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Chapter 1

Introduction

This volume presents a summary of the research work done with the aim of addressing and
solving Smart Mobility problems in a smart city context. Several big cities are modeled to be
optimized using new evolutionary techniques and the traffic simulator SUMO. Three new
architectures, Red Swarm, Green Swarm and Yellow Swarm are proposed, analyzed and
used to reduce travel times, greenhouse gas emissions, and fuel consumption of vehicles.
A new method for calculating alternative routes for GPS navigators and the prediction of
car park occupancy rates are also included in this PhD thesis. Moreover, a novel algorithm
for generating realistic traffic flows is developed and tested in different scenarios: working
days, Saturdays, and Sundays. Finally, a new family of bio-inspired algorithms based on
epigenesis was designed and tested on the Multidimensional Knapsack Problem and used in
the Yellow Swarm architecture.

1.1 Motivation
Nowadays, cities are growing in number of inhabitants, many of whom are arriving at the city
for the first time [230]. As a consequence, the number of vehicles in streets is continuously
increasing [72] while the infrastructure is not scaling at the same pace to support the demand,
which in turn produces congestion, affecting all aspects of daily life.

Whether road traffic sources are public, private, fleets, deliveries or services, there is a
notable increase in the number of trips citizens have to take and their duration [224]. These
journeys are often to commute or take children to school, which usually occurs at the same
time of day. Other sources of traffic in big cities are people visiting hospitals, going shopping,
or making short trips to meet each other [215].

Evidence of the problems described above can be seen in the number of traffic jams [215]
which have increased in frequency over the last decade and have become a serious issue for
residents living in cities. As a result, traveling by car is becoming slower than it used to be
and it is a common source of delays, economic loss, and stress because of the effect traffic
congestion has on peoples’ leisure time and work.
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Another consequence is the amount of greenhouse gases emitted to the atmosphere since
the more people driving at low speeds or even stuck in traffic jams, the greater the emissions
from the vehicles’ motor [101]. Some of the main emissions are:

1. Carbon Dioxide (CO2), the main factor behind the significant climate change the planet
is undergoing, especially because of anthropogenic emissions [89], unused gas flaring
during oil production, fossil-fuel combustion, natural gas consumption, road transport,
etc. [167].

2. Carbon Monoxide (CO), which is emitted by the incomplete combustion of fossil fuels
and biofuels. Exposure to CO can reduce the oxygen-carrying capacity of the blood,
thereby reducing oxygen delivery to the body’s organs and tissues. Furthermore, CO
slowly oxidise when is in atmosphere contributing to the formation of ozone which
has associated effects on human health and ecosystems. Additionally, CO can turn into
CO2 through chemical processes in the atmosphere [240]

3. Particulate Matter (PM). They are microscopic solid or liquid matter suspended in
the atmosphere which can penetrate deep into the lungs and blood streams unfiltered,
posing a great risk to human health.

4. Nitrogen Oxides (NOx), emitted during fuel combustion in domestic heating and
industrial facilities. In high concentrations, they cause inflammation of the airways
and reduced lung function.

5. Hydrocarbons (HC), which usually correspond to partially burned fuel produced by
motor vehicles. They are the main contributor to smog and a prolonged exposure to
these gases may cause asthma, lung disease, and cancer.

6. Methane (CH4). It is produced by organic matter decomposition in oxygen-poor
environments. It is also a greenhouse gas so that it might contribute to global warming.

7. Ground Level Ozone (O3), which also has a marked effect on human health such as
breathing problems, reduced lung function, and asthma. It contributes also to global
warming. Ozone is formed in the troposphere, from complex chemical reactions
involving NOx, CH4, and CO.

Air quality is an important issue for the economy, the environment, and of course,
human health. Greenhouse gas emissions not only contribute to global warming, but also
jeopardize people’s health via different respiratory and cardiovascular diseases as well as
lung cancer [101, 137]. They also have an economic impact, shortening lives, increasing
medical costs, and reducing productivity through the loss of working days. Additionally, air
pollution can also damage buildings and has a clear impact on the climate, since some air
pollutants act as greenhouse gases [90].

