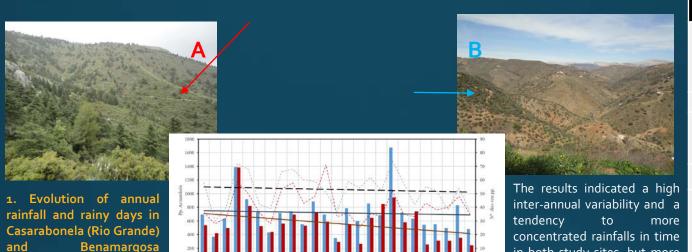
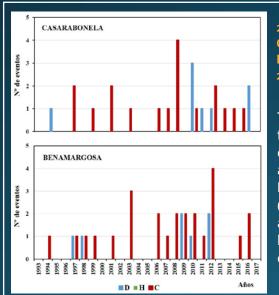
Analysis of heavy rainfall in two contrasted Mediterranean watersheds from 1993 to 2017

Sillero-Medina, José Antonio¹; Hueso-González, Paloma¹; Martínez-Murillo, Juan Francisco¹ & Ruiz-Sinoga, José Damián 1

¹ Geomorphology and Soils Institute-IGSUMA. University of Málaga


in both study sites, but more

significantly in the sub-humid


Río Grande basin.

RIO GRANDE BASIN (A)			
Climate	Type	Sub-humid Mediterranean	
Cilillace	Annual rainfall (mm)	720	
Geology	Lithology	Phyllites	
Topography	Slope gradient (%)	41	
	Exposure (°)	150	
Biomass	VC (%)	78	
	Agreggate stability (%)	75	
Soils	OM(%)	6.52	
	Soil erosivity (K-USLE)	0.38	

RIO BENAMARGOSA BASIN (B)			
Climate	Туре	Dry – Semiarid Mediterranean	
Cimacc	Annual rainfall (mm)	560	
Geology	Lithology	Phyllites	
Topography	Slope gradient (%) 35	35	
	Exposure (°)	165	
Biomass	VC (%)	55	
	Agreggate stability (%)	70	
Soils	OM(%)	5.32	
	Soil erosivity (K-USLE)	0.51	

2. Number of torrential events in Casarabonela (Rio Grande) and Benamarqosa between 1993 and 2017 - Source: AEMET, SAIH.

between 1993 and 2017 -

Source: AEMET, SAIH.

This figure shows the limited frequency of the events considered as torrential rainfall according to the Agencia Estatal de Meteorología criteria (≥100mm/24h; ≥60mm/60') and a high occurrence of shorts heavy downpours (≥5mm/5'), especially in recent years.

3. Examples of torrential rain in five minutes and their response in the media - Source: AEMET, SAIH, La Opinión de Málaga, Sur, 20 minutos.

Fecha y Hora	mm 5'	mm 6oʻ
12/09/2006	9,6	27,4
17/11/2012	18,2	56,1
30/09/2015	11,8	49,5

La lluvia deja carreteras cortadas y Cortada por las lluvias la antigua arroyos desbordados en la Axarquía CN-340 entre Mezquitilla y Lagos El acceso a Almáchar y El Borge desde la A-3112 sigue cerrado. El agua deja aislados los diseminados de Río Seco y Castillo de rotoda en este enclave Zalia, en Alcaucín, donde hay vecinos que llevan todo el día sin Las lluvias torrenciales provocan inundaciones en Almería, Málaga y Granada

Conclusions

- Despite the proximity of the watersheds there are strong environmental contrasts between both.
- The current rainfall dynamics follows a trend towards concentration in fewer days.
- A rainfall cataloged as torrential by the AEMET (≥ 100 / 24h, ≥60 mmh-1) is not necessary to activate erosion and degradation processes, especially when the system conditions are vulnerable. There are downpours hidden in the hourly precipitation data that get at very high intensities.
- It is considered the need to analyze exhaustively the characteristics of a given system, in order to establish what capacity of response has a specific area in an event of extreme precipitation.