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Abstract. Metagenomics is an inherently complex field in which one of
the primary goals is to determine the compositional organisms present
in an environmental sample. Thereby, diverse tools have been developed
that are based on the similarity search results obtained from compar-
ing a set of sequences against a database. However, to achieve this goal
there still are affairs to solve such as dealing with genomic variants and
detecting repeated sequences that could belong to different species in a
mixture of uneven and unknown representation of organisms in a sample.
Hence, the question of whether analyzing a sample with reads provides
further understanding of the metagenome than with contigs arises. The
assembly yields larger genomic fragments but bears the risk of produc-
ing chimeric contigs. On the other hand, reads are shorter and therefore
their statistical significance is harder to asses, but there is a larger num-
ber of them. Consequently, we have developed a workflow to assess and
compare the quality of each of these alternatives. Synthetic read datasets
beloging to previously identified organisms are generated in order to val-
idate the results. Afterwards, we assemble these into a set of contigs and
perform a taxonomic analysis on both datasets. The tools we have devel-
oped demonstrate that analyzing with reads provide a more trustworthy
representation of the species in a sample than contigs especially in cases
that present a high genomic variability.

Keywords: taxonomic assignment, sequencing analysis, metagenomic
comparison

1 Introduction

A drastical reduction of time and cost per sequencing experiment has taken
place, dropping from a 10,000$ per megabase down to a few cents, due to the
major breakthroughs in sequencing technologies that have occurred in the last
decades [1]. These techniques produce a huge amount of data overcoming the
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data generation problem, which was the main barrier during the early Genomic
Era. Biologists are now facing a torrent of data which have paved the way towards
the analysis of numerous unknown biological communities and the research of
pioneering scientific areas such as metagenomics (beyond genomes).

The goal of metagenomics is to study microbial communities, also known as
microbiotas, in their natural environment, without requiring to aisle and cul-
tivate the species that make up such community. This field brings a profound
transformation in multiple fields, such as: biology, medicine, ecology, agricul-
ture, and biotechnology [2]. Despite these benefits, metagenomic sequence data
presents several challenges. For instance, most communities are so diverse that
most genomes are not utterly represented by reads. The difficulty of performing
direct comparisons through sequence alignment is even greater due to distinct
reads from the same gene that may not overlap. However, when they do overlap
it is not always noticeable whether they are from the same or different genomes,
challenging the sequence assembly. Additionally, its informatic analysis is more
complicated when dealing with poor quality reads, detecting repeated sequences
from similar organisms, and genomic variants or species that have not yet been
sequenced within a sample in which the representation of organisms is uneven
and unidentified [3].

A primary objective in metagenomics is portray the organisms present in
an environmental sample. A correct classification of the species within a sample
with enable a further insight about several issues such as: the microbial ecosys-
tems models used to describe and predict community-based microbial processes,
changes, and sustainability; the global scale descriptions of the role of the hu-
man microbiome in different health states in individuals and populations; and
the exploitation of the remarkably versatile and diverse biosynthetic capacities of
microbial communities to generate beneficial industrial, health, and food prod-
ucts.

Tools such as MEGAN [4], FANTOM [5] or RAST [6] perform a taxonomic
analysis with reads and are also prepared to work with contigs, since each ap-
proach has advantages and disadvantages. Analyzing contigs provide larger ge-
nomic fragments, nevertheless this entails a risk of generating chimeric contigs
due to the heterogeneity of the sample. On the other hand, with reads this risk is
non-existent, however the analysis is affected by several factors such as the qual-
ity and length of the sequences, thus may generate matches with low statistical
significance.

The main contributions of this paper are a set of tools that analyze the
quality of the taxa assigned to the metagenomic sample and establishes statistical
differences between reads and contigs in order to provide a better judgement to
properly identify the correct taxa distribution in a metagenomic sample. It also
provides a workflow that employs the previous tools to propose suggestions on
how to perform an optimal taxonomic analysis of a metagenomic sample, either
with reads or with contigs.
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2 Methods

The definitions, procedures and algorithms employed to compare reads and con-
tigs when analyzing a metagenomic sample are described in this section. First,
we defined a set of conditions that describe the taxonomic concordance between
the contig (handles as once sequence) and the reads that assemble it on a specific
taxonomic rank in order to achieve a reasonable comparison.

– General Definitions:
Let S be the set composed by the Reads and Contigs nucleotide sequences
Let T be the set composed by the Taxa in a specific taxonomic rank and
None

s ∈ S ∧ t ∈ T

Taxon(s)→ t

– Consistency (C): Both, the read and the contig, have the same taxon
assigned or were not assigned at all.

