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Abstract. Recurrent neural networks have demonstrated to be good
at tackling prediction problems, however due to their high sensitivity to
hyper-parameter configuration, finding an appropriate network is a tough
task. Automatic hyper-parameter optimization methods have emerged to
find the most suitable configuration to a given problem, but these meth-
ods are not generally adopted because of their high computational cost.
Therefore, in this study we extend the MAE random sampling, a low-
cost method to compare single-hidden layer architectures, to multiple-
hidden-layer ones. We validate empirically our proposal and show that
it is possible to predict and compare the expected performance of an
hyper-parameter configuration in a low-cost way.

Keywords: Deep learning · Recurrent neural network · MAE random
sampling

1 Introduction

In recent years, Machine Learning (ML) approaches have gained significant in-
terest as a way of building powerful applications by learning directly from exam-
ples, data, and experience. Increasing data availability and computer processing
power have allowed ML systems to be efficiently trained on a large pool of ex-
amples. Deep learning (DL) is a specific branch of ML that focuses on learning
features from data through multiple layers of abstraction by applying deep archi-
tectures, i.e., Deep Neural Networks (DNNs) [15]. DL has improved dramatically
state-of-the-art in many pattern recognition and prediction applications [17, 18].

Deep feedforward networks have incorporated feedback connections between
layers and neurons in order to capture long-term dependency in the input. These
special case of DNNs are known as Recurrent Neural Networks (RNNs). Thus,
RNNs have successfully been applied to address problems that involve sequential
modeling and prediction, such as natural language, image, and speech recognition
and modeling [15]. However, RNNs present a limitation on their learning process
due to two main issues: the vanishing and the exploding gradient [3, 20].

A promising alternative to mitigate the problems related to the learning
process in DNNs is to select/optimize the hyper-parameters of a network. By
selecting an appropriate configuration of the parameters of the DNN (e.g. the
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activation functions, the number of hidden layers, the kernel size of a layer, etc.),
the network is adapted to the problem and by this mean the performance is im-
proved [4, 6, 12]. DNN hyper-parameter optimization methods can be grouped
into two main groups: the manual exploration-based approaches, usually lead
by expert knowledge, and the automatic search-based methods (e.g., grid, evo-
lutionary or random search) [19].

The hyper-parameter optimization of DNN implies dealing with a high-
dimensional search space. However, most methods (manual and automatic) are
based on trial-and-error, i.e., each hyper-parameter configuration is trained and
tested to evaluate its numerical accuracy. Thus, the high-dimensional search
space and the high cost of the evaluation limit the results of this methodology.

Some authors have explored different approaches to speed up the evaluation
of DNN architectures in order to improve the efficiency of the automatic hyper-
parameter optimization algorithms [8, 9].

A promising early approach to evaluate one-hidden-layer stacked RNN ar-
chitectures is the MAE (mean absolute error) random sampling [8]. The main
idea behind this method, inspired by the linear time-invariant theory (LTI), is
to infer the numerical accuracy of a given network without actually training it.
Given an input, they generate sets of random weights and analyze the output
in terms of the MAE. Then, they estimate the probability of finding a set of
weights whose MAE is below a predefined threshold.

In this study, we propose to extend the MAE random sampling to multiple-
hidden-layer networks and to study the suitability of this method to deal with
deeper RNNs. Particularly, we implemented our proposal and empirically tested
it using stacked RNNs with up to three hidden layers. The results show that
as the RNN gets deeper (more complex), the proposal is capable of given even
better results. The reminder of this paper is organized as follows: the next sec-
tion outlines the related work. Section 3 introduces the multiple-hidden-layer
extension of the MAE random sampling. Section 4 presents the results, and fi-
nally, Section 5 discusses the conclusions drawn from this study and presents
the future work.

2 Related Work

An RNN incorporates recurrent (or feedback) edges that may form cycles and
self connections. This approach introduces the notion of time to the model. Thus,
at a time t, a node connected to a recurrent edge receives input from the current
data point xt and also from the hidden node ht−1 (the previous state of the
network). The output yt at each time t is computed according to the hidden
node values at time t (ht). Input at time t− 1 (xt−1) can determine the output
at time t (yt) and later by way of recurrent connections [16].