One of the European Union’s objectives for the year 2020 is the reduction of greenhouse
gas emissions [64], although emissions from fuel combustion have been rising worldwide
since 1971, and this growing tendency seems to be hard to reverse in the near future [163].

Several strategies have been proposed to prevent traffic jams and reduce the amount of
gases emitted to the atmosphere [70, 133]. Some of them are based on traffic microsimulation
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where each vehicle is modeled as an agent, subject to a car following model, moving by a
realistic city map made of streets with multiple lanes, roundabouts, traffic lights, left and
right turn restrictions, etc. This very accurate studies have the drawback of long computation
times as it is necessary to simulate many vehicles in a big scenario. As an example of this,
one hour of simulation time could be equivalent to several minutes in real time using the
latest hardware available. This is a matter to be taken into account in optimization studies
where it is necessary to evaluate (simulate) each configuration to obtain its fitness value.
Moreover, the high complexity found in mobility problems, especially those where there are
several routes to choose based on an optimization criterion, make them to be very hard to
solve using a deterministic, exact heuristic.

The use of Information Technologies (IT) to solve the problems found in the city of
the 21st century, facilitates the combination of several techniques for collecting data and
intelligent algorithms based on metaheuristics. Metaheuristics for combinatorial optimization
problems [27] are frequently inspired by natural processes such as Darwins’ theory of
evolution: Evolutionary Algorithms (EA) are today a classic example [14].

Concretely, bio-inspired algorithms such as Genetic Algorithms (GA) [86, 102], Simu-
lated Annealing (SA) [118], Particle Swarm Optimization (PSO) [116], Ant Colony Opti-
mization (ACO) [58], among others are able to find good solutions, usually the optimum, of
highly complex real-world problems in reasonable computing times. Usually, they start with
a set of initial candidate solutions and iteratively generate new ones in a chain of increasingly
fitted populations towards the optimum of the problem. Their non-deterministic guided and
intelligent search balances the exploration of the search space and exploits its more promising
regions, to hopefully find the optimal solution to the problem being solved.

This PhD thesis is focused on the design of new algorithms inspired in epigenesis and
the applicability of their results to improve road traffic in cities. It involves modeling new
simulation scenarios, solving problems related to road traffic generation, and generating new
paradigms to optimize them. The research work done has been developed in connection with
several research projects aiming at real world applications, holistic intelligence, and Smart
Mobility: roadME [183], MAXCT [145], moveON [153], CI-RTI [184], and 6city [1].

1.2 Objectives and Phases
Among the objectives of this PhD thesis are the design, implementation, and evaluation of
solutions for the Smart Mobility problems found in modern cities, using metaheuristics and
bio-inspired algorithms. Concretely:

O1 Study the existing techniques which are part of the state of the art in Smart Mobility,
increasing existing knowledge about the problem to innovate and improve the current
techniques by using hybridization, parallelism, etc.

O2 Design, develop, and analyze a new type of bio-inspired algorithm, based on epigen-
esis, with the aim of being used to solve problems of combinatorial and continuous
optimization.
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O3 Generate realistic scenarios to be optimized by the algorithms and architectures devel-
oped keeping in mind the possibly application in real world models besides working
with simulators.

O4 Solve real problems generating new scientific knowledge while collaborating with the
industry.

O5 Dissemination of research results among the society by using new technologies such
as YouTube, Twitter, and a personal web site.

The phases of this PhD thesis are based on the scientific method [54, 77] in order to
ensure a rigorous and well-defined working methodology. Specifically:

1. Observation: We identify interesting, real problems in typical cities and analyze
the existing bio-inspired algorithms to build new models and simulations to better
understand the current problems, discover new ones, and solve them. Additionally, we
study the solutions already proposed by academic researchers and those that are being
used by industry.

2. Hypothesis: We propose new bio-inspired algorithms using sequential and parallel
techniques to better solve hard problems. Our hypothesis is that parallelism and
machine learning techniques can be ways of solving open problems closer to reality
than the existing in the current literature.

3. Experimentation: This is a very important phase in which each experiment has to
be thoroughly designed and conducted. We carry out several experiments in order
to test our algorithms and Smart Mobility proposals in very realistic scenarios. We
analyze the results achieved using statistical tests, validating or refuting our previous
hypotheses.

