
Towards a Software Transactional
Memory for heterogeneous CPU-GPU

processors

Alejandro VILLEGAS 1, Angeles NAVARRO, Rafael ASENJO and Oscar PLATA
a Universidad de Málaga, Andalucı́a Tech.

Dept. Computer Architecture, 29071 Málaga, Spain
email: {avillegas, angeles, asenjo, oscar}@ac.uma.es

Abstract. The heterogeneous Accelerated Processing Units (APUs) integrate a
multi-core CPU and a GPU within the same chip. Modern APUs provide the pro-
grammer with platform atomics, used to communicate the CPU cores with the GPU
using simple atomic datatypes. However, ensuring consistency for complex data
types is a task delegated to programmers, who have to implement a mutual exclu-
sion mechanism. Transactional Memory (TM) is an optimistic approach to imple-
ment mutual exclusion. With TM, shared data can be accessed by multiple comput-
ing threads speculatively, but changes are only visible if a transaction ends with no
conflict with others in its memory accesses. TM has been studied and implemented
in software and hardware for both CPU and GPU platforms, but an integrated solu-
tion has not been provided for APU processors.

In this paper we present APUTM, a software TM designed to work on hetero-
geneous APU processors. The design of APUTM focuses on minimizing the ac-
cess to shared metadata in order to reduce the communication overhead via expen-
sive platform atomics. The main objective of APUTM is to help us understand the
tradeoffs of implementing a sofware TM on an heterogeneous CPU-GPU platform
and to identify the key aspects to be considered in each device. In our experiments,
we compare the adaptability of APUTM to execute in one of the devices (CPU or
GPU) or in both of them simultaneously. These experiments show that APUTM is
able to outperform sequential execution of the applications.

Keywords. transactional memory, APU processors, parallel programming

1. Introduction

Nowadays, multi-threaded programming has become essential in order to take the most
of multi-core CPUs, GPUs, and many other kinds of processors. One of the main issues
programmers face when designing their algorithms is the management of shared data:
if two or more computing threads share a piece of data, then programmers have to im-
plement a mechanism that ensures mutual exclusion. Usually, mutual exclusion is im-
plemented employing locking mechanism that are inefficient (if coarse-grained locks are
implemented) or hard to program (if the solution uses fine-grained locks).

1Corresponding Author

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/214841538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Transactional Memory (TM) [9] has emerged as a promising alternative to the use of
locks. The TM interface allows programmers to enclose the accesses to shared data inside
transactions, which execute in parallel in a speculative way. Mutual exclusion is guar-
anteed thanks to the implementation of proper version management and conflict detec-
tion mechanisms. As TM is proving to both ease programming and to obtain substantial
speedups in CPUs [8] and GPUs [1,11,10,6,5,2] separately, the industry keeps moving to
integrate both devices into a single heterogeneous processor. The Accelerated Processing
Units (APUs) are available for some years now. These processors incorporate a multi-
core CPU and a GPU in the same chip. Not only that, but the Heterogeneous Systems
Architecture (HSA)2 initiative is setting standards to ease programming and define the
expected capabilities of heterogeneous platforms. Specifically, HSA-enabled APUs offer
an unified memory space visible by both CPU and GPU, and a set of platform-atomics
operations that allow for communication between both devices. As programmers start to
deploy their programs across the CPU cores and the GPU, the needs of an efficient mu-
tual exclusion mechanism will surface and exploring different implementations of TM
solutions will be an important research field.

The implementation of TM in heterogeneous CPU-GPU processors is a challeng-
ing task, as both CPU and GPU work under different programming models. Multi-core
CPUs follow the MIMD model, where multiple cores may operate on different data or
a shared memory, while GPUs follow the SIMD programming model, where multiple
threads execute the same instruction (lockstep execution) on different memory positions.
Another challenge is the memory space. CPUs have access to a main memory via a co-
herent cache hierarchy. On the GPU, main memory is accessed via a cache hierarchy
where, in most cases, the L1 data cache is not coherent. In addition, GPUs feature a
low-latency scratch-pad memory (shared memory in CUDA, local memory in OpenCL,
or tiled memory in C++AMP) that can be used to accelerate the management of GPU-
private transactional metadata. Lastly, communication between CPU and GPU is an im-
portant problem to solve. Platforms atomics ensure that values communicate effectively
between both devices, but these operations are expensive in terms of memory latency.

