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ABSTRACT 

In this work we present our recent progress in the development of a platform for the mid-infrared wavelength 
range, based on suspended silicon waveguide with subwavelength metamaterial cladding. The platform has some 
intrinsic advantages, which make it a very promising candidate for sensing applications in the fingerprint region. 
Specifically, it can cover the full transparency window of silicon (up to a wavelength of 8 µm), only requires one 
lithographic etch-step and can be designed for strong light-matter interaction. Design rules, practical aspects of 
the fabrication process and experimental results of a complete set of elemental building blocks operating at two 
very different wavelengths, 3.8 µm and 7.67 µm, will be discussed. Propagation losses as low as 0.82 dB/cm at 
λo=3.8 µm and 3.1 dB/cm at λo=7.67 µm are attained, for the interconnecting waveguides. 
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1. INTRODUCTION 

The Mid-InfraRed band (MIR, wavelengths from around 2 to 20 µm) is an especially interesting wavelength 
range because it includes the molecular fingerprint spectral region. Each substance is uniquely identified by a 
specific absorption spectrum. By measuring these spectra, it is possible to determine the presence and 
concentration of substances as diverse as greenhouse gases, explosives, food, petroleum products, polluting 
substances, plastics or even human tissues, among others. Regardless of the final application, to operate with a 
high degree of integration it is necessary to provide the most appropriate platform for this new band of 
wavelengths. One of the most successful platforms in the communications band (around 1.55 µm), Silicon-on-
Insulator (SOI), could only be used up to a wavelength of 4 µm, given the strong absorption of silicon dioxide at 
longer wavelengths. Therefore, to be able to increase the wavelength and cover the full range of the MIR band, it 
is necessary to develop new platforms. The different alternatives that are currently being considered in the 
bibliography can be grouped into two different types: i) Platforms that combine materials with a greater range of 
transparency, including, silicon on sapphire, silicon on silicon nitride, chalcogenide crystals, germanium on 
silicon nitride or germanium on silicon (a summary of their attainable propagation loss can be found in [1]); and 
ii) Suspended platforms that are based on the selective elimination of the oxide on which silicon rests, producing 
waveguides known as suspended silicon. In this way, the complete transparency of silicon, up to 8 µm, could be 
covered, while still benefiting from the consolidated SOI manufacturing processes.  

There are two alternatives to achieve the suspension: i) using an array of holes away from the core 
waveguide, yielding silicon membrane waveguides [2], and ii) using periodic subwavelength metamaterial 
cladding [3] [4]. In this work we will only focus on the latter, reviewing the current state of development. The 
operation principle of the elemental suspended waveguide, practical issues and experimental results of essential 
building blocks (interconnecting waveguides, bends, grating couplers and MMIs) operating at two different 
wavelengths, 3.8 µm and 7.67 µm, will be covered throughout the present work.  

2. THE SUSPENDED SILICON WAVEGUIDES 

A schematic representation of the suspended silicon waveguide is shown in Figure 1(a). As can be seen, it is 
composed of a silicon core of width Wwg and thickness tSi which is anchored to the unsuspended lateral silicon 
areas making use of a subwavelength (SWG) pattern of silicon bars. The periodic cladding thus works as an 
equivalent homogeneous medium, by means of which it is possible to control the lateral refractive index contrast 
required for optical waveguiding (see Figure 1(b)). The SWG cladding must also perform two additional crucial 
functions: i) to have enough mechanical stiffness to support the weight of the wider and therefore heavier 
waveguides present in the circuit and ii) to allow the flow of the hydrofluoric acid (HF) through the holes to 
remove the buried oxide layer. This makes the design process to determine the adequate dimensions more 
intricate than that of conventional photonic waveguides, because each one of the aforementioned functions 



imposes its own constraints, and, unfortunately, their respective optimum values move towards opposite 
directions. Table 1 summarizes towards what values the different geometrical parameters should move to better 
satisfy the respective constraints imposed by the fabrication process, the optical waveguiding and the mechanical 
stability. The final chosen values of the interconnecting waveguides at the two operating wavelengths, 3.8 µm 
and 7.67 µm, are also indicated in Table 1. 

 
(a)  (b)  

Figure 1. (a) 3D schematic of the suspended silicon waveguide; (b) 2D cross view and electric field spatial distribution of the fundamental 
mode associated with a specific value of the equivalent metamaterial cladding. 

 
TABLE 1. SUMMARY OF CONSTRAINTS AND FINAL SELECTED VALUES AT λ = 3.8 µm & λ= 7.67 µm. 