4. Analysis: In this phase we analyze existing algorithms and literature, different mi-
crosimulations, several maps of European cities, and the experiments conducted in
those cities.

5. Conclusions: Finally, after the research process, we draw the corresponding conclu-
sions. We confirm our main hypothesis that our bio-inspired proposals can be used to
improve the road traffic in the city, not only reducing greenhouse gas emissions and
fuel consumption but also shortening travel times. Our results perform well, not only
against other data-based solutions, but also against those that have been obtained by
human experts according to their own intuition.

1.3 Thesis Contributions
The main contribution of this PhD thesis are the design, study and implementation of new
bio-inspired techniques to address road traffic problems in big cities, such as long travel times,
high greenhouse gas emissions and fuel consumption. Our objective is to make scientific
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contributions not only to solve Smart Mobility problems but also in the techniques used for
it. The contributions can be summarized as follows:

• A review of the state-of-the-art proposals for solving Smart Mobility problems.

• A deep study of the road traffic problems found in big cities, including traffic jams,
long travel times, and high gas emissions.

• A set of tools to build realistic simulation scenarios based on public data available
(open data) such as street distribution, traffic light locations, number of vehicles
at measurement points, flows based on people’s needs, vehicle types, and car park
occupancy rates.

• Three new architectures for optimizing road traffic, shortening travel times and reducing
greenhouse gas emissions and fuel consumption.

• A prediction system, based on machine learning techniques, to forecast car park
occupancy rates.

• A new family of bio-inspired algorithms based on epigenesis for solving combinatorial
and continuous problems, which have been applied to a road traffic problem.

1.4 Thesis Organization
This PhD thesis volume is organized in three parts and two appendices. The Part I introduces
the scientific and technological bases of this PhD thesis. There, Smart Mobility problems are
described in Chapter 2, metaheuristics as a method for solving hard combinatorial problems
are discussed in Chapter 3, microsimulation techniques as a tool for modeling road traffic
in a city are analyzed in Chapter 4, and finally, the design and test of the Flow Generator
Algorithm are addressed in Chapter 5.

In Part II several problems are modeled and solved by using three new architectures, Red
Swarm (Chapter 6), Green Swarm (Chapter 7), and Yellow Swarm (Chapter 8). Additionally,
alternative routes for GPS navigators and the prediction of car park occupancy rates are also
addresses in Chapter 9 and Chapter 10, respectively.

In Part III, the design of a new bio-inspired algorithm based on epigenesis is presented
(Chapter 11), tested in the Multidimensional Knapsack Problem (Chapter 12), and used to
optimize the configuration of the Yellow Swarm architecture (Chapter 13).

Finally, our conclusions and future lines of research are given in Chapter 14.





Part I

Scientific and
Technological Bases





Chapter 2

The Main Scientific Challenge:
Smart Mobility Problems

This chapter presents a review of the Smart Mobility problems that are present in almost
all the big cities of the world. Starting with long travel times which make citizens to waste
several hours in their car every day, following with air pollution which represent one the
most important health issues nowadays. Finally, another consequence of crowded cities is
addressed: finding a free parking spot in the city.

2.1 Introduction
It was reported that 50% of Europeans use a car every day [224], while 38% of them
encounter problems as they travel around cities. Furthermore, an important number of
Europeans believe that the truly serious problems within cities are caused by air pollution
(81%), road congestion (76%), traveling cost (74%), accidents (73%), and noise (72%).

Human health, economic development, energy, traffic jams, environmental pollution, and
waste management are some of the problems that strongly affect different aspects of our
society. These problems represent a challenge for city governments to manage such growing
issues in smarter ways. Research to Smart Cities and Intelligent Transportation Systems
(ITS) [207] is therefore a must and so is reported by major agencies worldwide [55, 159].

