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SUMMARY 

This dissertation deals with NEEDLELESS ELECTROSPUN 

POLYACRYLONITRILE NANOFIBER MATS - PREPARATION, 

STABILIZATION, CARBONIZATION AND COMPOSITE FORMATION and 

consists of a total of nine thematic chapters. 

At the beginning of the work, the first chapter gives an overview of the research 

as well as short descriptions of important research results. In addition, theoretical 

frameworks of the work are presented and the state of the art is examined, with a 

focus on electrospinning technology and the influences of parameters in the 

electrospinning process. Subsequently, the oxidation and stabilization processes of 

nanofiber mats are presented. 

The second chapter focuses on the methodology of the investigations and 

describes materials, devices and research methods used in this work. This chapter 

begins with an overview of the materials used. Then, the structure and principle of 

the needleless electrospinning machine is vividly illustrated. In addition, special 

attention is paid to the sample preparation and also to the fixing methods of 

nanofiber mats during the stabilization process. Several attempts to fix nanofibers 

during the stabilization process are illustrated and explained in more detail. In 

addition, experimental framework conditions for stabilization and carbonization 

parameters are presented and clearly described. This chapter concludes with 

various materials characterization methods that will be used during the research 

work in this dissertation. 

The research results can be found in chapters three to eight, where they are 

presented as a compendium of publications. In total, these chapters are based on 

six publications that have already been published, accepted or submitted. The 

publications have been structured thematically, starting with basics such as the 

investigation of optimal electrospinning parameters for nanofiber mats. 

Subsequently, more complex topics such as the formation of composites such as 

the mixing of PAN with gelatin and experimental investigations of metal-carbon 

composites are carried out.  

The following six publications, which have already been published, accepted or 

submitted, were used in this research work and form the core of this work.  
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INTRODUCTION 
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 INTRODUCTION 1.

  Overview of the thesis and objectives of the research 1.1

This dissertation deals with needleless electrospun polyacrylonitrile (PAN) nanofiber 

mats, which are electrospun with the non-toxic solvent dimethyl sulfoxide (DMSO). 

The motivation for this work is based on the fact that to the best of my knowledge 

neither PAN-nanofibers electrospun with needleless technology nor fibers 

electrospun from the low-toxic solvent DMSO have been investigated in the 

literature for optimal stabilization and carbonization properties. Recent studies 

typically use teratogenic solvents such as DMF (dimethylformamide) or DMAc 

(dimethylacetamide) as solvents. Studies on the transition between nanofiber mat and 

membrane with regard to water vapor permeability are also not to be found in the 

literature and are also investigated in this dissertation.  

The blending of PAN with gelatin to produce highly porous nanofibers has been 

reported several times in the literature, but no attempts have yet been made to 

stabilize and carbonize these fibers. This dissertation will report on the first tests for 

stabilization of PAN/gelatin nanofibers, which show the influence of different 

stabilization temperatures and heating rates on the chemical properties and 

morphologies of the resulting nanofiber mats. 

Furthermore, the problem of fiber fusing during stabilization and thus the prevention 

of the formation of separated straight carbon nanofibers (CNFs) after carbonization is 

often neglected or not studied in recent scientific literature. The dimensional change 

of nanofibers during the stabilization process and during carbonization in fixed and 

non-fixed nanofiber mats was additionally investigated in this dissertation.  

Moreover, this study suggests a novel method to overcome the problem of 

insufficient fixing of the nanofiber mats during the stabilization process by 

electrospinning on an aluminum substrate on which the nanofiber mat adheres rigidly 

and retains its morphology during stabilization and carbonization processes. After the 

stabilization process, the nanofiber mats can be separated from the aluminum 

substrates to form pure carbon nanofibers after carbonization, or they can be 

carbonized together with aluminum substrates. In this case, new types of metal / 

carbon composites are being developed that can be widely used. The findings should 

make an important contribution to the field of metal/carbon composites.  
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This dissertation has the following main objectives:  

(1) Investigation of spinning parameters for the needleless electrospinning 

process of PAN dissolved in DMSO and the resulting nanofiber mats and 

development of nearly impenetrable thin membranes by modifying the 

electrospinning parameters. 

(2) Investigation of the influence of stabilization temperature and heating rates 

on the chemical properties as well as the morphologies of the resulting 

nanofiber mats from PAN and PAN/gelatin blends. 

(3) Investigation of dimensional changes of nanofibers during the stabilization 

process and optimization of the fixing technology to prevent contraction and 

shrinkage of nanofibers and the resulting increase in diameter and 

undesirable bending.  

To achieve these objectives, the following investigations will be performed:  

 Studying the influence of spinning parameters on the resulting nanofiber mats 

 Development of different ratios of nanofibers and membrane-like areas by 

varying electrospinning parameters 

 Studying the impact of the mat morphology on the water vapor permeability 

through PAN nanofibers mats with different membrane-like areas 

 Studying the influence of heating rates on the chemical properties as well as 

the morphologies of the resulting nanofiber mats from PAN and PAN/gelatin 

blends. 

 Development of new fixation methods of nanofiber mats during stabilization 

 Optimizing the balance between not burning the nanofibers and allowing a 

chemical reaction to proceed sufficiently fast to allow complete stabilization, 

i.e. investigation of optimal parameters during stabilization 

 Investigation of PAN/gelatin blends during stabilization and carbonization 

 Development of novel metal/carbon composites to overcome the undesired 

bending and conglutinations of the nanofibers in a mat 

The investigations of needleless electrospun PAN nanofiber mats and nano-

composites using DMSO as a solvent is of particular interest because it allows for 

using low-toxic solvents, enabling the use of the resulting nanofiber mats in 

applications like medicine or food packaging, and producing large-scale nanofiber 

mats, resulting in possible industrial-scale applications. 
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  Electrospinning process background 1.2

 

Electrospinning has become increasingly important in recent years for many 

applications because of the large variety of many different polymers which can be 

processed by this technique. The importance of electrospun nanofibers can be 

determined by the regularly published numerous articles highlighting their 

importance in various fields of application with natural or synthetic polymers. 

Electrospinning is one of the most cost-effective techniques to create fibers on nano- 

to micrometer scales which is mainly used because of the ease of use and at the same 

time is susceptible to modifications. The fibers have diameters on the submicrometer 

scale (10-2-10 μm) and have remarkable properties such as a high surface area to 

volume ratio [1]. 

  Brief history 1.3

 

By electrospinning very thin fibers can be produced in an electric high-voltage field 

mainly from polymer solutions or polymer melts. The term ―electrospinning‖, 

derived from ―electrostatic spinning‖, can be traced back to more than 60 years ago. 

The basis of the electrospinning process can be found in 1902 when C. F. Cooley and 

W. J. Morton patented electrospraying [2-3]. Farmhals patented the process of 

electrospinning in 1934 and re-patented his work in 1940 [4]. In the 1960’s Taylor 

studied the shape formation of polymer droplet produced at the tip of the needle 

when the electric field is applied. This cone shape is known as a ―Taylor cone‖ [5-6]. 

In 1952, Vonnegut and Newbauer implemented a simple apparatus for electrical 

atomization [7]. In 1966, Simons patented an apparatus for the production of 

nonwovens for the production of ultrathin and very light fiber mats with various 

patterns using electric spinning [8]. In 1971, Baumgarten manufactured an apparatus 

for the electrospinning of acrylic fibers [9]. Since the 1980s, and especially in recent 

years, the electrospinning process has again attracted much attention due to the 

growing interest in nanotechnology and possibility to produce tailored ultrafine 

fibers or fibrous structures [10]. 
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  Electrospinning process and principles 1.4

 

The electrospinning technique is versatile and easily customizable [11]. With the 

following variants of technique such as needleless electrospinning, melt 

electrospinning, co-axial electrospinning, emulsion electrospinning and co-

electrospinning a variety of nano-architectures such as core-shell, tube-in-tube, 

porous, hollow, cross-linked and particle-encapsulated structures can be obtained 

[12-15].  

The typical construction of an electrospinning apparatus is illustrated in Fig. 1.1 

Basically, an electrospinning system consists of the following three main 

components: a high voltage power supply, a spinneret and a grounded collector plate 

[16-17].. A syringe pump provides a polymer solution to the spinneret.  

 

Fig. 1.1 A basic electrospinning apparatus. 

The solution-electrospinning process involves the following steps: a polymer is 

dissolved in a solvent to form a polymer solution. This polymer solution is pressed 

through a nozzle (in case of needle-electrospinning), the solution is then stretched in 

a high voltage field and thus forms nanofibers which are deposited on the counter 

electrode as a random web in most cases [10]. The stretching of fibers takes place in 

milliseconds from the initial jet [18-19].  

When the electric field is applied, a polymer solution of drops is positively charged. 

The droplet begins to deform and is attracted to the negative polarity counter 

electrode. The drop takes a spherical shape. When the critical stress of surface 

tension is exceeded, a polymer jet is produced in the direction of the collecting 
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electrode, also called ―Taylor cone‖. At the same time, the evaporation of the solvent 

takes place, the polymer hardens and fine nanofibers are collected on the surface of 

the counter electrode. In this case, the polymer solution is metered onto an electrode 

and drawn off and accelerated by an electric field. As a result, very thin nanoscale 

fibers are formed as a nanofiber mats. With the evaporation of solvent dry or semidry 

nanofibers can be formed on the collector [1]. Needleless electrospinning process 

and principle will be explained in more detail in chapter 2.2. 

  Influence of parameters in electrospinning process 1.5

 

Electrospinning parameters such as charge density, viscosity and surface tension of 

the polymer solution as well as polymer solution properties, processing parameters 

and ambient conditions play a major role in the morphology of the fibers and their 

diameters [20-23]. Several factors affect the morphology of nanofibers. These factors 

can be classified as solution, processing and ambient parameters. In Table 1.1 the 

effects of spinning parameters on the fiber morphology are shown. 

Table 1.1 Effect of spinning parameters on resulting fiber morphology. 

 

Parameters 
Effects on fiber 

morphology 
Reference 

Solution parameters 

 

Viscosity 

Fiber diameters increase 
(forming beads – beaded 
fibers – uniform fibers) 

(Jiang et al. 2004, Huang 
et al. 2001, Zhao et al. 
2005, Zhang et al. 2005a), 
[24-27] 

Polymer 

concentration 
Fiber diameter increase 

(Kim et al. 2005, Son et al. 
2004, Jun et al. 2003),  
[28-31] 

Molecular weight of 

polymer 
Reduction in the number 
of beads and droplet 

 (Chen and Ma 2004, 
Demir et al. 2002, Gupta 
et al. 2005), [32-34] 

Solution 

conductivity 
Fiber diameters decrease 

(Koski et al. 2004, Jun et 
al. 2003, Jiang et al., 
2004), [35], [30], [24] 
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Surface tension Beaded fibers and beads 
increase 

 (Hohman et al. 2001, Zuo 
et al. 2005, Zhang et al. 
2005, Mit-Uppatham et al. 
2004), [36-37],[26], [38] 

Processing parameters 

Applied voltage Fiber diameters increase 
(formation of beads) 

(Demir et al. 2002, Jun et 
al. 2003, Kim et al. 2005, 
Still and Recum 2004, 
Deitzel et al. 2001, Haider 
et al. 2015), [32], [30], 
[17], [39]. [6] 

Distance between tip 

and collector  

Fiber diameters decrease, 
(forming beaded 
morphologies with too 
short or too large distance, 
minimum distance 
required for uniform 
fibers) 

(Ki et al. 2005, Geng et al. 
2005, Buchko et al. 1999, 
Zhao et al. 2005, Megelski 
et al. 2002, Shamim et 
al.2012, Matabola and 
Moutloali 2013, Wang and 
Kumar 2006, Haider et al. 
2015), [40-47], [6] 

Feed rate/flow rate 

Increase in fiber diameter 
with increase of flow rate, 
increase of pore size 
(beaded  fibers and ribbon-
like structures with too 
high flow rate) 

(Sill and Recum 2008, Zuo 
et al. 2005, Zhang et al. 
2005, Haider et al. 2015), 
[17], [37], [43], [6] 

Ambient parameters 

Temperature Fiber diameters decrease 
(Reneker and Chun 1996, 
Mit-Uppatham et al. 
2004), [18], [38], 

Humidity 

Fiber diameters decrease 
(forming pores on fiber 
surfaces), then fiber 
decrease 

(Li and Wang 2013, Mit-
Uppatham et al. 2004, 
Pelipenko et al. 2013, Park 
and Lee 2010, Haider et 
al.2015), [48]., [37], [49-
50], [6] 

- means ―increase in‖ 

The solution parameters include viscosity, polymer concentration, molecular weight 

of polymer, solution conductivity and surface tension. Amongst the processing 

parameters, the applied voltage, the distance between tip and collector and the flow 
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rate play a key role. Humidity and temperature belong to the ambient parameters. 

Therefore, understanding the electrospinning technique and fabrication of nanofibers 

is essential for gaining the knowledge about dependency of parameters to obtain 

tailored nanofibers. Numerous research groups have studied the effects of 

electrospinning parameters on the morphology of nanofibers [51-52]. 

  Fiber morphology 1.6

 

Electrospun nanofibers can show different morphologies and fiber architectures such 

as round cross-sections, bead-on-string structures or individual beads. The beads are 

typical for lower polymer concentration and lower applied voltages [50] and usually 

undesired. But occasionally these beads are preferable in some applications where 

they could be helpful to avoid fiber slippage in a resin matrix for improving 

mechanical strength of composites. Wong et al. (2018) studied the tribological 

properties of electrospun polymer-based microbeads made of polyvinylpyrrolidone, 

zinc oxide and multi-walled carbon nanotubes (MWCNTs) with electrospinning 

technique [53]. Xu et al. (2015) manufactured La-doped ZnO nanofibers with unique 

bead-like structures that were facilely produced [54]. These La-doped ZnO 

nanostructures can be a promising material for acetone sensors. Another approach for 

the beads as a potential drug delivery system was investigated by Supramaniam et al. 

(2018). They manufactured magnetic nanocellulose alginate hydrogel beads from the 

assembly of alginate and magnetic nanocellulose (m-CNCs) [55].  

Fig. 1.2 depicts electrospun nanofibers with 14 % polyacrylonitrile (PAN) dissolved 

in dimethylsulfoxide (DMSO) with bead-on-string structure and uniform PAN 

nanofiber structures electrospun with 16 % PAN. By increasing the polymer solution 

viscosity, the conglutinations and beads were avoided.  

The morphology of nanofibers is also changing during stabilization (Fig. 1.2 c and 

carbonization process as can be seen in Fig. 1.2 d). 
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(a)                                                              (b) 

 
(c)                                                          (d) 

Fig. 1.2 SEM images showing bead-on-string structure morphology of polyacrylonitrile (PAN) 
nanofibers with 14 % (a) and without beads with 16 % of PAN dissolved in DMSO (b). The 
morphology of PAN nanofiber mats with 14 % of PAN after stabilization at 280 °C for 1 hour (c) and 
carbonization at 800 °C for 1 hour at the final temperature. The scale bars indicate 2 µm. 

The morphology is also changing during stabilization and carbonization process. As 

can be seen in Fig. 1.2, the fibers shrink during stabilization and form interconnected 

structures. After the carbonizations process, the dimensions of PAN nanofibers are 

reduced even further. Nanofibers can be fixed to prevent the shrinkage of fibers. 

The fiber surface morphology could be significantly affected by the following 

factors: polymer concentration, solution conductivity and viscosity, surface tension 

as well solvent properties are forming different fiber architectures [31], [48], [1]. 

Non-conductive solutions cannot be electrospun because without electric charge to 

the droplet surface no fibers can be created. Moreover, if the solution is highly 

conductive the extra charge cannot be affected to the droplet surface because of the 

small stretching force. Therefore, the solution for electrospinning should ideally be in 

the semi-conducting range. The polymer concentration plays a key role because it 

affects other properties such as surface tension, viscosity and conductivity [1].  
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Depending on the solvent used, the distance between electrodes or in case of high 

humidity during the needleless electrospinning process, sometimes nanofibers 

accumulate not only towards the counter electrode as in the normal case, but parts of 

the nanofibers strive in opposite direction and form artefacts with different shapes, as 

can be seen in Fig. 1.3. 

  
Fig. 1.3 Examples of different artefacts occurring by needleless electrospinning process during this 
PhD project. 

Usually by needleless electrospinning the nanofibers are collected regularly below 

the counter electrode on a polypropylene (PP) substrate, but in this case the artefacts 

are growing between high voltage electrode and substrate.  

Moreover, the fibers collected in the middle of substrate are wet. This is one possible 

effect leading to nano-membrane formation with just a few fiber areas included. On 

the border of the spinning area, the nanofibers have more time to dry and can thus 

form uniform nanofiber with small membrane areas. An example of interconnected 

web structure of wet nanofibers and corresponding morphology can be seen in Fig. 

1.4(b). Here EVOH fibers show strong thickened parts and form coherent networks. 
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(a)                                                              (b) 

Fig. 1.4 EVOH nanofiber mat on polypropylene (PP) substrate (blue color) with wet area in the 
middle (a) and fibers interconnections (b). The scale bar in (b) indicates 20 µm. 

The formation of artifacts in needleless electrospinning usually happened with 

increased humidity, addition of acetone and sometimes for other reasons.  

Fig. 1.5 shows CLSM images of a comparison between fiber architecture of EVOH 

polymer dissolved in DMSO by adding acetone. Acetone has high volatility and is an 

important reagent for the chemical experiments [54].  

EVOH nanofiber mats electrospun without acetone have relatively regular straight 

fibers with some beads-on-string structures and small membrane areas (Fig. 1.5 a). 

By adding 10 % of acetone the morphology of the nanofiber mats changes strongly 

and the nanofiber diameters increase while the nanofibers show interconnections 

(Fig. 1.5 b). 

  

(a)                                                              (b) 

Fig. 1.5 CLSM images of 20% EVOH dissolved in DMSO without acetone (a), and  with 10% of 
acetone (b). The scale bar in (b) indicates 20 µm. 
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Solvents have an enormous influence on fiber morphology and evaporation process 

taking time [31]. If the solvents evaporate quickly then dry fiber will be collected. 

When it comes to a solvent with low volatility, wet fibers with interconnected web 

structure will be obtained [56]. The wet nanofibers form interconnections, beads and 

membrane-like areas.  

One of the reasons for the formation of bead-on-string structures could be related to 

the low concentration of the polymer solution. Haider et al. (2013) and Pillay et al. 

(2013) determined that at low concentrations of polymer solution, entangled polymer 

chains break up into fragments before they reach the collector through the action of 

applied electric fields and surface tension [57-58]. For some polymers a high 

concentration of polymer solution favored the bead formation. In this case, the 

polymer solution conductivity could be increased by adding additives such as 

inorganic salts, surfactants and polymers and uniform nanofibers could be obtained. 

Hereby increasing the concentration of additives reduces the fiber diameter [1].  
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  Polymers and solvents 1.7

 

Many different polymers with both synthetic and natural origin are used for the 

preparation of electrospun nanofibers (Table 1.2). Most of them are prepared with 

solvent or melt spinning [6]. A variety of materials could be spun, including natural 

and synthetic polymers, preceramic polymers, metals, and oxides [59]. By adding 

other substances such as carbon nanotubes (CNTs), silver or iron particles, 

nanoplates with promising properties can be produced that are of interest in 

biotechnological and medical applications [60-62].  

Table 1.2 Overview of polymers and solvents in electrospinning. 

Polymers Solvent Reference 

PCL/collagen TFE Zhang et al. 2005, [27] 

PVA Water Koski et al. 2004, [35] 

PCL/AV_CS TFE; AA and water 
Miguel et al. 2017, [63], 

[64] 

Chitosan/arginine-

chitosan 
TFA:DCM 

Antunes et al. 2015, [65], 

[6], [61]  

CS/SF HFIP:TFA Cai et al. 2010, [66]  

CS/PVA 
Deionized water for PVA;HOBt, 

TPP and EDTA for CS 

Charernsriwilaiwat et al. 

2014, [67] 

Collagen HFIP Rho et al. 2006, [68] 

Collagen/ZN AA Lin et al. 2012, [69]  

Gelatin/PU HFIP Kim et al. 2009, [70]  

PLACL/SF/AV DCM: DMF Suganya et al. 2014, [71]  
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Polymers Solvent Reference 

SF Formic acid Min et al. 2004, [72] 

Cellulose acetate Acetone/DMAc Deng et al. 2013, [73] 

Silk fibroin Formic acid Hang et al. 2012, [74] 

Gelatin TFE/HFIP Huang et al. 2004, [75] 

Elastin Water Huang et al. 2000, [76]  

CA DMAC Liu and Hsieh 2002, [77]  

PC THF/DMF Lee et al. 2005, [78]  

PAN Dichloromethane Gu et al. 2005, [79]  

PMMA Acetone Piperno et al. 2006, [80]  

EVOH Alcohol/water Kenawy et al.  2003, [81] 

Chitin HFIP/PBS 
Holzwarth and Ma 2011, 

[82] 

AA: Acetic acid; AV: Aloe Vera; CA: Cellulose acetate; CS: Chitosan; DCM: 

Dichloromethane; DMF: Dimethylformamide; DMAC: N,N-Dimethylacetamide; 

EVOH: Poly(ethylene-co-vinyl alcohol); EDTA: Ethylenediaminetetraacetic acid; 

HFIP: 1,1,1,3,3,3-hexa fluoro-2-propanol; HOBt: Hydroxybenzotriazole; PVA: 

Polyvinyl alcohol; PC: Polycarbonate; PBS: Polybutylene succinate; PAN: 

Polyacrylonitrile; PMMA: Polymethacrylate; PCL: Polycaprolactone; PU: 

Polyurethane; SF: Silk fibroin; TFA: Trifluoroacetic acid; TFE: 2,2,2-

Trifluoroethanol; TPP: Tripolyphosphate; ZN: Zein; ZnO: Zinc oxide.;  
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  Application of electrospun nanofibers 1.8

 

Electrospinning enables the continuous production of nanofibers with controllable 

fiber diameter and morphology, which make them appropriate for a wide range of 

applications such as nanocatalysis, filtration, optical and chemical sensors, energy 

storage, protective clothing, defense and security [83-88].  

Moreover, nanofibers have emerged in recent decades as advanced fibers with wide 

use and high potential in biomedical, biotechnological or medical applications such 

as filters, cell growth, wound healing or tissue engineering [89]. Electrospun 

nanofibers scaffolds provide a suitable environment to the cells which results in their 

better attachment and proliferation [64]. [90]. For example, collagen fibrils are 

known to support the interaction between cells and scaffolds [6], [10]. The cellular 

infiltration of CHO-DP12 (Chinese hamster ovary strain DP12) into a PAN/gelatin 

blend nanofiber structure can be seen in Fig. 1.6. Another similar approach of 

blending gelatin with collagen-coated poly(-caprolactone) (PCL) mesh to enhance 

the ability of cell migration into the PCL network has been reported by Zhang et al. 

(2005) [43]. Majidi and co-workers fabricated 3D microporous alginate/gelatin 

hydrogel nanofibers which offer superior cell adhesion and proliferation [91]. 

 

Fig. 1.6 CLSM images of CHO-DP12 (Chinese hamster ovary strain DP12) cells, colored with 
methylene blue on a PAN/gelatin blend nanofiber mat. The scale bar indicates 20 µm. 

The porosity of electrospun nanofibers allows the use of nanofibers in large 

biomedical applications. Nanofibers can act as protective tissues in hospital 

environments against infectious agents or be used for biomedical applications as 

tissue scaffolds for drugs and cosmetics [92]. Other applications can be found in the 
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areas of drug delivery or for the production of tissue in the biomedical fields [93-94]. 

