Predicting the Electricity Demand Response via Data-driven Inverse Optimization

23rd International Symposium on Mathematical Programming Bordeaux, France

Javier Saez-Gallego ¹ and **Juan M. Morales** ²

¹Siemens Gamesa, Copenhagen, Denmark ²Department of Applied Mathematics, University of Málaga, Spain

July 1 - 6, 2018

Towards the decentralization of the electricity grid

Involving the small consumer

Outline

- Motivation
- Forecasting the price-responsive costumers' demand
- Defining the estimation problem
- Solving the estimation problem
- Case study: HVAC system of a pool of buildings
- Conclusions

Motivation Forecasting The Estimation Problem Solution Method Solution Method Case Study Conclusions Future Work

○○○ ●○ ○○○○ ○○○ ○○ ○○ ○○

Assumptions

A cluster of **price-responsive** consumers is considered

This cluster is expected to **consume** more **at a favorable price**

We describe the pool of price-responsive consumers as a **utility maximizer agent**

Step-wise marginal utility function

ISMP2018 July 1 — 6, 2018 5 / 19

 Motivation
 Forecasting
 The Estimation Problem
 Solution Method
 Colution Method
 Case Study
 Conclusions
 Future Work

 ○○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○

Consumers' price-response model

$$\begin{array}{ll} \underset{x_{b,t},\forall b}{\text{maximize}} & \sum_{b=1}^{B} x_{b,t} (u_b - p_t) \\ \\ \text{subject to} & \underline{P} \leq \sum_{b=1}^{B} x_{b,t} \leq \overline{P} & (\underline{\lambda}_t, \overline{\lambda}_t) \\ \\ & 0 \leq x_{b,t} \leq E_b & (\underline{\phi}_{b,t}, \overline{\phi}_{b,t}) \end{array}$$

It is a linear optimization problem (LOP).

Unknown variables:

- Marginal utilities u_b
- Power bounds \overline{P} , \underline{P}

We seek values of u_b , \overline{P} , and \underline{P} based on observations of $x'_{b,t}$ and p_t , given E_b . We use the estimated utility maximizer problem to predict x_{t+1} .

The estimation problem: Optimality condition

$$\begin{split} & \underset{\Omega}{\text{minimize}} & & \sum_{t=1}^{T} \epsilon_{t} \\ & \text{subject to} & & \overline{P} \, \overline{\lambda}_{t} - \underline{P} \underline{\lambda}_{t} + \sum_{b=1}^{B} E_{b} \overline{\phi}_{b,t} - \epsilon_{t} = \sum_{b=1}^{B} x_{b,t} (u_{b} - p_{t}), \ \forall t \\ & & \overline{\phi}_{b,t} - \underline{\phi}_{b,t} + \overline{\lambda}_{t} - \underline{\lambda}_{t} = u_{b} - p_{t}, \ \forall t \\ & & \overline{\phi}_{b,t}, \underline{\phi}_{b,t}, \overline{\lambda}_{t}, \underline{\lambda}_{t}, \epsilon_{t} \geq 0, \ \forall t \end{split}$$

$$\Omega = \left\{ \epsilon_t, \overline{P}, \underline{P}, u_b, \overline{\lambda}_t, \underline{\lambda}_t, \overline{\phi}_{b,t}, \underline{\phi}_{b,t} \right\}$$

Motivation

Inverse optimization (IOP) is used to determine the parameters of the model to make predictions of the load.

ISMP2018 July 1 — 6, 2018 7 / 19

 Motivation
 Forecasting
 The Estimation Problem
 Solution Method
 Case Study
 Conclusions
 Future Work

 ○○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○

Leveraging auxiliary information

Model parameters P_t , P_t and $u_{b,t}$, might vary over time. We assume a number of time varying regressors Z such that

$$\underline{P}_t = \underline{\mu} + \sum_{r=1}^R \underline{\alpha}_r Z_{r,t} \tag{1}$$

$$\overline{P}_t = \overline{\mu} + \sum_{r=1}^R \overline{\alpha}_r Z_{r,t}$$
 (2)

$$u_{b,t} = \mu_b^u + \sum_{r=1}^R \alpha_r^u Z_{r,t}$$
 (3)