The concept of a smart city has not yet been totally defined [103]. In fact, the term smart
is usually confused with digital or intelligent [41], and normally it focuses on the relationship
between infrastructures, services, government, and citizens, in a sort of holistic vision. As a
result, several definition of a smart city have been given:

i) “A city connecting the physical infrastructure, the IT infrastructure, the social infras-
tructure, and the business infrastructure to leverage the collective intelligence of the
city” [92]

ii) “Those cities that utilize information and communication technologies with the aim
to increase the life quality or their inhabitants while providing sustainable develop-
ment” [17]
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iii) “The use of Smart Computing technologies to make the critical infrastructure compo-
nents and services of a city – which include city administration, education, health care,
public safety, real estate, transportation, and utilities – more intelligent, interconnected,
and efficient” [235]

iv) “A city that monitors and integrates conditions of all of its critical infrastructures,
including roads, bridges, tunnels, rail/subways, airports, seaports, communications,
water, power, even major buildings, can better optimize its resources, plan its preventive
maintenance activities, and monitor security aspects while maximizing services to its
citizens” [31]

Another way of defining a smart city and identifying its strengths and weaknesses is
by measuring its performance and level of development across a broad range of character-
istics and factors, as proposed in [80]. The authors identify six characteristics with their
corresponding factors (Figure 2.1):

i) Smart Economy: innovative spirit, entrepreneurship, productivity, flexibility of labor
market, etc.

ii) Smart People: level of qualification, affinity with life long learning, social and ethnic
plurality, flexibility, creativity, etc.

iii) Smart Governance: participation in decision-making, public and social services, trans-
parent governance, etc.

iv) Smart Mobility: local accessibility, international accessibility, availability of infrastruc-
ture, sustainable, innovative and safe transport systems

v) Smart Environment: attractiveness of natural conditions, pollution, environmental
protection, and sustainable resource management

vi) Smart Living: cultural and education facilities, health conditions, individual safety, etc.

Figure 2.1: The six main axes of smart cities. We are focused on Smart Mobility and Smart Environment.

There are many ways of approaching a modern smart city. They should be based on a
holistic model in order to deploy new services according to the city’s priorities. Interesting
initiatives are green buildings, electrical cars and buses, optimized water distribution systems,
waste reduction, processing and recycling, fair share of goods and services, ITS, digitalization,
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robotics, waste bins equipped with capacity sensors, dynamic lightning, smart car parks,
smart cards, shopping and street activity monitoring, and systems of geolocation of public
transport. Furthermore, global alert systems about pollution, pollen, ultraviolet radiation,
ozone, water quality, flooding, fire, storms, hurricanes, etc., could be implemented by using
Wireless Sensor Networks (WSN) [69]. Finally, the reduction of travel times, greenhouse
gas emissions and fuel consumption ought to be present in a smart city project as well.

The implementation of these systems have to be done keeping in mind not only the
local administration but also citizens, who should be the main beneficiaries of them. These
technologies must be robust, reliable, intelligent, and easy to use, for instance by delivering
services through smartphones or tablets which allow a bidirectional communication and
become also a valuable source of data [165].

In the following section several solutions to different problems related to the intersection
of two main topics in smart cities are presented. Concretely, road traffic (Smart Mobility)
and greenhouse gas emissions (Smart Environment) which are the main topics addressed in
this PhD thesis. The main idea is to make greener cities by using evolutionary techniques to
optimize road traffic.

2.2 Long Travel Times
There are several proposals for shortening travel times which have been published in the last
five years. Some of them deal with urban traffic congestion problems, others with traffic light
control, route planning, etc.

The study in [60] presents a recent review of some techniques used for detecting traffic
jams and for avoiding congestion on roads. The authors conclude that a GPS based system
can be a better alternative technique for traffic jam detection as it can monitor the whole road
network and can be incorporated with the strategies for congestion avoidance which will
help to improve the traffic flow.

A distributed and cooperative system dedicated to road self-organization is presented
in [223] with the aim of detecting traffic jams and transmitting traffic alerts. The authors
present a theoretical model based on the FORESEE cooperation model [79] composed of a
set of agents which are physically installed in each vehicle. Each agent evaluates the traffic
conditions and exchanges information with other agents over wireless media. The working
scenario is quite big and the results are achieved by using a traffic simulator. In our studies
there is not a minimum number of vehicles to sense and communicate the traffic state. When
we use radio communications, they rely only upon a fixed number of spots or nodes.