Nanofibers can have a therapeutic effect and significantly reduce microbial risks in 

wound healing or regeneration [95]. The high surface-to-volume ratio of nanofibers 

enables enhanced interaction with their environment, making them promising for 

wound care, drug delivery, and biotechnological filter applications [85]. The high 

surface- to-volume ratio and the ability to absorb large concentrations of 

antimicrobial and anti-inflammatory agents underline the importance of electrospun 

nanofibers. Therefore, nanofibers are ideal candidates for modern and efficient 

wound treatment and wound care. 

Numerous synthetic and organic polymers are used to produce nanofibers. Grothe et 

al. (2017) reported about production of nanofiber mats with aloe vera that could be 

used as wound dressings in burns and other types of wounds [20]. Similarly, a 

crosslinked alginate may be used as a wound dressing with aloe vera. Furthermore, 

nano-spun alginate fiber mats can take up a large amount of water or wound fluid, 

thus assisting in the drying out of wounds. Besides alginate, chitosan is particularly 

interesting for biotechnological and medical applications because of its antibacterial, 

antifungal and other intrinsic physical and chemical properties [96]. Optimal settings 

for electrospinning of chitosan with PEO (polyethylene oxide) have been reported by 

Grothe et al. (2017) [97]. 

Besides biomedical applications, electrospun nanofibers have also found application 

in the protection of environment as affinity membrane for water and air filtration. 

Mahapatra and co-workers (2013) have synthesized alumina nanofibers by using an 

electrospinning method for removal of toxicants in waste water and drinking water 

by adsorption of such toxicants on the surface of functionalized nanofibers [98]. The 

obtained alumina nanofibers were used as adsorbents for the removal of chromium 

and fluoride ions from an aqueous system.  

Positive properties of nanofiber mats for water filtration compared to known 

materials are shown in Fig. 1.7. A simple test compares the filter effect of a 

polypropylene (PP) nonwoven and a PAN nanofiber mat.  
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(a)                                                              (b) 

Fig. 1.7 Color Comparison of a polypropylene (PP) nonwoven and a PAN nanofiber mat filtering 

capability (a) and PAN nanofiber mats after filtration test with residues of dye (b). 

Water was colored with methylene blue and then passed through a PP nonwoven and 

a PAN nanofiber mat. As can be seen in Fig. 1.7(b), the PAN nanofiber mat contains 

blue color particles and the water is relatively clear in contrast to PP nonwoven (Fig. 

1.7(a)) where the filtered water still has a blue color. This finding confirms the 

assumption that nanofiber mats can be very well suited for water filtration.  

In contrast to conventional filter fibers, nanofibers obtain much higher capability to 

capture particles due to the slip- flow effect around the nanofibers, leading to 

increased diffusion, interception and inertial impaction efficiency [99]. The slip-flow 

effect describes the air flow around a microfiber. The smaller the diameter of the 

fiber, the lower the flow resistance at the surface of the fiber. Because the nanofibers 

have very small diameters, they do not build a large flow resistance at the surface 

and can therefore capture more particles than conventional filter fibers [100]. 

In general, nanofibers are suitable for a wide range of applications in various areas 

such as health, protective clothing, aerospace, transportation, energy and 

environmental applications. Among others, nanofibers can find interesting 

applications in water and air purification. 

Nanofibers have many advantages over conventional fibers used in filtration. They 

have a high surface-to-volume ratio, are very light and can be manufactured on an 

industrial scale. By changing electrospinning parameters, it is possible to produce 

nanofibers, nanofibers with membranes or almost complete membranes. 

PP PAN nanofiber mat 
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Electrospinning thus enables a simple surface modification process and is a versatile 

technique for the production of highly porous nanofibers and nano-membranes. In 

addition, a large selection of different materials is available from which nanofibers 

and nanofibers membranes can be made [100-101]. 

These nanofiber membranes can offer good alternatives to conventional membranes. 

These membranes offer a relatively high porosity (typically about 80 %), open pore 

structures as well as controllable pore size distribution from micron to submicron 

range [102-104]. These nano-membranes offer high permeability and can be used, 

e.g., for water or air purification. In addition, electrospinning offers easy integration 

of the special functions of polymer nanofibers [105]. 

Huang et al. (2003) reported about electrospun nanofiber that can also be used for 

producing high-surface-area chemical and biological nanosensors [106]. In addition 

to chemical and biological sensors, highly sensitive polymeric nanofibers optical 

sensors have also been fabricated from fluorescent polymers by Lee et al. (2002) and 

Wang et al. (2002) [107-108]. 

Sahay et al. (2012) published a review article about nanofiber composite and their 

applications in various fields such as energy, filters, smart materials, sensors and 

biotechnology [12]. Jayaraman and co-workers (2014) reported about a novel 

TiNb2O7 nanofibrous material as anode material for fuel cell application [109].  
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  Oxidation and stabilization of nanofiber mats 1.9

 

Polyacrylonitrile (PAN) and copolymers of PAN have been extensively studied for 

commercial and technological exploitation. PAN is valued for its important physical 

properties such as insolubility and resistance to swelling in common organic 

solvents. Mainly due to its high carbon yield, which is up to 56 %, PAN is the most 

commonly used polymer for the production of carbon nanofibers (CNFs). PAN can 

be dissolved in polar solvents like DMF, DMSO, DMAc, dimethyl sulfone, 

tetramethyl sulfide and aqueous solutions of ethylene carbonate and some minerals 

salts [110-111]. That makes PAN interesting for a wide range of applications.  

Sabantina et al. (2018) investigated the production of polyacrylonitrile (PAN) 

nanofiber mats with a non-toxic solvent (DMSO, dimethyl sulfoxide) [21]. Unlike 

other biopolymers that can be spun from non-toxic solutions, PAN is water-resistant. 

This property makes PAN an interesting material for electrospinning of nanofiber 

webs, which can be used for biotechnological or medical applications such as filters, 

cell growth, wound healing or tissue engineering. In addition, PAN is a typical 

precursor for the production of carbon nanofibers [112]. 

In the processing of PAN, various solvents such as dimethylformamide (DMF), 

aqueous solution of sodium thiocyanate, dimethylacetamide (DMAA) and DMSO 

can be used which belong to the same class of aprotic solvents [111], [113]. PAN is 

mainly used for the production of carbon nanofibers by electrospinning because of its 

high carbonization rate and simple carbonization process.  

The conversion of PAN nanofibers into carbon fibers takes place in a thermal process 

and is characterized by three main stages: electrospinning, oxidative stabilization and 

high-temperature carbonization [112], [114]. The graphitization of nanofibers takes 

place above 1000 °C. Fig. 1.8 shows a scheme of the conversion of PAN nanofibers 

into carbon nanofibers. 
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Fig. 1.8 Manufacturing process of carbon nanofibers from PAN. 

Oxidative stabilization forms ladder structures that allow the stabilized precursor to 

be processed at higher temperatures. This step is usually carried out at a low 

temperature between 200-300 °C in air [112]. 

During this PhD project, color measurements were carried out on PAN nanofibers. 

The original white color of PAN nanofiber changes slowly from completely white to 

honey and turns brown (Fig. 1.9). From approx. 280 °C the color does not change 

anymore and remains dark brown even at higher stabilization temperatures. 

     

 

Fig. 1.9 Color change of PAN nanofibers during oxidative stabilization at different temperatures from 
white until deep brown color. 

After oxidation, PAN is carbonized in an inert atmosphere up to 800   C [117], 

keeping non-carbon atoms such as hydrogen, nitrogen and oxygen away [112]. 

During carbonizing at 800 °C denitrogenation will occur and formation of a network 

structure will take place [112]. 

 

(a) 

 

(b) 

Electrospinning 
Stabilization in air 

200-280°C (Ashad et 
al. 2011), [115].  

Carbonization 
>800°C in inert 

atmosphere 
(Rahaman et al. 

2007), [116].  

Graphitization 
>1000°C [112] 

180 °C  200 °C  220 °C  250 °C  300 °C  
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Fig. 1.10 CLSM images of carbonized PAN/ferro-fluid (a) and PAN/ferro-fluid on aluminum foil (b) 
nanofiber mats and stabilized (c) and carbonized PAN/gelatin nanofiber mats (d). The scale bars 
indicate 20 µm. 

The comparison of stabilized and carbonized PAN blended with gelatin and ferro-

fluid nanofiber mats can be seen in Fig. 1.10.  

During the carbonization process nanofibers shrink in diameter and loose 

approximately 50 % of their weight [114]. Fig. 1.11 shows the changes in sample 

size after carbonization. 

 

 

(a) 

 

(b) 

Fig. 1.11 Dimensional change of PAN and PAN/aluminum composites before (a) and after (b) 
carbonization process. 

Graphitizing can be carried out afterwards by heating in an inert atmosphere up to 

2000 °C to improve the stiffness of nanofibers which is significantly larger than the 

average stiffness of the surrounding amorphous carbon. [116].  

  

 

(c) 

 

 (d) 
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 EXPERIMENTAL METHODOLOGY 2.

This section presents the general methodology used in the dissertation. The relevant 

aspects in terms of preparation and characterization of the investigated materials and 

methods as well as specific aspects will be explained in more detail here. The 

sections presented here contain only the key information, specific conditions, and 

experimental units used to prepare and characterize samples. If required, more 

detailed information and descriptions can be found in the respective chapters. 

  Materials and chemicals 2.1

For the investigations shown here, a PAN solution for electrospinning was prepared 

with 16 % solid content in low-toxic solvent DMSO (dimethyl sulfoxide) by stirring 

for 2 hours at room temperature. This concentration was found ideal in previous tests 

to avoid clogging of the nozzle as well as electrospraying instead of electrospinning.  

 In this work, inexpensive PAN knitted yarn was used for the production of 

nanofiber mats. 

 The solvent DMSO (dimethyl sulfoxide) (min. 99.9 % was purchased from 

S3 Chemicals, Germany) and was used for all electrospinning solutions.  

 For preparation of PAN / gelatin nanofiber mats, gelatin was purchased from 

Abtei, Germany.  

 As a substrate, household aluminum foil (from Rewe, Bielefeld, Germany) 

was used for creation of carbon-metal composites in addition to the common 

polypropylene (PP) substrate typically used in the electrospinning machine 

Nanospider. 
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  Electrospinning set-up  2.2

For the electrospinning of nanofiber mats the wire-based nanospinning machine 

―Nanospider Lab‖ (Elmarco, Czech Republic) was used. This needleless 

electrospinning machine is well suited for experimental work and product 

development in academic research field, provides an effective production of small 

quantities of materials and the capability of spinning a variety of polymers. In 

addition, many of the process parameters can be changed and adjusted very easily. In 

Fig. 2.1 the needleless nanospinning machine is illustrated.  

 

Fig. 2.1 Needleless nanospinning machine ―Nanospider Lab‖ (Elmarco, Czech Republic). 

The electrospinning process can be described as follows: two steel wires (upper and 

lower wire) are mounted in a high voltage field. The lower steel wire is coated with 

spinning solution which comes from a nozzle fixed on a movable carriage. The 

electric field pulls the solved polymer to the counter electrode which is shielded by a 

substrate. The nanofibers adhere to the substrate and can be easily removed after the 

spinning process is finished. The electrospinning machine can be used to produce 

nanofiber mats consistently and with consistent quality. In this work a polypropylene 

(PP) non-woven fabric (from Elmarco) was used as a substrate for the deposition of 

nanofibers by electrospinning process. Other substrates like cellulose, synthetics, 

fiberglass and foils are also possible to use. The technical data of the nanospinning 

machine are given below (see Table 2.1) [1]. 
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Table 2.1 Technical data of wire-based nanospinning machine ―Nanospider Lab‖ (Elmarco).  

Parameter Range 

Spinning voltage [kV] 0-80 

Substrate speed [mm/min] 0-500 

Spinning (Electrode-electrode) distance[mm] 120-240 

Nozzle diameter [mm] 0.6-1.5 

Carriage speed [mm/s] 50-300 

Ground-substrate distance [mm] 50-240 

Spinning duration [min] 5-30 

Working temperature [°C] 20-20 

Working humidity [% RH] 20-40 

Process air flow [m3/hour] 30-250 

Polymer filling; batch mode – volume [ml] 10-500 

Max substrate width [mm] 550 

Max. diameter of substrate roll [m] 
Integrated unidirectional substrate unwind/rewind 

400 

The following parameters were performed by the creating of PAN nanofiber mats by 

studying the influence of spinning parameters on the needleless electrospinning 

process: high voltage of 80 kV, a nozzle diameter of 0.9 mm and a carriage speed of 

150 mm/s during a spinning time of 5 min. The carriage speed is the speed at which 

the carrier with the spinning nozzle drives along the electrode wire and coats it with 

solved polymer. The substrate speed was 20 mm/min. With substrate speed the 

rotation of the PP non-woven roll is meant where the nanofibers adhere in the 

electrospinning process. Later, the nanofibers can be easily removed from the PP 

substrate. The distance between the high voltage electrode and the middle of the 

substrate was varied between 120 mm and 240 mm (the maximum possible values). 

Detailed information and results from this series of experiments can be found in 

chapter 3. 

 

Electrospinning of PAN/gelatin nanofiber mats was performed with the following 

spinning parameters: high voltage 70 kV, nozzle diameter 1.5 mm, carriage speed 

100 mm/s, ground-substrate distance 240 mm, electrode-substrate distance 50 mm, 
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temperature in chamber 22 °C, relative humidity in chamber 33 %. See chapter 7 for 

more detailed information. 

To create carbon-metal nanofiber mats (see chapter 8) the following spinning 

parameters were used: high voltage 60 kV, current approx. 0.04 mA, electrode–

substrate distance 240 mm, nozzle diameter 0.8 mm, carriage speed 50 mm/s, 

substrate speed 50 mm/min, relative humidity 33 %, and temperature 22.0 °C. More 

detailed information of this series of experiments can be found in chapter 8. 

  Preparation of samples 2.3

For dimensional measurements samples were cut from the electrospun mats in 

dimensions of 50 mm x 50 mm. A frame of 40 mm x 40 mm was marked for 

dimension measurements while the "border" was used to fix some of the samples 

during stabilization. Afterwards the samples were weighed and labeled.  

  Fixation of nanofiber samples during stabilization 2.4

A problem which is less mentioned in the scientific literature is the dimension 

change of nanofibers during the stabilization process. In this work, fixed and unfixed 

nanofiber samples were compared during the stabilization process in order to find the 

differences in the morphology. To overcome the problem of undesired nanofiber 

dimensional change during the stabilization process, other research groups tried 

various techniques to minimize sample shrinkage. The tension during stabilization 

and carbonization influenced the tensile strength and Young modulus of carbon 

nanofibers [2]. A well-known problem in the stabilization of nanofibers is the 

contraction and shrinkage of nanofibers and the resulting increase in diameter and 

unwanted bending of nanofibers. Therefore, the fixation of the PAN nanofiber mats 

during the stabilization process is necessary to avoid contraction of the fibers, which 

is related to undesirable bending. 

First, an attempt by preliminary tests was made to attach specimens to the grid in the 

oven using a paperclip stabilization process as can be seen in Fig. 2.2(a) and (b). It 

has been found that at higher temperatures above 250 °C, the samples are usually 

torn up from the grid because the tension was too strong. In addition, the samples 

stuck to the grid and it was not possible to remove them without losing small parts as 
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can be clearly seen in the Fig. 2.2(c) at the edges of sample that was stabilized by 

250 °C. The electrospun PAN nanofiber mats are white in color and therefore 

relatively easy to label with ballpoint pens or permanent markers. In the stabilization 

process from nanofiber up to 220 °C, the labeling of samples was easy to read. With 

the increasing of the temperature in the stabilization process the color of samples 

changes from white to yellow and dark brown as can be seen in Fig. 2.2(c). Over 250 

°C, the color of samples changes to dark brown and labeling on the samples is no 

longer visible.  

 

(a) 

 

(b) 

 

(c) 

Fig. 2.2 (a) Fixed PAN nanofiber mats before stabilization, (b) fixing method with paperclips to 
prevent shrinkage of samples, (c) samples stabilized at 120 °C, 180 °C, 200 °C, 220 °C and 250 °C. 

After this preliminary test, a fixing method with a metal frame was chosen because 

of the ease of use in this work. For dimensional measurements the samples were cut 

from the electrospun mats in defined dimensions and a frame was marked while the 

"border" was used to fix some of the samples during stabilization. For this, a metal 

frame of sufficient weight was applied to obtain the dimensions of the sample. In this 

method, the samples were also often torn from one side of the metal frame at 

temperatures over 250 °C but it was easier to prepare the samples without weight 

loss in comparison with fixation method in preliminary tests. It should be mentioned 

that fixing of samples with metal frame significantly reduces the effect of shrinkage 

and thickening of nanofibers, but this effect cannot be completely avoided. 

Furthermore, using PAN/gelatin blends as precursors for carbon nanofibers offers a 

new possibility to create long, straight fibers without many undesired 

conglutinations.  

In addition, another attempt was made in this work to deal with the problem of 

undesired conglutinations of nanofiber suggesting a simple new approach to 

overcome this problem and to create a novel metal–carbon composite. Electrospun 
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PAN nanofiber mats on aluminum substrates offer an easy way to fix the nanofiber 

mats during the stabilization process without conglutinations of nanofibers. 

Moreover, at higher carbonization temperatures, aluminum-carbon composites can 

be formed which offer a promising application in many industrial fields. Moreover, 

using PAN/gelatin blends as precursors for carbon nanofibers offers a new possibility 

to create long, straight fibers without many undesired conglutinations.  

  Thermal treatment 2.5

Stabilizing of the first test PAN samples was performed in a drying and sterilizing 

oven ―Digitheat‖ (J. P. Selecta, Barcelona, Spain). Temperature was swept from 60 

°C to 200 °C with a heating rate of 20 °C/h. Afterwards, isothermal treatment at 200 

°C was performed. For carbonizing of nanofiber mats, the furnace CTF 12 / TZF 12 

(Carbolite Gero Ltd., UK) was used. The stabilized samples as well as one original 

nanofiber mat were introduced before the furnace was evacuated and purged with 

nitrogen. The furnace was heated to 800 °C with a heating rate of 10 °C /min in a 

nitrogen flow of 150 mL/min (STP). The isothermal treatment was performed for 2 

hours at 800 °C. The results of this test series can be found in the chapter 6. 

In other series of experiments, a muffle furnace B150 (Nabertherm, Lilienthal, 

Germany) was used for the stabilization of nanofiber mats with heating rates of 0.5 

°C/min, 1 °C/min, 2 °C min, 4°C/min, 8°C/min and 16 °C/min. In addition, samples 

were placed in the already heated oven. This resulted in a sudden decrease of the 

oven temperature by approximately 40 °C and a new increase to the desired 

temperature during approximately 2.5 - 3 minutes. This was done to test what 

happens when the samples are placed in a preheated oven. The values thus obtained 

are referred to as 16 °C/min in order to be able to represent them in the heating rate-

dependent diagrams. More detailed information about stabilization parameters can be 

found in the chapter 5. 

The samples of electrospun PAN / gelatin nanofiber mats were stabilized in a muffle 

furnace B150 (Nabertherm) with stabilization temperatures between 240 °C and 300 

°C with heating rates between 0.5 °C/min, 1 °C/min, 2 °C/min and 4 °C/min. 

Afterwards an isothermal treatment was performed at the final temperature for 1 

hour. For each combination of heating rate and temperature, the samples were 

stabilized. Here the difference between and unfixed samples was investigated. After 
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stabilization procedure carbonization of the PAN/gelatin nanofiber mats (see chapter 

8) was performed using furnace CTF 12/TZF 12 (Carbolite Gero Ltd., Hope, UK). A 

thermal treatment was performed with a temperature of 800 °C with a heating rate of 

10 °C/min in a nitrogen flow of 150 mL/min (STP), followed by isothermal 

treatment for 1 hour. 

For the creation of carbon-metal nanofibers the samples of the electrospun nanofiber 

mats were stabilized in a muffle furnace B150 (Nabertherm, Lilienthal, Germany), 

approaching a typical stabilization temperature of 280 °C at a heating rate of 1 

°C/min, followed by isothermal treatment at this maximum temperature for 1 hour. 

In this case the samples electrospun on aluminum were not separated from their 

aluminum substrate. Afterwards, carbon-metal nanofiber mats were carbonized using 

a furnace CTF 12/TZF 12 (Carbolite Gero Ltd., Hope, UK), approaching 

temperatures of 500 °C or 800 °C. As in other test series the heating rate was 10 

°C/min, the nitrogen flow 150 mL/min (STP), followed by isothermal treatment for 1 

hour. 

  Materials characterization 2.6

In this section, devices and methods that were used in this work are explained in 

detail.  

Masses of the samples were taken using an analytical balance (VWR). The software 

ImageJ 1.51j8 (from National Institutes of Health, Bethesda, MD, USA) was applied 

to determine the nanofiber diameters from SEM images using 50 fibers per sample. 

For the color measurements in this work the instrument sph900 by Color-Lite was 

used. Here the colors of the samples were investigated. During stabilization process, 

the nanofiber mats samples change their color from white to honey-colored and when 

reaching higher temperatures to dark brown or black. The color measurements 

indicate at what temperature the stabilization process has already been completed. 

With a spectrophotometer, colors can be compared with a reference standard 

regardless of the user, ambient lighting or time. A spectrophotometer has the 

following operation; colors are measured by illuminating the sample and analyzing 

diffuse light. The resulting sample spectrum is compared to the spectrum of a known, 

usually white, area. Subsequently, spectral properties of the measured surface are 



38 

calculated. Thereafter, this sample spectrum is evaluated with a standard type of light 

and also with a color spectral value function. Thus, three values X, Y and Z are 

determined which depend on the type of light used and also on the color matching 

function. Normally, three color values DL *, Da * and Db * are usually characterized 

or summarized in a single value (DE*- ―delta‖ E). Hereby DL* means a difference in 

lightness/darkness value. Da* is a difference on red/green axis. And Db* is a 

difference on yellow/blue axis.  DE* means a total difference in color value [3].  

Differential scanning calorimetry (DSC) is the measurement of the change of the 

difference in the heat flow rate between the reference sample and the sample while 

both samples are subjected to a defined temperature. Differential scanning 

calorimetry is used to determine glass transition temperatures, measurement points, 

crystallization points or heat formation for specific materials. Differential scanning 

calorimetry is a thermal analysis method for measuring the amount of heat flow 

released or absorbed by a sample during heating, cooling, or an isothermal process. 

Often, DSC is used to characterize materials such as polymers or composites to 

analyze the types of temperatures and stresses a material can tolerate [4]. In this work 

for the differential scanning calorimetry (DSC) measurements, a DSC Q100 (TA 

Instruments) was used.  

Fourier Transformed Infrared Spectroscopy (FTIR) is useful for identifying 

chemicals that could be either organic or inorganic. It is a powerful tool for 

identifying types of chemical bonds (functional groups). The wavelength of the 

absorbed light is characteristic of the defined chemical bond. The evaluation of the 

recorded IR spectra is carried out via known comparison or sample spectra of known 

reference materials which are available in extensive "infrared libraries". The 

absorption bands occurring in the IR spectra are assigned to the vibrations of 

individual atomic groups (functional groups) [5]. For the present work the Fourier-

Transform Infrared Spectroscopy (FTIR) measurements were performed with an Inc. 

Excalibur 3100 (Varian, Inc., Palo Alto, CA, USA). 