Regressors relate to time and weather:

- Temperature of the air outside
- Solar irradiance
- Hour indicator
- Past price and load

ISMP2018

Leveraging auxiliary information

The price-response model must make sense for any plausible value of the features, in particular,

- The minimum consumption limit must be lower than or equal to the maximum consumption limit
- The minimum consumption limit must be non-negative

Leveraging auxiliary information

For example,

$$\underline{P}_t = \underline{P} + \sum_{r \in R} \underline{\alpha}_r Z_{r,t} \leq \overline{P} + \sum_{r \in R} \overline{\alpha}_r Z_{r,t} = \overline{P}_t, \quad t \in \mathcal{T}, \text{for all } Z_{r,t}$$

Assume that $Z_{r,t} \in [\overline{Z}_r, \underline{Z}_r]$, then

$$\underline{P} - \overline{P} + \underset{\text{s.t. } \underline{Z}_{r} \leq Z'_{r,t} \leq \overline{Z}_{r, r} \in R}{\operatorname{Aximize}} \left\{ \sum_{r \in R} (\underline{\alpha}_{r} - \overline{\alpha}_{r}) Z'_{r,t} \right\} \leq 0, \quad t \in \mathcal{T}.$$

which is equivalent to

$$\begin{split} \overline{P} - \underline{P} + \sum_{r \in R} (\overline{\phi}_{r,t} \overline{Z}_r - \underline{\phi}_{r,t} \underline{Z}_r) &\leq 0 \\ \overline{\phi}_{r,t} - \underline{\phi}_{r,t} &= \overline{\alpha}_r - \underline{\alpha}_r \\ \overline{\phi}_{r,t}, \phi_{r,t} &\geq 0 \end{split} \qquad \begin{aligned} t \in \mathcal{T} \\ r \in R, t \in \mathcal{T} \\ r \in R, t \in \mathcal{T}. \end{aligned}$$

ISMP2018 July 1 — 6, 2018 9 / 19

Solving the estimation problem

- The estimation problem is non-linear and non-convex.
- We statistically approximate its solution by solving two linear programming problems instead.
 - 1 A feasibility problem (estimation of power bounds).
 - 2 An optimality problem (estimation of marginal utilities).
- A two-step data-driven estimation procedure to achieve optimality and feasibility of x' in a statistical sense.

Feasibility problem: Estimation of power bounds

subject to

Motivation

$$\begin{split} \overline{P}_{t} - x'_{t} &= \overline{\xi}^{+}_{t} - \overline{\xi}^{-}_{t} & \forall t \\ x'_{t} - \underline{P}_{t} &= \underline{\xi}^{+}_{t} - \underline{\xi}^{-}_{t} & \forall t \\ \underline{P}_{t} &\leq \overline{P}_{t} & \forall t \\ \underline{P}_{t} &= \underline{\mu} + \sum_{r=1}^{R} \underline{\alpha}_{r} Z_{r,t} & \forall t \\ \overline{P}_{t} &= \overline{\mu} + \sum_{r=1}^{R} \overline{\alpha}_{r} Z_{r,t} & \forall t \\ 0 &\leq \overline{\xi}^{+}_{t}, \overline{\xi}^{-}_{t}, \xi^{+}_{t}, \xi^{+}_{t} & \forall t \end{split}$$

ISMP2018

July 1 — 6, 2018

Optimality problem: Estimating marginal utilities

$$\begin{split} & \text{Minimize } \sum_{t=1}^T \epsilon_t \\ & \text{subject to } \widehat{P}_t \overline{\lambda}_t - \underline{\widehat{P}}_t \underline{\lambda}_t + \sum_{b=1}^B E_b \overline{\phi}_{b,t} - \epsilon_t = \\ & \sum_{b=1}^B \widetilde{x}'_{b,t} \left(u_{b,t} - p_t \right) & \forall t \\ & -\underline{\phi}_{b,t} + \overline{\phi}_{b,t} - \underline{\lambda}_t + \overline{\lambda}_t = u_{b,t} - p_t & \forall b,t \\ & u_{b,t} = \mu^u_b + \sum_r \alpha^u_r Z_{r,t} & \forall b,t \\ & \mu^u_b \geq \mu^u_{b+1} & \forall b < B \\ & \mu^u_1 \geq 200 + \mu^u_2 \\ & 0 \leq \overline{\lambda}_t, \underline{\lambda}_t, \phi_{b,t}, \overline{\phi}_{b,t} & \forall b,t. \end{split}$$