In [45], the authors present an optimization method that determines routes for drivers and
then increases the performance of the traffic network via dynamic traffic routing. A novel
algorithm, called Ant Colony Routing (ACR), based on Ant Colony Optimization (ACO)
with stench pheromone and colored ants, is proposed for the optimization. The different
vehicles routes are modeled by using the colored ants so that they are only sensitive to their
own color. Moreover, the stench pheromone is used to disperse ants throughout the network
thereby preventing traffic jams. We work with an evolutionary algorithm, use scenarios made
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of real streets and we test them by simulating the dynamics of the whole city and players
(vehicles, driving rules, traffic lights, etc.).

In [134] a proposal based on an integrated macroscopic traffic model (S model) which
includes a macroscopic urban traffic flow model and a microscopic traffic emission model
(VT-Micro) is presented. While the former provides macroscopic traffic states for each
link, the latter evaluates the emissions based not only on the speed of all vehicles but also
on the acceleration or the deceleration of each of them. Moreover, a Model Predictive
Control (MPC) [176] is applied to urban traffic networks with the aim of reducing both travel
delays and gas emissions based on the aforementioned models, by regulating the stop-and-go
behavior and distributions of traffic flows within the network with the aid of traffic signals.
Although we also reduce travel times, we use a different approach consisting in rerouting
vehicles to avoid congested streets in real geographical areas in a customized manner for
every driver.

Another method to reduce travel times is presented in [147]. It consists of an algorithm
capable of controlling traffic signals that relies on traffic observations made by available
sensor devices and local communication between traffic lights. To evaluate the system
developed, a realistic traffic model was made using information supplied by the city of
Ottawa, Canada. The advantages presented by the authors are failure tolerance, dynamic
response, and the fact that the simulations used to validate this approach are based on
historical data. The model of traffic used is composed of just a small number of single
intersection snapshots, while we address bigger geographical areas.

In [127] the authors propose an Adaptive Traffic Light Control (ATLC) using Vehicular
Ad-Hoc Networks (VANET), which takes into account the vehicle density as well as the
relative position of vehicles with respect to junctions. They present a case study based on
a specific intersection in the city of Moncton, Canada. The proposed system is validated
with real traffic data by dynamically adjusting the periods of green lights. The results of
the simulation show that the algorithm proposed improves traffic flows and the current
configuration of the city just as well as some other algorithms in the literature. Although the
scenario chosen is intended to be a realist one by using historical traffic data and the results
are promising, the study is limited to just one intersection.

In [185] a system to prevent traffic jams and reduce congestion by assigning new routes
to vehicles is proposed. The route assignation, which excludes heavy load streets, is done
during each vehicle’s journey of each vehicle so that the driver is able to react to unexpected
situations such as accidents, etc. To do this, the authors also use on-board systems such as
tablets on which the position of each vehicle as well as the new route calculated are shown.
They have experimented with the road network of the island of Manhattan in New York
imported from OpenStreetMap [169], and reduced travel times by to 33%. This article is
different from our proposal in that each driver needs a wireless device with GPS, Internet
connectivity, and a screen to be able to use it.

In [75] the authors introduce a vehicle-to-vehicle (V2V) congestion avoidance mechanism
to minimize travel times by detecting congestion levels and rerouting vehicles in real time,
based on VANETs. They create a distributed congestion avoidance scheme and consider a
reactive mechanism instead of periodic broadcasts. Additionally, a dynamic route planning
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technique helps cars to avoid jams by choosing the route with the minimum travel time which
is calculated using the congestion information available, previously collected by each car.
Our studies are based on a different approach as we do not use vehicular networks but rather
previously calculated routes and their probability of being chosen to improve the road traffic
in the city.

In [148] the authors propose an architecture to control and manage the utilization of
road transport networks to prevent traffic congestion. Their architecture divides an urban
area into smaller regions while the capacity of each road segment within these regions is
reserved by users on demand, spatially and temporally. Additionally, a real-time scheduling
algorithm to solve the route reservation problem is analyzed using a realistic road transport
scenario in a large area in Nicosia, Cyprus, extracted from OpenStreetMap and imported
into SUMO [123]. Their results indicate that congestion can be avoided and travel times
improved after the application of a route reservation algorithm over a specific region. In our
architectures we use different approaches and algorithms to optimize other, different cities.