The principle of the Scanning Electron Microscope (SEM) is based on the scanning 

of the object surface by means of a finely-collimated electron beam. To avoid 

interactions with atoms and molecules in the air, the complete process normally takes 

place in a high vacuum. In scanning electron microscopy only conductive surfaces 

can be displayed. Therefore, samples are sometimes specially prepared and the 
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surfaces of samples can be made conductive by vapor deposition of a metal film such 

as gold [6]. The nanofiber mats and composites were evaluated in this work by 

scanning electron microscopy (SEM) JSM-6490 LV, Jeol Ltd., Japan, as well as 

scanning electron microscopy (SEM) images were taken by a Zeiss 1450VPSE 

(Oberkochen, Germany) with a resolution of 5 nm or a JSM-840 microscope, 

respectively, using a nominal magnification of 5000 x. 

Investigation of the nanofiber mat morphologies was performed by a confocal laser 

scanning microscope (CLSM) VK-9000 or VK-9700 (both by Keyence, Neu-

Isenburg, Germany) with a nominal magnification of 2000 x, using three areas per 

sample. A Confocal Laser Scanning Microscope (CLSM) is a special light 

microscope in which a focused laser beam comes out of the lens and scans an object 

point by point and thus the assembled points form an image [6]. The software ImageJ 

1.51j8 (from National Institutes of Health, Bethesda (MD), USA) was applied to 

determine the ratio of membrane / nanofiber areas in the CLSM images. Optical 

images of the nanofiber mats were taken using a confocal laser scanning microscope 

(CLSM) VK-100 with a nominal magnification of 2000×.  

A PERMETEST (SKIN MODEL), built by Sensora Textile Measuring Instruments 

and Consulting, Czech Republic, was used in this work to measure the water vapor 

resistance on three areas per sample. This fast response measuring instrument (Skin 

Model) provides non-destructive determination of water-vapor and thermal 

resistance or permeability of textile fabrics, nonwovens, foils and paper sheets. The 

PERMETEST (SKIN MODEL) offers measurements very similar to ISO-11092 

standard. The results are evaluated according to the same procedure as required in 

this ISO [7]. The ISO-11092 standard is the norm that deals with the comfort of 

clothing textiles. This ―Sweating guarded-hotplate‖ test method, often referred to as a 

―skin model‖, aims to simulate the heat transport and mass transport processes that 

take place near the skin of a human. The water vapor transmission resistance, also 

referred to as ―breathability‖, is measured with the skin model. The water vapor 

transmission resistance here is a measure of the transport of vaporous vapor through 

the textile.  

This test method is carried out as follows: an electrically heated porous metal plate is 

covered with a film which is permeable to water vapor but impermeable to liquid 

water. Water is supplied to this heated plate which passes through the film as water 
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vapor. Throughout the test, a constant temperature is maintained and conditioned air 

flows across a channel and parallel to the heated plate, as specified in this 

international standard. Here, the water vapor transmission resistance of a material is 

determined by subtracting the water vapor transmission resistance of the adhesive air 

layer above the surface of the measuring head from the resistance of the measuring 

sample plus the layer of adhesive air [8]. 
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 INVESTIGATION OF NEEDLELESS ELECTROSPUN PAN NANOFIBER 3.

MATS 

  Abstract 3.1

Polyacrylonitrile (PAN) can be spun from a nontoxic solvent (DMSO, dimethyl 

sulfoxide) and is nevertheless waterproof, opposite to the biopolymers which are 

spinnable from aqueous solutions. This makes PAN an interesting material for 

electrospinning nanofiber mats which can be used for diverse biotechnological or 

medical applications, such as filters, cell growth, wound healing or tissue 

engineering. On the other hand, PAN is a typical base material for producing carbon 

nanofibers. Nevertheless, electrospinning PAN necessitates convenient spinning 

parameters to create nanofibers without too many membranes or agglomerations. 

Thus we have studied the influence of spinning parameters on the needleless 

electrospinning process of PAN dissolved in DMSO and the resulting nanofiber 

mats. 

  Introduction 3.2

Electrospinning is a method to create mats from fine fibers, usually in the diameter 

range of some hundred nanometers. The process can be subdivided into 

electrospinning using a syringe to extrude the polymer which is spun, and needleless 

electrospinning. Both methods can be used to spin fibers from a molten polymer 

mass or from a polymer solution, opening this technology for a broad range of 

polymer materials. 

In electrospinning from a solution, a suitable solvent has to be found to dissolve the 

desired polymer. This requirement often results in the problem that toxic, corrosive 

or other dangerous solvents have to be used which are hard to handle, especially in 

academic environments. Besides biopolymers, several of which can be spun from 

aqueous solutions [1,2], polyacrylonitrile (PAN) is of high interest since it is 

spinnable from dimethyl sulfoxide (DMSO). This solvent has to be handled with care 

because it increases penetration of other materials through the surface of the skin, but 

it does not cause problems in medical or biotechnological applications [3]. 

This is why PAN is often used for electrospinning [4,5], often to created nanofiber 

mats which are afterwards carbonized in order to create carbon nanofibers [5-8]. 
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PAN can also be used with embedded inorganic components like ZnO or MgO [9-

11]. In spite of the technological relevance of this material, only few articles about 

the dependence of the nanofiber mat morphology on the spinning and material 

parameters can be found [12-14], none of which deals with needleless 

electrospinning. Previous investigations, however, have already shown the enormous 

influence of the polymer solution as well as the spinning conditions on the resulting 

nanofiber mats, with some parameters apparently having stronger effects than it was 

found in a previous systematic investigation of needleless electrospinning 

poly(ethylenglycol) (PEG) [15]. This is why our article depicts the results of 

systematic variations of different spinning parameters and the resulting changes in 

nanofiber mat morphologies. 

  Materials and Methods 3.3

For the investigation shown here, a PAN solution was prepared using 14 % PAN in 

DMSO by stirring for 2 hours at room temperature. This concentration was found 

ideal in previous tests – lower concentrations tended to electrospraying, i.e. forming 

droplets instead of fibers, while higher concentrations became too highly viscous to 

flow through the spinning nozzle continuously without clogging it. 

For electrospinning, the needleless nanospinning machine ―Nanospider Lab‖ 

(Elmarco, Czech Republic) was used. The spinning parameters, such as high voltage, 

electrode-substrate distance, carriage speed, etc. were varied as depicted in Table 3.1. 

All manually changed parameters are marked by a light-blue background. Some 

parameters slightly changed due to the spinning process, while others remained 

unaltered (cf. Table 3.1). It should be mentioned that all nanofiber mats were 

electrospun for 5 min so that the measured areal weights of the mats are proportional 

to the flow of the polymer from the electrode to the substrate. 
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Table 3.1 Electrospinning parameters. Manually changed parameters are marked light-blue. 

Parameter Min. Max. 

Voltage [kV] 30 80 

Current [mA] 0.003 0.07 

Nozzle diameter [mm] 0.6 1.5 

Carriage speed [mm/s] 50 300 

Substrate speed [mm/min] 0 

Ground-substrate distance [mm] 50 

Electrode-electrode distance [mm] 120 240 

Temperature in spinning chamber [°C] 23.0 24.6 

Rel. humidity in spinning chamber [%] 31 33 

Spinning duration [min] 5 

Air flow [m3/hour] 120 

A confocal laser scanning microscope (CLSM) VK-9000 (Keyence) with a nominal 

magnification of 2000 x was used to investigate the nanofiber mat morphologies. 

Further examinations by FTIR (Fourier-transform infrared spectroscopy), TGA 

(thermogravimetric analysis) and DSC (differential scanning calorimetry) did not 

reveal any differences in chemical composition or crystallinity of the samples, 

respectively, and are thus not depicted here. The software ImageJ 1.51j8 (from 

National Institutes of Health, Bethesda, MD, USA) was applied to determine the 

nanofiber diameters from CLSM images using 50 fibers per sample. 
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  Results and Discussion 3.4

Firstly, the influence of the electrode-electrode distance on the nanofiber creation 

was examined. In an earlier investigation of needleless electrospinning PEG [15], an 

increasing electrode-substrate distance resulting in decreasing currents but did not 

show significant impact on the resulting nanofiber mats. Fig. 3.1 depicts the 

nanofiber diameter distribution as well as the areal weights of the nanofiber mats, 

using a high voltage of 80 kV, a nozzle diameter of 0.9 mm and a carriage speed of 

150 mm/s. 

While the fiber diameters stay relatively constant within measurement accuracy, the 

areal weight changes strongly with varied electrode distance. On the one hand, this 

finding can be attributed to placing the electrospun fibers more concentrated in the 

middle of the substrate for smaller electrode distances. On the other hand, reducing 

the electrode distance increased the electric field between both electrodes and thus 

the force dragging the solved polymer to the substrate. 

Fig. 3.2 depicts CLSM images of nanofiber mats gained with the maximum and 

minimum electrode distances. Here it becomes visible that the nanofiber mats show 

significantly more irregularities and membrane-like areas for a reduced electrode-

electrode distance. Apparently, a compromise must be found between producing 

higher areal weights in a given time and producing more constant nanofiber mats. 
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Fig. 3.1 Fiber diameters (a) and areal weights (b) of different PAN nanofiber mats as functions of the 
electrode-electrode distance. 
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Fig. 3.2 PAN nanofiber mats, produced with 120 mm (a) and 240 mm (b) electrode-electrode distance, 
respectively. 

In the next step, the high voltage was modified, using the maximum electrode 

distance of 240 mm, a nozzle diameter of 0.9 mm and a carriage speed of 150 mm/s. 

Fig. 3.3 depicts the resulting fiber diameters and areal weights. 

While the fiber diameters show a slight tendency of decreasing with increasing 

voltage, opposite to previous results of electrospinning PEG which revealed no such 

dependency [15], the areal weight is approx. proportional to the high voltage. 

Spinning with 30 kV resulted in a nanofiber mat too fine to be removed from the 

substrate, impeding areal weight measurement. Extrapolating this graph to 30 kV, the 

areal weight can be assumed to be nearly 0.  

The CLSM images of the resulting nanofiber mats, however, show more clearly the 

influence of the high voltage (Fig. 3.4). While higher voltages produce significantly 

denser nanofiber mats, lower voltages result in more linearly oriented fibers which 

are clearly differentiated from each other. Due to the strong correlation of the areal 

weight with the voltage, here again a compromise must be found between ―better‖ 

nanofibers and higher material output.  

Additionally, it should be mentioned that lower voltages result in increased 

formation of beads along the fibers, a phenomenon which is nearly invisible for 

spinning at 80 kV (cf. Fig. 3.4). These beads are well-known for PAN and some 

other polymers and are attributed to too low solution viscosity [16,17] in the 

literature and resulting capturing of not yet completely solidified fibers on the 

substrate [18]. 
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Fig. 3.3 Fiber diameters (a) and areal weights (b) of different PAN nanofiber mats as functions of the 
high voltage. 

 

  

(a) (b) 

Fig. 3.4 PAN nanofiber mats, produced with high voltages 60 kV (a) and 30 kV (b), respectively. 

In the next step, the carriage speed – i.e. the velocity with which the carrier with the 

spinning nozzle drives along the electrode wire and coats it with solved polymer – 

was modified. For the other spinning parameters, the maximum high voltage of 80 

kV and the maximum electrode distance of 240 mm were chosen in combination 

with a nozzle diameter of 0.9 mm. The resulting fiber diameters and areal weights 

are depicted in Fig. 3.5. While no significant deviations of the fiber diameter with the 

carriage speed were measured, the areal weight decreases with increasing carriage 

speed. This finding was expected since a higher carriage speed should be correlated 

with a reduced polymer coating on the electrode wire. 

 

10 µm 10 µm 
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The CLSM images of the nanofiber mats gained with maximum and minimum 

carriage speed are depicted in Fig. 3.6. Similarly, to the findings described above, the 

higher areal weight is again correlated with the lower fabric quality. For the lowest 

carriage speed, several membrane-like areas and inhomogeneities are visible, while 

the highest carriage speed results in a significantly more even nanofiber mat with 

more straight fibers. 

Finally, the impact of the nozzle diameter was investigated, changing between two 

commercially available nozzles (0.6 mm and 0.9 mm) as well as one nozzle with 

manually increased diameter (1.5 mm). Again, the maximum high voltage of 80 kV, 

the maximum electrode distance of 240 mm and a carriage speed of 150 mm/s were 

used. The results are depicted in Fig. 3.7. 
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Fig. 3.5 Fiber diameters (a) and areal weights (b) of different PAN nanofiber mats as functions of the 
carriage speed. 
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(a) (b) 

Fig. 3.6 PAN nanofiber mats, produced with carriage speeds of 50 mm/s (a) and 300 mm/s (b), 
respectively. 

As expected, the areal weight grows with increasing nozzle diameter, since through a 

larger nozzle more polymer solution can be coated on the electrode wire. On the 

other hand, no significant differences in the fiber diameter are visible. 

Nevertheless, it should be mentioned that the nanofiber mat quality considerably 

changes with the nozzle diameter (Fig. 3.8). With the 0.6 mm nozzle, straighter 

fibers are produced than with the middle nozzle size of 0.9 mm (Fig 3.2). Increasing 

the nozzle size to 1.5 mm, the nanofiber mat becomes severely irregular, with several 

holes and membrane-like areas. It should be mentioned that this study was not 

performed with the aim of producing ideal nanofibers since other parameters, such as 

the spinning mechanism, the spinning chamber geometry, air flow through the 

chamber and especially the relative humidity in the spinning chamber significantly 

influence the nanofiber mat morphologies, necessitating that these ―ideal‖ conditions 

are defined for each spinning situation separately. Instead, this study aims at giving 

hints which parameters influence the fiber diameters, areal weights and last but not 

least the nanofiber mat morphologies in which ways. 

10 µm 10 µm 
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Fig. 3.7 Fiber diameters (a) and areal weights (b) of different PAN nanofiber mats as functions of the 
nozzle diameter. 

 

(a) 

 

(b) 

Fig. 3.8 Nanofiber mats, produced with nozzle diameters of 0.6 mm (a) and 1.5 mm (b), respectively. 

  Conclusions 3.5

To conclude, we have compared PAN nanofiber mats electrospun with different 

parameters. While the areal weights depend significantly on all parameters under 

investigation, the nanofiber diameters often show only weak trends or no deviations 

at all. Nevertheless, the nanofiber mat morphologies change severely with the 

electrode distance, the high voltage, the carriage speed and the nozzle diameter. 

Thus, for the production of high-quality nanofibers it is indispensable to examine the 

electrospun nanofiber mats by CLSM, scanning electron microscopy or other 

techniques which allow for investigating the nanofibers with sufficient resolution.  

10 µm 10 µm 
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WATER VAPOR PERMEABILITY THROUGH PAN NANOFIBER 
MAT WITH VARYING MEMBRANE – LIKE AREAS 
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 WATER VAPOR PERMEABILITY THROUGH PAN NANOFIBER MAT 4.

WITH VARYING MEMBRANE-LIKE AREAS 

  Abstract 4.1

Electrospinning can be used to produce nanofiber mats from diverse polymers which 

can be used as filters etc. Depending on the spinning parameters, also nano-

membranes, i.e. non-fibrous mats, can be produced as well as mixtures between both 

morphologies. The ratio of membrane to fibrous areas can be tailored by the distance 

between the high voltage electrode and the substrate. Here, the impact of the mat 

morphology on the water vapor permeability through polyacrylonitrile nanofiber 

mats with different membrane-like areas is shown, allowing for tailoring the 

permeability between 0.1Pa·m²/W and more than 10 Pa·m²/W. In this way it is 

possible to create finest filters as well as nearly impenetrable thin membranes with 

the same technology.  

  Introduction 4.2

Electrospinning is a technology allowing for creation of fine fibers with diameters 

between some ten and several hundred nanometers, sometimes a few micrometers. 

The electrostatic forces in a strong electric field draw a molten or dissolved polymer 

to a substrate, at the same time stretching and drying the polymer so that finest fibers 

are formed and finally placed on the substrate. Diverse polymers, polymer blends 

and other materials can be used to create such nanofiber mats, [1-3] amongst them a 

broad variety of biopolymers, but also typical industrially used polymers such as 

polyacrylonitrile (PAN), polyamides, polyesters, etc. 

Nanofibers created by electrospinning have round cross-sections in most cases whose 

diameters can be changed by modifying the polymer solid content in the solution / 

melt as well as other spinning and solution parameters. [4-5] Besides this typical 

form, it could be shown that flat ribbons can also be produced. [6-7] Pure droplets [8] 

or combinations of droplets and fibers are also possible results of the electrospinning 

process. [4,9] 

Finally, it is possible to create mixtures between fibers and membranes or pure 

membranes. In a former project, the feasibility of creating mats with tailored 

fiber/membrane area ratios was investigated especially for chitosan/poly(ethylene 
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glycol) (PEG) blends, finding that the chitosan:PEG ratio was crucial for the mat 

morphology. [10,11] Another way to intentionally create membrane areas is adding 

surfactants to reduce the surface tension of the spinning solution and thus avoid fiber 

formation. [12] 

An interesting material for the possible use in filters etc. is PAN which is not water-

soluble and can thus be utilized without a further stabilization step. For PAN, it could 

be shown that by changing the distance between the high voltage electrode and the 

substrate, the morphology could be varied between pure nanofibers for large 

distances and pure membranes for small distances. [13] This finding can be attributed 

to the flight time of the fibers – if this time is reduced, the solvent is not completely 

evaporated before the substrate is reached, and the still partly dissolved fibers can 

unite to finally form a fine membrane instead of single fibers. 

This effect means not only that the chosen distance between the high voltage 

electrode and the substrate is relevant for the resulting morphology, i.e. the ratio of 

membrane to nanofiber areas, but deviations from the middle of the substrate – 

where the distance to the high voltage electrode is smallest – to the borders can also 

be expected. However, in the scientific literature, only few reports about 

examinations of this effect can be found.  

Niu et al., e.g., calculated the influence of different fiber generator geometries, 

amongst which they also investigated cylinders with different diameters. They found 

that the electric field intensity in the middle area increased with decreasing cylinder 

diameter, i.e. should be highest for a thin wire, while at the same time the 

discrepancies along the whole substrate increased. [14] Wang et al. used a simulation 

to optimize the electric field in a series of modelled designs, starting from a 

cylindrical spinneret. [15] Fractal spinnerets were optimized by simulations and 

found to reach more homogeneous electric field distributions than recent needleless 

electrospinning technologies. [16] Earlier research concentrated on replacing the 

single needle technology – which results in the most non-uniform electrical field 

distribution – by a flat spinneret to gain more uniform nanofiber mats. [17] Other 

simulations revealed that even along a cylinder used as spinneret, the electric field 

was not constant but concentrated along the cylinder ends. [18]  
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Direct correlations between the position on the substrate and the nano-mat 

morphology, however, were not yet reported in the scientific literature to the best of 

our knowledge. 

In this paper, the water vapor resistance of mats with varying morphologies between 

pure nanofibers and pure membranes is examined. Although this property is essential 

for many applications, especially for filtration, it is only scarcely investigated for 

nanofibers mats. Recently, two methods (dry cup method and tube method) of 

measuring water vapor diffusion through a polyurethane nanofiber mat were 

compared, without using these methods to examine the influence of spinning 

parameters on the water vapor permeability. [19] The water vapor permeability of an 

electrospun nanofiber mat was not significantly altered by a polyurethane coating. 

[20] For a membrane consisting of hollow fibers, water vapor permeability was 

investigated dependent on operating temperature and other operating parameters. 

[21] Linking the inter-fiber junction points after the spinning process by exposing a 

nanofiber mat to a solvent vapor was shown to not significantly reduce the water 

vapor permeability. [22] The effect of fluorination on water vapor permeation was 

studied for polyurethane nanofiber mats. [23] The influence of modification of the 

nanofiber web density on water resistance combined with water vapor and air 

permeability was investigated for layered fabric structures consisting of electrospun 

nanofiber mats and different substrates. [24] However, investigations of the 

transition between nanofiber mat and membrane in terms of water vapor permeability 

cannot be found in the literature. 

  Materials and Methods 4.3

The wire-based nanospinning machine ―Nanospider Lab‖ (Elmarco, Czech Republic) 

was used for electrospinning, applying a high voltage of 80 kV, a nozzle diameter of 

0.9 mm and a carriage speed of 150 mm/s during a spinning time of 5 min. The 

relative humidity in the spinning chamber was 32 % , air flow 120 m3/hour and the 

temperature during spinning was 23 °C. Since the voltage strongly influences the 

nanofiber diameters and lengths, [13] it was kept constant to avoid possible 

modifications of the water vapor permeability due to modified pore diameters. 

Similarly, changing the nozzle diameter, carriages speed or spinning time would 

influence the nanofiber mat thickness and correspondingly again the water vapor 
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permeability which was avoided in this test series concentrating on the influence of 

membrane/nanofiber creation. The distance between the high voltage electrode and 

the middle of the substrate was varied between 120 mm and 240 mm (the maximum 

possible values). 

The PAN solution for spinning was prepared with 14 % solid content in DMSO 

(dimethyl sulfoxide) by stirring for 2 hours at room temperature. This concentration 

was found ideal in previous tests to avoid clogging of the nozzle as well as 

electrospraying instead of electrospinning.  

Investigation of the nanofiber mat morphologies was performed by a confocal laser 

scanning microscope (CLSM) VK-9000 (Keyence) with a nominal magnification of 

2000 x, using three areas per sample. 

A Permetest skin model (built by Sensora Textile Measuring Instruments and 

Consulting, Czech Republic) was used to measure the water vapor resistance [25] on 

three areas per sample. 

The software ImageJ 1.51j8 (from National Institutes of Health, Bethesda (MD), 

USA) was applied to determine the ratio of membrane / nanofiber areas in the CLSM 

images using 50 fibers per sample.  

 

  Results and Discussion 4.4

Varying the distance between the electrodes results in nearly perfect nanofiber mats 

for the largest possible distance (Fig. 4.1a), nearly complete membranes without 

holes for the smallest possible distance (Fig. 4.1c) and diverse mixtures of both 

morphologies for intermediate distances (Fig. 4.1b). Apparently it is possible to tailor 

the desired fiber:membrane ratio by varying this parameter. 
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(a) 

 

(b) 

 

(c) 
Fig. 4.1 Electrospun nanofiber mats prepared with approx. 2 % membrane ratio (a), 68 % (b) and 99.9 
% membrane ratio (c). All scale bars have length 10 µm. 
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Fig. 4.2(a) depicts the influence of the electrode-substrate distance on the membrane 

ratio of the nanofiber mats. Besides measurements in the middle of the sample, i.e. 

on the direct line between both electrode wires, measurements along the borders 

were added for which the distances between substrate and high voltage electrode 

were calculated along the direct connection lines between the respective positions on 

the substrate and the wire. Although the newly formed nanofibers can be expected to 

impinge on the substrate under different angles and the electric fields are known to 

vary along the substrate area, combining all these measurements in one correlation 

works unexpectedly well. 

An approximately linear decrease of the membrane ratio with increasing distance is 

visible until at ~ 230 cm distance the membrane areas vanish nearly completely. It 

should be mentioned that depending on the relative humidity in the spinning chamber 

and the solid content in the spinning solution, small membrane-like areas are often 

visible in ―pure‖ nanofiber mats (cf. Fig. 4.1a), so that the membrane area for a 

typical electrospinning situation is often not exactly zero.  
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Fig. 4.2 Correlation between membrane ratio and electrode-substrate distance (a) and absolute 
evaporation resistance and membrane ratio (i.e. the membrane area divided by the whole area) in the 
PAN nanofiber mats (b). 

