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Abstract— A charge-controlled, one-port device is used to 

describe and discuss the extraction procedure of a Poly-Harmonic 

Distortion (PHD) model in detail. For this case, both voltage and 

current waveforms are shown to be enough to fully characterize 

the PHD model. It is also shown that all the information 

specifically required for this PHD model definition can be stored 

in the Fourier coefficients of the incremental conductance and 

capacitance. The results are validated by comparing them with 

those obtained using a commercial circuit simulation tool. 

Keywords— large-signal model; PHD model; charge-controlled 

model; X-parameters. 

I.  INTRODUCTION 

In recent years, the characterization of non-linear devices in 
the frequency domain has been carried out using NVNA to 
characterize devices in terms of models based on X-parameters 
[1], S-functions [2], etc. These models have been described as 
a generalized version of conventional small-signal S-
parameters and are based on the Poly-Harmonic Distortion 
(PHD) principle [3]. They represent the non-linear response of 
a device to a large signal periodic excitation and the sensitivity 
of the different harmonics in response to changes in the 
harmonic content of the excitation. Incident waves at device 
ports are considered as the excitation signal while reflected 
waves are the response. The usefulness of and interest in these 
models have been proven and they are extensively used in the 
design of non-linear microwave circuits. They require high-
performance specific measurement set-ups such as those based 
on the PNA-X family from Keysight. The main CAD tools have 
also included toolboxes that import X-parameters or S-
functions into their schematics and, conversely, they can obtain 
these parameters from their non-linear simulation tools. 

At the same time, charge-controlled equivalent circuits have 
been used extensively when modelling active solid state devices 
using compact models. The physical behaviour of these devices 
is properly represented by means of a current source shunted 
connected to a charge source (Fig. 1). These models are 
particularly useful in non-linear environments [4]. However 
they have two main limitations: 

• At most, they can properly represent the intrinsic 
behaviour of the devices. For this reason the extrinsic 
shell should be de-embedded in order to extract the 
model properly.  

• These models are a quasi-static approach to the actual 
behaviour of the device. If non-quasi-static phenomena 
are noticeable, which happens at high frequencies, the 
model becomes no longer valid. 

In this contribution, PHD model parameters, in particular X-
parameters, and charge-controlled quasi-static models have 
been linked. It is shown that X-parameters can be calculated 
from I-V waveforms provided the device can be simulated by 
means of a charge-controlled model. In order to simplify the 
formulation, a one-port device (ideal diode) is used throughout 
the experiment. The extraction procedure is validated by 
comparing it with the X-parameters obtained using a 
commercial CAD tool (NI-AWR Design Environment). 

II. PHD  MODELS FOR CHARGED-CONTROLLED ONE-PORT 

DEVICES 

The so-called PHD principle [3] applies to non-linear 
devices driven  by a large single-tone input signal. Because of 
the non-linearities, the response of the device will be a periodic 
signal with multiple harmonics. If the input signal is perturbed 
by the addition of small tones at different harmonics, the 
response can be linearly perturbed by additional harmonics at 
the output port. The sensitivity matrix represents how any small 
harmonic perturbation at the input port affects, by 
superposition, the harmonics at the output port.  

If incident and scattered waves are used as variables, the 
PHD model can be written as follows: 
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Fig. 3. Non-linear equivalent circuit for one port devices based on the 

charged-controlled model.  
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where A and B are the vectors that contain harmonics of both 
incident and scattered waves up to order N, defined as: 
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In the most frequent case A=[0,..0, A1, 0,...0], with A1 real 
(phase = 0). FX is the non-linear functional relationship that 
describes the device and gives the relationship between the 
input wave A and the response wave B. Vectors a and b 
represent the complex amplitude of the harmonics of the 

perturbation signals. The matrix

1 ,

b

a
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∂

∂
 is the sensitivity 

matrix and includes the so-called XT (or T) and XS (or S) 

matrices, subsets of X-parameters. Vector 
1 ,

B B
A DC

=

corresponds to the subset XF (or F) of the X-parameters. In this 
contribution the complete sensitivity matrix is just called the X 
matrix. It will be demonstrated in Section III how matrices XS 
and XT can be easily extracted from this unique X matrix, if 
required. 