A bi-level optimization framework to settle the optimal traffic signal setting problem is
presented in [188]. By using a Hybrid Genetic Algorithm (HGA), the authors decouple the
original bi-level problem into two single-level problems employing SUMO and then solve
them sequentially. The upper-level problem sets the traffic signal to minimize the drivers’
average travel time, and the lower-level problem achieves network equilibrium using the
settings calculated in the upper level. The experiments were conducted in an urban area of
Chicago obtained from OpenStreetMap with a number of vehicles obtained from the average
daily traffic counts. In our proposal, the focus is on the rerouting of vehicles to prevent traffic
jams, without changing traffic light cycles.

All in all, long travel times in a city are studied and reduced in this PhD thesis by suggest-
ing new alternative routes which are customized to each driver. Evolutionary techniques and
traffic simulation are used to achieve that objective in several big cities whose street layout
are quite realistic as they are imported from OpenStreetMap into the SUMO traffic simulator.

2.3 Polluted Cities
Reducing pollution from road traffic is another Smart Mobility problem which is related to
Smart Environment initiatives. The following papers are focused on the reduction of gas
emissions from vehicles not only by using greener, alternative routes, but also by taking into
account traffic light cycles and the design of the city.

A green Vehicle Traffic Routing System (VTRS) that reduces fuel consumption and
consequently CO2 emissions via a bio-inspired algorithm, combined with a fuel consumption
model, is introduced in [110]. It consists of an Ant-based Vehicle Congestion Avoidance
System (AVCAS) that uses the Signalized Intersection Design and Research Aid (SIDRA)
fuel consumption and emission model in its vehicle routing procedure. By using various
criteria such as average travel time, speed, and distance, this system is able to reduce fuel
consumption by finding the least congested shortest paths and reducing the vehicle traffic
congestion and emissions. This approach is evaluated by using simulation environments on a
map of Kuala Lumpur imported from OpenStreetMap into the SUMO traffic simulator [123].
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In contrast, the approaches presented in this PhD thesis center on reducing gases as a way of
improving the rest of the metrics by preventing jams, in several case studies.

An approach for dynamic calculation of optimal traffic routes is presented in [7]. It
comprises a multi-objective optimization algorithm, which combines Simulated Annealing
(SA) with cost function based on both, Multi-Attribute Decision Making (MADM) and
TOPSIS [107] to provide the driver with optimal paths. They use real-time data using Vehicle
to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications to reroute the vehicles
and reduce the congestion on the roads. The results of the proposed algorithm have been
compared to the shortest path Dijkstra algorithm [50] and other strategies in two real cities
(Sheffield and Birmingham) imported into the SUMO traffic simulator from OpenStreetMap.
In our study we use an evolutionary algorithm to optimize our case study, focusing on the
reduction of travel times and greenhouse gas emissions by suggesting alternative routes to
vehicles driving through the area under analysis.

In [227] the authors address the optimization of vehicular traffic flows by using road-side
units (V2I) to gather information with which to redirect vehicles to less congested roads and
reduce CO2 emissions. The proposed algorithm, called Congestion Avoidance in Vehicular
Environments (CAVE), uses the rerouting strategy for vehicles in order to spread them over
several available road segments, reducing vehicular congestion. They modeled the vehicular
network with an oriented and dynamically weighted graph updated according to the number
of vehicles in the streets. To manage vehicle mobility they use the OMNet++ simulator
with the Veins framework connected to SUMO. The results presented show that the CAVE
algorithm reduces travel times, gas emissions, fuel consumption, and road congestion by
showing less congested routes to the drivers. Although our proposal also reduces travel
times and gas emissions, our aim is to implement a lightweight infrastructure and a high
reutilization of urban devices such as traffic lights and existing networks to reduce costs.

Several studies have focused on reducing the gas emissions from vehicles in urban
areas. In [251] the authors discuss the conflict between a reduction in travel times and gas
emissions. They implement a Model Predictive Control (MPC) and propose an objective
function especially built to weigh the different emission parameters as well as the traffic
flow, and test them in a traffic simulator. They solve the MPC optimization problem by using
a multi-start sequential quadratic programming optimization method and conclude that an
improvement in the traffic flow does not necessarily guarantee reduced emission levels. This
is the reason why we explicitly include in our studies both traffic flow and emissions.