Fig. 4.2(b) shows measurements of the absolute evaporation resistance and the 

membrane part of the nanofiber mats, as determined from 3 CLSM images per 

sample. Please note that the y-axis is scaled logarithmically. Generally, a linear 

correlation can be estimated in this graph, indicating an exponential correlation 

between absolute evaporation resistance and membrane ratio. Nevertheless, it must 

be mentioned that while the absolute evaporation resistance of most samples has 
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relatively small standard deviations, evaluations of the CLSM images with respect to 

the membrane ratios show partly large error bars, especially for membrane fractions 

around 0.2-0.8. This finding can be attributed to partly irregular nanofiber mats, 

exhibiting differing morphologies on the small dimensions visible in each CLSM 

image.  

  Conclusions 4.5

Concluding, PAN nanofiber mats with different ratios of nanofibers and membrane-

like areas were prepared. The membrane: nanofiber ratio could be tailored by 

modifying the distance between the high voltage electrode and the substrate. 

Measuring the water vapor permeability showed an approximately exponential 

correlation between the absolute evaporation resistance and the membrane ratio. The 

water vapor permeability could be varied by more than two orders of magnitude, 

showing the possibilities to tailor this value by modifying the electrospinning 

parameters.  
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NANOFIBER MATS NEEDLELESS- ELECTROSPUN FROM DMSO 
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 INVESTIGATION OF STABILIZATION PARAMETERS FOR PAN 5.

NANOFIBER MATS NEEDLELESS-ELECTROSPUN FROM DMSO 

  Abstract 5.1

Polyacrylonitrile (PAN) can be used as a base material for thermo-chemical 

conversion into carbon. Especially nanofiber mats, produced by electrospinning, are 

of interest to create carbon nanofibers. Optimal stabilization and carbonization 

parameters, however, strongly depend on the spatial features of the original material. 

While differences between nano- and microfibers are well-known, this paper shows 

that depending on the electrospinning method and the solvent used, severe 

differences between various nanofiber mats have to be taken into account for the 

optimization of the stabilization conditions. Here we examine for the first time PAN 

nanofiber mats, electrospun with wire-electrospinning from the low-toxic dimethyl 

sulfoxide (DMSO) as a solvent, instead of the typically used needle-electrospinning 

from the toxic dimethyl formamide (DMF). Additionally, we used inexpensive PAN 

from knitting yarn instead of highly-specialized material, tailored for carbonization. 

Our results show that by carefully controlling the maximum stabilization temperature 

and especially the heating rate, fully stabilized PAN fibers without undesired 

interconnections can be created as precursors for carbonization. 

  Introduction 5.2

Polyacrylonitrile (PAN) nanofibers are an interesting precursor for carbon nanofibers 

(CNFs) due to the small diameters of a few hundred nanometers which can be 

reached by this method, depending on the spinning and solution parameters. [1] 

Typically, such nanofibers contain only few structural imperfections and are highly 

oriented, [2] resulting in higher mechanical strength of the CNFs compared to 

common microfibers. Creating mechanically strong fibers, however, necessitates 

optimized stabilization and carbonization parameters. [3]  

Additionally, nanofiber mats can be easily prepared by needle-electrospinning. Other 

variations of electrospinning, such as drum or wire electrospinning, can even be up-

scaled to industrial production unambiguously. This allows for the production of 

CNFs applicable to increase the mechanical properties of composites, [4] the 

electrical properties of batteries [5-6] or super-capacitors, [7] etc. 
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Since PAN is a typical precursor for CNFs, several articles deal with the stabilization 

and carbonization process and describe the thermo-chemical conversion of PAN into 

carbon. Generally, the oxidative stabilization, i.e. the thermal treatment in air, is 

regarded as a combination of cyclization, dehydrogenation, oxidation, aromatization, 

and crosslinking reactions. [8] The ideal temperatures for these processes are widely 

discussed in the literature. Microfibers with diameters of approx. 10 µm are 

suggested to be stabilized in a temperature range between 200 °C and 300 °C, e.g. at 

270 °C for high-performance carbon fibers, [9] while other publications mention 

temperatures of up to 400 °C. [10] Finding the optimal balance between not burning 

the fibers and chemical reaction to proceed sufficiently fast to allow complete 

stabilization is crucial even for microfibers. 

For nanofibers, heat transfer processes are significantly faster. [11] This means on 

the one hand that shorter stabilization times and lower temperatures are required for 

stabilizing PAN nanofibers; on the other hand, the process parameters have to be 

adapted even more carefully.  

Several approaches can be found in the literature. One of the most detailed 

examinations was performed by Mólnar et al. who prepared PAN nanofibers with a 

rotating electrode from DMF, working with a fixed heating rate of 5 °C/min and 

isothermal treatment at the maximum temperature for 1 h. [12] They concluded that 

all nitrile groups were eliminated, and full structural conversion has been reached at 

265 °C, while DSC and color change investigations revealed that the stabilization 

process was completed below 280 °C since all available exothermic heat was 

released and all color changes were set.  

Another detailed test series was performed by Gu et al. who used the typical needle-

electrospinning from DMF and tested stabilization temperatures between 200 and 

270 °C, reached with a heating rate of 2 °C/min. [13] They concluded that 

stabilization has already been completed at 250 °C due to Fourier-transform infrared 

spectroscopy (FTIR) and X-ray diffraction (XRD) data. Additionally, this paper is 

one of the few which explicitly mention the undesired conglutinations between 

overlapping fibers, starting at a temperature of 250 °C and becoming strongly visible 

at 270 °C. 



67 

Both aforementioned papers do not take into account the influence of the heating 

rate. Different heating rates between 1 °C/min and 4 °C/min in combination with 

different end temperatures between 180 °C and 270 °C were investigated by Rafiei et 

al. who also prepared PAN nanofiber mats by needle-electrospinning from DMF. 

[14] They found heating rates above 2 °C/min resulting in brittle products and 

defined 270 °C as the ideal end temperature with a dwell time of 1-2 hours. Here, no 

undesired fiber conglutinations are visible for an end temperature of 270 °C 

approached with a heating rate of 1 °C/min. 

Other groups stabilize electrospun PAN nanofibers with similar, but not identical 

parameters. The following examples are all based on needle-electrospinning from 

DMF. Gergin et al. found 250 °C to be the optimum temperature in combination with 

isothermal treatment for 3 h, while even 300 °C was insufficient to eliminate all C≡N 

triple bonds. [15] Similar to Alarifi et al. who performed stabilization at 270 °C for 

one hour, no heating rate is given. [16] In the latter paper, however, fiber 

interconnections are visible in the SEM images after carbonization. This is also the 

case in the study of Arbab et al. who used a heating rate of 5 °C/min to approach 

final temperatures between 240 °C and 300 °C; for a temperature of 270 °C, the 

undesired conglutinations are also visible here. [17] The same effect is visible in the 

paper by Dhakate et al., stabilizing at temperatures between 250 °C and 320 °C and 

showing molten fibers after stabilization at 275 °C. [18] 

Interestingly, this was not reported by Arshad et al., using stabilization for 1 h at 300 

°C after approaching the maximum temperature with 5  C/min, [19] nor by Zhou et 

al. using a heating rate of 2 °C/min to reach a maximum temperature of 280 °C 

where the samples were stabilized for 3 h. [20] 

In several other papers, it is not possible to assess whether these undesired 

conglutinations due to fiber melting are established. Ma et al., e.g., tested 

temperatures between 200 °C and 340 °C with a heating rate of 1 °C/min and 

concluded that stabilization is finished between 280 °C and 300 °C. They also 

mention the necessity to fix at least one of the nanofiber mat dimensions by applying 

a weight or another mechanism during stabilization to avoid shrinkage. [21] Lee et 

al. stabilized in a 6-area furnace from 150 °C to 300°C without mentioning the 

heating rate or a possible melting of the fibers. [22] Su et al. also used a 6-area 

furnace applying temperatures between 150 °C and 300 °C without defining the 
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heating rate; they found strong bead formation which is unusual for spinning from 

DMF. [23] Wu and Qin used a heating rate of 4 °C/min and found stabilization after 

isothermal treatment for 1 h at 250°C and higher temperatures to be almost complete. 

[24] After stabilizing for 2 h at a temperature of 280 °C, Wu et al. regarded the 

dehydrogenation as almost complete due to FTIR, XPS and color measurements. [8] 

Li and Adanur also used a temperature of 280 °C with a heating rate of 1 °C/min, 

[25] while Zhang et al. found a transition temperature of approx. 300 °C, as revealed 

by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and 

FTIR. [26] Cipriani et al. used a TGA with a significantly higher heating rate of 10 

°C/min to reach a maximum temperature of 250 °C, [27] similar to Esrafilzadeh et al. 

who used a DSC with a heating rate of 5 °C /min to reach temperatures between 170 

°C and 250 °C. According to their results, stabilization is not completed at this 

temperature. [28] 

Only few papers are based on different electrospinning techniques or different 

solvents. Besides the aforementioned paper by Mólnar et al. about electrospinning 

with a rotating electrode, [12] Kaur et al. also used drum-electrospun fibers which 

they stabilized at 310 °C for 1 h; the heating rate is not mentioned. [29] 

Duan et al. [30] as well as Qin [31] used DMAc as solvent instead of DMF; while 

the first suggested that 1 h at 260 °C results in complete stabilization, the latter found 

250 °C to be sufficient for complete cyclization and 5 °C/min to be the optimal 

heating rate, although SEM images show the undesired connections due to melting of 

the fibers. Finally, Jin et al. used hydrolization in NaOH to pre-stabilize electrospun 

PAN nanofibers which resulted in decreased cyclization temperatures. [32] 

It should be emphasized that, to the best of our knowledge, stabilization properties of 

PAN nanofibers were neither investigated for nanofibers electrospun with the wire-

based technology nor for fibers electrospun from DMSO before. All aforementioned 

studies have been performed on nanofiber mats electrospun from different solvents, 

most of them by a needle-based technology. Additionally, the problem of undesired 

conglutinations emerging during stabilization, impeding formation of separated 

CNFs after carbonization, is often either neglected or not investigated in recent 

scientific literature. Finally, our study also aims to investigate the beads occurring at 

relatively low solid contents in the solution and which are often undesired, but can be 
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very helpful to avoid fiber slippage in a resin matrix and should thus also keep their 

shapes during stabilization. 

This is why in our paper we focus on wire-based electrospinning of PAN nanofibers 

from DMSO and used SEM images to evaluate possible undesired fiber 

interconnections. 

  Materials and Methods 5.3

Electrospinning was performed using the wire-based nanospinning machine 

―Nanospider Lab‖ (Elmarco, Czech Republic), applying a high voltage of 80 kV, a 

nozzle diameter of 0.9 mm and a carriage speed of 150 mm/s during a spinning time 

of 30 min. The distance between the electrode wires was set as 240 mm (the 

maximally possible value), the relative humidity in the spinning chamber was 32 % , 

air flow 120 m3/hour and the temperature during spinning was 22 °C. 

The PAN solution for spinning has been prepared with 14 % polymer content in 

DMSO (dimethyl sulfoxide min. 99.9 %, purchased from S3 Chemicals, Germany) 

by stirring for two hours at room temperature. This concentration was found ideal in 

previous tests to avoid clogging of the nozzle as well as electrospraying instead of 

electrospinning. 

For stabilization, a muffle furnace B150 by Nabertherm was used, applying heating 

rates between 0.5 °C/min and 8 °C/min. Additionally, samples were put into the 

already heated oven, resulting in a sudden decrease of the oven temperature by 

approx. 40 °C and a new increase to the desired temperature during around 2.5-3 

min; the values thus obtained are referred to as 16 °C/min in order to be able to 

represent them in the heating-rate-dependent diagrams. 

PAN nanofiber samples were cut from the electrospun mat in dimensions of 50 mm x 

50 mm; a frame of 40 mm x 40 mm was marked and used for dimensional 

measurements, while the ―border‖ was used to fix some of the samples during 

stabilization by placing a metal frame of sufficient weight on it with sufficient to 

maintain the sample dimensions. 
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For the analysis of the sample dimensions before and after stabilization with different 

parameters, the program ImageJ 1.51j8 (from National Institutes of Health, Bethesda, 

MD, USA) was applied using 50 fibers per sample. 

 

Masses of the samples were taken using an analytical balance (VWR). Scanning 

electron microscopy (SEM) images were taken by a Zeiss 1450VPSE with a 

resolution of 5 nm, using a nominal magnification of 5000 x. Fourier-transform 

infrared spectroscopy (FTIR) measurements were performed with an Excalibur 3100 

from Varian, Inc., while a sph900 by Color-Lite was used for color measurements. 

For the differential scanning calorimetry (DSC) measurements, a DSC Q100 (TA 

Instruments) was used. 

  Results and Discussion 5.4

In a first test series, different maximum temperatures between 120 °C and 300 °C 

were approached with a heating rate of 2 °C/min. Afterwards isothermal treatment 

was performed for 1 h. 

Fig. 5.1 depicts the normalized masses and areas of the samples. It is clearly visible 

that both values significantly decrease with increasing stabilization temperature. For 

the masses, large error bars can be recognized for temperatures of 240 °C and above. 

This is most likely due to separated parts of the samples which could not be properly 

added during weighing since electrostatic interactions with gloves and scales etc. 

increased more and more for higher stabilization temperatures, resulting in the loss of 

small sample parts. Although they have been removed from the oven with no visible 

residues, small broken parts along the edges tend to adhere at the pliers used to put 

them onto the scale, increasing the risk of losing those parts. In addition, the 

electrostatic forces between the sample on the sample holder and the surrounding 

shield of the special accuracy balance can also slightly affect the measurement result. 

Nevertheless, Fig. 5.1(a) shows a clear trend of the expected increase in mass loss for 

increasing stabilization temperatures.  

The problem of splitting samples into different parts is even more evident in the 

normalized areas, where measurements are differentiated between fixed (as described 

above) and unfixed samples. At all stabilization temperatures, the unfixed samples 
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shrink more than the fixed ones. For the highest temperatures of 280 °C or 300 °C, 

however, the distance between both lines decreases again. This can be explained by 

the fact that for these temperatures, all of the fixed samples broke partially along the 

metal mounting frame, resulting in several separated sample parts. We assume that 

this effect occurred in the early stages of stabilization, so that the parts of the samples 

which were no longer fixed shrank more and thus the normalized areas approached 

each other. 

It should also be mentioned that for the freely shrinking samples, there may be a 

minimum area reached above 300 °C. This was not examined in detail since at 300 

°C the samples were increasingly unstable and thus difficult to handle. 
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Fig. 5.1 Normalized masses (a) and areas (b) of samples stabilized at different end temperatures with 
identical heating rates of 2 °C/min and staying for 1 h at the maximum temperature. 

The influence of different maximum temperatures has also been investigated by SEM 

imaging. Table 5.1 shows the results for the three temperatures which, according to 

the literature, are most likely sufficient for complete stabilization, in comparison to 

the original nanofiber mat. 

The beads visible here are typical for PAN nanofibers mats electrospun from 

solutions with relatively low solid content, as it is typical for PAN dissolved in 

DMSO. Since these beads are not described extensively in the literature, temperature 

treatment may be one way to better understand their formation and to find out 

whether they should be avoided in future experiments. This could be done by 

increasing the PAN concentration but would be associated with a significant 

reduction in the possible material output per time due to the greatly increased 

viscosity.  
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In addition, for the typical application of integrating carbonized nanofibers into 

composite materials to increase their mechanical properties, these beads can be 

supportive since they will help avoiding slippage of the fibers inside the resin matrix. 

The ideal stabilization parameters would thus not only result in single, not 

conglutinated nanofibers, but also preserve these beads as possible ―anchors‖ for 

future integration in a resin matrix. 

Table 5.1 SEM images of the original PAN nanofiber mat and samples stabilized at different 
temperatures with and without fixing them. All scales depict a length of 2 µm, the nominal 
magnification is 5000 x in all SEM images shown in this article. 
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Comparing the images in Table 5.1, there is obviously a significant difference in the 

samples stabilized at identical temperatures with and without fixing. This has not 

been described in the literature before. While for a final temperature of 280 °C strong 

conglutinations are visible in both cases, these undesired connections are reduced for 

samples fixed at lower temperatures.  

Nevertheless, it should be noted that even for fixed stabilization at 240 °C, which is 

below the lowest temperature indicated in literature, several small conglutinated 

areas are visible. These results indicate that not only FTIR and other chemical 

examination methods are essential for the investigation of stabilized or carbonized 

nanofibers, but SEM or similar methods must also be applied to avoid unexpected 

and undesired changes in the fiber mat morphology.  



74 

In further test series, a maximum temperature of 280 °C has been approached by 

different heating rates to investigate whether the conglutinations can be avoided in 

this way. The results are depicted in Fig. 5.2. 
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Fig. 5.2 Normalized masses (a) and areas (b) of samples stabilized at 280 °C with different heating 
rates and isothermal treatment for 1 h at the maximum temperature. 

While the mass does not show a dependence on the heating rate, the areas are 

apparently influenced by this parameter. This can be attributed to higher forces 

working on the samples for higher heating rates and thus breaking the fixed samples 

at an earlier stage, leaving more time to relax.  

Interestingly, both values for the highest heating rate (marked as 16 °C/min, which 

means immediate introduction of the samples into the hot muffle furnace, as 

described above) are nearly identical, which can be explained by the observation that 

in this case, the fixed sample nearly completely broke along the mounting frame, 

allowing it to relax almost freely during the stabilization process. 
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Table 5.2 SEM images of the original PAN nanofiber mat and samples stabilized at 280 °C 
approached with different heating rates, with and without fixing them. 
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Again, SEM images were taken to compare the different heating rates. Table 5.2 

shows the results of some heating rates. The strong influence of fixing the samples is 

visible for all heating rates, even the highest ones for which the measured areas were 

already approaching a common value (Fig. 5.2). Especially for the slowest heating 

rates of 0.5 ºC/min and 1 ºC/min, significant differences between the fixed and the 

freely relaxed samples are visible, again indicating the importance of fixing the 

samples during stabilization to avoid shrinkage of the nanofibers, while at the same 

time their diameters increased visibly. It should be noted, however, that even at a 

heating rate of 1 ºC/min, molten fibers and resulting undesirable connections can be 

observed. From the SEM images, it can be concluded that the final stabilization 

temperature should be approached with a heating rate of only 0.5 °C/min. 

Nevertheless, higher heating rates may be applicable for lower maximum 

temperatures. Tests with a stabilization temperature of 260 °C, however, have 

revealed the same qualitative behavior (not shown here) – again, only with a heating 

rate of 0.5 °C/min it was possible to avoid conglutinations completely. This finding 

underlines the importance of SEM images for the investigation of the fiber 

morphology after stabilization in addition to the chemical test methods usually 

reported in the literature. 

In the next step, the samples were analyzed with FTIR to determine the temperatures 

at which stabilization processes are completed and whether the heating rates 

influence these findings. 
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Fig. 5.3 FTIR absorbance measurements on fixed (a) and unfixed samples (b), stabilized at different 
temperatures approached with a heating rate of 2 °C/min. The lines are offset vertically for clarity. 
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Fig. 5.3 depicts FTIR measurements on samples stabilized at different temperatures 

with a heating rate of 2 °C/min. The first small changes are already visible at a 

temperature of 180 °C, while the most significant changes begin between 240 °C and 

260 °C. The different peaks can be attributed to the following chemical groups:  

The stretching vibration of the C≡N nitrile functional group at 2240 cm-1 occurring at 

low temperatures [12] is still visible at 260 °C, nearly vanished at 280 °C and is 

completely gone at 300 °C. For high temperatures, this bond is converted to the large 

peak of C=N stretching vibrations at 1582 cm-1 or C=C stretching vibration at 1660 

cm-1, [12] both of which become visible at 240 °C and above. The second large high-

temperature peak around 1360 cm-1 can be attributed to C-H bending and C-H2 

wagging. [27] The carbonyl (C=O) stretching peak at 1732 cm-1 vanishes around 260 

°C-280 °C, indicating that stabilization may be completed in this temperature range. 

[12] According to Mólnar et al., [12] the peaks in the ranges of 1230-1250 cm-1 and 

1050-1090 cm-1 can be attributed to ester (C–O and C–O–C) vibrations of the co-

monomers like itaconic acid or methyl acrylate which are often applied in industrial 

production of PAN. Since they vanish around 210 °C, they seem to be unproblematic 

for the resulting stabilized or even carbonized fibers. The peaks at 2938 cm-1 and 

1452 cm-1, both vanishing only at 300 °C, and 1380 cm-1, being superposed by a new 

peak, are correlated with bending and stretching vibrations of CH2. [12] The peak 

around 800 cm-1, beginning to occur at 240 °C and above, was attributed to aromatic 

C−H vibrations which originated in the presence of oxygen from oxidative 

dehydrogenation aromatization, by this removing hydrogen in the form of H2O. [15] 

Comparing Fig. 5.3 (a) and (b), it should be mentioned that the results of fixed and 

unfixed samples are qualitatively the same, while quantitative differences occur in 

some parts of the spectra, especially related to the CH and CH2 peak around 1360 

cm-1. Nevertheless, in both cases the FTIR spectra indicate that stabilization starts 

around 240 °C and seems to be completed between 280 °C and 300 °C. 
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Fig. 5.4 FTIR absorbance measurements on fixed (a) and not fixed samples (b), stabilized at 280 °C 
approached with different heating rates. The lines are vertically offset for clarity. 

 

In the next test series, FTIR measurements of samples stabilized at 280 °C for one 

hour were taken, the results of which are depicted in Fig.5.4. Qualitatively, the 

results of all measurements are very similar, while the unfixed samples show higher 

absorbance which can be attributed to the samples being thicker after stabilization 

due to the stronger decrease in lateral dimensions. This may also be the reason why 

the freely relaxed samples show less noise. 

Additionally, in both cases the CH and CH2 peaks around 1360 cm-1 are qualitatively 

different for different heating rates, i.e. much more pronounced for smaller heating 

rates. This finding supports the idea of using lower heating rates to increase the 

stabilization process. 
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Fig. 5.5 DSC measurements of untreated PAN nanofiber mats with different heating rates in the DSC. 
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The influence of the heating rate was also examined by DSC measurements, as 

shown in Fig. 5.5. The expected cyclization reaction is an exothermic reaction, which 

is shown here by positive values. Since the test series was performed with 

unstabilized PAN nanofiber mats before cyclization, the areas under the exothermic 

peaks could be expected to be identical for equal heating rates, i.e. should be doubled 

for doubled heating rates. [24] According to Fig. 5.5, both predictions are fulfilled. 

Interestingly, the position of the maximum is shifted to higher temperatures with an 

increasing heat rate. Further tests are necessary to evaluate whether this finding 

indicates that different heating rates necessitate indeed different final temperatures or 

whether the isothermal heating process at the maximum temperature compensates 

these effects. Since the maximum of the curve measured with a heating rate of 0.5 

°C/min is barely noticeable, the next heating rate of 1 °C/min is used to estimate the 

temperature range of the cyclization process which seems to be completed around 

280 °C. It should be noted, however, that no isothermal step is added here, so that it 

cannot be excluded from the DSC measurements that stabilization at 260 °C for 1 h 

is also sufficient to finish cyclization. 
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Fig. 5.6 Color differences dE of samples stabilized at different end temperatures with identical heating 
rates of 2 °C/min and isothermal treatment at the maximum temperature for 1 h. 

