
Accelerating Exhaustive Pairwise Metagenomic
Comparisons

Esteban Pérez-Wohlfeil1, Oscar Torreno1, and Oswaldo Trelles1�?

1 Department of Computer Architecture, University of Malaga,
Boulevard Louis Pasteur 35, Malaga, Spain
{estebanpw,oscart,ortrelles}@uma.es

Abstract. In this manuscript, we present an optimized and parallel
version of our previous work IMSAME, an exhaustive gapped aligner for
the pairwise and accurate comparison of metagenomes. Parallelization
strategies are applied to take advantage of modern multiprocessor archi-
tectures. In addition, sequential optimizations in CPU time and mem-
ory consumption are provided. These algorithmic and computational en-
hancements enable IMSAME to calculate near optimal alignments which
are used to directly assess similarity between metagenomes without re-
quiring reference databases. We show that the overall efficiency of the
parallel implementation is superior to 80% while retaining scalability as
the number of parallel cores used increases. Moreover, we also show that
sequential optimizations yield up to 8x speedup for scenarios with larger
data.

Keywords: High Performance Computing · Pairwise Comparison · Par-
allel Computing · Next Generation Sequencing · Metagenome Compari-
son

1 Background

A metagenome is defined as a collection of genetic material directly recovered
from the environment. In particular, a metagenome is composed of a large num-
ber of reads (DNA strings) drawn from the species present in the original popu-
lation. To this day, the field of comparative metagenomics has become big-data
driven [1] due to new technological improvements in high-throughput sequenc-
ing. However, the analysis of large metagenomic datasets represents a computa-
tional challenge and poses several processing bottlenecks, specially to sequence
comparison algorithms.

Traditional metagenomics comparison involve intermediate pairwise (and in-
dividual) comparisons against a reference database. This procedure allows to ex-
tract a mapping distribution between reads and species, and thus enables to later
on compare these distributions. A similarity measure can then be computed from
the two distributions. However, due to the unknown and complex composition

? Corresponding author.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/214846351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of metagenomes, traditional comparisons based on a reference require databases
to be large, which often introduce bias and drastically increase execution times.
In this line, direct comparisons between metagenomes to assess overall similarity
gain interest as running times can be shortened and bias avoided. Furthermore,
there is yet no accepted consensus on how similarity should be assessed, and in
several scenarios certainty comes at the expense of exhaustive and optimal align-
ments. Still, optimal alignment of large datasets is not feasible without making
use of parallel infrastructure and optimization techniques.

Next Generation Sequencing platforms are generating larger amounts of data
per run, of higher quality and at a lower price. However, the performance of
computational approaches used to process metagenomic data suffer inversely
proportional to that of the size of generated samples. High Performance Com-
puting techniques can be applied in order to overcome the processing bottlenecks
and accelerate running times.

Several parallelism strategies have been already applied to software for both
comparative genomics and metagenomics, such as the multipurpose BLAST [2]
family, where different types of architectures have been exploited (e.g. mpi-
BLAST [3] for distributed memory or TERABLAST [4] for its use on FPGAs).
Parallelization of sequence alignment algorithms have also been applied to GPUs
such as GSWABE [5] or CUSHAW2-GPU [6]. FPGAs have also been employed
to accelerate sequence comparisons (e.g. SWAPHI [7]). However, GPUs and FP-
GAs are expensive and their specificity often force the use of a reduced sub-
set of programs due to platform dependence restrictions. Other general parallel
approaches which make use of CPU multithreading such as BOWTIE [8] or
PARALLEL-META3 [10] use POSIX threads [11] for UNIX-based environments
in a shared memory architecture.

However, the above mentioned sequence aligners are not specifically designed
to compare read to reads or contigs and particularly not to assess similarity be-
tween metagenomes. For instance, BOWTIE works best when aligning short
reads to large reference genomes. Moreover, in [12] the effect of introducing
intermediary agents to ultimately assess similarity between metagenomes was
argued. In this line, alternative approaches that were capable of direct compar-
isons were discussed (e.g. MASH [13], SIMKA [14]) and when possible (BLAST,
COMMET [15]), compared to IMSAME. Additionally, it was shown that coarse-
grained approaches to metagenomics comparison could lead to results that were
highly dependent on hyperparameters (such as the initial seed size).

To fulfill the gap, IMSAME was presented as a parallel, fine-grained, and
exhaustive gapped read-to-read (including contigs and scaffolds) aligner. In this
manuscript, we present an optimized version of IMSAME which is able to com-
pute faster while using a linear and controlled amount of memory. Moreover,
High Performance Computing techniques have been applied to balance the work-
load among threads to reduce thread synchronization.