Parameter A high value (↑) is good … A small value (↓) is good… Selected values at  
λ= 3.8 µm λ=7.67µm 

Wclad
 • to reduce the lateral leakage • to reduce the mechanical torque 2.5 µm 3 µm 

Wwg 
• to reduce the lateral leakage • to reduce the weight of the waveguide 

• to avoid the second order horizontal mode 1.3 µm 2.9 µm 

tSi 
• to reduce the vertical leakage • to reduce the weight of the waveguide 

• to avoid the second order vertical mode 0.5 µm 1.4 µm 

tBOX • to reduce the vertical leakage  3 µm 3 µm 

LSi 
• to assure the mechanical stability • to increase the lateral index contrast and 

so reduce the lateral leakage. 
• to operate in the SWG regime 

0.1 µm 0.25 µm 

LHole 
• to facilitate the flow of HF 
• to increase the lateral index contrast and 

thereby reduce the lateral leakage 

• to operate in the SWG regime 
0.45 µm 0.9 µm 

 

3. FABRICATION 

The fabrication process of any device in the proposed suspended platform requires the well-known dry etch 
to transfer the pattern to the silicon layer plus an additional wet etch to locally remove the BOX. This consists in 
dipping the chip into a 1:7 HF bath to remove the BOX. The difficulty arises from the required immersion time, 
which, as is shown in Fig. 2(a), is greater for wide waveguides (e.g. Multimode Interference devices, MMIs) 
than for narrow ones (e.g. interconnecting waveguides). Although the HF acid is highly selective and, in theory, 
it should not affect the silicon, in practice the silicon is slightly affected, suffering an over etching which 
produces a reduction in both the thickness and width of the nominal dimensions (see Fig. 2(b)). This silicon over 
etching can have dramatic consequences not only in the performance of the device but also in its mechanical 
stability. To compensate for this effect, required biasing for the dry etch must be accurately known in advance. 
Figures 2(c) and 2(d) show the effects of the dip time: when it is too short, the BOX is not completely removed, 
and when it is excessive, the over etching is so large that it ends up breaking the silicon bars. Figure 2 (e), in 
turn, shows the results of a more optimized dip time. 

4. EXPERIMENTAL RESULTS 

A complete set of essential building blocks operating at the wavelengths of 3.8 µm and 7.67 µm, respectively, 
have been designed, fabricated and characterized. Table 2 shows their SEM images and summarizes their 
dimensions and attained performance.  

5. CONCLUSIONS 

We have presented and reviewed the current state of a recent platform for the Mid-Infrared band, the 
suspended silicon waveguide, which would allow us to extend the usage of silicon photonics up to wavelengths 
of 8 µm. The first results at 3.8 µm and 7.67 µm in waveguides, bends, MMIs, and interferometers are very 
promising. 
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(c)                                                              (d) (e)  

Figure 2. (a) Graphical illustration of the wet etching process to remove the BOX beneath the devices; (b) Undesired reduction of the 
vertical silicon thickness as a function of the immersion time into the HF acid dissolution; SEM images of fabricated interconnecting 
waveguides when the immersion time is c) too short; d) too long and e) optimized. 
 

TABLE 2. PERFORMANCE SUMMARY OF SOME BASIC BUILDING BLOCKS AT λ = 3.8 µm & λ= 7.67 µm. 

Straight 
waveguides S-bends 90º-bends Focusing grating 

coupler MMI 

   

 

 

@ λ  = 3.8 µm 
Wwg= 1.3 µm 
Wwg= 2.5 µm 

Loss: 0.82 dB/cm 

@ λ  = 3.8 µm 
S= 7 µm; L= 41 µm;  

θ = 15º 
Loss: 0.01 dB/bend 

@ λ  = 3.8 µm 
 

R=16 µm; 
Loss:0.02dB/bend 

 
 

Not available 

@ λ  = 3.8 µm 
 (no-biasing was applied) 
Wa = 3.1 µm; WS = 1.3 µm 
Wd = 2 µm; WMMI= 7.1 µm 

LTaper = 40 µm; LMMI= 71.5 µm 
ExcessLoss & Imbalance <0.3 dB 

 (minimum shifted to 3.71 µm)   

@ λ  = 7.67 µm 
Wwg= 2.9 µm 
Wwg= 3 µm 

Loss: 3.1 dB/cm 

@ λ  = 7.67 µm 
S= 5 µm; L= 75 µm; 

θ = 6º 
Losses: 0.06 dB/bend 

@ λ  = 7.67 µm 
 

R=35 µm; 
Loss:0.08dB/bend 

@ λ  = 7.67 µm  
(simulated, fabricated but not 

yet characterized) 
Coupling efficien.: 58% 
Bandwidth1dB = 230 nm 
Back-Reflections: 0.1% 
Radiation angle: 19.3º 

@ λ  = 7.67 µm 
 (simulation results, under fabrication) 

Wa = 5.9 µm; WS = 1.84 µm 
Wd = 2 µm; WMMI= 13.38 µm 

LTaper = 30 µm; LMMI= 136.9 µm 
ExcessLoss & Imbalance <0.3 dB   
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Time in the HF solution

The optimum HF etching time 
for a narrow waveguide is not 
enough for a wide waveguide.
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Figure 5.15: SEM image of the input side of an MMI, silicon supports were
etched and collapsed after 55 min in HF

were still intact, furthermore no silicon was observed in the gaps between the lSi supports

in the sub-wavelength regions, confirming the previous experiments.

It was thus determined that a total biasing of 80 nm was necessary to insure the integrity

of the devices after the dry and wet over-etching, leaving the final dimensions of the

supports at 180 nm, while adjusting the size of the holes so as to keep the original

period.

Figure 5.16: SEM image of the input side of the MMI after dry etching. The chip
was FIB etched through to observe the bottom of the sub-wavelength regions
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