 

In the next step, the colors of the samples were investigated. Fig. 5.6 depicts the 

results of samples stabilized at different temperatures, approached with a heating rate 

of 2 °C/min. Up to a temperature of 210 °C the colors of the fixed and the freely 

relaxed samples are identical, indicating again that stabilization starts around 240 °C. 

Afterwards, the unfixed samples show darker colors, most probably due to greater 
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shrinkage. The color measurements suggest that stabilization is already completed 

around 260 °C. 

Fig. 5.7 shows the results of color measurements on samples stabilized at 280 °C and 

260 °C, respectively, in fixed and unfixed state, approached with different heating 

rates. Similar to Fig. 5.2 (b), the results approach a constant value for heating rates of 

4 °C/min or higher. No significant difference is visible between the colors reached at 

temperatures of 260 °C or 280 °C, while the difference between fixed and unfixed 

samples, which was also visible in Fig. 5.6, is underlined here.  

At first glance, these results may indicate that a heating rate of min. 4 °C/min is 

necessary to approach a constant value of the color differences. On the other hand, a 

comparison between Fig. 5.7 and the areas depicted in Fig. 5.2 (b) suggests that the 

brighter colors for smaller heating rates have to be attributed to the larger areas of the 

respective samples.  
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Fig. 5.7 Color differences dE of samples stabilized at 260 °C or 280 °C approached with different 
heating rates and isothermal treatment at the maximum temperature for 1 h. 

 

Finally, a simple experiment was performed to test the degree of stabilization of the 

PAN nanofiber mats by evaluating their resistance against DMSO, the solvent from 

which the nanofiber mats were previously electrospun. The results are depicted in 

Fig. 8 for samples with different stabilization temperatures. 
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(a) 

 

(b) 

 

(c) 

Fig. 5.8 PAN nanofiber mat samples, stabilized at different temperatures as denoted in the images, in 
the dry state (a), 10 s after placing DMSO drops on the samples (b) and 2 h after this (c). 
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It is clearly visible that the sample is immediately dissolved by the DMSO drop for 

the first three temperatures. For a stabilization temperature of 210 °C, corresponding 

to the first significant color change (cf. Fig. 5.6), a weak stabilization process has 

already occurred; the respective sample is partly dissolved due to the DMSO but not 

completely destroyed. Starting from 240 °C, no influence of the DMSO can be 

recognized; the darker color can be attributed to the influence of the liquid in the 

samples. 

  Conclusions 5.5

In a recent project we have examined the influence of stabilization temperature and 

heating rate on PAN nanofiber mats, electrospun using a wire-based technology from 

a solution in DMSO. Investigations by different means showed slightly different 

optima for the stabilization temperature and the heating rate: While the simple 

DMSO test used to dissolve the stabilized mats indicated that a temperature of 240 

°C is sufficient for stabilization, color measurements show a necessary temperature 

of 260 °C to approach a constant value in color change. DSC measurements suggest 

optimal temperatures between 260 °C and 280 °C, while in FTIR measurements, 

depending on the peaks under examination, the stabilization seems to be completed 

between 280 °C and 300 °C. 

This finding explains the broad variety of values which can be found in the literature. 

Since stabilization is a combination of diverse chemical processes, i.e. cyclization, 

dehydrogenation, oxidation, aromatization, and crosslinking, [8] different 

examinations probe different processes which apparently are not finished at same 

temperatures. It turns out that more detailed investigations are necessary to identify 

which of these processes is essential for the subsequent carbonization process and 

thus to enable tailoring the stabilization process to the needs of the final carbon 

nanofibers.  

Additionally, the importance of a slow heating rate, and in particular of mechanical 

fixation of the samples during stabilization, was underlined in order to avoid 

undesired conglutinations and an increase in fiber diameter. While the beads 

embedded here to increase the fiber-matrix adhesion by avoiding fiber slippage 

survived stabilization even at high heating rates and without fixation, the fiber 

morphology can only be maintained at low heating rates and in fixed samples. 
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 DEVELOPMENT OF CARBON NANOFIBERS FOR INTEGRATION IN 3D 6.

PRINTING FILAMENTS 

  Abstract 6.1

Nanotechnologies as well as additive manufacturing technologies are gaining 

increasing economic importance worldwide and have a great application potential in 

many industrial sectors such as automotive industry. New polymeric composites, so-

called nanofiber-reinforced composites, combine the advantages of different 

materials. In this way, highly complex structures can be produced that are extremely 

light and stable at the same time. Furthermore, the use of bio-based plastics in 

nanofiber reinforced sandwich composites provides the opportunity to reduce 

negative environmental impacts.  

The aims of this project are development and evaluation of polyacrylonitrile (PAN) 

based nanofiber mats for the production of carbon nanofibers. After electrospinning 

the PAN with different solution and spinning parameters, the gained nanofiber mats 

are carbonized using a horizontal furnace in a nitrogen (N2) atmosphere at a 

controlled temperature. The resulting carbon nanofibers are evaluated by scanning 

electron microscopy (SEM). 

The article will give an overview of the properties of these carbon nanofibers and an 

outlook to embedding them in poly (lactide acid) (PLA) or other 3D printing 

polymers. 

  Introduction 6.2

Carbon nanofibers can be produced by carbonizing nanofibers of different 

precursors, e.g. lignin [1-3], polyacrylonitrile (PAN) [4-6], or PAN blended with 

biochar [7] or cellulose acetate [8].  

The production of such submicron- or nano-fibers is usually done by electrospinning. 

PAN nanofibers are often prepared for the possible use as electrode materials [9-11], 

but also for biotechnological and other applications [12]. Their morphology and 

diameter – which are essential for the morphology and diameter of the carbon 

nanofibers gained from them – are influenced by diverse spinning and solution 

parameters, such as capillary diameter, collector-capillary distance, solution feed rate 
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and voltage in needle-based electrospinning [13] or additionally the carriage speed 

and other parameters in diverse techniques of needleless electrospinning [14-17]. 

Another crucial factor for successful carbonization of PAN nanofibers is the previous 

stabilization process to avoid the degradation of the fibers [18]. For this, thermal 

treatment under slow heating up to 280 °C and following isothermal treatment at 280 

°C for 2 h was found to be suitable [19], while temperatures higher than 300 °C 

caused combustion of the fibers and were thus not suggested [20]. Another group 

found a reaction temperature of 201°C [18]. 

Due to the expected deviations of the ideal stabilizing processes, depending on the 

PAN fiber morphology and fiber diameters, and the limited literature especially 

about carbonizing PAN nanofibers created by needleless electrospinning [18], this 

article gives an overview of carbonizing PAN nanofibers from a needleless 

electrospinning process after stabilization at relatively low temperatures. 

  Materials and Methods 6.3

PAN nanofiber mats were electrospun using the needleless electrospinning machine 

―Nanospider Lab‖ (Elmarco, Czech Republic). The spinning parameters were as 

follows: voltage 80 kV, nozzle diameter 0.9 mm, carriage speed 150 mm, substrate 

speed 20 mm/min, ground-substrate distance 50 mm, electrode-electrode distance 

240 mm, temperature in the spinning chamber 23 °C, air flow 120 m3/hour and 

relative humidity in the spinning chamber 32 %. A PAN solution was prepared using 

14 % PAN in DMSO by stirring for 2 hours at room temperature. 

Stabilizing was performed in a drying and sterilizing oven ―Digitheat‖ (J. P. Selecta, 

Barcelona/Spain). Temperature was swept from 60 °C to 200 °C with a sweep rate of 

20 °C /h.  Afterwards, isothermal treatment at 200 °C was performed for 9 h.  
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To investigate the influence of multiple layers during this process, PAN nanofiber 

mats were introduced into the oven with different numbers of layers (Fig. 6.1). 

 

Fig. 6.1 Multi-layer nanofiber mat (left boat) and single-layer nanofiber mats (middle and right boat) 
in the stabilizing oven. 

 

For carbonizing, the furnace CTF 12 / TZF 12 (Carbolite Gero Ltd., UK) was used. 

The stabilized samples as well as one original nanofiber mat were introduced before 

the furnace was evacuated and purged with N2. The furnace was heated to 800 °C 

with a heat rate of 10  C/min in a nitrogen flow of 150 ml/min. Carbonizing 

happened for 2 hours at 800 °C. 

These processes resulted in the following samples: 1S / 1SC (single layer, stabilized / 

also carbonized), MS / MSC (multi-layer, stabilized / also carbonized), 1C (single 

layer, not stabilized, but carbonized), and 1O (single layer, original state after 

electrospinning) as a reference. The nanofibers are evaluated by scanning electron 

microscopy (SEM) JSM-6490 LV, Jeol Ltd., Japan. 
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  Results and Discussions 6.4

Fig. 6.2 depicts sample 1O, i.e. the original PAN nanofiber after electrospinning. 

Fiber diameters are in the range between 100 nm and 400 nm. The large droplets are 

typical for electrospinning PAN.  

 

Fig. 6.2 PAN nanofibers after electrospinning with the above defined parameters (sample 10). 

After stabilizing the PAN nanofiber mats, the fibers have changed their morphology 

(Fig. 6.3). The original smooth, even fibers now seem to be more crinkled, an effect 

which has been described in the literature before [18]. Differences between the multi-

layer and the single-layer samples, however, were not detected; the single layers of 

the multi-layer sample could easily be separated again after the stabilizing step. 

 

(a) 

 

(b) 

Fig. 6.3 Samples MS (a) and 1S (b). 
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After the carbonization step, fiber morphology has changed again (Fig. 6.4). Whether 

stabilized before (sample MSC) or not (sample 1C), the crinkled structure gained by 

the stabilizing step is visible again. The nanofibers look similar in both images, too. 

Nevertheless, it must be mentioned that the sample without previous stabilization 

step was nearly completely vanished after carbonizing, although it could not be burnt 

in the inert gas atmosphere. Although the morphology of the residual fibers does 

differ significantly, this effect clearly shows the necessity of the stabilizing step. 

 

(a) 

 

(b) 

Fig. 6.4 Samples MSC (a) and 1C (b). 

  Conclusion 6.5

In a recent project, PAN nanofiber mats were created by needleless electrospinning 

and used as precursors for carbon nanofiber production. Both the stabilizing step and 

the carbonizing process are known to influence the morphology of the resulting 

carbon nanofibers significantly. Especially in needleless nanospinning which often 

lacks the possibility to create oriented fiber mats, fiber crinkling during heat 

treatment is hard to avoid by the mechanical means described in the literature [18]. 

After first experiments have in principle revealed the possibility to create carbon 

nanofibers by wire-based needleless electrospinning, opposite to the experimental 

setups mostly used in the literature, future tests will concentrate on final temperature 

and heating rate dependence of the carbon nanofiber morphology during the 

stabilizing and the carbonization step. 
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 STABILIZATION OF ELECTROSPUN PAN/GELATIN NANOFIBER MATS 7.

FOR CARBONIZATION 

  Abstract 7.1

Due to their electrical and mechanical properties, carbon nanofibers are of large 

interest for diverse applications, from batteries to solar cells to filters. They can be 

produced by electrospinning polyacrylonitrile (PAN), stabilizing the gained 

nanofiber mats and afterwards carbonizing them in inert gas. The electrospun base 

material as well as the stabilization process are crucial for the results of the 

carbonization process, defining the whole fiber morphology. While blending PAN 

with gelatin to gain highly-porous nanofibers has been reported a few times in the 

literature, no attempts have been made yet to stabilize and carbonize these fibers. 

This paper reports on the first tests of stabilizing PAN/gelatin nanofibers, depicting 

the impact of different stabilization temperatures and heating rates on the chemical 

properties as well as the morphologies of the resulting nanofiber mats. Similar to 

stabilization of pure PAN, a stabilization temperature of 280 °C seems suitable, 

while the heating rate does not significantly influence the chemical properties. 

Compared to stabilization of pure PAN nanofiber mats, approximately doubled 

heating rates can be used for PAN/gelatin blends without creating undesired 

conglutinations, making this base material more suitable for industrial processes.  

  Introduction 7.2

Functional nanofibers are used in a broad variety of applications, from nanofibrous 

membranes for filters [1] to substrates in tissue engineering [2,3] to electrocatalysis 

[4], capacitors [5] and other applications based on the conductivity of the nanofibers 

[6]. Especially for batteries and other energy applications, often carbon nanofibers 

are used [7-11]. 

Such carbon nanofibers are often prepared via the electrospinning route, followed by 

stabilization and afterwards carbonization. Both steps influence the morphologies, 

the mechanical and electrical properties of the final carbon nanofibers significantly. 

While carbon nanofibers can be produced from a broad variety of materials [12-14], 

one of the most common materials for this purpose is polyacrylonitrile (PAN). PAN 

changes fiber diameters and mat morphologies significantly for varying spinning and 
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solution parameters [15,16], while the fibers themselves keep their flat, even 

surfaces. 

In most applications, however, it is advantageous to further increase the surface: 

volume ratio of the nanofibers. This can be done by blending PAN with other 

polymers or inorganic material, a method which may also alter other physical 

properties, such as the conductivity. Increased crystallinity and conductivity were 

found, e.g., when PAN/pitch nanofibers were carbonized [17]. Blending PAN with 

cellulose acetate resulted in increased adsorption properties of the carbonized 

nanofibers [18]. Combined with diverse water-soluble polymers, only gelatin showed 

a significant influence on the PAN fiber diameters [19]. PAN/gelatin blends have 

also shown to create highly-porous fibers by electrospinning [20]. Nevertheless, to 

the best of our knowledge, no investigations on the stabilization of such electrospun 

PAN/gelatin nanofiber mats were performed yet. 

In this paper, the influence of the stabilization temperatures and heating rates on the 

chemical properties and morphologies of the resulting nanofiber mats will be 

reported.  

  Materials and Methods 7.3

Electrospinning was performed with a ―Nanospider Lab‖ (Elmarco, Czech Republic), 

a needleless electrospinning machine based on the wire technology, using a 

polypropylene fiber mat as the substrate. The spinning parameters were: high voltage 

70 kV, nozzle diameter 1.5 mm, carriage speed 100 mm/s, ground-substrate distance 

240 mm, electrode-substrate distance 50 mm, temperature in chamber 22 °C, relative 

humidity in chamber 33 % and air flow 120 m3/hour. 

The spinning solution contained 16 % PAN in DMSO (min 99.9 %, purchased from 

S3 chemicals, Germany) and 9 % gelatin (Abtei, Germany). 

Samples of 50 mm x 50 mm of the electrospun nanofiber mats were stabilized in a 

muffle furnace B150 (Nabertherm), approaching stabilization temperatures between 

240 °C and 300 °C at heating rates between 0.5 °C/min and 4 °C/min, and then 1 h of 

isothermal treatment at the final temperature. For each combination of heating rate 

and temperature, samples were stabilized with their borders fixed by placing a metal 

frame with sufficient weight on them as well as freely, without any fixation. 



97 

Carbonization was performed in a furnace CTF 12/TZF 12 (Carbolite Gero Ltd., 

Hope, UK) was used, approaching a temperature of 800 °C with a heating rate of 10 

°C/min in a nitrogen flow of 150 mL/min (STP), followed by isothermal treatment 

for 1 h. 

Masses of the samples were taken before and after stabilization using an analytical 

balance (VWR). Samples dimensions were analyzed by the program ImageJ 1.51j8. 

For Fourier-transform infrared (FTIR) spectroscopy, an Excalibur 3100 (Varian, 

Inc.) was used. Color measurements were performed with a sph900 spectrometer 

(Color-Lite). Scanning electron microscopy (SEM) images were taken by a Zeiss 

1450VPSE with a resolution of 5 nm or a JSM-840 microscope, respectively, using a 

nominal magnification of 5000 x. Optical images of the nanofiber mats were taken 

using a confocal laser scanning microscope (CLSM) VK-100 with a nominal 

magnification of 2000×.  

  Results and Discussion 7.4

Fig. 7.1 depicts the relative mass changes for different stabilization temperatures 

(Fig. 7.1a) and different heating rates (Fig. 7.1b), respectively. The trend of smaller 

normalized masses, i.e. larger losses, for higher stabilization temperatures is clearly 

visible. Compared to a previous study on pure PAN nanofiber mats [21], the 

normalized masses here are generally smaller, and the mass loss is stronger increased 

for higher temperatures. This indicates clearly the influence of the gelatin in the 

fibers – since gelatin denaturalizes around 40-90 °C, depending on the water content 

[22], it can be expected to be released from the nanofibers as long as it is not 

completely embedded in the fiber.  

Opposite to mass measurements on stabilized PAN nanofibers, showing an 

approximately constant value of ~ 85 % of the original mass [21], here a clear 

heating rate dependence is visible for the lower heating rates. This suggests that here 

the duration of the heating time plays an important role, i.e. the lower the heating rate 

is, the higher is the polymer decomposition obtained due to pyrolysis and 

recombination reactions. 
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Fig. 7.1 Normalized masses after stabilization at different temperatures (a) and using different heating 
rates (b). 

Besides the masses, the areas of the stabilized samples in fixed and unfixed states 

were measured. The results are depicted in Fig.7.2, depending on the temperature (a) 

and the heating rate (b), respectively. The ratio of the areas of the unfixed and the 

fixed samples decreases with increasing temperature as well as with increasing 

heating rate, showing that high temperatures and large heating rates cause more 

stress in the unfixed samples and lets them crumple stronger than under less extreme 

conditions. This finding underlines the importance of fixing the samples during 

stabilization.  
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Fig. 7.2 Normalized areas after stabilization at different temperatures (a) and using different heating 
rates (b). 

FTIR measurements were performed on the PAN/gelatin nanofiber mat before 

stabilization. Fig.7.3 shows the result together with pure PAN and pure gelatin 
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nanofiber mats. Comparing the spectra shows that the PAN/gelatin line is composed 

of the typical PAN peaks in the range between 950 cm-1 and 1700 cm-1, at 2240 cm-1 

and 2938 cm-1 [23,24] as well as gelatin peaks. The latter can be differentiated into 

the region around 2700-3600 cm-1 which is attributed to the amides A and B, the 

region around 900-1900 cm-1 showing the amides I, II, and III, and finally the region 

below 900 cm-1 depicting amide IV [25]. It should be mentioned that several peaks 

are hard to distinguish between both pure PAN and pure gelatin. The most prominent 

peaks which are not existent in pure PAN are the peak around 3400 cm-1, 

corresponding with amide A, and the peak near 700 cm-1, corresponding to amide IV. 

In the original state after electrospinning, there are also clear differences between 

PAN and gelatin around 1640 cm-1 (amide I) and 1540 cm-1 (amide II); however, it is 

well-known that in this region significant changes will occur during the stabilization 

process, making these peaks possibly less suitable for the examination whether 

gelatin stays in the fabric during stabilization. 
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Fig. 7.3 FTIR measurements on PAN, gelatin and PAN/gelatin nanofiber mats. 
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Fig. 7.4 FTIR absorbance measurements on fixed samples, stabilized at different temperatures 
approached with 1 °C/min. The lines are offset vertically for clarity. 

 

A comparison of the FTIR measurements on PAN/gelatin samples, heated at 1 

°C/min to different stabilization temperatures, is given in Fig. 7.4. At first glance, the 

results look very similar to those gained by stabilizing pure PAN nanofiber mats 

[21,24,25]. Following the most prominent peaks of the original PAN/gelatin peaks 

shows that during stabilization (amides A, I and II, as marked in Fig. 7.4) shows that 

there is no evidence for residual gelatin in the stabilized fiber mat. The same results 

are visible for the not fixed samples. 

Optical examination of the samples after taking them out of the muffle oven revealed 

dark, nearly black areas on the back in the areas which had touched the underground 

during stabilization. Since the gelatin is no longer visible in the FTIR measurements 

taken on the upper surface of the samples, it can be assumed that gelatin – which 

decomposes above approx. 100 °C, but needs more than approx. 500 °C for complete 

combustion – has precipitated here after melting. Fig. 7.5 thus depicts FTIR scans of 

these dark areas. 
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Fig. 7.5 FTIR absorbance measurements on the dark areas on the back of fixed samples, stabilized at 
different temperatures approached with 1 °C/min. The lines are offset vertically for clarity. 

While for a stabilization temperature of 240 °C the peaks for amides A and I are still 

clearly visible, they are superposed by the growing PAN stabilization peaks for 

higher temperatures. Thus, the FTIR results can in this case not clearly state which 

material causes the black areas on the back. 
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Fig. 7.6 FTIR absorbance measurements on the dark areas on the back of fixed samples, stabilized at 
280 °C, approached with different heating rates. The lines are offset vertically for clarity. 

Fig. 7.6 shows the heating rate dependence of PAN/gelatin nanofiber mats, stabilized 

at 280 °C. While stabilizing pure PAN revealed significant differences in the FTIR 

measurements for different heating rates [28], here all curves are very similar. A 

closer look, however, shows that for higher heating rates, the peaks for the amides A, 

I and II stay visible, although strongly superposed by the large peaks of the stabilized 
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PAN in these areas. This indicates that faster heating allows the gelatin to stay in the 

nanofiber mat to a certain amount. Similar results were found on the dark back of 

these samples (not shown here). Optical investigations were performed, using a 

CLSM. Fig. 7.7 depicts a comparison of an original PAN/gelatin nanofiber mat (a) 

and a sample stabilized in fixed position at 280 °C, approached at 1°C/min (b).  

 

(a) 

 

(b) 

Fig. 7.7 CLSM images of an untreated PAN/gelatin nanofiber mat (a) and a sample stabilized at 280 
°C, approached at 1 °C/min (b). The scale bars indicate 20 µm. 

Firstly, both images show the typical relatively thick and straight fibers which are 

typical for gelatin or PAN/gelatin [19]. After stabilization, the usual brown color of 

the stabilized PAN is visible. Here, however, some silvery fibers can be recognized, 

clearly indicating gelatin. It should be mentioned that – opposite to stabilization of 

pure PAN [21] – the stabilization process here seems to straighten the fibers. Another 

important remark is that no undesired conglutinations are visible in the stabilized 

sample, as opposed to the stabilization process of pure PAN under identical 

conditions [21]. Table 7.1 compares the samples stabilized at different temperatures, 

approached with 1 °C/min, in fixed and unfixed state. Firstly, most images show 

some areas in which silvery regions or fibers are visible which can clearly be 

attributed to gelatin since stabilized PAN shows a strong color change. Second, the 

typical crumpling of pure PAN fibers during stabilization is invisible for the fixed 

samples and severely reduced for the unfixed samples. This finding is independent 

from the stabilization temperature, thus possibly allowing using higher stabilization 

temperatures without a problematic influence on the nanofiber dimensions. This 

observation shows clearly that blending PAN with gelatin can help to gain straight, 

long carbon nanofibers, as desired for most technical applications. 
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Table 7.1 CLSM images of PAN/gelatin nanofiber mat, stabilized in fixed (left panels) and unfixed 
state (right panels) at different temperatures, approached with 1 °C/min. For a better overview, the 
scale bars here indicate 50 µm. 
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Table 7.2 CLSM images of PAN/gelatin nanofiber mat, stabilized in fixed (left panels) and unfixed 
state (right panels) at 280 °C, approached with different heating rates. The scale bars indicate 50 µm. 
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Table 7.2 depicts the dependence of the nanofiber mat morphology after stabilization 

at 280 °C, approached with different heating rates. For the higher heating rates, the 

more chaotic fiber distribution for the unfixed samples is visible; however, still no 

undesired conglutinations seem to appear. The assumption due to Fig. 7.6 that faster 

heating leads to more remaining gelatin cannot be verified or falsified from these 

images, especially since gelatin inside PAN fibers or blended fibers cannot be 

distinguished from pure PAN fibers. 