Taxon(Read) = Taxon(Contig)

– Weak Inconsistency (WI): One of the sequences has been assigned to a
taxon, but the other one was not assigned to any. These relationships are
classified based on which sequence was unassigned. Granted that the read
does not match a taxon in the specified taxonomy rank, it will be defined
as a Weak Inconsistency by Read (WIR). But if the unassigned sequence
was the contig then it will be classified as a Weak Inconsistency by Contig
(WIC).

Taxon(Read) = None ∧ Taxon(Contig) = x ∧ x 6= None

or

Taxon(Read) = X ∧ Taxon(Contig) = None ∧ x 6= None

– Strong Inconsistency (SI): Both, the read and the contig, are assigned
to a taxon in the selected taxonomic rank, but to different taxa. Note that
if either the read or the contig is not assigned, it will be classified as a WI.

Taxon(Read) 6= Taxon(Contig)

Having settled the previous definitions, a workflow has been designed with
the intent of analyzing the levels of concordance between reads and the contigs
they assemble and retrieve reliable comparison results (see Supplementary Ma-
terial - Figure 1). Such workflow begins with metagenomic reads and a reference
database as input. Firstly, the reads are assembled into contigs using MEGAHIT
[7], an assembler developed for large and complex metagenomic NGS (Next
Generation Sequencing) reads. Afterwards, both sets of sequences are mapped
against a reference database to acquire the possible species that each sequence
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came from. These results are fed to MEGAN, a microbiome analysis tool that
uses the last common ancestor (LCA) algorithm to assign each sequence to a
taxa. Finally, the retrieved information from previous steps is processed by our
developed software in order to generate a set of results that assesses the quality
of the taxa assigned to the reads and contigs and provides statistical insight
about these results. The subsequent section provides a detailed description of
the internal functioning of the workflow.

2.1 Detecting Differences between the Reads and Contigs

The developed toolkit has been designed for comparing the results obtained after
performing a primary sequence comparison and a biological taxonomic analysis
between reads and contigs. The output information provided by this tool is
composed by:

1. The associations for each contigs and the reads that assembled it.
2. Concordance of the taxa assigned between the reads and contig assembled.
3. Coverage of the reference database.
4. Ratios of highest scoring matching species per sequence in a metagenomic

dataset.
5. Correct taxonomic classification percentage.

The internal procedure implemented to obtain these results are described in
the following section.

– The associations for each contigs and the reads which assembled
it: The associations between the reads and contigs are extracted from the
BLASTN [8] output obtained by performing a DNA primary sequence align-
ment between them. Other comparison tools can be used by adding an spe-
cific parser. This result is processed to obtain two collections of the relation-
ships between the reads and the contigs: one in which the reads are assigned
to the contig that it assembled; and the other where the contigs are partnered
with the group of reads used to assemble it.

– Concordance of the taxa assigned between the contigs and the
reads that assembled it: Firstly, the identifier of all the sequences that
have been assigned to a taxon in the selected biological classification rank
are extracted from the MEGAN results. Afterwards, this information is used
to classify the previously obtained associations between reads and contigs,
based on the concordance level of the taxon assigned to a contig and the
reads that assembles it.

– Coverage of the reference database: The amount of base pairs that
were aligned to the database obtained from the results after executing the
BLASTN with each set of sequences is compared to the number of base pairs
in such database to obtain the following results:
• Total coverage of the database for each set of sequences
• Total coverage of the database that the reads and contigs match together
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– Ratios of highest scoring matching species per sequence in a metage-
nomic dataset: The average of top scoring matches resulting from the se-
quence alignment against the reference database is calculated for each of
the datasets. Afterwards, the measurement obtained from each dataset is
compared to decide which one provides less variable matches.

– Correct taxonomic classification: This measurement can only be calcu-
lated when the original taxon for each read is previously known. The per-
centage of sequences assigned to the taxon to which they belong is calculated
for both datasets. An assignment is correct for a read if such is matched to
the correct taxon. However, it is impossible to know the proper specie for
a contig because they can be assembled from reads that belong to different
organisms. Therefore, we define the assigned taxon to a contig as the one to
which the majority of the reads that assemble it belong to.

3 Results and Discussion

In order to apply the previously described workflow and to obtain valid compari-
son results, the metagenomic reads dataset has to be properly designed, meaning
that the real taxon for each read must be known beforehand for the purpose of
enabling us to assess and to establish whether it is better to perform a taxonomic
analysis with reads or with contigs.