2



2 Methods

IMSAME (”Incremental Multi-Stage Alignment of MEtagenomes”) is intended
to compare reads to reads directly, i.e. without using a reference database, and
to assess similarity between them while providing a confident level of certainty. It
proceeds by combining a different set of alignment-free, gapped-free and gapped
alignments. Each of these procedures is intended to yield a different level of
speed and sensitivity, depending on the alignment stage. For instance, the initial
detection of seeds between reads (to be referred as hits) is performed using k-
mers (words of length k), whereas probabilistic filtering is applied when hits are
extended into High-scoring Segment Pairs (HSPs). HSPs with sufficiently small
probability of belonging by chance to the underlying distribution are kept and
used as anchors for a bounded Needleman-Wunsch (NW in advance) global align-
ment [16]. Figure 1 shows the overall architecture of IMSAME. The following
sections illustrate each of the methods employed in IMSAME.

The computation of hits, extended fragments (HSPs) and gapped alignments
will often represent more than 85% of the computation time. Therefore the
parallel strategy in IMSAME is focused in these stages, whereas loading the
database and workload generation and distribution is performed sequentially.

2.1 Computation of alignments

This section depicts the internal procedure followed by IMSAME to compute
pairwise alignments between the sequences contained within the inputs.

Hash table generation and diagonal filtering A hash table is built for
words of size 12 (i.e. 12-mers) for the reference metagenome. This procedure
starts by linearly scanning the reference metagenome and adding an entry in
the hash table for each 12-mer. The position in the file and the read number to
which it belongs is stored. Each entry in the hash table will hold a linked list
in order to handle collisions. Since the reference metagenome is considered as a
large sequence (i.e. the coordinates of reads is global in respect to the file), then
the insertion of 12-mers in the hash-table is sorted in terms of the diagonal (as
in [17]) between query and reference metagenome.

Hits detection and extension of fragments Once the hash table is built
for the reference metagenome, the algorithm proceeds by loading the query
metagenome and matching 12-mer words to those stored in the hash table. These
hits serve as seeds to extend the alignments. For every hit, a linear, ungapped
extension which allows mutations -but not indels- is performed in both direc-
tions, forward and backward respective to the sequence. This extension works
by optimizing a scoring function that takes into account the length and number
of shared identities.

3



Fig. 1. Traditional metagenomics comparison (left) and overall diagram of the working
procedure of IMSAME (right). Left: (a) Both metagenomes are compared individually
against a chosen reference (b) database. (c) Individual results are merged into a uni-
fied (d) result which propagates individual biases. Right: (a) and (b) represent the
input metagenomes. (c) Computation of the hash table of initial seeds. (d) Workload
distribution to threads. (e) Each thread asks for a job (i.e. block of reads). (f) Each
thread detects hits between reads. (g) After detection of hits, an HSP is computed by
extending the hit linearly. (h) If the computed HSP has not been generated by chance,
then a gapped alignment between the two reads is performed.

Anchored gapped alignment In order to apply a bounded computation for
both CPU time and memory requirements, it is necessary to use heuristic meth-
ods to explore a reduced subspace of the whole search space. Hence, the quality
of the results will be directly affected by the used heuristic method. IMSAME
uses a simple yet powerful anchoring procedure, which is illustrated as follows:
Once a hit has been detected and extended, the expected value of the resulting
extended fragment is computed. If the expected value is sufficiently small, then
it is used as anchor for the alignment. A straight line is computed between the
global start (0,0) of the two sequences and the anchored fragment. Another line
is computed from the ending of the anchored fragment to that of the two se-
quences. These two lines are then discretized using Bresenhams [18] algorithm.
The Bresenhams algorithm will define a discrete succession of numbers that
represent the guides for the alignment procedure. A window of variable size is
used to explore a subset of cells in the NW matrix to the left and to the right

4



respective to the center of the guides (and thus conforming a window). This pro-
cedure enables a much faster computation based on the reduced search space. At
the same time, high quality alignments are still produced due to the anchored
computation over regions that are known to be similar.

