

Poster preferred

Molecular Electronics Paris, France August 27-31st 2018

Understanding Cross-Conjugation for Organic Electronics

Samara Medina,^a Jean-François Morin,^b Xiaozhang Zhu^c, Juan Casado^a

^a Univ. Malaga, Dept. Phys. Chem., Campus Teatinos S-N, E-29071 Malaga, Spain, <u>samara@uma.es</u>.
^b Département de Chimie, Université Laval, 1045 Ave de la Médecine, Québec, G1V 0A6, Canada.
^c Chinese Acad. Sci., Inst. Chem., CAS Key Lab Organ Solids, Beijing 100080, Peoples R China.

Abstract:

 π -Conjugated organic molecules have been the focus of interest since they have been probed as potential semiconducting materials,^[1] suitable for replacing the widely used silicon technologies. Their structural, optical and conductive properties are now under study to improve their application in organic electronics and to make possible their *ad hoc* synthesis. In this sense, the knowledge of the π -electron delocalization is crucial to stablish the relation between the properties and the function, enabling the development of a synthesis guide based on the specific application.

The most acknowledged conjugated organic materials are those which present extended, linearlyconjugated π -systems.^[1,2] However, this is not the only way of π -electron delocalization: homoconjugation, cross-conjugation, curved-conjugation, etc. constitute different electronic designs to achieve new organic materials.

There is a relative high abundance in the organic world of cross-conjugated but limited comprehension.^[1,2,3] Thus, the understanding of how cross-conjugation works in π -electronic systems is of importance. Following this idea, in this project we show 4 different structures which present two perpendicular π -conjugated paths and how the cross-conjugated property is revealed. On the one hand, two molecules based on thieno[3,4-c]pyrrole-4,6-dione quaterthiophenes^[2,3] allow us to accomplish the subject from the aromatic/quinoidal outlook, and, on the other hand, two molecules with an anthanthrone core make possible the study from the perspective of the substituent groups.^[4]

Cross-conjugated paths in a quaterthiophene-based molecule.

References:

- 1. Gholami, M.; Tykwinskyi, R. R., Chem. Rev., 2006, 106, 4997-5027.
- 2. Ponce Ortiz, R. et al., Adv. Funct. Mater., 2009, 19, 386-394.
- 3. Yuan, D. et al., Chem. Eur. J., 2018, 24, 13523-13534.
- 4. Klokkenburg, M. et al., Chem. Eur. J., 2013, 9, 3544-3554.
- 5. Desroches, M. et al., Angew. Chem. Int. Ed., 2017, 56, 16212-16217.