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Forecasting

@0

Assumptions

A cluster of price-responsive consumers is considered

This cluster is expected to consume more at a
favorable price

We describe the pool of price-responsive consumers
as a utility maximizer agent

Step-wise marginal utility function

Marginal utility

Energy consumption
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Forecasting
oe

Consumers’ price-response model

B
maximize Z Xp,t(Up — Pr)
b—1

x,,,t,vb
B —
subjectto P < be,t <P (At Ar)
b=1
0< X< Ep (@bytaab,t)

It is a linear optimization problem (LOP).

Unknown variables: We seek values of up, P, and P based on
observations of x; ; and p, given E,. We
* Marginal utilities uj use the estimated utility maximizer problem
e Power bounds P, P to predict X;.1.
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The Estimation Problem
[ Je]ele)

The estimation problem: Optimality condition

T

minimize €
mize ) e
t=1
B

B
subjectto PXi—PA+ Y Evdpr— €t =Y Xoi(Up — pr), Vt
b=1 b=

gb,t - ?b,t + A=A =Up—pr, Vt
ab,ﬁ ?bJ)Xh 2\[) €t 2 07 vt

Q= {e[,ﬁ, P, up, A, At@b,n (Pb,t}

Inverse optimization (IOP) is X(t+1)
used to determine the

parameters of the model to
make predictions of the load.
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Leveraging auxiliary information

Model parameters P;, P, and Up,t, might vary over time. We assume a
number of time varying regressors Z such that

R
Et:/j‘FZQ‘er (1)
r=1
o R
P = n+ Z Oerr,t‘ (2)
r=1
R
Upt = pp + Z ar Zp g 3)

r=1
Regressors relate to time and weather:
e Temperature of the air outside %
e Solar irradiance
e Hour indicator
e Past price and load
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The Estimation Problem
0000

Leveraging auxiliary information

The price-response model must make sense for any plausible value of the
features, in particular,

e The minimum consumption limit must be lower than or equal to the
maximum consumption limit

e The minimum consumption limit must be non-negative
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Leveraging auxiliary information

For example,

P, = EJFZQérZr,t < TDJFZarZr,I :ﬁta te T, forall Zt

rer rer

Assume that Z, ; € [Z,, Z,], then

P—P+ Maximize {Z(a, — a,)Z,',,} <0, teT.

reR

r,t

st. Z,<2/ ,<Z,, reR

which is equivalent to

/3—/3+Z($,,2,—@m;,) <0 teT
reR

Grp— 0, =0 — o re RiteT

Grp¢,, >0 reRteT.
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The Estimation Problem
[e]e]e] )

Solving the estimation problem

e The estimation problem is non-linear and non-convex.

o We statistically approximate its solution by solving two linear
programming problems instead.

© A feasibility problem (estimation of power bounds).
@ An optimality problem (estimation of marginal utilities).

¢ A two-step data-driven estimation procedure to achieve optimality
and feasibility of x’ in a statistical sense.
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Solution Method
°

Feasibility problem: Estimation of power bounds

Minimize +&F P /
PP & o ;( (ft & ) x
K(z;+§;)>
subject to
Pt—xt 51 _gt vt P
Aer-g-g
<7 = . ~ =
Bosto " Po b6,
Pi=p+Y aZ., Vit
=T+ Y Wl vt
0<EE et e Vi
<& EE
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Solution Method
®0

Optimality problem: Estimating marginal utilities

T
Mingnize E €t
t=1

all

x" optimal?
~ N B
subject to Py — P\, + ZE,@M —e=
b=1
B
Z Ty, (ups — pr) Vit P
b=1
_Qh,t +pe — At A =ups —pr Vbt ol 8
ube = il + Y0 D Vb, t
T
B > Mg Vb < B
i > 200 + pg
0< XhAqu t@w Vb, t.
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Solution Method
o

Solving the estimation problem

In the bound estimation problem, the penalty parameter K is statistically

tuned through validation:

Training set — Used for parametter fitting
for each posible value of K

(x,p, Z) data set

Validation set — Used to tune parameter K

Test set — Used to assess forecasting
performance

We choose K so that the out-of-simple
A\ 4 prediction error is minimized

Y

K as indicator of the price-responsiveness of the load:

O Narrow interval = Small variability of the load explained by the price.

K

1 Wide interval = High variability of the load explained by the price.
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Case study (one-hour ahead prediction)

We simulate the price-response behavior of a pool of

100 buildings equipped with heat pumps (assuming
economic MPC is in place).

Two classes of buildings are considered, depending
on the comfort bands of the indoor temperature.
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Case study
We conduct a benchmark of the methodology against simple persistence
forecasting and autoregressive moving average with exogenous inputs.

¢ Simple persistence model: The forecast load at time t is set to be equal
to the observed load at t — 1.

o ARMAX: The aggregate load x is a linear combination of the past values
of the load, past errors and regressors.

P R Q

Xt = p+ €+ Z PpXt—p + Z Yit—r + Z Og€t—q
p=1 r=1 g=1

Forecasting performance is evaluated according to MAE and

2
1 LI R ,
NRMSE = xmax _ yminA| T Z Z Xo,t = X

t=1 \b=1

MASE =

T B =

D i ‘Zbﬂ Xb,t — Xt/‘
T T

T 2i=2 )
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Case Study
000

Case study

o |— Load(Flex)
S 7--- Pmax
gl MAE  NRMSE  MASE
§ ARMAX -
= ITITT T Persistence 4.092 0.155 -
3 Y \ ¥ ’ \ No Flex ARMAX 2.366 0.097 0.578
3 o] 0 | InvFor 2.275 0.096 0.556
T ‘,\fw Ilf Persistence _ 8.366 0.326 B
od \ . A Flex ARMAX 2.948 0.112 0.352
. ’ InvFor 2.369 0.097 0.283
? H — Price . .
g g | Bedsomagnauiy For an inflexible pool of loads, InvFor ~
g g ARMAX. When the load aggregation is
£ 3 sensitive to the price, however, InvFor
& substantially outperforms ARMAX.
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Conclusions
°

Conclusions

What we have done:

¢ A new method to forecast price-responsive electricity consumption
one step ahead.

¢ A two-step algorithm to statistically approximate the exact
inverse-optimization solution.

¢ A validation scheme to minimize the out-of-sample prediction error.

¢ A methodology evaluation on a data set corresponding to a cluster of
price-responsive buildings equipped with a heat pump.

The non-linearity between price and aggregate load is well described by
our methodology.
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Future Work
®0

Future Work

Dealing with corrupted measurements.

Examining more flexible functional forms between model parameters and
regressors.

Investigating statistically consistent set-valued functions (feasibility set as
a function of regressors)

Testing the methodology on other data sets.
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Future Work
o

Contacts

Any questions?

European Research Council

Juan Miguel Morales

SASYS
juan.morales@uma.es

OASYS Webpage: oasys.uma.es

Full paper
Short-term forecasting of price-responsive loads using inverse optimization
is available online at IEEExplore
http://ieeexplore.ieee.org/document/7859377/
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