Bounded computation in CPU time and memory Since only a subset of
the search space is explored, less memory is required to store the table computed
in the dynamic programming algorithm. Therefore, the size of the bounded win-
dow will determine the reduction in memory and CPU time over the algorithm.
Generally, a NW algorithm will require O(n2) time and space in the size of the
input. In this case, for sequences of length n and m, O(nm) will be required,
which grows quadratically. Using a bounded window in the computation reduces
one of the variables to a constant. Therefore if we take n as the size of one of the
inputs and k as the size of the window, we will have that k << n. Hence, the
space and time complexity drops from quadratic to linear in the size of the input.
However, in certain cases the difference in length between the sequences to be
aligned can be considerably large. For example, consider two sequences whose
length difference is of one order of magnitude. If this difference is not taken into
account, the algorithm will probably explore matrix cells that are outside the
boundaries of the anchoring, and thus resulting in more computation time. In
this sense, we propose using the geometric mean (

√
nm) to produce a mapping

between sequences length ratio and window size. Moreover, k is further adjusted
applying a user-defined parameter. Notice that the geometric mean will not as-
sign the same window size to two different sets of sequences s1 and s2 of length
10l+1, 10l+1 and s3, s4 of length 10l+2, 10l, although the size of the search space
would be equal.

2.2 Dynamic workload partitioning and distribution to threads

IMSAME uses a modified Guided Self Scheduling (GSS) [19] to handle workload
assignment. In this line, the query metagenome (the reference metagenome is
only processed to generate the hash table) is separated into M partitions each of
which will contain mi subpartitions, with i ranging from 1 to M . Each of these
subpartitions will hold a number of reads that will be dynamically assigned to
threads using a thread-safe queue when these run out of work. Moreover, the
number of partitions is user-defined, and can be adjusted depending on the size
of the inputs. Each subpartition is likewise divided by the number of threads
t into blocks of reads. Thus, the number of reads contained in each block is
determined by the current level of partitioning i, the total number of reads R
and the number of threads t. The expression to calculate the number of reads
assigned to a block at partition i is as follows:

Bi =
R
M

t ∗ i
=

R

M ∗ t ∗ i
(1)

Where R is the total number of reads in the metagenome, M is the number
of partitions, t is the number of available threads and i is the current partition.

5



That is, the metagenome is firstly divided by the number of partitions, and each
of these is then divided by the number of threads multiplied by the subpartition
depth. Figure 2 shows how the query metagenome is decomposed per partition.

Fig. 2. Query decomposition into workload blocks. Initially, the query metagenome is
divided into partitions (red solid lines). Each partition is again divided by the cur-
rent partitioning level (vertical dashed lines). Finally, each subpartition is divided into
blocks of equal number of reads depending of the number of threads available.

The workload distribution function belongs to the family of 1/x functions
and shows a decay in the size of blocks in the early partitions in order to assign
smaller jobs to the threads as these are consumed. Additionally, the function
shows a horizontal asymptote that guarantees blocks of reads of a minimum size
despite the number of partitions chosen.

3 Results and discussion

Two separate comparisons were carried out in order to test the two different
aspects that have been improved over the original IMSAME version. All se-
quences used in the comparisons belong the to the Human Microbiome Project1

(HMP), in particular to the Illumina WGS Assemblies. The run identifiers are
provided at each comparison performed in order to allow reproducibility. The
testing scenario is set up as follows:

1. A single comparison involving scaffolds to test sequential with optimizations.

2. A comparison involving three different datasets varying in sizes, from small
to large. These comparisons will serve to account for the scalability of the
parallel improvements in respect to the sequential version.

At last, the speedup from both optimization perspectives are discussed and
addressed.

1 http://hmpdacc.org/HMASM/

6



3.1 Infrastructure

The Picasso supercomputer located at the University of Malaga (Malaga, Spain)
[20] was used to test the parallelization strategies. The computation was per-
formed using only the fat nodes which contain 8 Intel E7-4870 processors and 2
TB of RAM each. The storage is managed by a Lustre file system supported by
a DDN storage rack with five three-dimensional disk enclosures and two redun-
dant SFA10000 controllers. The executions described in this manuscript range
from 1 to 32 cores increasing by steps of powers of two. Runtime executions were
measured using the time command from UNIX-based environments.

3.2 Comparison between the original and bounded IMSAME

Besides the improved parallelization strategies, IMSAME has additionally been
improved with bounded CPU time and memory usage. In order to perform com-
parisons to measure the speedup produced by the parallelization techniques, the
improvements are tested between the original IMSAME and the bounded in a
sequential fashion. For this purpose, two runs composed of scaffolds, namely
SRS016105 and SRS017451 were taken from the HMP database and compared
using both versions. Since scaffolds are longer than reads, higher penalties were
used for affine gap model (−8 for insertion of gap and −4 for extension of
gap). Results remained equal for both executions, although variations can be ob-
served if large-scale rearrangements take place (e.g. long range transpositions).
The original version of IMSAME took 7 minutes and 29 seconds, whereas the
bounded version took 55 seconds, representing a speedup of approximately 8x.
This speedup is mostly produced by two facts (1) the diagonal filtering pro-
cedure reducing the number of linear extensions performed prior to a gapped
alignment and (2) the bounded window applied to the NW algorithm, which
substantially reduces the space search. However, it is important to note that the
latter speedup is directly proportional to the size of the reads (i.e. smaller reads,
smaller speedup).