To achieve this goal, two use cases have been developed to achieve authentic
results that fulfill the requirement of knowing the original specie for each read.
One fully synthetic where the reads are originated from each genome in the
database. The other one is semi-synthetic, where the reads come from a selection
of genomes that are representative of the classes in a real metagenomic sample
(See Figure 1).

The differences between the cases are the initial dataset of reads and the
reference database. These metagenomic reads and the databases employed are
obtained through the following approaches:

– Fully synthetic use-case/dataset (FSD): The database selected are
the gastrointestinal tract genomes provided by Human Microbiome Project
(HMP)[10] and the reads are obtained by executing Better Emulation for
Artificial Reads (BEAR)[11] with the HMP dataset. An equitably number
of reads are generated from each genome in the reference database to obtain
a very mixed sample of reads from all the different species to which they will
be compared. The total number of reads is 521,334.

– Semi-synthetic use-case/dataset (SSD): Following the class taxonomic
distribution from the study Comparative metagenomic, phylogenetic and
physiological analyses of soil microbial communities across nitrogen gradi-
ents[9], a set of genomes were selected that belonged to each of the classes.
These samples were used with BEAR to generate a set of reads proportional
to the class distribution obtained by analyzing the article. The remaining
percentage of the metagenomic sample (9%) was obtained by generating a
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Fig. 1. On the left: Generation of fully synthetic reads. On the right: Generation of
semi synthetic reads. BEAR (referenced in the next paragraph)

set of random reads that followed the nucleotide distribution from the rest of
the dataset. In order to provide a soil sequencing framework, the reference
database for the soil microbial genomes selected is RefSoil[12]. The total
number of reads is 499,991.

The species distribution for both metagenomic datasets is represented in the
Figure 2.

The workflow depicted in the Methods section has been applied to each of
the use cases with the parameters described in the Table 1 of the Supplementary
Material. Afterwards, the output from the developed tools for each use case is
interpreted to obtain the following results:

– Comparison with the Original Distribution: The species distribution
obtained by performing a taxonomical analysis with the reads and contigs
is compared with the original dataset in Figure 3.
For the FSD both reads and contigs seem to have differences against the
original dataset, however it is not noticeable which one is more similar to
the authentic dataset. This is not the case for the SSD since the reads present
an almost identical distribution of species in comparison to the original, while
the contigs clearly have noticeable differences. This is further verified in the
next section.

– Root Mean Square Error (RMSE) after the Taxonomical Analy-
sis: The RMSE is calculated for both reads and contigs using the original
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Fig. 2. Percentage distribution of the species in a metagenomic original dataset. On
the left: Distribution for the fully synthetic dataset. On the right: Distribution for the
semi synthetic dataset.

Fig. 3. Percentage distribution of the species in a metagenomic original dataset (green),
reads (red) and contigs (blue). On the left: Distribution for the fully synthetic dataset.
On the right: Distribution for the semi synthetic dataset.



8 Rodŕıguez-Brazzarola et al.

dataset as reference. This implies that if the RMSE is lower for a set of se-
quences (reads or contigs), the mapping of this dataset is more appropriate
to describe the ideal distribution of species in the metagenome (Table 1)

Table 1. Root of the Mean Squared Error of the assignment of species for reads and
contigs compared to the original dataset for both datasets.

Dataset RMSE for FSD RMSE for SSD

Reads 0.3187 0.4031

Contigs 0.3858 4.2534

The RMSE describes the average difference for each dataset in comparison
to the original, and provides further insight about how correct are the as-
signments of species per dataset. Reaffirming the results from the Figure 4,
it is observed that in both use cases the reads have a lower RMSE than the
contigs.

– Inconsistencies Found: A concordance level is established to each of the
associations between a contig and the read that it assembles. Identifying the
types of inconsistencies aids us at the moment of determining the reason
behind the RMSD. If there are more weak inconsistencies at the species tax-
onomic rank, then most of the reads or contigs involved were assigned to a
taxon in a higher and less specific taxonomic rank. The detected inconsis-
tencies and the percentage of relationships they represent are shown in the
Table 2.

Table 2. Number of inconsistencies assigned for each use case.

Type of Inconsistency Found on FSD (%) Found on SSD (%)

Weak Inconsistency by Read 21,393 (4.10) 4,003 (0.80)

Weak Inconsistency by Contig 24,183 (4.64) 1,622 (0.32)

Hard Inconsistency 4,464 (0.84) 2,231 (0.45)

– Inconsistency Resolution: Inconsistencies can be solved by selecting a
less specific taxonomic group to cover a broader range of taxa that a se-
quence could be assigned. In both use cases the sequences belong to bacte-
rias, therefore the discrepancy between the assignment a contig and the read
that assembles it will be sorted out in the taxonomic group Domain. This
can be appreciated in Figure 4.