All samples were also investigated from the back, where residual gelatin was 

expected due to the dark color and the slight differences in the FTIR spectra. Some 

results of fixed samples are depicted in Fig. 7.8.  

 

 

T = 240 °C, 1 °C/min 

 

T = 260 °C, 1 °C/min 
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T = 280 °C, 0.5 °C/min 

 

T = 280 °C, 4 °C/min 

Fig. 7.8 CLSM images of the back of different samples (see insets), stabilized under fixed conditions. 
The scale bars indicate 50 µm. 

Firstly, a significant color change from 240 °C to 260 °C can be recognized. This fits 

well to the starting point of the main thermal degradation zone of gelatin reported in 

the literature [26,27]. Thermal degradation between 250 °C and 600 °C includes 

breakage of protein chains and rupture of peptide bonds, involving the evolution of 

volatile compounds and formation of new C-C and C-N bonds in the solid matrix. 

Independent from this finding, in all cases (including the images not shown here), a 

mixture of broad gelatin bands and fine gelatin membranes connecting PAN fibers 

can be identified. No clear influence of the heating rate or the temperature (as long as 

it is higher than 240 °C) is visible.  

These images show that a stabilization process using hanging samples, without 

contact to the underground, may be favorable to reduce these large gelatin 

agglomerations. On the other hand, it should be mentioned that the next step, 

carbonization of the samples, is usually performed at temperatures higher than 600 

°C so that gelatin will most probably completely be degraded after the carbonization 

process. Nevertheless, the influence of such gelatin agglomerations on the 

morphology of carbonized nanofiber mats should be investigated in the future.  

Next, the morphology of the fibers themselves was investigated using SEM. The 

results for different temperatures are depicted in Table 7.3, while Table 7.4 shows 

the influence of different heating rates.  
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Table 7.3 SEM images of PAN/gelatin nanofiber mat, stabilized in fixed (left panels) and unfixed 
state (right panels) at different temperatures, approached with 1 °C/min. All images were taken using 
a nominal magnification of 5000 x. 
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Table 7.4 SEM images of PAN/gelatin nanofiber mat, stabilized in fixed (left panels) and unfixed 
state (right panels) at 280 °C, approached with different heating rates. All images were taken using a 
nominal magnification of 5000 x. 
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In all cases the unfixed samples show stronger meandering of the fibers, an effect 

which is supported by high temperatures and high heating rates. Stabilization of fixed 

nanofiber mats results in most cases in straight, even fibers. Similar to the CLSM 

images, some gelatin fibers are still visible between the thinner PAN fibers. For the 

highest temperature and the highest heating rates, the fixed PAN fibers seem to be 

more irregular; thus the SEM images suggest stabilization at 280 °C (which is 

sufficient for stabilization, based on the FTIR results) and 1 °C/min which is twice as 

high as the best stabilization temperature for pure PAN nanofiber mats of 0.5 

°C/min. It must be mentioned that the original aim of this study, creation and 

stabilization of PAN/gelatin nanofibers with porous surfaces, was not reached here, 

while the investigation gives a new approach to create smoother, more even fibers 

which can be stabilized with a higher heating rate than pure PAN nanofibers. 

Finally, spectroscopic examinations of the stabilized nanofiber mats were performed. 

The color differences for the brighter front and the darker back compared to the 

original white nanofiber mat are depicted in Fig. 7.9. 
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Fig. 7.9 Color differences dE of samples stabilized at different end temperatures (a) and different 
heating rates (b) and isothermal treatment at the maximum temperature for 1 h. 

 

The difference between the dark and the ―normal‖ areas is also visible in these 

measurements for all temperatures and heating rates. Interestingly, the maximum 

color difference is achieved at 280 °C and decreases again at 300 °C. This may be 

attributed to structural effects due to the degradation of gelatin. This explanation 

corresponds to the slightly increasing color differences with increased heating rates, 

for which larger amounts of residual gelatin were found in the FTIR measurements 

(Fig. 7.6).  

It should be mentioned that for the smallest heating rate of 0.5 °C/min as well as for 

the lowest temperature of 240 °C (i.e. below the start of the gelatin degradation), 

there are no differences between fixed and unfixed samples visible. This may 

indicate that under these stabilization conditions the fixation of the samples is not 

necessary to gain straight fibers without undesired meandering. 

Finally, some of the optimally stabilized samples (all fixed during stabilization) were 

carbonized at a temperature of 800 °C. Fig. 7.10 depicts the SEM images taken after 

carbonization.  
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Tstab = 260 °C, 1 °C/min 

 

Tstab = 280 °C, 1 °C/min 

 

Tstab = 300 °C, 1 °C/min 

 

Tstab = 280 °C, 0.5 °C/min 

Fig. 7.10 SEM images of some samples carbonized at 800 °C. 

Comparing these images, it is clearly visible that thicker fibers are achieved by 

smaller stabilization temperatures (260 °C) and lower heating rates (0.5 °C/min). 

This corresponds to the results of the stabilization process, as depicted in Tables 7.3 

and 7.4, and suggests future tests combining relatively low stabilization temperatures 

and heating rates to support this property. This result clearly shows that by carefully 

choosing the stabilization conditions, the intended increase of the fiber diameter can 

survive the stabilization process, while the blending material responsible for this 

diameter increase melts at much lower temperatures.  

On the other hand, these properties must be balanced against the carbonization 

yields. Here we found the values given in Table 7.5. 
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Table 7.5 Stabilization and carbonization yields as well as overall yield after the whole process for the 
samples depicted in Fig. 4.5-10. 

 
Stabilization 

yield 

Carbonization 

yield 
Overall  

yield 

Tstab = 260 °C, 1 

°C/min 

79.8 % 14.3 % 11.3 % 

Tstab = 280 °C, 1 

°C/min 

74.8 % 36.4 % 27.2 % 

Tstab = 300 °C, 1 

°C/min 

64.9 % 25.0 % 16.2 % 

Tstab = 280 °C, 0.5 

°C/min 

71.8 % 28.6 % 20.5 % 

 

According to these numbers, a stabilization temperature of 280 °C in combination 

with a stabilization heating rate of 1 °C/min should be preferred. The temperature of 

260 °C results in a small carbonization yield, while the highest temperature of 300 

°C leads to a reduced stabilization yield. Comparing both alternatives resulting in 

relatively thick fibers, a small heating rate of 0.5 °C/min in combination with the 

typical stabilization temperature of 280 °C is preferable since the overall yield is 

nearly twice as high as in case of the lower stabilization temperature.  

Fig. 7.11 shows the results of FTIR measurements on the samples depicted in Fig. 

7.10. After stabilization, the peaks visible after stabilization are nearly vanished. 

Only very few functional groups are left after this process, corresponding to the high 

absorbance of carbon, as it is well-known from the carbonization process of PAN 

and other carbon precursors [29,30]. It should be mentioned that the small peaks 

visible here are neither identical with those stemming from PAN nor stabilized PAN 

nor gelatin, showing that the samples are carbonized to a high degree. 
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Fig. 7.11 FTIR results of the samples carbonized at 800 °C. The lines are offset vertically for clarity. 

  Conclusion 7.5

In this study, we have investigated electrospun PAN/gelatin nanofiber mats in terms 

of stabilization parameters and their influences on the resulting stabilized nanofibers. 

In all cases, the amount of gelatin was significantly reduced, especially above the 

onset of gelatin degradation at 250 °C, as revealed by FTIR, CLSM and SEM 

measurements. While adding gelatin did not result in creating porous PAN 

nanofibers after stabilization, we showed that using PAN/gelatin blends as precursors 

for carbon nanofibers offers a new possibility to create long, straight fibers without 

many undesired conglutinations. Future tests will concentrate on investigating the 

influence of the PAN:gelatin ratio on stabilization and subsequent carbonization 

processes.  
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CHAPTER 8 

 

FIXING PAN NANOFIBER MATS DURING STABILIZATION FOR 
CARBONIZATION AND CREATING NOVEL METAL/CARBON 

COMPOSITES 
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 FIXING PAN NANOFIBER MATS DURING STABILIZATION FOR 8.

CARBONIZATION AND CREATING NOVEL METAL/CARBON 

COMPOSITES 

  Abstract 8.1

Polyacrylonitrile (PAN) is one of the materials most often used for carbonization. 

PAN nanofiber mats, created by electrospinning, are an especially interesting source 

to gain carbon nanofibers. A well-known problem in this process is fixing the PAN 

nanofiber mats during the stabilization process which is necessary to avoid 

contraction of the fibers, correlated with an undesired increase in the diameter and 

undesired bending. Fixing this issue typically results in breaks in the nanofiber mats 

if the tension is too high, or it is not strong enough to keep the fibers as straight as in 

the original state. This article suggests a novel method to overcome this problem by 

electrospinning on an aluminum substrate on which the nanofiber mat adheres 

rigidly, stabilizing the composite and carbonizing afterwards either with or without 

the aluminum substrate to gain either a pure carbon nanofiber mat or a metal/carbon 

composite. 

  Introduction 8.2

Electrospinning can be used to create nanofiber, e.g., from polyacrylonitrile (PAN) 

which is a typical precursor of carbon nanofibers [1–3]. Such carbon nanofibers can 

be applied, e.g., to improve the mechanical properties of plastic materials by forming 

a composite with a polymer or a resin, the electrical properties of batteries and super-

capacitors, etc. [4–7]. 

To gain carbon nanofibers, the first step is a stabilization process which is typically 

performed in air, resulting in cyclization and thermally stable aromatic ladder 

polymer formation [8] which increases the chemical and mechanical stability of the 

nanofiber mat and is essential before the carbonization step. The whole stabilization 

process also includes dehydrogenation, aromatization, oxidation, and crosslinking 

[9–11]. 

In previous articles discussing the stabilization and subsequent carbonization of PAN 

nanofiber mats, stabilization temperatures, and heating rates are strongly discussed. 

Fitzer et al., e.g., investigated different stabilization temperatures between 260 °C 
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and 290 °C and heating rates up to 5 °C /min, showing that for the PAN they used a 

heating rate of 1 °C/min and a final temperature of 270 °C resulted in maximum 

tensile strength of the final carbon fibers carbonized at 1350 °C [12]. On the 

contrary, Mathur et al. found that temperatures up to 300 °C were not sufficient for 

thermal stabilization, but temperatures between 350 and 400 °C were needed to reach 

low hydrogen contents and correspondingly only little tar formation during 

carbonization [13]. A completely different thermal treatment was found ideal by 

Moon and Ferris. They suggested performing a first stabilization step with a high 

heating rate of 5 °C/min up to 150 °C, followed by a first isothermal treatment for 2 

h to completely remove water and solvent. Afterwards, stabilization was carried 

further to 200 °C where a second isothermal step followed for 2 h. Carbonization 

was even split in four steps with decreasing heating rates up to a temperature of 1350 

°C. In this way, the best ultimate strengths of the carbon yarns were reached [14]. 

Mólnar et al. found different conversion temperatures for the completed stabilization 

process, depending on the measurement method they applied. The color examination 

revealed the lowest conversion temperature of approx. 195 °C, followed by the 

temperature based on FTIR of 207 °C, while the DSSC indicated a conversion 

temperature of 244 °C. In all cases, the standard deviations were found to be 34–56 

°C; thus these conversion temperatures are not exact values [15]. Gu et al. examined 

the conductivity of carbon nanofibers, stabilized at different temperatures, and found 

that while the morphology of the carbon nanofibers was desirable for a stabilization 

temperature of 250 °C, a stabilization temperature of 270 °C resulted in fiber 

conglutinations which were supportive for an increased conductivity [16]. Rafiei et 

al. found stabilization temperatures of 150–270 °C in combination with a heating rate 

below 2 °C/min ideal according to the stabilization index and the aromatization index 

[17].  

A problem which is less often mentioned, however, is the dimensional change of the 

nanofibers during the stabilization process. On the one hand, conglutinations are 

formed which are sometimes helpful [16] but in most cases undesired. Some 

publications show such conglutinations in the SEM images without discussing them 

further [18,19] or describing how to overcome this problem by changing solution and 

stabilization parameters [20]. On the other hand, shrinkage and bending of fibers 

may occur if they are not fixed during the temperature treatment. Ma et al. stretched 

a bundle of PAN nanofibers by knotting them together with a carbon fiber cord, tying 
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them with a metal hook, and tying the other cord with a displacement device to apply 

a programmed tension, in this way stretching them by approximately a factor of 3 

and afterwards stabilizing them at fixed length by stretching them over a metal frame 

[21]. Wu et al. used hot-stretching during stabilization to gain an elongation by a 

factor of 1.7, fixing one side of the sample on a frame and putting a defined weight at 

the opposite side [22]. Xie et al. stretched the fibers in an oven by applying a weight 

at a middle temperature of 140 °C up to different pre-defined drawing ratios, 

followed by stabilization at 250 °C for 4 h under a constant load. Comparison 

between raw and drawn yarn showed an increase in yarn and fiber uniformity after 

drawing as well as better fiber alignment, polymer chain orientation, and 

corresponding tensile strength [23]. Ma et al. found that even the tension during 

carbonization influenced the tensile strength and Young’s modulus, suggesting a 

moderate carbonization tension of 20 cN per nanofiber bundle [24]. These 

experiments are usually applied to nanofiber bundles and cannot be transferred to 

nanofiber mats produced with needleless electrospinning. Such samples are either 

stabilized freely or fixed during this process to avoid conglutinations and undesired 

morphological changes of the fibers. Fixing the samples, however, is not easy. If 

only two opposite sides are fixed by a weight, e.g., the other sides will shrink 

[25,26]. If all sides are fixed, the samples can break even at low heating rates since 

the forces working on the nanofiber mat are not well distributed [27,28]. 

This article thus aims at suggesting a simple new approach to overcome this problem 

which at the same time offers the possibility to create a novel metal–carbon 

composite. It should be mentioned that the mechanical properties of the single 

nanofibers, as well as the nanofiber mats, were not investigated. The first is 

technologically quite demanding; the latter does not correspond to the planned 

application of single carbon nanofibers in composites. Instead, the focus of the recent 

study is the development of an increased stabilization method as well as a new 

method to create metal/carbon composites. 

  Materials and Methods 8.3

The electrospinning machine—Nanospider Lab (Elmarco, Liberec, Czech Republic), 

a needleless electrospinning machine based on the wire technology—was used to 

create nanofiber mats. Spinning parameters were as follows: high voltage 60 kV, 
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current approx. 0.04 mA, electrode–substrate distance 240 mm, nozzle diameter 0.8 

mm, carriage speed 50 mm/s, substrate speed 50 mm/min, relative humidity 33%, 

and temperature 22.0 °C, air flow 120 m3/hour. 

T.he spinning solution contained 15% PAN dissolved in DMSO (min 99.9%, 

purchased from S3 chemicals, Bad Oeynhausen, Germany). As a substrate, 

household aluminum foil (from Rewe, Bielefeld, Germany) was used. For 

comparison, samples electrospun on the usual polypropylene (PP) substrate (from 

Elmarco) under identical conditions are used. Samples of the electrospun nanofiber 

mats were stabilized in a muffle furnace B150 (Nabertherm, Lilienthal, Germany), 

approaching a typical stabilization temperature of 280 °C at a heating rate of 1 

°C/min, followed by isothermal treatment at this maximum temperature for 1 h. The 

samples electrospun on PP were separated from the substrates before stabilization 

(since PP melts below stabilization temperature), while the samples electrospun on 

aluminum were not separated from their substrates. For carbonization, a furnace CTF 

12/TZF 12 (Carbolite Gero Ltd., Hope, UK) was used, approaching temperatures of 

500 °C or 800 °C, respectively, with a heating rate of 10 °C/min in a nitrogen flow of 

150 mL/min (STP), followed by isothermal treatment for 1 h. 

Scanning electron microscopy (SEM) images were taken by a Zeiss 1450VPSE 

(Oberkochen, Germany) with a resolution of 5 nm, using a nominal magnification of 

5000×. Additionally, a confocal laser scanning microscope (CLSM) VK-9700 by 

Keyence (Neu-Isenburg, Germany) was applied. For Fourier-transform infrared 

(FTIR) spectroscopy, an Excalibur 3100 (Varian, Inc., Palo Alto, CA, USA) was 

used. The software ImageJ 1.51j8 (from National Institutes of Health, Bethesda, MD, 

USA) was applied to determine the nanofiber diameters from 50 fibers per sample 

  Results and discussions 8.4

Fig. 8.1 depicts PAN nanofiber mats, prepared during the same electrospinning 

process, on PP and aluminum foil as substrates, respectively. On the aluminum foil, 

the nanofibers show a slightly larger diameter, connected with fewer undesired 

beads. The latter are typically for PAN nanofiber mats spun from DMSO with 

relatively low solid contents. Apparently, spinning on aluminum foil can on the one 

hand reduce the beads, probably due to shaping the electric field in the spinning 

chamber differently; on the other hand, the slightly thicker nanofibers may be 
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unwanted. This shows that spinning and solution parameters must be carefully 

adjusted to gain the desired morphology if the substrate is changed. This parameter 

study will be performed in the near future. 

Fig. 8.2 shows the effect of stabilization on PAN nanofiber mats on both substrates. 

The nanofiber mat produced on the usual PP substrate and stabilized purely (without 

the substrate) without fixing it has strong conglutinations between the single fibers, 

the latter are clearly thicker than in the original state. It should be mentioned that 

fixing the sample by weights significantly reduces the effect, but cannot completely 

eliminate it [27,28]. The samples stabilized via adhering on the aluminum foil, 

however, have not changed their morphology (Fig. 8.2b). Apparently, this simple 

method can help increasing the formation of long, straight stabilized PAN fibers.  

 

(a) 

 

(b) 

Fig. 8.1 Electrospun PAN nanofiber mats: (a) PP as substrate; (b) aluminum foil as substrate. 

 

(a) 

 

(b) 

Fig. 8.2 PAN nanofiber mats after stabilization: (a) electrospun on PP (substrate separated before 
stabilization); (b) electrospun on aluminum foil (substrate not removed before stabilization). 

 



122 

The same result can also be found on a macroscopic scale. As shown in Fig. 8.3, the 

nanofiber mats electrospun on the usual PP substrate and on aluminum foil look very 

similar in their original state (Fig. 8.3a). After stabilization at 280 °C for 1 h (Fig. 

8.3b), the PAN nanofiber mat on aluminum has the same dimensions as before. The 

unfixed pure PAN nanofiber mat has reduced its widths and lengths by 

approximately a factor of 2 each. The fixed pure PAN nanofiber mat was broken 

during stabilization; only the upper right corner remained under the weights, while 

the residual area shrank stronger. This significant dimensional change can also be 

recognized by the colors of the samples after stabilization—the brown color is much 

brighter for the PAN stabilized on aluminum, corresponding to less PAN per area 

due to the dimensional stability. 

 

(a) 

 

(b) 

Fig. 8.3 PAN nanofiber mats electrospun on different substrates: (a) after spinning; (b) after 
stabilization (and separating from the substrate in case of the PP substrates) at 280 °C for 1 h. 

 

Such a strong adhesion between aluminum and polyacrylonitrile is usually not 

reported in the scientific literature. Aluminum oxide membranes, for example, can be 

used as a template to create PAN nanofibers by extrusion into this template and 

polymerizing in its nano-pores. In this case, the template can be recycled by washing, 

suggesting that the adhesion is not very strong [29,30]. Similarly, coating 

polyacrylonitrile and other polymers with aluminum resulted in condensation on the 

polymer substrate, forming a uniform metal layer there, while metals like copper and 

nickel migrated into the substrate [31]. Only by plasma polymerization of 

acrylonitrile gas is the adhesion of PAN layers on aluminum reported in the literature 

[32]. 
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On the other hand, the solvent DMSO cannot contribute to the adhesion between the 

nanofiber mat and the aluminum substrate, either. Aluminum oxide (which forms a 

thin film on the surface of the uncleaned aluminum foil) is known to be stable in 

organic solvents, including DMSO [33–36]. 

Finally, one process which is sometimes mentioned in the literature may be 

responsible for the adhesion between both materials: for chemical vapor deposition 

coating of PAN with aluminum, the formation of aluminum carbide was observed 

[37], a reaction which is more typical for carbon/aluminum surfaces [38]. Another 

possible reaction—also typically only observed at high temperatures—is the 

formation of aluminum nitride [39]. In order to investigate whether any of these 

chemical reactions has occurred during electrospinning PAN on aluminum foil, FTIR 

investigations were performed. Exemplary results are depicted in Fig. 8.4. The 

graphs show the typical peaks of pure and stabilized PAN in both cases, with an 

additionally increased absorbance for the smaller wavenumbers, as it can be expected 

from the aluminum oxide underground. 

As described in detail by Mólnar et al. [15] and Sabantina et al. [27], PAN shows 

several characteristic peaks before stabilization, some of them from PAN and other 

from the different copolymers used to improve the properties of the fibers such as 

methyl acrylate. At 2938 cm−1 and 1452 cm−1 as well as 1380 cm−1, peaks correlated 

with bending and stretching vibrations of CH2 are visible. The peak at 2240 cm−1 is 

attributed to the stretching of nitrile functional group C≡N. The carbonyl (C=O) 

stretching peak can be recognized at 1732 cm−1. In the ranges of 1230–1250 cm−1 

and 1050–1090 cm−1 peaks occur due to ester (C–O and C–O–C) vibrations of the 

co-monomers like itaconic acid or methyl acrylate. 

After stabilization, these peaks attributed to nitrile and carbonyl functional groups 

are mostly vanished. Instead, C=N stretching vibrations at 1582 cm−1 and C=C 

stretching vibrations at 1660 cm−1 appear as a consequence of the cyclization–

aromatization of the polymers. Additionally, the peak at 1360 cm−1 can be attributed 

to C–H bending and C–H2 wagging. Finally, the peak around 800 cm−1 is related to 

aromatic C–H vibrations due to oxidative dehydrogenation aromatization. As a 

consequence of the stabilization in oxidative atmosphere (air), oxygen cross-linking 

is formed between polymer chains and an increase in the absorbance can be observed 

in Fig. 8.4 in the ranges of 1230–1250 cm−1 and 1050–1090 cm−1 attributed to C–O 



124 

and C–O–C vibrations, in the case of the spectra of the stabilized fibers with respect 

to the electrospun ones. 
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Fig. 8.4 FTIR investigation of PAN nanofiber mats before and after stabilization: (a) pure PAN; (b) 
PAN on aluminium substrate. 

 

Comparing PAN electrospun on aluminum with the pure PAN nanofiber mat 

electrospun on PP, no additional peaks are visible. Aluminum carbide should show 

peaks related to C–C and C=C in the range between 1350 and 1700 cm−1 which are 

not visible here [40]. This, however, is not sufficient to exclude the possibility that a 

thin layer of AlC is created along the interfacial surface. Aluminum nitride only 

shows a peak around 550 cm−1 and would thus not be visible in our FTIR instrument. 

The FTIR analysis cannot help in understanding the good adhesion between both 

materials in this test series. 

Carefully separating the PAN nanofiber mat from the aluminum substrate shows that 

the adhesion between both materials is mostly of electrostatic nature, i.e., introduced 

by the electrospinning process itself. Nevertheless, the fibers at the interface are 

chemically bonded to the aluminum foil and cannot be separated without destroying 

the metal surface, as Fig. 8.5 reveals. Apparently the adhesion between both 

materials can be attributed to a strong electrostatic interaction in combination with a 

chemical bonding of yet unknown nature. 
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Fig. 8.5 Aluminum surface after separating the PAN nanofiber mat electrospun on it. The scale bar 
indicates 10 μm. 