To better understand and overcome these challenges, we propose APUTM, a soft-
ware TM designed to work on APU processors. APUTM can be configured to run sepa-
rately on the CPU cores or the GPU, or simultaneously in both devices, ensuring mutual
exclusion in any case. APUTM is inspired by NOrec [3], combining a fast timestamp-
based conflict detection mechanism with a precise value-based validation. For the GPU,
APUTM implements a mechanism to allow for parallel commits of transactions while
updating the timestamp information to communicate with the CPU cores. In our evalu-
ation, we use a synthetic workload and two microbenchmarks to analyze different con-
figurations of APUTM. We provide a discussion on the impact that our design decisions
have on the performance of APUTM on both devices and provide hints for future im-
provements.

2. Conclusions and Future work

In this paper we present APUTM, a software TM designed specifically for APU archi-
tectures. Two implementations are presented: one using a global sequence lock to com-

2http://www.hsafoundation.com/



mit transactions quickly, and the other checking for conflicts using a transaction-private
read-set. In general, the former presents better performance in both the CPU and the
GPU, but is more scalable when running on the CPU. The main goal of APUTM is to
understand the behavior of transactions on APU processors. Besides that, APUTM is
able to outperform sequential execution in some scenarios.

We plan to improve APUTM in several ways: coalescing GPU memory accesses for
a better use of memory bandwidth, creating a scheduler for a better distribution of trans-
actions across devices, and increasing the granularity of GPU commits from wavefront to
work-group to increase performance. We also consider proposing architectural changes
to reduce the overhead of enabling/disabling GPU transactions that conflict. Lastly, we
plan to extend the evaluation of APUTM. We are currently implementing more applica-
tions to assess APUTM, as well as studying the overhead of the library with respect to
the total execution time and other TM-related metrics.

Acknowledgements

This work has been supported by projects TIN2013-42253-P and TIN2016-80920-R,
from the Spanish Government, P11-TIC8144 and P12- TIC1470, from Junta de An-
dalucı́a, and Universidad de Málaga, Campus de Excelencia Internacional, Andalucı́a
Tech.

References

[1] D. Cederman, P. Tsigas, and M. T. Chaudhry. Towards a software transactional memory for graphics
processors. In 10th Eurographics Conf. on Parallel Graphics and Visualization (EG PGV’10), pages
121–129, 2010.

[2] S. Chen and L. Peng. Efficient GPU hardware transactional memory through early conflict resolution.
In 22nd Int’l. Symp. on High Performance Computer Architecture (HPCA’16), 2016.

[3] L. Dalessandro, M. F. Spear, and M. L. Scott. Norec: Streamlining stm by abolishing ownership records.
In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’10, pages 67–78, New York, NY, USA, 2010. ACM.

[4] P. Felber, C. Fetzer, T. Riegel, and P. Marlier. Time-based software transactional memory. IEEE Trans-
actions on Parallel & Distributed Systems, 21:1793–1807, 2010.

[5] W. W. L. Fung and T. M. Aamodt. Energy efficient GPU transactional memory via space-time opti-
mizations. In 46th Ann. IEEE/ACM Int’l. Symp. on Microarchitecture (MICRO’13), pages 408–420,
2013.

[6] W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt. Hardware transactional memory for GPU
architectures. In 44th Ann. IEEE/ACM Int’l. Symp. on Microarchitecture (MICRO’11), pages 296–307,
2011.

[7] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’08, pages
175–184, New York, NY, USA, 2008. ACM.

[8] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd Ed. Morgan & Claypool Publishers,
USA, 2010.

[9] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural support for lock-free data structures.
In 20th Ann. Int’l. Symp. on Computer Architecture (ISCA’93), pages 289–300, 1993.

[10] A. Holey and A. Zhai. Lightweight software transactions on GPUs. In 43rd Int’l Conf. on Parallel
Processing (ICPP’14), pages 461–470, 2014.

[11] Y. Xu, R. Wang, N. Goswami, T. Li, L. Gao, and D. Qian. Software transactional memory for GPU
architectures. In Ann. IEEE/ACM Int’l. Symp. on Code Generation and Optimization (CGO’14), pages
1:1–1:10, 2014.