3.3 Speedup evaluation of the parallelization strategy

The speedup introduced by the parallelization strategy is measured by using
three datasets: (1) a small-sized one, (2) a medium-sized one and (3) a large-
sized one. Table 1 summarizes the three datasets. This procedure enables us to
evaluate the stability of the speedup as a function of the input size.

Table 2 shows the execution times for each of the datasets along with the
speedup and efficiency of each execution. In the same line, Figure 4 shows the
speedup evaluation plot. The speedup is calculated as the time needed by the
algorithm run using only one core divided by the time needed using more cores.
The efficiency is calculated as the ratio between the achieved speedup and the
optimal speedup (equal to the number of cores). As can be seen in Table 2 and
Figure 4, the speedup is nearly optimal in the scenario of enough data, i.e. the
large dataset. However, in the case of the small and mid-sized dataset, a decay

7



Table 1. Summary of the dataset used for the speedup evaluation. From left to right:
(1) Metagenome pairs compared, (2) Sum of reads from both metagenomes, (3) Sum
of the size of both metagenomes in megabytes and (4) Average size of reads in base
pairs.

Dataset (Run ID) Number of reads Size (MB) Average read length (bp)

SRS017697
SRS019119

613,983 77 91

SRS064376
SRS065347

3,401,514 463 100

SRS018359
SRS057022

14,295,910 1809 99

in efficiency can be observed due to the size of data not being large enough for
the number of cores. Moreover:

1. Small dataset (in purple in Figure 4): The peak of efficiency is achieved using
2 and 4 cores (reaching 84% efficiency). When using more than 4 cores, the
dataset size becomes too small and some threads become inactive while oth-
ers are still processing. To improve efficiency on the small dataset, a higher
number of partitions should be used to remove thread balance synchroniza-
tion at the end of the computation.

2. Medium dataset (in red in Figure 4): The medium dataset represents a 143%
increase in size over the small dataset, and shows a much higher efficiency,
with a peak at 86% using 8 cores. However, similarly to the smaller case, the
efficiency (and thus the speedup) decays when using 32 cores.

3. Large dataset (in green in Figure 4): The larger dataset shows the overall
best efficiency and speedup, with a peak at 8 cores and slow decay up to 32
cores, where 81% efficiency is achieved. However, the fact that the speedup
is optimal at 2 and 4 cores indicates that probably still more partitioning
levels are required in order to avoid thread synchronization.

Table 2. Execution times, speedup and efficiency for the executions of IMSAME using
from 1 to 32 cores. The rows indicate the number of cores whereas the columns refer
to time consumption (in seconds), speedup and efficiency per each of the datasets.

Small Medium Large

Cores Time (s) Speedup Efficiency Time (s) Speedup Efficiency Time (s) Speedup Efficiency

1 425 1.00 1.00 8,634 1.00 1.00 76,253 1.00 1.00

2 252 1.69 0.84 4,770 1.81 0.91 38,009 2.01 1.00

4 126 3.37 0.84 2,571 3.36 0.84 18,867 4.04 1.00

8 76 5.59 0.70 1,262 6.84 0.86 9,838 7.75 0.97

16 42 10.12 0.63 683 12.64 0.79 5,282 14.44 0.90

32 30 14.17 0.44 388 22.25 0.70 2,937 25.96 0.81

8



Fig. 3. The speedup is shown for the different datasets (in purple, green and red) along
with the optimal speedup (in blue). The x-axis shows the number of cores used per
comparison, whereas the y-axis shows the calculated speedup in respect to the number
of cores used.

4 Conclusions

In this manuscript, we have shown an optimized version of IMSAME in which
we applied two parallelization strategies, namely (1) a dynamic scheduler for
the distribution of work and (2) an n-level parallelization in the computation of
alignments using POSIX threads in a shared-memory environment. We have also
applied several sequential improvements over the original version, which have
improved the overall algorithm complexity and efficiency. Additionally, we have
carried out two separate comparisons to prove the performance of IMSAME,
that is, firstly, one to validate the sequential improvements over the original
version and secondly, another one using three different datasets ranging in sizes
to evaluate the achieved speedup and the parallel efficiency.