 $\hat{u}_{b,t}, \hat{\mu}_b^u, \hat{\alpha}_r^u$

Motivation Forecasting The Estimation Problem Solution Method Solution Method Case Study Conclusions Future Work

Solving the estimation problem

In the **bound estimation problem**, the **penalty parameter K** is statistically tuned through **validation**:

K as indicator of the price-responsiveness of the load:

0

Narrow interval → Small variability of the load explained by the price.

Wide interval → High variability of the load explained by the price.

ISMP2018

Motivation Forecasting The Estimation Problem Solution Method Solution Method Case Study Conclusions Future Work

○○○ ○○ ○○○ ○○○ ○○ ○○ ○○ ○○

Case study (one-hour ahead prediction)

We simulate the price-response behavior of a pool of **100 buildings** equipped with **heat pumps** (assuming economic MPC is in place).

Two classes of buildings are considered, depending on the comfort bands of the indoor temperature.

ISMP2018 July 1 = 6, 2018 14 / 19

Case study

We conduct a benchmark of the methodology against **simple persistence** forecasting and **autoregressive moving average with exogenous inputs**.

- **Simple persistence model**: The forecast load at time t is set to be equal to the observed load at t-1.
- ARMAX: The aggregate load x is a linear combination of the past values of the load, past errors and regressors.

$$X_t = \mu + \epsilon_t + \sum_{p=1}^{P} \varphi_p X_{t-p} + \sum_{r=1}^{R} \gamma_r Z_{t-r} + \sum_{q=1}^{Q} \theta_q \epsilon_{t-q}$$

Forecasting performance is evaluated according to MAE and

NRMSE =
$$\frac{1}{x^{max} - x^{min}} \sqrt{\frac{1}{T} \sum_{t=1}^{T} \left(\sum_{b=1}^{B} \widehat{x}_{b,t} - x'_{t} \right)^{2}}$$

MASE = $\frac{\sum_{t=1}^{T} \left| \sum_{b=1}^{B} \widehat{x}_{b,t} - x'_{t} \right|}{\frac{T}{T-1} \sum_{t=2}^{T} \left| x'_{t} - x'_{t-1} \right|}$

ISMP2018 July 1 — 6, 2018

Case study

		MAE	NRMSE	MASE
No Flex	Persistence	4.092	0.155	-
	ARMAX	2.366	0.097	0.578
	InvFor	2.275	0.096	0.556
Flex	Persistence	8.366	0.326	-
	ARMAX	2.948	0.112	0.352
	InvFor	2.369	0.097	0.283

For an inflexible pool of loads, $InvFor \approx ARMAX$. When the load aggregation is sensitive to the price, however, InvFor substantially outperforms ARMAX.

Conclusions

What we have done:

- A new method to forecast price-responsive electricity consumption one step ahead.
- A two-step algorithm to statistically approximate the exact inverse-optimization solution.
- A validation scheme to minimize the out-of-sample prediction error.
- A methodology evaluation on a data set corresponding to a cluster of price-responsive buildings equipped with a heat pump.

The **non-linearity between price and aggregate load** is well described by our methodology.

Future Work

- Dealing with corrupted measurements.
- Examining more flexible functional forms between model parameters and regressors.
- Investigating statistically consistent set-valued functions (feasibility set as a function of regressors)
- Testing the methodology on other data sets.

Motivation Forecasting The Estimation Problem Solution Method Solution Method Case Study Conclusions Future Work

Contacts

Any questions?

Established by the European Commission

Juan Miguel Morales juan.morales@uma.es OASYS Webpage: oasys.uma.es

Full paper

Short-term forecasting of price-responsive loads using inverse optimization is available online at IEEExplore http://ieeexplore.ieee.org/document/7859377/

ISMP2018 July 1 — 6, 2018 19 / 19