The heterogeneity of the samples provoke that a noticeable amount of con-
tigs are assembled from reads from different species. This confirms that the
inconsistencies arise during the assembly process.

– Coverage and Mapping Comparison against the Reference Database:
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Fig. 4. Percentage of inconsistencies solved at different taxonomic ranks. In both use
cases, over 50% of the inconsistencies are resolved if the desired taxonomic group
to analyze is the family. On the left: inconsistency resolution for the fully synthetic
dataset. On the right: inconsistency resolution for the semi synthetic dataset.

For each use case, the ratio of top scoring matches after performing the se-
quence alignment to the reference database and the percentage of nucleotides
covered by the full set of sequences is depicted in the Table 3.

Table 3. Mapping and coverage comparison between reads and contigs for each use
case

Measurement
FSD SSD

Reads Contigs Reads Contigs

Ratio of Matches per Sequence 7.05 7.50 4.52 8.38

% Coverage of Database 21.21 7.16 5.59 3.37

Common % within Use Case 6.42 3.03

Common Coverage % against Contigs 89.66 Not Applicable 89.91 Not Applicable

For both use cases, reads have a lower average of top scoring matches since
the contigs tend to have more matches due to assembly noise generated by
forming contigs from reads belonging to different species. It is also notewor-
thy that over 85% of the nucleotides covered by contigs are also covered by
reads, yet reads cover a wider range of the database meaning that they pro-
vide more information that may be of interest depending on the interests of
the metagenome experiment.

– Correct Assignment of a Taxon for each Sequence Comparison:
Both use cases fulfil the prerequisite to calculate this measurement, to know
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beforehand the original taxon of a read. The resulting assessment is described
in the Table 4.

Table 4. Correct assignment for each sequence comparison

Measurement
FSD SSD

Reads Contigs Reads Contigs

Properly Assigned 493,226 59,088 454,900 56,242

Wrongly Assigned 3,179,682 611,595 1,933,138 387,162

Total 3,672,908 670,683 2,388,038 443,409

Correct (%) 13 87 19 13

Incorrect (%) 87 91 81 87

The low percentage of properly assigned sequences is caused by the multiple
top scoring matches for each sequence previously described. This fact gen-
erates a noticeable amount of wrong assignments, but these must be taken
into account because in a real metagenomic sample it is impossible to know
which is the correct match. This indicates that the reads provide a more
accurate assignment in both use cases, whereas contigs provide less sensitive
results. However, this also proves that a high percentage of the data obtained
from a metagenomic sample is noise originated from various sources. Hence
it can be concluded that the assembly is not the only process that needs to
be refined in order to obtain more valuable information

4 Conclusions

Even though tools and algorithms in metagenomics have advanced, there are still
shortcomings very difficult to solve due to the intrinsic complexity of analyzing
a metagenomic sample. Therefore these errors have to be properly addressed to
make better tools in the future. Accordingly, the results obtained in this work
demonstrate some issues to be resolved in the field of metagenomic assembly.

We have presented in this work several indicators that enable a valid com-
parison between reads and contigs when performing a taxonomic analysis of a
metagenomic sample. We have demonstrated that reads provide a more accurate
assignment of taxa, and that the distribution of species resembles in a larger ex-
tent the original metagenomic sample distribution, and provide a more specific
assignment of taxa than using the contigs.

The measurements established in previous sections suggest that during the
assembly process, some reads belonging to different species are put together
into a contig as a result of the great heterogeneity of species in a metagenomic
sample. In this same stage, another issue arises which is that the distribution
of species of contigs assigned less resembles the original since their length will
vary depending on how many reads are used to assemble. Yet at the moment
of assigning a taxon it will still count as one sequence match even though it
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was formed by many of them. Moreover, reads will describe more accurately the
proper distribution of species in the metagenomic sample since each belongs to
one specie and their length size is uniformly distributed. However, when working
with contigs specificity is lost due to the possibility of creating chimeric contigs
and the fact that the quality of the assembly will vary strongly on the length
and quality of the reads, misrepresenting the original sample.

In terms of future work, the toolkit is being applied to compare the quality
of different metagenomic assembly tools and to compare the quality of the as-
sembly using different parameters. Likewise, adjusting the presented workflow
to compare the functional analysis between reads and contigs would be very
interesting.
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