Subsequent, the stabilized samples were carbonized at 500 °C (Fig. 8.6). In both 

cases, the carbonized samples show morphologies very similar to those obtained 

after stabilization. Afterwards, it is possible to separate the nanofiber mat and 

aluminum foil with any scraping tool, if desired. 

 

(a) 

 

(b) 

Fig. 8.6 PAN nanofiber mats after carbonization at 500 °C: (a) electrospun on PP (substrate separated 
before stabilization); (b) electrospun on aluminum foil (substrate not removed before stabilization or 
carbonization). 

 

Finally, the stabilized PAN nanofiber mats were carbonized at 800 °C (Fig. 8.7). 

Since this temperature is higher than the melting temperature of aluminum of approx. 

660 °C, now both materials start intermixing and forming a composite, as can be 

recognized in Fig. 8.7b. This technological approach of composite production is, to 

the best of our knowledge, not yet found in the scientific literature.  
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(a) 

 

(b) 

Fig. 8.7 PAN nanofiber mats after carbonization at 800 °C: (a) electrospun on PP (substrate separated 
before stabilization); (b) electrospun on aluminum foil (substrate not removed before stabilization). 

A strong adhesion between aluminum and PAN has also been reported for other 

technologies in which both these materials were coated on each other in different 

ways. Carbon fibers were, e.g., coated with aluminum to create carbon/aluminum 

composites. Fibers along a fracture surface were not found to be pulled out of the 

aluminum composite, indicating a good adhesion [41]. When mixing short carbon 

fibers into liquid aluminum, their wettability was found poor [42]; thus, this new 

attempt may give rise to an interesting method to produce carbon/aluminum 

composites.  

To summarize the morphological changes during stabilization and carbonization, Fig. 

8.8 depicts a quantitative comparison of all nanofiber diameters, measured in the 

SEM images on 50 fibers per sample.  

As already visible from the SEM images themselves, the diameters of the electrospun 

PAN nanofibers on aluminum were significantly larger than those of the fibers spun 

on the PP nonwoven (Fig. 8.8 a, b). The stabilization of PAN fibers (prepared on PP 

substrate) produces an increase in the fiber diameter while the average nanofiber 

diameter on the aluminum foil stays constant (the undesired conglutinations, as 

visible from the SEM images, were not taken into account for calculation of this 

value, only clearly visible fibers) (Fig. 8.8 c, d). Carbonization at 500 °C (Fig. 8.8 e, 

f) or 800 °C (Fig. 8.8 g,h) does not change the average diameters anymore, neither 

for the nanofiber mats spun on PP nor for those stabilized and carbonized on 

aluminum. It should be mentioned that the standard deviation—i.e., the distribution 
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of the nanofiber diameters—is slightly larger for the nanofibers prepared on the 

nonwoven PP after stabilization and carbonization. 
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Fig. 8.8 Diameters of PAN nanofiber mats electrospun on PP (a) or aluminum substrates (b), 
measured directly after spinning, after stabilization (c, d, respectively), and after carbonization at 500 
°C (e, f) and 800 °C (g, h), respectively. Average diameters and their standard deviations are given in 
the insets. 

  Conclusion 8.5

Electrospinning PAN nanofiber mats on aluminum substrates was shown to offer a 

simple possibility to overcome the problem of how to fix the nanofiber mats during 

the stabilization process, which is indispensable for keeping unconglutinated, straight 

nanofibers. Additionally, at higher carbonization temperatures, aluminum–carbon 

composites can be formed.  

It should be mentioned that in the study reported here, this composite formation was 

neither forced (e.g., by placing a weight on top during carbonization) nor 

investigated further since the main aim was finding a solution for the problem of 

undesired fiber shrinkage and bending during stabilization. Nevertheless, this effect 

results in many possible applications in the area of composites and will be 

investigated further in the near future, especially with respect to composite formation 

during carbonization and the mechanical properties of the resulting composites. 
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 CONCLUSIONS AND SUGGESTIONS FOR THE FUTURE WORK 9.

In this dissertation the low-toxic solvent DMSO (dimethyl sulfoxide) was used for 

needleless electrospinning process to produce PAN nanofibers, PAN/gelatin blends 

and metal/carbon composites. At the beginning of this work, three main objectives 

were set and the research results show that these goals have been achieved in the 

context of this work. 

It has been shown that it was possible to tailor the desired fiber/membrane ratio by 

varying the distance between the electrodes. Investigations have been underlined, 

that while the areal weights depend significantly on all parameters under 

investigation, the nanofiber diameters often show only weak trends or no deviations 

at all. Moreover, the nanofiber mat morphologies change severely with the electrode 

distance, the carriage speed, the high voltage and the nozzle diameter. It should be 

mentioned that the electrospinning conditions such as the spinning mechanism, the 

spinning chamber geometry, air flow through the chamber and especially the relative 

humidity in the spinning chamber significantly influence the nanofiber mat 

morphologies. But the membrane area for a typical electrospinning situation is often 

not exactly zero because small membrane-like areas are often visible in ―pure‖ 

nanofiber mats. This depends on the relative humidity in the spinning chamber and 

the solid content in the spinning solution. This leads to the conclusion, that it is 

indispensable to examine the electrospun nanofiber mats by confocal laser scanning 

microscope (CLSM), scanning electron microscope (SEM) or other techniques which 

allow for investigating the nanofibers with sufficient resolution. Finally, for each 

spinning situation the optimal electrospinning conditions should be investigated 

separately. 

The water vapor resistance of PAN nanofiber mats with varying morphologies 

between pure nanofibers and pure membranes has been examined. This property is 

essential for many applications, especially for filtration, medical applications such as 

wound dressing or protective clothing. The water vapor resistance of nanofiber mats 

it is only scarcely investigated in the literature and investigations of the transition 

between nanofiber mat and membrane in terms of water vapor permeability cannot 

be found in the literature. Depending on the spinning parameters, nano-membranes 

and nanofiber mats were produced as well as a wide range between both 

morphologies. The distance between the high voltage electrode and the substrate 
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influences significantly the ratio of membrane to fibrous areas. Furthermore, the 

water vapor permeability was measured between 0.1 Pa·m²/W and more than 10 

Pa·m²/W. Finally, it was possible to create mixtures between fibers and membranes 

or pure membranes by modifying the electrospinning parameters. It has been shown 

that creation of finest filters as well as nearly impenetrable thin membranes by 

varying the electrospinning parameters is realizable. These findings underline an 

approximately exponential correlation between the absolute evaporation resistance 

and the membrane ratio. 

The influence of stabilization temperature and heating rate on PAN nanofiber mats, 

electrospun using a wire-based technology from a solution in DMSO, has been 

evaluated. The optimal balance between not burning the fibers and chemical reaction 

to proceed sufficiently fast to allow complete stabilization is significant for the 

carbonization step and the resulting nanofiber mat morphologies. Moreover, 

investigations of the beads occurring at relatively low solid contents in the solution 

which are often undesired, but in some cases advantageous to avoid fiber slippage in 

a resin matrix and should thus also keep their shapes during stabilization, were 

performed. This is the case for integrating carbonized nanofibers into composite 

materials to increase their mechanical properties, where these beads can deal as 

―anchors‖ in the matrix. In this dissertation nanofiber mats fixed and unfixed during 

the stabilization process were compared in order to minimize undesired 

conglutinations and nanofiber dimensional changes, which has not been described in 

the literature before. It can be underlined that by carefully controlling the maximum 

stabilization temperature and especially the heating rate, fully stabilized PAN fibers 

without undesired interconnections can be created as precursors for carbonization. 

Moreover, at all stabilization temperatures, the unfixed samples shrink more than the 

fixed ones. By evaluation of stabilized and carbonized nanofiber mats the SEM, 

CLSM or similar methods must also be applied to avoid unexpected and undesired 

changes in the fiber mat morphology and not only FTIR and other chemical 

examination methods are essential. In addition, the importance of a slow heating rate 

and in particular a mechanical fixation of the samples during the stabilization was 

underlined in order to avoid unwanted bonding and an increase in the fiber diameter. 

It has been shown that more detailed investigations are needed to find out which of 

these processes are essential for the subsequent carbonation process. Thus, 

stabilization processes can be tailored to the needs of the resulting carbon nanofibers.  
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It should be mentioned that by blending PAN with gelatin no differences between 

fixed and unfixed samples after finishing of stabilization process were visible. This 

may indicate that under these stabilization conditions the fixation of the samples is 

not necessary to gain straight fibers without undesired bending and conglutinations. 

This result underlines the assumption that by careful selection of stabilization 

conditions, the intended increase of the fiber diameter can survive the stabilization 

process, while the blending material responsible for this diameter increase melts at 

much lower temperatures. Future tests combining relatively low stabilization 

temperatures and heating rates to support this property are needed. Using 

PAN/gelatin blends as precursors for carbon nanofibers can offer a new possibility to 

create long, straight fibers without many undesired conglutinations. Future tests 

should concentrate on investigating the influence of the PAN:gelatin ratio on 

stabilization and subsequent carbonization processes. This investigation shows 

clearly that blending PAN with gelatin can help to gain straight, long carbon 

nanofibers, as desired for most technical applications. 

Moreover, this dissertation suggests a novel method to overcome the problem of 

insufficient fixing of the nanofiber mats during the stabilization process by 

electrospinning on an aluminum substrate. The nanofiber mat adheres rigidly on 

aluminum and keeps its morphology during stabilization and carbonization 

processes. After the stabilization process, the nanofiber mat can be separated from 

the aluminum substrate to form pure carbon nanofibers after carbonization, or it can 

be carbonized together with the aluminum substrate to form a metal/carbon 

composite. In this dissertation, a simple new approach to overcome the problem of 

undesired morphological changes of the nanofibers during stabilization process 

which at the same time offers the possibility to create a novel metal/carbon 

composite was developed. The findings should make an important contribution to the 

field of metal/carbon composites. 

It should be noted that the mechanical properties of the single nanofibers, as well as 

the nanofiber mats, were not investigated in this study, but can be a part of future 

investigations. Instead, the focus was the development of an increased stabilization 

method as well as a new method to create metal/carbon composites. It has been 

shown that the PAN nanofiber mats stabilized via adhering on the aluminum foil 

have not changed their morphology. Such a strong adhesion between aluminum and 
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polyacrylonitrile is usually not reported in the scientific literature. Apparently, this 

simple method can be used to ensure the formation of long, straight stabilized PAN 

fibers. Apparently such as strong adhesion between polyacrylonitrile and aluminum 

can be attributed to a strong electrostatic interaction in combination with a chemical 

bonding of yet unknown nature. Nevertheless, this effect can lead to many other 

possible applications in the field of composites and should be further investigated in 

the near future, especially with regard to composite formation during carbonization 

and the mechanical properties of the resulting composites.  

In addition to the applications described above for materials investigated in this 

dissertation, the following future investigations can be made on the basis of this 

work: Experiments can be performed, e.g., to cultivate animal, plant and fungal cells 

on nanofiber mats. Thus new application areas in medicine, transport, air or water 

purification can be included. Some studies on the growth of animal cells (chinese 

hamster ovary strain DP12 cells) on nanofiber mats have already been undertaken by 

the working group of textile technologies of Bielefeld University of Applied 

Sciences (see Fig. 1.6). Currently further research groups are trying to cultivate 

fungal mycelium on nanofibers in order to produce new hybrid composites. Plant 

cells on nanofibers can be used, for example, for a wide range of applications in the 

greening of house facades or in geotextiles against mountain erosion. The greening 

of facades and houses in conurbations plays a special role today. In the future, the 

demand for a harmonious coexistence of humans and nature will be even greater.  

Membranes and nanofiber mats can be used in water purification, air purification or 

protective clothing applications. Several layers of different nanofiber mats with 

different morphologies, for example with a defined membrane ratio, can be 

effectively used together to form a hybrid composite with other materials. Depending 

on the nanofiber diameter and variations of the distances between the nanofibers, 

effective barriers for bacteria can be created. Due to the very narrow gaps, bacteria 

can no longer pass through nanofiber mats. This application would be interesting for 

protective clothing in hospitals or in the military as protection against chemicals and 

bacterial interventions. It would also be conceivable to use a hybrid composite of 

defined membranes in the field of water purification, for example to filter out dyes or 

micro plastic particles. Nowadays, every household produces micro plastics when 

clothing containing synthetic fibres is washed in a washing machine. 
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Metal/carbon nanocomposites can be widely used in aerospace, transportation, 

aircraft components, space systems, sports equipment, building materials or can be 

used as energy storage. Especially metal/carbon nanocomposites are promising in 

many applications. The composition of carbon nanofibres and aluminum results in 

reinforced composites that are thinner and much lighter than conventional materials 

such as steel or cement. In addition, these composites can be produced much 

cheaper, have better electrical and thermal conductivity as well as improved 

properties and performance.  

In this dissertation, many different aspects of nanofiber fabrication, optimization of 

electrospinning parameters, stabilization and carbonization as well composite 

fabrication were investigated. This dissertation gives new insights and impulses for 

further research. 
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APPENDIX A: RESUMEN EXTENDIDO 

 

Los objetivos generales de esta Tesis Doctoral, que se presenta para optar al grado de 

doctor por la Universidad de Málaga, en el programa de doctorado de ―Química y 

Tecnologías Químicas. Materiales y nanotecnología‖ son los siguientes: 

 (1) Investigación sobre los parámetros de electrohilado del proceso de 

electrospinning sin aguja de poliacrilonitrilo (PAN) disuelto en dimetil sulfoxido 

(DMSO) y de las telas de nanofibras resultantes. Desarrollo de membranas finas casi 

impermeables mediante la modificación de los parámetros de electrospinning. 

(2) Estudio de la influencia de la temperatura de estabilización y de las velocidades 

de calentamiento sobre las propiedades químicas y las morfologías de las telas no 

tejidas de nanofibras de mezclas de PAN y PAN/gelatina. 

(3) El estudio de los cambios dimensionales de las nanofibras durante el proceso de 

estabilización y optimización de la tecnología de fijación para evitar la contracción y 

el doblado indeseable de las telas de nanofibras.  

Para alcanzar estos objetivos el trabajo realizado, durante el trascurso de la presente 

Tesis Doctoral, se ha estructurado en 8 capítulos. En el capítulo 1 se introduce el 

tema y se repasa el estado actual del arte así como los antecedentes bibliográficos. El 

capítulo 2 se centra en los procedimientos experimentales y los materiales utilizados 

para el desarrollo experimental de la Tesis Doctoral. Los capítulos 3 al 8 constituyen 

el bloque de Resultados y Discusión de la Tesis y en ellos se presentan los resultados 

obtenidos, en los distintos estudios realizados, de manera ordenada, de acuerdo a 

como se han enviado a publicar. Dichas publicaciones se han añadido como anexo al 

final de la memoria. Se concluye la memoria con un apartado de Referencias 

bibliográficas que recoge toda la bibliografía usada en la memoria y finalmente se 

adjuntan los trabajos mencionados, algunos ya publicados y otros aceptados o 

enviados. En lo que sigue se presenta lo más destacado de cada capítulo. 
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1 Introducción 

Esta tesis doctoral se centra en el estudio de la preparación de telas no tejidas de 

nanofibras de poliacrilonitrilo (PAN) mediante la técnica de electrohilado sin aguja 

usando como disolvente no tóxico el dimetil sulfóxido (DMSO). 

La motivación para este trabajo se basa en el hecho de lo poco estudiada que está la 

preparación de nanofibras de PAN mediante la técnica de electrohilado sin aguja 

usando disolventes de baja toxicidad como es el caso del DMSO, así mismo no se 

han encontrado referencias sobre el estudio de la estabilización y carbonización, en 

condiciones óptimas, de este tipo de fibras. Se estudia también en esta Tesis Doctoral 

la permeabilidad al agua de membranas obtenidas a partir de telas no tejidas de 

nanofibras de PAN y que tampoco se ha encontrado,  en la literatura científica, 

muchas citas bibliográficas sobre este tema.  

La mezcla de PAN con la gelatina para producir nanofibras de alta porosidad ha sido 

reportada varias veces en la literatura, pero en ninguna de esos trabajos se ha 

realizado un estudio de estabilización y carbonización de estas fibras. En esta Tesis 

Doctoral se presenta en uno de sus capítulos los primeros ensayos realizados sobre la 

estabilización de telas de nanofibras de PAN/gelatina y la influencia de la 

temperatura de estabilización y la velocidad de calentamiento sobre las propiedades 

de las fibras obtenidas. Además, en esta Tesis se presenta un método novedoso para 

superar el problema de una insuficiente fijación de las telas que derivan en 

deformaciones cuando se estabilizan las fibras. Se ha visto que electrohilando sobre 

un sustrato de aluminio es posible que las telas de nanofibras se adhieran fuertemente 

al soporte, manteniendo su morfología, durante los procesos de estabilización y 

carbonización. Habiéndose desarrollado, en estos casos, nuevos tipos de materiales 

compuestos metal/carbón, lo que puede suponer una importante contribución al 

campo de los materiales compuestos metal/fibra de carbón.  

El electrospinning constituye, actualmente, una de las técnicas más rentables para 

preparar fibras a escalas nano-micrométricas. Se utiliza principalmente por su 

facilidad de uso, al tiempo que es susceptible de distintas modificaciones. Mediante 

el electrospinning se pueden producir fibras muy finas en campos eléctricos de alta 

tensión, principalmente a partir de soluciones de polímeros o de polímeros fundidos 

[1]. 
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El término "electrospinning", derivado de "spinning electrostático", se remonta a 

hace más de 60 años. La base del proceso de electrospinning se puede encontrar en 

1902 cuando C. F. Cooley y W. J. Morton patentaron el proceso de electrospray [2, 

3]. Farmhals patentó el proceso de electrospinning en 1934 y repatentó su trabajo en 

1940 [4]. En los años 1960 Taylor estudió la formación y evolución de la gotita de 

polímero producida en la punta de la aguja cuando se aplica el campo eléctrico. El 

electrospinning permite la producción continua de nanofibras con el diámetro de 

fibra y la morfología controlables, lo que las hace muy interesantes para una amplia 

gama de aplicaciones como nano-catálisis, filtración, sensores ópticos y químicos, 

almacenamieno de energía, ropa protectora, defensa y seguridad [5-10]. Desde los 

años 80, y especialmente en los últimos años, el proceso de electrospinning ha vuelto 

a llamar la atención debido al creciente interés por la nanotecnología y la posibilidad 

de producir fibras ultrafinas o estructuras fibrosas a medida [11]. 

El control y estudio de los parámetros, tanto de la disolución como del proceso de 

electrospinning, son fundamentales para la obtención de fibras con propiedades 

adecuadas para sus futuras aplicaciones. Entre los parámetros de la disolución, que 

deben considerarse, se incluyen la viscosidad, la concentración del polímero, el peso 

molecular del polímero, la conductividad de la solución y la tensión superficial. En 

relación con el proceso los parámetros que deben considerarse, por jugar un papel 

clave, son la diferencia de potencial aplicada, la distancia entre la punta y el colector. 

La humedad y la temperatura pertenecen al grupo de los parámetros ambientales. Por 

lo tanto, la comprensión de la técnica de electrospinning y la fabricación de 

nanofibras es esencial para obtener el conocimiento sobre la dependencia que de los 

parámetros tiene la obtención de nanofibras a medida. En este sentido, numerosos 

grupos de investigación han estudiado los efectos de los parámetros del 

electrospinning en la morfología de las nanofibras. La versatilidad de la técnica 

permite trabajar con muchos polímeros diferentes, tanto de origen sintético como 

natural, para la preparación de nanofibras electrohiladas. La mayoría de ellos se 

preparan en disolución [12], pudiendo ser hilados, polímeros naturales y sintéticos, 

polímeros precerámicos, metales y óxidos [13]. Así mismo a la formulación se 

pueden añadir otras sustancias como los nanotubos de carbono (CNTs), partículas 

metálicas, se pueden producir nanoplacas con propiedades prometedoras que son de 

interés en aplicaciones biotecnológicas y médicas [14-16] etc.  
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2. Materiales y métodos 

Para el trabajo presentado en esta tesis, relativo a la preparación de telas de 

nanofibras de carbón a partir de electrospinning de PAN (poliacrilonitrilo), se han 

preparado disoluciones de PAN (aprox 16 %) usando como disolvente de baja 

toxicidad DMSO (dimetil sulfóxido). Las disoluciones se prepararon a temperatura 

ambiente, agitando vigorosamente durante 2 horas. La concentración fue encontrada 

optima en pruebas preliminares ya que se evita la obstrución de los inyectores al 

tiempo que se evita la formación electrospraying, produciéndose un buen 

comportamiento en el proceso de electrospinning. 

A partir del estudio de la influencia de los parámetros de hilado, en el proceso de 

electrospinning sin aguja, sobe la preparación de telas de nanofibras de PAN, se 

seleccionaron los siguientes parámetros: alta tensión de 80 kV, diámetro de boquilla 

de 0,9 mm y velocidad de carro de 150 mm/s durante un tiempo de hilado de 5 

minutos. La velocidad del soporte de recogida de las telas fue de 20 mm/min. La 

distancia entre el electrodo de alta tensión y el centro del soporte varió entre 120 mm 

y 240 mm (los valores máximos posibles para darle a las fibras un mayor tiempo de 

vuelo). La información detallada y los resultados de esta serie de experimentos se 

pueden encontrar en el capítulo 4. 

Para el electrospinning de nanofibras de PAN/gelatina se seleccionaron los siguientes 

parámetros de hilado: voltaje 70 kV, diámetro de inyector 1.5 mm, distancia al 

soporte 240 mm, temperatura en la cámara 22 °C, la humedad relativa en la cámara 

el 33 %. Ver el capítulo 7 para información más detallada. 

Para la realización de las telas de nanofibras de carbón se utilizaron los siguientes 

parámetros de hilatura: alta tensión 60 kV, corriente aprox. 0,04 mA, distancia entre 

electrodos y soporte 240 mm, diámetro de boquilla 0,8 mm, velocidad del soporte 50 

mm/min, humedad relativa 33 % y temperatura 22 °C. Se puede encontrar 

información más detallada sobre esta serie de experimentos en el capítulo 8. 

El proceso de estabilización de una serie nanofibras de PAN se realizó en un horno 

de secado y esterilización "Digitheat" (J. P. Selecta, Barcelona, España). La 

temperatura de tratamiento se estudió entre 60 °C y 200 °C con una velocidad de 

calentamiento de 20 °C/h. Posteriormente se realizó un tratamiento isotérmico a 200 
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°C. Para el carbonizado de las telas no tejidas de nanofibras se utilizó un horno CTF 

12 / TZF 12 (Carbolite Gero Ltd., Reino Unido). 

Para el proceso de carbonización las muestras estabilizadas o sin estabilizar se 

introducen en el horno que una vez cerrado se evacua de aire por desplazamiento con 

nitrógeno (150 mL (STP)/min). El horno se calentó a 800 °C con una velocidad de 

calentamiento de 10 °C /min manteniendo constante el flujo de nitrógeno. A 

continuación se realizó un tratamiento isotérmico durante 2 horas a 800 °C. 

En otra serie de experimentos de estabilización nanofibras se utilizó un horno tipo 

mufla B150 (Nabertherm, Lilienthal, Alemania), usándose en este caso velocidades 

de calentamiento, mayores que en el caso anterior, de 0,5 °C/min, 1 °C/min, 2 

°C/min, 4 °C/min, 8 °C/min y 16 °C/min. Además, las muestras se colocaron en el 

horno ya precalentado. 