Matrices XS and XT verify that 
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The PHD model can also be defined using different circuit 
variables. It is still assumed that the device is driven by the same 
monochromatic signal A=[0,..0, A1, 0,...0]. If the voltage is 
considered to be the input signal and the current is the response, 
the PHD model can be described as: 
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where FY is the non-linear functional relationship of the device, 
V and I are vectors containing the harmonics up to order N of 

both input and output signals. 

1 ,

i
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∂

∂
is the new sensitivity 

matrix that represents how perturbations in the harmonics of the 
input signal (v) produce perturbations in the harmonics of the 
output signals (i). In the following, this matrix is called the Y 
matrix or admittance matrix.  

If the device can be modelled by means of a charge-
controlled quasi-static equivalent circuit, the current can be split 
into two contributions:  
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where ig(v(t)) is the conductive current and iq(v(t)) is the 
displacement current, and q(v(t)) is the charge source. This 
corresponds to an equivalent circuit like that detailed in Fig. 1. 
Using this definition in the time-domain, the sensitivity can be 
calculated as follows: 
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The small-signal component of the current is given by: 
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and therefore it can be computed, in the frequency domain, 
using the implied convolution. 

In the frequency domain the current can be expressed as: 
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where GC and CC are the circulant matrices obtained from 
vector G and C, respectively. Vectors G and C are the 
coefficients of the Fourier Transform of both the incremental 
conductance (g(v(t))) and capacitance (c(v(t))) functions, 
namely, 
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Matrix Ω is diagonal and contains the harmonic frequencies. 

This matrix (actually jΩ) comes from the time-derivative. It 
should be noted that double amount of harmonics have to be 
considered (2N) for G and C in order to calculate the 
convolution implied in (7) and avoid aliasing properly. 

For the sake of clarity, the case for N=3 with no 
displacement current (q(t)=0)  is illustrated in (9). Here Y = GC. 
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In (9) some sub-matrices have been highlighted. The yellow 
ones relate harmonics with subscripts with the same sign in the 



input and output spectra. They are usually called YS in the 
bibliography [5], [6] through the analogy with the X-parameter 
subsets. The blue ones relate harmonics with subscripts with 
different signs and are usually called YT. It is evident from this 
simple case how harmonics from -2N to 2N are required for the 
conductance function G (the same applies to C in a more 
general case). 

It is worth highlighting that the information required to 
obtain the Y matrix are both current and voltages waveforms, 
with no additional specific measurements for the sensitivity 
matrix. All the information required for the calculation of the 
sensitivities can be stored in a couple of G and C vectors.  Note 
that current should be split in its two conduction and 
displacement components. Furthermore, the formulation in 
terms of this Y matrix has the conductive and capacitance 
effects separated. This fact provides a compact model ready to 
be frequency scaled (as long as the quasi-static approach 
applies) [8]. 

III. OBTAINING X PARAMETERS FROM THE ADMITTANCE Y

MATRIX 

In this section the calculation of conventional X-parameters 
from the Y matrix is carried out. Firstly the X matrix will be 
obtained and, secondly, the so-called XS, XT and XF will be 
extracted.  

Taking into account the relationship between currents and 
voltages and incident and scattered waves [5], [6] it is 
straightforward to demonstrate that: 
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where X is the complete sensitivity matrix (as defined in 
Section II), Y is the admittance matrix defined in (7), U is the 
identity matrix and Z0 is the reference impedance. XF is a subset 
of X-parameters that can be easily obtained from V and I using 
(10). 

Once the X matrix is available, XS and XT can be extracted 
from it. Again, by using an example with N=3, the X matrix 
becomes: 

 (11) 

Again XS (the relationship between harmonics with 
subscripts with same sign) has been highlighted in yellow. XT 
(relating harmonics with subscripts with different signs) has 
been marked in blue.  

