
Motivation Forecasting The Estimation Problem Solution Method Solution Method Case Study Conclusions Future Work

Predicting the Electricity Demand Response via
Data-driven Inverse Optimization

23rd International Symposium on Mathematical Programming
Bordeaux, France

Javier Saez-Gallego 1 and Juan M. Morales 2

1Siemens Gamesa, Copenhagen, Denmark
2Department of Applied Mathematics, University of Málaga, Spain

July 1− 6, 2018

ISMP2018 July 1 − 6, 2018 1 / 19



Motivation Forecasting The Estimation Problem Solution Method Solution Method Case Study Conclusions Future Work

Towards the decentralization of the electricity grid

↑Complexity

↑Information

↑ Robustness, resilience, 
reliability, security
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Involving the small consumer
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Outline

• Motivation

• Forecasting the price-responsive costumers’ demand

• Defining the estimation problem

• Solving the estimation problem

• Case study: HVAC system of a pool of buildings

• Conclusions

ISMP2018 July 1 − 6, 2018 4 / 19



Motivation Forecasting The Estimation Problem Solution Method Solution Method Case Study Conclusions Future Work

Assumptions

A cluster of price-responsive consumers is considered

This cluster is expected to consume more at a 
favorable price

We describe the pool of price-responsive consumers
as a utility maximizer agent

Step-wise marginal utility function
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Consumers’ price-response model

maximize
xb,t ,∀b

B∑
b=1

xb,t (ub − pt )

subject to P ≤
B∑

b=1

xb,t ≤ P (λt , λt )

0 ≤ xb,t ≤ Eb (φb,t , φb,t )

It is a linear optimization problem (LOP).

Unknown variables:

• Marginal utilities ub

• Power bounds P,P

We seek values of ub, P, and P based on
observations of x ′b,t and pt , given Eb. We
use the estimated utility maximizer problem
to predict xt+1.
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The estimation problem: Optimality condition

minimize
Ω

T∑
t=1

εt

subject to P λt − Pλt +
B∑

b=1

Ebφb,t − εt =
B∑

b=1

xb,t (ub − pt ), ∀t

φb,t − φb,t + λt − λt = ub − pt , ∀t

φb,t , φb,t , λt , λt , εt ≥ 0, ∀t

Ω =
{
εt ,P,P,ub, λt , λt , φb,t , φb,t

}
Inverse optimization (IOP) is
used to determine the
parameters of the model to
make predictions of the load.
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Leveraging auxiliary information
Model parameters P t , P t and ub,t , might vary over time. We assume a
number of time varying regressors Z such that

P t = µ+
R∑

r=1

αr Zr ,t (1)

P t = µ+
R∑

r=1

αr Zr ,t (2)

ub,t = µu
b +

R∑
r=1

αu
r Zr ,t (3)

Regressors relate to time and weather:
• Temperature of the air outside
• Solar irradiance
• Hour indicator
• Past price and load
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Leveraging auxiliary information

The price-response model must make sense for any plausible value of the
features, in particular,

• The minimum consumption limit must be lower than or equal to the
maximum consumption limit

• The minimum consumption limit must be non-negative
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Leveraging auxiliary information
For example,

P t = P +
∑
r∈R

αr Zr ,t ≤ P +
∑
r∈R

αr Zr ,t = P t , t ∈ T , for all Zr ,t

Assume that Zr ,t ∈ [Z r ,Z r ], then

P − P + Maximize
Z ′r,t

s.t. Z r≤Z ′r,t≤Z r , r∈R

{∑
r∈R

(αr − αr )Z ′r ,t

}
≤ 0, t ∈ T .

which is equivalent to

P − P +
∑
r∈R

(φr ,tZ r − φr ,tZ r ) ≤ 0 t ∈ T

φr ,t − φr ,t = αr − αr r ∈ R, t ∈ T

φr ,t , φr ,t ≥ 0 r ∈ R, t ∈ T .
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Solving the estimation problem

• The estimation problem is non-linear and non-convex.