Most of DL approaches to train a network are based on gradient-based opti-
mization procedures, e.g., using a local numerical optimization such as stochastic
gradient descent or second order methods. However, these methods are not suit-
able for RNNs. This is mainly because they keep a vector of activations, which
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makes RNNs extremely deep and aggravates the exploding and the vanishing
gradient problems [3, 14, 20].

More recently, Long Short-Term Memory (LSTM) have emerged as a specific
type of RNN architectures, which contain special units called memory blocks in
the recurrent hidden layer [11]. LSTM mitigates gradient problems, and there-
fore, they are easier to train than standard RNNs. Not just the network architec-
ture affects the learning process. The weight initialization procedure determines
the learning rate, the convergence rate, and the probability of classification error.
Ramos et al. [21] analyzed different weight initialization strategies and provided
a quantitative measure for each one of them.

A promising research line in DL proposes to define a specific hyper-parameter
configuration for a neural network to improve its numerical accuracy, instead of
using a generalized one [4, 6, 12]. The idea is to select the most suitable number
of layers, number of hidden unit per layer, activation function, kernel size of a
layer, etc. for a given dataset.

When dealing with hyper-parameter configuration, human experts are able
to discard hyper-parameterizations without requiring their evaluation by us-
ing their expertise. However, intelligent automatic hyper-parameter configura-
tion procedures searches more efficiently through the high-dimensional hyper-
parameter space. Even though the intelligent methods are more competitive
than the humans, they are not generally adopted because they require high
computational resources. This is mainly because they require fitting a model
and evaluating its performance on validation data (i.e., they are data driven),
which can be an expensive process [2, 4, 22].

Therefore, few methods have been proposed to address this issue by speed-
ing up the evaluation of the proposed hyper-parameterization. Domhan et al. [9]
analyzed an approach that detects and finishes the neural networks evaluations
that under-perform a previously computed one. This solution was able to reduce
the hyper-parameterization search time up to 50%. More recently, Camero et
al. [8] presented the MAE random sampling, a novel low-cost method to com-
pare one-hidden layer RNN architectures without training them. MAE random
sampling evaluates RNN architecture by generating a set of random weights and
evaluating their performance.

In line with the latter approach, we propose to extend MAE random sampling
to evaluate RNNs with multiple-hidden-layers. Therefore, it will be suitable to
evaluate deeper RNNs.

3 Proposal

We start our discussion with an inspiring fact: changing the weights of a neural
network affects its output [10]. In spite of the simplicity (and even triviality) of
this fact, it might hide some important clues to characterize the behavior of a
net. Camero et al. [8] introduced a novel approach to compare RNN architectures
based on this fact: the MAE random sampling. They showed its usefulness for
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comparing the expected performance (in terms of the error) of RNNs with a
single-hidden-layer.

In this study we propose to extend the MAE random sampling [8] to multiple-
hidden-layers, aiming to validate its usefulness for comparing deeper RNNs.
Given an input time series, the idea is to take an arbitrary number of sam-
ples of the output of a specific RNN architecture, whose weights are normally
initialized independently every time a sample is taken. Then, we propose to fit
a truncated normal distribution to the MAE values sampled and estimate the
probability pt of finding a set of weights whose error is below an arbitrary thresh-
old. Finally, we propose to use pt as a predictor of the performance (in terms of
the error) of the analyzed architecture.

Fig. 1 depicts the MAE random sampling originally introduced by Camero et
al. [8] extended to multiple-hidden-layers RNNs. The distribution of the sampled
errors is used to estimate the probability of finding a good solution.

Fig. 1. MAE error sampling based on a random weight initialization

Algorithm 1 presents the adaptation of the MAE random sampling [8] to mul-
tiple hidden layers. Given an architecture (ARCH ), encoded as a vector whose
terms represents the number of LSTM cells in the correspondent hidden layer, a
number of time steps or look back (LB), and a user defined time series (data),
the algorithm takes MAX SAMPLES samples of the MAE by initializing the
weights with a normal distribution. After the sampling is done, a truncated nor-
mal distribution is fitted to the MAE values sampled, and finally pt is estimated
for the inputed THRESHOLD.

4 Results

We implemented our proposal1 in Python 3, using dlopt [7], keras (version 2.1)
and tensorflow (version 1.3) [1]. Then, we tested our proposal using a standard
problem: the sine wave. We selected this problem because of two main reasons:
Camero et al. [8] also studied it, thus we have a baseline to compare to, and any
periodic waveform can be approximated by adding sine waves [5].

