

Tipo de presentación **Póster electrónico** Área de Interes **Mineral Nutrition and Water Relations**

C0310 NO3- SELECTIVE MINI-ELECTRODES AS A TOOL TO INVESTIGATE THE NO3-TRAFFIC IN CHLAMYDOMONAS REINHARDTII D. ()

XXII REUNIÓN DE LA SOCIEDAD

ESPAÑOLA DE FISIOLOGÍA VEGETAL

FISIOLOGIA VEGETAL

XV SPANISH PORTUGUESE

CONGRESS OF PLANT PHYSIOLOGY

Jordi Díaz García

Facultad de Ciencias. Universidad de Málaga

(Málaga) España Lourdes Rubio Valverde

FACULTAD DE CIENCIAS. Universidad de Málaga

Campus de Teatinos S/N29071-MÁLAGA(Málaga) España Aurora Galván Cejudo

Dpto. Bioquímica y Biología Molecular. Universidad de Córdoba

(Córdoba) España Emilio Fernández Reyes

Dpto. Bioquímica y Biología Molecular. Universidad de Córdoba

(Córdoba) España José A. Fernández García

Facultad de Ciencias. Universidad de Málaga

(Málaga) España

Resumen

Ion selective NO₃⁻ mini-electrodes were used to measure the external NO₃⁻ concentration in *C. reinhardtii* liquid cultures. Electrodes were prepared using glass capillaries (1.5 mm external diameter). Capillaries were cut in 10 cm long pieces, dehydrated for 45 minutes in an oven and silanized by addition of dimethyldichlorosilane in bencene 0.1% (V/V). Once silanized, the capillaries were baked again for 30 minutes. Once cold the capillaries were backfilled with the NO₃⁻ ionophore (Fluka: 72549), which contains PVC (5.75% w/w) dissolved in tetrahydrofurane. Then, the NO₃⁻ mini-electrodes were stored in dark in a desiccator until tetrahydrofurane gets evaporated. Before use, NO₃⁻ selective mini-electrodes were backfilled with 0.1 M NaNO₃ and 0.1 M KCl and connected to a high-impedance differential amplifier (WPI FD223). Mini-electrodes were calibrated in N-free Beijerinck medium, which contains 0.1 mM Cl⁻. In those conditions, electrodes calibration slope was 54 mV/pNO₃⁻ in the range 1 - 1000 μ M NO₃⁻. The mini-electrodes were used to continuous monitoring of the external NO₃⁻ concentration in liquid culture of different *C. reinhardtii* strains, incubated in N-free Beijerinck medium supplemented with 100 μ M NO₃Na. Previous to the assays, strains were N starved for 6 days. In the light, wild type strain uptakes NO₃⁻ at a rate of 15 nmol NO₃⁻⁻¹⁰⁶ cells⁻¹·h⁻¹, in the dark this rate was one third of this figure. After 5 h, the external NO₃⁻ levelled off at 10 μ M in the light and around 30

 μ M in the dark. *C. reinhardtii* cells cultured in the presence of 2 mM NO₃NH₄ do not show significant NO₃⁻ uptake nor a mutant strain, defective in nitrate transport and having an active nitrate reductase. However, a mutant strain lacking the nitrate reductase shows an enhanced NO₃⁻ uptake rate, compared with the value obtained for the wild type in the light.

Fundings:

CTM2014-58055-P