with Hoechst, and 
mounted on slides, and nuclei were observed under a fluorescence microscope. D) 
Representative histograms of flow cytometry results of the cell cycle distribution of 
subpopulations of control and damnacanthal-treated endothelial cells after 24 h of 
treatment. Quantitative analysis of cell cycle analysis data for the full range of tested 
compound concentrations. Data are mean ± SD for three independent experiments. 
Significant differences between control-untreated and treated cells: *, p < 0.05. 
 
 
Figure 5. Damnacanthal activates apoptosis mechanism in endothelial cells. A) 
Quantitative analysis of data obtained with the Annexin V/7-AAD apoptosis assay. B) 
Quantitative caspase 3/7 activity in endothelial cells after 24 h of damnacanthal 
treatment. C) Western blot analysis of the effect of 50 µM damnacanthal on p-Akt/Akt 
and p-Erk/Erk ratios in HUVEC. GAPDH levels are used as internal controls. Strips 
corresponding to each of the proteins shown are cropped from different blots run under 
the same experimental conditions.  
Quantitative data are mean ± SD for three independent experiments. Significant 
differences between control-untreated and treated cells: *, p < 0.05; ***, p < 0.005. 
 
 
Figure 6. Damnacanthal decreases adherence ability of endothelial cells. A) 
Representative photographs of control (untreated) and damnacanthal-treated endothelial 
cells on fibronectin-coated plates. Quantitative analysis of data is provided for the full 
range of tested damnacanthal concentrations. B) Histograms represent quantifications of 
the levels of integrin alpha as determined by flow cytometry in HMEC and RF-24 after 
24 h of damnacanthal treatment. Quantitative data are mean ± SD for three independent 
experiments. Significant differences between control-untreated and treated cells: *, p < 
0.05; **, p < 0.01; ***, p < 0.005. 
 
Figure 7.  Damnacanthal decreases endothelial cell migration and invasion. A) 
Representative photographs of endothelial cell migration after 7 h of damnacanthal 
treatment. Quantitative analysis of data for cell-free area is shown in histograms. B) 
Representative photographs of endothelial cell migration after 24 h of damnacanthal 
treatment. Quantitative analysis of data for cell-free area. C-D) Evaluation of invading 
HMEC (C) and RF-24 (D) cells in the invasion assay with untreated and damnacanthal-treated 
cells. Quantitative data are mean ± SD for three independent experiments. Significant 
differences between control-untreated and treated cells: *, p < 0.05; **, p < 0.01; ***, p 
< 0.005. 
 

 
 
Figure 8. Damnacanthal decreased protein levels and gene expression of proteases 
of the extracellular matrix. A) Effect of damnacanthal on the levels of MMP-2 in both 
conditioned media (CM) and cell extracts (CE) from different endothelial cells. 
Representative results of gelatinolytic assays showing the levels of MMP-2 activity in 
control (untreated) and damnacanthal-treated endothelial cells are shown. B) 
Histograms summarize the quantitative analysis of data for the full range of tested 
compound concentrations.  C) Effect of damnacanthal on the levels of uPA activity in 

DC 0 µM DC 3.1 µM DC 50 µMDC 25 µMDC 12.5 µMDC 6.3 µM
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both conditioned media (CM) and cell extracts (CE) from HMEC. Representative 
results of plasminogen zymography assays showing the levels of uPA activity in control 
(untreated) and damnacanthal-treated endothelial cells are shown. D) Histograms 
summarize the quantitative analysis of data for the full range of tested compound 
concentrations. Quantitative data represent mean ± SD for three independent 
experiments. Symbols indicate significant differences between control-untreated and 
treated cells (*, p < 0.05; **, p < 0.01; ***, p < 0.005). 
Figure 6B and 6D legend: 
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HIGHLIGHTS 
 

• Damnacanthal inhibits several angiogenesis-related tyrosine kinases. 

• Docking and molecular dynamics provide insights on these inhibitory effects. 

• Damnacanthal is a very potent inhibitor of ex vivo and in vivo angiogenesis. 

• Specific effects of damnacanthal on different angiogenic process steps are shown. 

 

 