1 Code available at https://github.com/acamero/dlopt
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Algorithm 1 MAE random sampling of a given architecture.

1: data ← LoadData()
2: rnn ← InitializeRNN(ARCH, LB)
3: mae ← ∅
4: while sample ≤ MAX SAMPLES do
5: weights ← GenerateNormalWeights(0,1)
6: UpdateWeights(rnn, weights)
7: mae[sample] ← MAE(rnn, data)
8: sample++
9: end while

10: mean, sd ← FitTruncatedNormal(mae)
11: pt ← PTruncatedNormal(mean, sd, THRESHOLD)

Particularly, a sine wave can be noted as a function of time (t), where A is
the peak amplitude, f is the frequency, and φ is the phase (Equation 1). We
defined the input of our test to be the sine wave described by A = 1, f = 1, and
φ = 0, in the range t ∈ [0, 100] seconds (s), sampled at 10 samples per second.

y(t) = A · sin(2π · f · t+ φ) (1)

4.1 Single-Hidden-Layer Architectures

To begin with our experimentation we studied the MAE random sampling per-
formance prediction in the set of RNNs with 1 to 100 LSTM cells in the hidden
layer and with a look back ranging from 1 to 30. For each architecture we took
100 samples (MAX SAMPLES ) and estimated p0.01 (i.e., THRESHOLD=0.01).
Fig. 2 shows the relation between the number of hidden cells and p0.01, each
color represent a different look back. The probability rapidly increases from 1 to
25 cells, from that point p0.01 tends to converge.

We selected 100 architectures (i.e. the number of LSTM cells and the look
back) and trained them using Adam optimizer [13]. Then, we analyzed the re-
lation between the estimated probability p0.01 and the observed MAE. Table 1
presents the correlation between the MAE random sampling results (Mean, Sd,
and log p0.01) and the observed MAE after training the RNNs for a predefined
number of epochs. The table also presents the mean (Mean MAE) and standard
deviation (Sd MAE) values of the observed MAE.

There is a moderate to strong negative correlation between p0.01 and the
MAE observed, thus the results suggest that the estimated probability is useful
for comparing RNN architectures. In a rough sense, given two RNNs we might
select the one that has a higher probability. Note that we are not predicting
the performance, instead we are predicting how likely would be to find a set of
weights that have a good error performance.
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Fig. 2. Probability of finding a good set of weights for single-hidden-layer RNNs

Table 1. Correlation between the MAE observed after training the model and the
MAE random sampling results (single hidden layer)

Epochs
Correlation Results

Mean Sd log p0.01 Mean MAE Sd MAE

1 -0.447 -0.317 -0.211 0.618 0.017
10 -0.726 -0.431 -0.321 0.517 0.111
100 -0.790 -0.641 -0.650 0.133 0.146
1000 -0.668 -0.458 -0.515 0.036 0.079

4.2 Two-Hidden-Layer Architectures

The previous results suggest that the proposal is useful to compare single-hidden-
layer architectures (as it is also stated in [8]), but what about multiple hidden
layers? To begin with the validation in a deeper context, we studied the problem
using the same sine wave and the search space defined by the stacked RNNs with
7 to 31 LSTM cells per layer, with up to two-hidden-layer, and a look back in
{1, 10, 20, 30}. The selection of the number of cells and the look back was made
upon the results observed in the single-hidden-layer study, the greatest variation
of pt occurs in the referred region (see Fig. 2). Note that there are 625 possible
architectures, without taking into account the look back.

We repeated the MAE random sampling for each architecture, i.e. we took
100 samples, and estimated p0.01. Fig. 3 presents the estimated p0.01 smoothed
using a logarithmic model (to ease the visualization of trends). The x-axis shows
the number of cells in the first hidden layer, the y-axis represents the estimated
probability, the different colors represent the number of cells in the second hidden
layer, and LB stands for the look back. A value equal to 0 in the second hidden
layer implies that the RNN is a single-hidden-layer one.
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Fig. 3. Probability of finding a good set of weights for two-hidden-layer RNNs

We uniformly selected 100 architectures and trained them using Adam opti-
mizer [13]. Table 2 presents the correlation between the MAE random sampling
results (Mean, Sd, log p0.01) and the MAE observed after training the model. The
table also presents the mean (Mean MAE) and standard deviation (Sd MAE)
values of the observed MAE.