• We statistically approximate its solution by solving two linear
programming problems instead.

1 A feasibility problem (estimation of power bounds).

2 An optimality problem (estimation of marginal utilities).

• A two-step data-driven estimation procedure to achieve optimality
and feasibility of x ′ in a statistical sense.
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Feasibility problem: Estimation of power bounds

�𝑃𝑃𝑡𝑡, �𝑃𝑃𝑡𝑡, 𝜇̂𝜇, �𝜇𝜇, �𝛼𝛼𝑟𝑟, �𝛼𝛼𝑟𝑟

𝑃𝑃

𝑃𝑃

𝑥𝑥𝑥
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Optimality problem: Estimating marginal utilities

𝑃

𝑃

𝑥′ 𝑜𝑝𝑡𝑖𝑚𝑎𝑙?

ො𝑢𝑏,𝑡, Ƹ𝜇𝑏
𝑢, ො𝛼𝑟

𝑢
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Solving the estimation problem
In the bound estimation problem, the penalty parameter K is statistically
tuned through validation:

𝑥, 𝑝, 𝑍 data set

Training set  Used for parametter fitting
for each posible value of K 

Validation set  Used to tune parameter K 

Test set  Used to assess forecasting
performance

We choose K so that the out-of-simple 
prediction error is minimized

K as indicator of the price-responsiveness of the load:
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Case study (one-hour ahead prediction)
We simulate the price-response behavior of a pool of
100 buildings equipped with heat pumps (assuming
economic MPC is in place).

Two classes of buildings are considered, depending
on the comfort bands of the indoor temperature.
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Case study
We conduct a benchmark of the methodology against simple persistence
forecasting and autoregressive moving average with exogenous inputs.

• Simple persistence model: The forecast load at time t is set to be equal
to the observed load at t − 1.

• ARMAX: The aggregate load x is a linear combination of the past values
of the load, past errors and regressors.

xt = µ+ εt +
P∑

p=1

ϕpxt−p +
R∑

r=1

γr Zt−r +
Q∑

q=1

θqεt−q

Forecasting performance is evaluated according to MAE and

NRMSE =
1

xmax − xmin

√√√√√ 1
T

T∑
t=1

 B∑
b=1

x̂b,t − x ′t

2

MASE =

∑T
t=1

∣∣∣∑B
b=1 x̂b,t − x ′t

∣∣∣
T

T−1
∑T

t=2

∣∣∣x ′t − x ′t−1

∣∣∣
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Case study
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MAE NRMSE MASE

No Flex
Persistence 4.092 0.155 -

ARMAX 2.366 0.097 0.578
InvFor 2.275 0.096 0.556

Flex
Persistence 8.366 0.326 -

ARMAX 2.948 0.112 0.352
InvFor 2.369 0.097 0.283

For an inflexible pool of loads, InvFor ≈
ARMAX. When the load aggregation is
sensitive to the price, however, InvFor
substantially outperforms ARMAX .
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Conclusions

What we have done:
• A new method to forecast price-responsive electricity consumption

one step ahead.

• A two-step algorithm to statistically approximate the exact
inverse-optimization solution.

• A validation scheme to minimize the out-of-sample prediction error.

• A methodology evaluation on a data set corresponding to a cluster of
price-responsive buildings equipped with a heat pump.

The non-linearity between price and aggregate load is well described by
our methodology.
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Future Work

• Dealing with corrupted measurements.

• Examining more flexible functional forms between model parameters and
regressors.

• Investigating statistically consistent set-valued functions (feasibility set as
a function of regressors)

• Testing the methodology on other data sets.
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Contacts

Any questions?

Juan Miguel Morales
juan.morales@uma.es

OASYS Webpage: oasys.uma.es

Full paper
Short-term forecasting of price-responsive loads using inverse optimization

is available online at IEEExplore
http://ieeexplore.ieee.org/document/7859377/
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