In the general case (N harmonics) both matrices can be 
extracted using (12). Although the use of XS and XT is quite 

extended, the proposed formulation, using just one X matrix, is 
more compact, more complete and it is believed to facilitate the 
understanding of the physical meaning of non-linear frequency 
domain models based on the PHD principle. 
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IV. RESULTS

An ideal diode (i.e., with no parasitic effects at all) has been 
used to illustrate the proposed extraction procedure. This device 
guarantees the proper use of the quasi-static charge-controlled 
model. It is described using the DIODE1 and PNCAP NI-AWR 
models for the non-linear conductance and capacitance, 
respectively. The model parameters are detailed in Table I.  

TABLE I. IDEAL DIODE MODEL 

DIODE1 PNCAP 

I0 (mA) ηkBT (CV) CJ0 (pF) VJ (V) M FC 

4.6 10-5 4.5 10-21 1.8 0.5 0.5 0.5 

The device is driven by a source @1 GHz and biased @ 0 

V. The available power of the source (Zg= 50 Ω) is 6 dBm. The 
diode is analyzed using Harmonic Balance in a commercial tool 
(NI-AWR Design Environment). Voltage and current 
waveforms and their harmonics up to N=30 have been 
calculated and exported to be used in the calculation of both Y 
and X matrices. 

Fig. 2 represents the device I-V load-curve, including both 
conduction and displacement components. Both conductance 
and capacitance as a function of time have been calculated from 
(13). These functions have been used to build the Y matrix 
using (7). This matrix has been transformed into X using (10). 
Vector XF

IQ has been obtained from I and V (see (10)) and 
matrices XS

IQ and XT
IQ have been extracted from X using (12). 

Furthermore, the PHD Model Generator (wizard included in 
NI-AWR Design Environment) has been used to calculate the 
X-parameters (up to order 15, the maximum available) for the 
same device under the same frequency, load, biasing and input 
power conditions. The PHD Model Generator calculates X- 
parameters with a numerical procedure that emulates that used 
by NVNA. The simulation output file contains the XF

AWR 
vector, and the XS

AWR and XT
AWR matrices.  

In order to compare the X matrix obtained from the 
waveforms with that provided by the circuit simulator matrices, 
XS

IQ and XT
IQ have been extracted for harmonics up to order 

15. Fig. 3 details XS
AWR and XS

IQ. Fig. 4 is the difference
between both matrices calculated as

( , ) ( , ) ( , )
S S S

AWR IQk l X k l X k l∆ = − . The mean error, given by

( , )S k l∆ , is 9.5 10-5. 
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 Due to page limitations, the results for XT have not been 
included. They are qualitatively similar to those in Figs. 3 and 

4. In this case the mean error, given by ( , )T k l∆ , is 5.8 10-5. 

The adjustment for XF does not deserve further comment 
because it is almost trivial, according to the definition (10). It 
can be concluded that the proposed formulation that calculates 
X parameters just from waveform data provides excellent 
results under ideal conditions.  

V. CONCLUSIONS 

It has been shown that PHD models such as X-parameters 
can be obtained just by using input-output waveforms (I-V) in 
the case of quasi-static, charge-controlled, one-port active 
devices. It has also been shown that the Fourier coefficients of 
the incremental conductance and capacitance constitute all the 
information required to fully characterize the PHD model. 
Moreover, the procedure described provides the non-linear 
admittance matrix that can be considered as a behavioural 
model closer to the physics of the device and potentially 
frequency scalable [8].  

The proposed formulation has been applied to an ideal diode 
(a one-port device with no parasitic effects). The results 
obtained have been validated by comparing them with those 
provided by commercial software (NI AWR Design 
Environment). 

Despite the simplicity of this example, the extension to two-
port devices is quite straightforward using this compact 
formulation in terms of just a single matrix. The application of 
this formulation to an actual device would require the proper 
de-embedding [4], [6] of the parasitic shell in order to reach the 
intrinsic plane in which the quasi-static approach could be 
valid.  
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Fig. 2 Diode load-curve (blue). Conduction current ig  (green) and

displacement current qi dq dt= (red) vs. input voltage v  
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Fig. 3. XS
AWR (red) and XS

IQ (blue) up to 15 harmonics. 