Table 2. Correlation between the MAE observed after training the model and the
MAE random sampling results (two-hidden-layer)

Epochs
Correlation Results

Mean Sd log p0.01 Mean MAE Sd MAE

1 -0.086 -0.135 -0.171 0.617 0.009
10 -0.450 -0.632 -0.635 0.591 0.018
100 -0.709 -0.827 -0.905 0.147 0.145
1000 -0.695 -0.843 -0.922 0.106 0.147

Again, the results show a string negative correlation between the estimated
probability and the MAE observer after training. In this case, two things gain
our attention: first, the single-hidden-layer architectures outperforms the two-
hidden-layer ones on average in terms of the observed MAE, and second the
correlation is higher for two-hidden-layer architectures (refer to Table 1 and 2).
Intuitively we suspect that both insights are related and both can be explained
by the fact that two-hidden-layer architectures are more complex than single-
layer ones. Therefore, the optimizing algorithm has to struggle harder to find a
good set of weights as the number of hidden layers increases.
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4.3 Three-Hidden-Layer Architectures

We added a third hidden layer to the search space (with 7 to 31 LSTM cells on
it). We performed the MAE random sampling for all the architectures (15625
architectures, without considering the look back variations) and estimated p0.01.

Afterwards, we uniformly selected 100 three-hidden-layer architectures and
trained them using Adam optimizer [13]. Table 3 presents the correlation between
the MAE random sampling results (Mean, Sd, log p0.01) and the MAE observed
after training the model. The table also presents the mean (Mean MAE) and
standard deviation (Sd MAE) values of the observed MAE.

Table 3. Correlation between the MAE observed after training the model and the
MAE random sampling results (three-hidden-layer)

Epochs
Correlation Results

Mean Sd log p0.01 Mean MAE Sd MAE

1 -0.334 -0.447 -0.475 0.616 0.003
10 -0.546 -0.724 -0.745 0.605 0.010
100 -0.720 -0.869 -0.906 0.180 0.159
1000 -0.130 -0.873 -0.911 0.143 0.164

The results follow the same trends highlighted in the two-hidden-layer study.
The correlation between the observed MAE and p0.01 suggests that for this spe-
cific scenario the probability acts as a proxy of the expected performance. More-
over, the results indicate that as the problem gets more complex, the probability
is even more correlated to the actual performance.

4.4 Memory and Time Comparison

Finally, after showing the usefulness of the MAE random sampling to compare
stacked RNN architectures in terms of the expected performance, we studied the
time and memory needed to perform the referred sampling.

We analyzed the execution logs and extracted the memory and time con-
sumed by each process. It is important to notice that every process was executed
using similar hardware and software configurations. Table 4 summarizes the time
and memory usage. Despite the simplicity of the input, there is notable differ-
ence between the time needed to train an RNN and to perform a MAE random
sampling. On the other hand, there is only a small difference in the memory
required. Due to the low-cost of sampling an RNN and the usefulness of the
approach for comparing architectures, we believe that using the MAE random
sampling is worthwhile.
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Table 4. Time and memory usage comparison

Mean time [s] Sd time Mean mem [MB] Sd mem

Training 1000 epochs 996 0.006 127 6.338
MAE random sampling 6 0.001 150 98.264

5 Conclusions and Future Work

In this study we extend the MAE random sampling technique [8] to multiple-
hidden-layer architectures. Given an RNN architecture and an input time series,
we generate a set of normally distributed weights and compute the MAE (the
samples). Then, we fit a truncated normal distribution to the MAE samples
and estimate the probability of finding a set of weights whose MAE is below an
arbitrary threshold.

We test our proposal on stacked RNN architectures with up to three-hidden-
layers, using a sine wave. The results show that there is a strong negative correla-
tion between the estimated probability and the MAE measured after training the
model using Adam optimizer. Moreover, as we add hidden-layers to the RNN,
the correlation between the probability and the MAE measured increases. We
think that this might be explained in part by the increasing complexity of the
training process, however further analysis is required to explain this observation.

Overall, the results suggest that the MAE random sampling is a “low-cost,
training-free, rule of thumb” method to compare deep RNN architectures.

As future work we propose to validate the results of this study using other
time series and to explore a broader hyper-parameter search space.
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