In order to keep developing IMSAME, we are currently working on:

1. Parallelization of the loading stage.
2. Improve workload distribution by building a regression model to automati-

cally set the number of partitioning levels.
3. Use ROC curves [21] to set the optimal percentage thresholds.
4. Use genetic algorithms to determine optimal scheduling.

Acknowledgments

This work has been partially supported by the European project ELIXIR- EX-
CELERATE (grant no. 676559), the Spanish national projects Plataforma de Re-
cursos Biomoleculares y Bioinformticos (ISCIII-PT13.0001.0012) and RIRAAF
(ISCIII-RD12/0013/0006) and the University of Malaga.

9



References

1. Alyass, A., Turcotte, M., Meyre, D. (2015). From big data analysis to personalized
medicine for all: challenges and opportunities. BMC medical genomics, 8(1), 33.

2. Altschul, S. F., Madden, T. L., Schffer, A. A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic acids research, 25(17), 3389-3402.

3. Darling, A., Carey, L., Feng, W. C. (2003). The design, implementation, and
evaluation of mpiBLAST. proceedings of ClusterWorld, 2003, 13-15.

4. http://www.timelogic.com/catalog/757. Last accessed 9/5/2017.
5. Liu, Y., Schmidt, B. (2015). GSWABE: faster GPUaccelerated sequence align-

ment with optimal alignment retrieval for short DNA sequences. Concurrency and
Computation: Practice and Experience, 27(4), 958-972.

6. Liu, Y., Schmidt, B. (2014). CUSHAW2-GPU: empowering faster gapped short-
read alignment using GPU computing. IEEE Design Test, 31(1), 31-39.

7. Liu, Y., Tran, T. T., Lauenroth, F., Schmidt, B. (2014, September). SWAPHI-LS:
Smith-Waterman algorithm on Xeon Phi coprocessors for long DNA sequences.
In Cluster Computing (CLUSTER), 2014 IEEE IC (pp. 257-265).

8. Langmead, B. (2010). Aligning short sequencing reads with Bowtie. Current pro-
tocols in bioinformatics, 11-7.

9. Li, H., Durbin, R. (2009). Fast and accurate short read alignment with Bur-
rowsWheeler transform. Bioinformatics, 25(14), 1754-1760.

10. Jing, G., Sun, Z., Wang, H., Gong, Y., Huang, S., Ning, K., ... Su, X. (2017).
Parallel-META 3: Comprehensive taxonomical and functional analysis platform
for efficient comparison of microbial communities. Scientific reports, 7, 40371.

11. Nichols, B., Buttlar, D., Farrell, J. (1996). Pthreads programming: A POSIX
standard for better multiprocessing. ” O’Reilly Media, Inc.”.

12. Perez-Wohlfeil, E., Torreno, O., Trelles, O. (2017, April). Pairwise and incre-
mental multi-stage alignment of metagenomes: A new proposal. In International
Conference on Bioinformatics and Biomedical Engineering (pp. 74-80).

13. Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H.,
Koren, S., Phillippy, A. M. (2016). Mash: fast genome and metagenome distance
estimation using MinHash. Genome Biology, 17(1), 132.

14. Benoit, G., Peterlongo, P., Mariadassou, M., Drezen, E., Schbath, S., Lavenier,
D., Lemaitre, C. (2016). Multiple comparative metagenomics using multiset k-
mer counting. PeerJ Computer Science, 2, e94.

15. Maillet, N., Collet, G., Vannier, T., Lavenier, D., Peterlongo, P. (2014, Novem-
ber). COMMET: comparing and combining multiple metagenomic datasets. In
Bioinformatics and Biomedicine (BIBM), 2014 IEEE IC (pp. 94-98).

16. Gotoh, O. (1982). An improved algorithm for matching biological sequences. Jour-
nal of molecular biology, 162(3), 705-708.

17. Torreno, O., Trelles, O. (2015). Breaking the computational barriers of pairwise
genome comparison. BMC bioinformatics, 16(1), 250.

18. Pitteway, M. L. V., Watkinson, D. J. (1980). Bresenham’s algorithm with Grey
scale. Communications of the ACM, 23(11), 625-626.

19. Polychronopoulos, C. D., Kuck, D. J. (1987). Guided self-scheduling: A practical
scheduling scheme for parallel supercomputers. IEEE transactions on computers,
100(12), 1425-1439.

20. http://www.scbi.uma.es/site/scbi/hardware. Last accessed 9/5/2017.
21. Hanley, J. A., McNeil, B. J. (1982). The meaning and use of the area under a

receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36.

10