Las muestras electrohiladas de PAN/gelatina se estabilizaron en un horno tipo mufla 

B150 (Nabertherm) con temperaturas de estabilización entre 240 °C y 300 °C con 

velocidades de calentamiento de 0,5 °C/min, 1 °C/min, 2 °C/min y 4 °C/min. 

Posteriormente se realizó un tratamiento isotérmico a la temperatura final durante 1 

hora. Para cada caso se investigó la diferencia entre muestras que se fijaron sobre un 

soporte para su estabilización y otras no fijadas. 

A continuación, la carbonización de las nanofibras de PAN/gelatina estabilizadas se 

realizó utilizando el horno CTF 12/TZF 12 (Carbolite Gero Ltd., Hope, Reino 

Unido). Se realizó un tratamiento térmico hasta una temperatura de 800 °C con una 

velocidad de calentamiento de 10 °C/min en un flujo de nitrógeno de 150 

mL(STP)/min, seguido de un tratamiento isotérmico durante 1 hora. 

Para la preparación de materiales compuestos denanofibras de carbono-metal las 

fibras PAN electrohiladas sobre aluminio no fueron separadas del sustrato. El 

conjunto fibras/sustrato, en cada caso, se estabilizaron en un horno de mufla B150 

(Nabertherm, Lilienthal, Alemania), a una temperatura de estabilización típica de 280 

°C a velocidad de calentamiento de 1 °C/min. Esta temperatura máxima se mantuvo 

durante 1 hora. 

 A continuación, los materiales compuesto telas estabilizadas/metal se carbonizaron 

utilizando el horno CTF 12/TZF 12 (Carbolite Gero Ltd., Hope, Reino Unido), a 
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temperaturas de 500 °C u 800 °C. La velocidad de calentamiento fue de 10 °C/min y 

el flujo de nitrógeno de 150 mL(STP)/min. La temperatura máxima se mantuvo 

durante 1 hora. 

Se detallan a continuación otros los dispositivos y métodos que se utilizaron en esta 

tesis. 

 Las masas de las muestras se tomaron utilizando una balanza analítica 

(VWR).  

 El software ImageJ 1.51j8 (de National Institutes of Health, Bethesda, MD, 

USA) fue aplicado para determinar los diámetros de las nanofibras a partir de 

las imágenes SEM, tomando 50 fibras en cada muestreo. 

 Para las mediciones de color en este trabajo se utilizó el instrumento sph900 

de Color-Lite. 

 En esta tesis se utilizaron las mediciones de calorimetría de barrido 

diferencial (DSC), realizadas en un equipo DSC Q100 (TA Instruments). 

 Para la presente tesis, las mediciones de la espectroscopia infrarroja por 

transformada de Fourier (FTIR) se realizaron con un equipo Inc. Excalibur 

3100 (Varian, Inc., Palo Alto, CA, USA). 

 Las telas no tejidas de nanofibras y los materiales compuestos fueron 

evaluados en este trabajo mediante microscopía electrónica de barrido (SEM) 

JSM-6490 LV, Jeol Ltd., Japón, así como imágenes de microscopía 

electrónica de barrido (SEM) tomadas por un Zeiss 1450VPSE (Oberkochen, 

Alemania) con una resolución de 5 nm o un microscopio JSM-840, 

respectivamente, usando una magnificación nominal de 5000 x. 

 La investigación de las morfologías de las telas de nanofibras se realizó con 

un microscopio de barrido láser confocal (CLSM) VK-9000 o VK-9700 

(ambos de Keyence, Neu-Isenburg, Alemania) con un aumento nominal de 

2000 x, utilizando tres áreas por muestra. 

 Un PERMETEST (MODELO DE PIEL), construido por Sensora Textile 

Measuring Instruments and Consulting, República Checa, fue utilizado en 

esta tesis para medir la resistencia al vapor de agua en tres áreas por muestra. 
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3. Investigación del electrohilado sin aguja de telas de nanofibras de PAN 

El PAN es un polímero impermeable que, al contrario que los biopolímeros, no 

puede hilarse a partir de soluciones acuosas, en cambio puede hilarse a partir de 

disoluciones en un disolventede baja toxicidad como es el DMSO. Esto hace que el 

PAN sea un material interesante para el electrohilado de tlasas de nanofibras que 

pueden utilizarse en diversas aplicaciones biotecnológicas o médicas, como filtros, 

crecimiento celular, cicatrización de heridas o ingeniería de tejidos. 

Por otro lado, el PAN es una materia prima típica para la producción de nanofibras 

de carbono, sinembargo el electrospinning requiere parámetros de hilado adecuados 

para la producción de nanofibras sin demasiadas zonas fundidas o aglomeraciones. 

Así, en este capítulo se estudió la influencia de los parámetros de hilatura sobre el 

proceso de electrospinning sin aguja de PAN disuelto en DMSO y las sobre las telas 

de nanofibras resultantes. 

Para concluir, se compararon las telas de nanofibras de PAN electrohiladas con 

diferentes parámetros de operación. Mientras que los pesos especifios (masa/área de 

tela) dependen significativamente de todos los parámetros investigados, los 

diámetros de las nanofibras a menudo muestran sólo tendencias débiles o ninguna 

desviación independientemente de los parámetros. Sin embargo, las morfologías de 

las telas de nanofibras electrohiladas cambian drásticamente con la distancia del 

electrodo, el alto voltaje, la velocidad del carro y el diámetro de la boquilla. Por lo 

tanto, para la producción de nanofibras de alta calidad es indispensable examinar las 

telas de nanofibras electrohiladas por CLSM (microscopio de barrido láser confocal), 

SEM (microscopía electrónica de barrido) u otras técnicas que permitan investigar 

las nanofibras con suficiente resolución. 

 

4. Permeabilidad de vapor de agua a través de telas de nanofibras de PAN 

Este capítulo se centra en la preparación de membranas impermeables al agua, 

modificando las condiciones de electrospinning de disoluciones de PAN. La técnica 

de electrospinning se puede utilizar para preparar telas de nanofibras a partir de 

diversos polímeros que se pueden utilizar como filtros, etc. Dependiendo de los 

parámetros de hilado, también se pueden producir nanomembranas, es decir, laminas 

poliméricas no fibrosas, así como mezclas entre ambas morfologías. La relación 

entre la membrana y las áreas fibrosas puede ser modificadas por la distancia entre el 
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electrodo y el soporte. Aquí se muestra el impacto de la morfología de las telas, de 

nanofibras de PAN, con diferentes áreas similares a membranas sobre la 

permeabilidad al vapor de agua a través de ellas. De esta manera es posible producir 

filtros finos, así como membranas finas casi impenetrables con la misma tecnología. 

En conclusión, se han preparado nanomateriales de PAN con diferentes proporciones 

de áreas de nanofibras y zonas similares a membranas. La relación 

membrana/nanofibra se puede adaptar modificando la distancia entre el electrodo de 

alto voltaje y el soporte. La medición de la permeabilidad al vapor de agua mostró 

una correlación aproximadamente exponencial entre la resistencia absoluta a la 

evaporación y la relación de la membrana. La permeabilidad al vapor de agua puede 

variar en más de dos órdenes de magnitud, mostrando las posibilidades de adaptar 

este valor modificando los parámetros del electrospinning. 

 

5. Investigación sobre los parámetros de estabilización de las telas de nanofibras 

de PAN electrohiladas a partir de disoluciones de DMSO 

El poliacrilonitrilo (PAN) puede utilizarse como materia prima para la conversión 

termoquímica en carbono. Especialmente las telas de nanofibras de PAN, producidas 

por electrospinning, son de gran interés para producir nanofibras de carbono. Sin 

embargo, los parámetros óptimos para la estabilización y la carbonización dependen 

en gran medida de las características de las fibras electrohiladas y del proceso de 

electohilado. Aunque las diferencias entre las nanofibras y las microfibras son bien 

conocidas, en este capítulo se muestra que, dependiendo del método de 

electrospinning y del disolvente utilizado, deben tenerse en cuenta las grandes 

diferencias entre las distintas telas de nanofibras para la optimización de las 

condiciones de estabilización. 

En esta tesis, por primera vez, se han preparado telas no tejidas de nanofibras de 

PAN preparadas por electrospinning, sin aguja, de disoluciones de dimetilsulfóxido 

(DMSO) como disolvente de baja toxicidad, en lugar del típico sistema de 

electrospinning con boquilla de aguja a partir de disoluciones de dimetilformamida 

tóxica (DMF). Los resultados muestran que controlando cuidadosamente la 

temperatura máxima de estabilización y especialmente la velocidad de 

calentamiento, se pueden preparar fibras PAN completamente estabilizadas, sin 

interconexiones, no deseadas, como precursores para la carbonización. En un 
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proyecto reciente se examinó la influencia de la temperatura de estabilización y la 

velocidad de calentamiento sobre las nanofibras PAN electrohiladas utilizando una 

tecnología sin aguja de una solución en DMSO. Las investigaciones por diferentes 

técnicas mostraron óptimos ligeramente diferentes para la temperatura de 

estabilización y la velocidad de calentamiento:  Mientras que una simple prueba 

DMSO utilizada para disolver las telas estabilizadas indicaba que una temperatura de 

240 °C es suficiente para la estabilización (no disolución de la tela), las mediciones 

de color muestran una temperatura necesaria de 260 °C para acercarse a un valor 

constante en el cambio de color. Las mediciones DSC sugieren temperaturas óptimas 

entre 260 °C y 280 °C, mientras que en las mediciones FTIR, dependiendo de los 

picos que se estén examinando, la estabilización parece haberse completado entre 

280 °C y 300 °C. 

Este hallazgo explica la amplia variedad de valores, de estos parámetros, que se 

pueden encontrar en la bibliografía. Dado que la estabilización es una combinación 

de diversos procesos químicos, como ciclación, oxidación, reticulación, etc. Resulta 

necesario investigaciones más detalladas para identificar cuál de estos parámetros es 

esencial para el proceso de carbonización posterior y así poder adaptar el proceso de 

estabilización a las necesidades de las nanofibras de carbono finales. Así, se ha visto 

en este capítulo la importancia de una velocidad de calentamiento lenta y, en 

particular, de la fijación mecánica de las muestras durante la estabilización, a fin de 

evitar conglutinaciones no deseadas y un aumento del diámetro de las fibras. Por otra 

parte, se ha observado que las perlas incrustadas aquí para aumentar la adhesión de la 

matriz de fibra evitando el deslizamiento de la fibra sobrevivieron a la estabilización 

incluso a altas velocidades de calentamiento y sin fijación, en cambio la morfología 

de la fibra sólo se puede mantener a bajas velocidades de calentamiento y en 

muestras fijas. 

 

6. Desarrollo de nanofibras de carbono para su integración en filamentos de 

impresión 3D 

Los nuevos materiales compuestos poliméricos reforzados con nanofibras combinan 

las ventajas de diferentes materiales. De esta manera, se pueden producir estructuras 

más o menos complejas que son muy ligeras y estables al mismo tiempo. Además, el 

uso de polímeros plásticos de base biológica en compuestos sándwich reforzados con 
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nanofibras ofrece la oportunidad de reducir los impactos ambientales negativos. En 

este capítulo se investigan el desarrollo y la evaluación de nanofibras de 

poliacrilonitrilo (PAN) para la producción de nanofibras de carbono. Las telas no 

tejidas de nanofibras PAN se prepararon mediante electrospinning sin aguja y fueron 

utilizadas como precursores para la producción de nanofibras de carbono. Tanto el 

paso de estabilización como el proceso de carbonización influyen significativamente 

en la morfología de las nanofibras de carbono resultantes. Especialmente en el caso 

del hilado a nanoescala, que a menudo carece de la posibilidad de preparar  telas de 

fibras orientadas, es difícil evitar el arrugamiento de las fibras, durante el tratamiento 

térmico, por los medios mecánicos descritos en la literatura. 

 

7. Estabilización de telas de nanofibras de PAN-gelatina para su carbonización 

Debido a sus propiedades eléctricas y mecánicas, las nanofibras de carbón son de 

gran interés para diversas aplicaciones, desde baterías hasta células solares y filtros. 

Las nanofibras de carbón se pueden producir mediante electrospinning de 

poliacrilonitrilo (PAN), seguido de sendas etapas de estabilización y carbonización. 

Tanto el material de base electrohilado como el proceso de estabilización de las 

fibras son cruciales para los resultados del proceso de carbonización, definiendo en 

gran medida la morfología de la fibra. Mientras que la mezcla de PAN con gelatina 

para obtener nanofibras de alta porosidad ha sido reportada varias veces en la 

literatura, no se han hecho intentos para estabilizar y carbonizar estas fibras. En este 

capítulo de la tesis se presentan las primeras pruebas de estabilización de nanofibras 

de PAN/gelatina, describiendo el impacto de las diferentes temperaturas de 

estabilización y velocidades de calentamiento sobre las propiedades químicas, así 

como las morfologías de las telas de nanofibras resultantes. Al igual que la 

estabilización del PAN puro, una temperatura de estabilización de 280 °C parece 

adecuada, mientras que la velocidad de calentamiento no influye significativamente 

en las propiedades químicas. En comparación con la estabilización de las nanofibras 

de PAN puro, para las mezclas de PAN/gelatina se puede utilizar, aproximadamente, 

una velocidad de calentamiento del doble, sin crear conglutinaciones no deseadas, lo 

que hace que este material base sea más adecuado para procesos industriales. En este 

capítulo se han examinado los parámetros de estabilización de las nanofibras 

PAN/gelatina y se ha estudiado su influencia sobre las nanofibras estabilizadas 

resultantes. En todos los casos, la cantidad de gelatina se redujo significativamente, 
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especialmente por encima del inicio de la degradación de la misma a 250 °C, como 

revelan las mediciones FTIR, CLSM y SEM. Mientras que la adición de gelatina no 

resultó en la creación de nanofibras porosas de PAN después de la estabilización, 

aquí se demostró que el uso de mezclas de PAN/gelatina como precursores de las 

nanofibras de carbono ofrece una nueva posibilidad de crear fibras largas y lineales 

sin muchas conglutinaciones no deseadas. Los ensayos futuros se concentrarán en 

investigar la influencia de la relación PAN: gelatina en la estabilización y los 

procesos de carbonización subsiguientes. 

 

8. Fijación de telas de nanofibras de PAN durante el proceso de estabilización 

para su carbonización posterior y preparación de nuevos materiales compuestos 

metal/carbón 

El PAN es uno de los materiales más utilizados para la producción de fibras de 

carbono vía hilado y carbonización. Las telas no tejidas de nanofibras de PAN, 

prepadas por electrospinning, son una fuente especialmente interesante para obtener 

nanofibras de carbono. Un problema bien conocido en este proceso son las 

deformaciones observadas en las fibras durante la estabilización, que están 

relacionadas con una contracción de las fibras produciéndose, generalmente, un 

aumento indeseado del diámetro de las fibras que a veces va acompañado de una 

flexión de las mismas. Solucionar este problema típicamente resulta en roturas en las 

nanofibras, si la tensión es demasiado alta. En este capítulo de la tesis se propone un 

método novedoso para superar este problema mediante el electrospinning sobre un 

sustrato de aluminio sobre el que la tela de nanofibras se adhiere fuertemente. La 

estabilización y posterior carbonización de las fibras con o sin el sustrato de aluminio 

para obtener permite producir un material compuesto de aluminio/carbono o una tela 

de nanofibras de carbono puro. Se ha demostrado que las nanofibras PAN 

electrohiladas sobre sustratos de aluminio ofrecen una posibilidad sencilla de superar 

el problema de cómo fijar las telas de nanofibras durante el proceso de estabilización, 

que es indispensable para mantener las nanofibras rectas y sin aglutinar. Además, los 

materiales compuestos de aluminio-carbono pueden formarse a temperaturas de 

carbonización más altas. Cabe señalar que la formación de estos materiales 

compuestos no fue forzada (por ejemplo, colocando un peso sobre la muestra durante 

la carbonización) ni investigada más a fondo ya que el objetivo principal, de este 

capítulo, era encontrar una solución para el problema de la contracción y flexión 

indeseada de la fibra durante la estabilización. Sin embargo, este efecto resulta de 
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interés en muchas aplicaciones posibles, en el área de los materiales compuestos y 

será investigado más a fondo en un futuro cercano.  
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Conclusiones y sugerencias para trabajos futuros 

En los últimos años, el electrospinning ha adquirido una importancia cada vez mayor 

para muchas aplicaciones debido a la gran variedad de polímeros diferentes que 

pueden ser procesados mediante esta técnica. En esta tesis doctoral se utilizó DMSO 

(dimetil sulfóxido) como disolvente de baja toxicidad para el proceso de 

electrospinning sin aguja para producir nanofibras PAN, mezclas PAN/gelatina y 

compuestos de metal/carbono. Al principio de este trabajo se fijaron tres objetivos 

principales y los resultados de la investigación muestran que estos objetivos se han 

alcanzado en el contexto de esta tesis. 

Se ha demostrado que es posible adaptar la relación fibra/membrana variando la 

distancia entre los electrodos. Se ha subrayado que, si bien las relaciones 

fibra/membrana obtenida dependen en gran medida de todos los parámetros 

investigados, los diámetros de las nanofibras muestran sólo pequeñas desviaciones, 

en algún caso, al cambiar los valores de los parámetros de operación. Además, las 

morfologías de las telas de nanofibras se ven afectadas por los parámetros 

operacionales como la distancia del electrodo, la velocidad del carro, el voltaje y el 

diámetro de la boquilla. Cabe mencionar que las condiciones de electrospinning 

como el mecanismo de hilado, la geometría de la cámara de hilado, el flujo de aire a 

través de la cámara y especialmente la humedad relativa en la cámara de hilado 

influyen significativamente en las morfologías de las telas de nanofibras. Por último, 

para cada situación de hilatura, las condiciones óptimas de electrospinning deben 

investigarse por separado. Se ha examinado la resistencia al vapor de agua de las 

alfombras de nanofibras PAN con morfologías variables entre nanofibras puras y 

membranas puras. La resistencia al vapor de agua de las telas de nanofibras está poco 

investigada en la literatura y no existen, hasta donde sabemos, investigaciones sobre 

la transición entre morfología tipo tela de nanofibras y membrana en términos de 

permeabilidad al vapor de agua. 

Dependiendo de los parámetros de electrospinning, se produjeron nanomembranas y 

telas de nanofibras, así como una amplia gama morfologías entre ambas. Finalmente, 

fue posible crear mezclas entre fibras y membranas o membranas puras modificando 

los parámetros de electrospinning. Se ha demostrado que la creación de filtros más 

finos, así como de membranas finas casi impenetrables mediante la variación de los 

parámetros de electrospinning, es realizable. Estos resultados subrayan una 
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correlación aproximadamente exponencial entre la resistencia absoluta a la 

evaporación y la relación de la estructura de membrana en el material finalmente 

preparado. 

Se ha evaluado la influencia de la temperatura y de la velocidad de calentamiento 

sobre el proceso de estabilización de las telas no tejidas de nanofibras de PAN 

electrohiladas a partir de una disolución en DMSO utilizando una tecnología de 

electrospinning sin aguja. El equilibrio óptimo entre ambos parámetros es 

fundamental para el proceso de carbonización posterior y la morfología de las 

nanofibras resultantes. Además, se realizaron investigaciones de las microesferas, 

que incluso con contenidos relativamente bajos de sólidos en la solución, a menudo 

se forman y que la mayoría de las veces no son deseadas, pero en algunos casos 

presentan ciertas ventajas, como por ejemplo cuando se preparan materiales 

compuestos estas nanoesferas pueden evitar el deslizamiento de las fibras dentro de 

una matriz de resina y, por lo tanto, sería importante mantener las formas durante la 

estabilización y carbonización. 

Se concluye que controlando cuidadosamente la temperatura máxima de 

estabilización y especialmente la velocidad de calentamiento, se pueden preparar 

fibras PAN completamente estabilizadas sin interconexiones, no deseadas, como 

precursoras de la carbonización. Además, a todas las temperaturas de estabilización, 

las muestras no fijadas se encogen más que las fijas. Se compararon para minimizar 

conglutinaciones no deseadas y cambios dimensionales de nanofibras, lo que no se 

había descrito antes en la literatura.  

Además, se subrayó la importancia de una velocidad de calentamiento lenta y, en 

particular, de una fijación mecánica de las muestras durante la estabilización, a fin de 

evitar un encogimiento no deseado y un aumento del diámetro de la fibra. Se ha 

demostrado que los procesos de estabilización pueden adaptarse a las necesidades 

requeridas para las nanofibras de carbono resultantes. Debe mencionarse que al 

mezclar PAN con gelatina no se observaron diferencias entre las muestras fijas y no 

fijas después de terminar el proceso de estabilización. Esto puede indicar que bajo 

estas condiciones de estabilización la fijación de las muestras no es necesaria para 

obtener fibras rectas sin dobleces y conglutinaciones no deseadas. Este resultado 

subraya la suposición de que mediante una cuidadosa selección de las condiciones de 

estabilización, el aumento previsto del diámetro de la fibra puede permanecer tras el 
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proceso de estabilización, mientras que el material de mezcla responsable de este 

aumento de diámetro se funde a temperaturas mucho más bajas. Se necesitan pruebas 

futuras que combinen temperaturas de estabilización relativamente bajas y 

velocidades de calentamiento para respaldar esto. 

El uso de mezclas de PAN/gelatina como precursores de nanofibras de carbono 

puede ofrecer una nueva posibilidad de crear fibras largas y rectas sin muchos 

conglomerados no deseados. Las pruebas futuras deberían concentrarse en investigar 

la influencia de la relación PAN: gelatina en la estabilización y los procesos de 

carbonización subsiguientes. Esta investigación muestra claramente que mezclar 

PAN con gelatina puede ayudar a obtener nanofibras de carbono largas y rectas, 

como se desea para la mayoría de las aplicaciones técnicas. 

Además, esta tesis doctoral sugiere un método novedoso para superar el problema de 

la fijación insuficiente de las telas no tejidas de nanofibras durante el proceso de 

estabilización mediante electrospinning sobre un sustrato de aluminio. La telilla de 

nanofibras se adhiere fuertemente al aluminio y mantiene su morfología durante los 

procesos de estabilización y carbonización. Después del proceso de estabilización, la 

tela de nanofibras puede separarse del sustrato de aluminio para formar nanofibras de 

carbono puro después de la carbonización, o puede carbonizarse junto con el sustrato 

de aluminio para formar un compuesto de metal/carbono. En esta tesis, se desarrolló 

un nuevo y sencillo enfoque para superar el problema de los cambios morfológicos 

no deseados de las nanofibras durante el proceso de estabilización, que al mismo 

tiempo ofrece la posibilidad de preparar nuevos compuestos metal/carbono. Lo que 

podría ser una importante contribución al campo de los compuestos de 

metal/carbono. 

Cabe señalar que las propiedades mecánicas de las nanofibras individuales, así como 

de las telas de nanofibras, no fueron investigadas en este estudio, pero pueden formar 

parte de futuras investigaciones. En lugar de ello, el enfoque se centró en el 

desarrollo de un método de estabilización incrementado, así como de un nuevo 

método para preparar compuestos de metal/carbono. Sin embargo, este efecto puede 

conducir a muchas otras posibles aplicaciones en el campo de los materiales 

compuestos y debería ser investigado más a fondo en un futuro próximo, 

especialmente con respecto a la formación de materiales compuestos durante la 

carbonización y las propiedades mecánicas de los materiales compuestos resultantes.  
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