In [124] two different scenarios which model the roads within the city of Bologna and
its surroundings are optimized by using different emission metrics as edge weights for the
Gawron algorithm [78]. The authors observe that optimization seems to depend on the type of
roads available in the area analyzed and that there are a series of inter-dependencies between
pollutant gas emissions and road networks. We have tested our proposals on different
case studies to check how they behaves and observe several metrics in detail using our
micro-simulations.

In [6] a new protocol is proposed. Called the environmentally friendly geocast protocol,
it focuses on minimizing CO2 emissions from vehicles approaching a traffic light signal.
By using the information delivered by the signal, vehicles calculate their recommended
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environmentally friendly speed in order to avoid some actions such as stop-and-go conditions,
high speeds, and high accelerations. The paper deals with just one intersection (we use
extensive areas or the whole city itself) and does not reroute vehicles, as we do in our studies.

In [132] a real time traffic light control scheme for reducing vehicle CO2 emissions is
proposed. The road conditions are obtained by the wireless communication between an
electronic toll collection transponder installed in vehicles and traffic lights. Vehicles send
the passing requests to the traffic lights, so that the traffic control center knows the road
conditions in real time and dynamically adjusts the traffic lights cycle length based on a
decision tree algorithm. Despite the important reduction in CO2 emissions achieved in
this work, the authors only present the results of a simple intersection instead of a larger
geographical area.

In modern civil engineering, a few cities have been designed from scratch taking CO2
emissions into account [149], but the overwhelming number of existing cities have to find
some other ways of reducing greenhouse gas emissions. The authors of the aforementioned
article evaluate the city of Yokohama in Japan as a case study with different urban forms and
traffic, and analyze the relationship between them and CO2 emissions. The proposed method
is a useful tool for urban planners to test some land use and transportation policies [212]
for designing sustainable cities. However, what we are interested in is optimizing already
existing cities, taking advantage of their current infrastructure.

In [142] the authors implement three strategies in order to reduce local traffic emissions: i)
reducing traffic demand by 20%, ii) replacing heavy duty vehicles by 1.5 light duty vehicles,
and iii) introducing a speed limit of 30 km/h, in a single intersection located at Bentinckplein
in the city of Rotterdam, the Netherlands. The authors analyze only one intersection instead
of large districts of a given city as we do.

In [16] the authors develop a methodology to estimate the effectiveness of ramp metering
in reducing CO2 emissions. Based on their findings, they suggest that ramp metering could
be used to decrease CO2 emissions regardless of the number of vehicles taking the detours at
ramps. The implementation of this system requires a traffic detection system and pre-timed
ramp controls to be installed, which does not take advantage of the existing infrastructure. In
our case, we aim to implement a lightweight infrastructure and a high reutilization of urban
devices such as traffic lights.

In [56] a novel eco-friendly algorithm called EcoTrec is introduced. It considers road
characteristics as well as traffic conditions in order to improve the fuel savings of vehicles
and reduce gas emissions, using VANETs for collecting and disseminating information to
each other. It was tested in the simulated scenario of 6 km2 of the city of Cologne, Germany.
Its results show that EcoTrec achieves a reduction of 20% in CO2 emissions in that scenario.
In our studies we want not only to reduce emissions, but also to test our proposal in different
scenarios and cities to prove its robustness.

A carbon-footprint/fuel-consumption-aware variable-speed limit (FC-VSL) traffic control
scheme is presented in [135]. The authors minimize fuel consumption for a single vehicle
under certain traffic conditions, and obtain the optimal vehicular trajectory. To do that, they
designed the FC-VSL scheme based on the optimal trajectory and applied it to all vehicles
on the road, and evaluated its performance through simulation. Their results show that the
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FC-VSL can reduce average fuel consumption and outperform another VSL scheme which
was designed for smoothing vehicular traffic. Our proposal differs from this one, especially
in the strategy used to achieved a reduction of fuel consumption and emissions.

In [11] the reductions of travel times and gas emissions are achieved through the traffic
signal settings using a single (travel time) and bi-objective (travel time and fuel consumption)
evolutionary algorithm. The study shows that allowing different cycle lengths between
signals and coordinating them by correctly setting their offsets can significantly reduce both
travel times and fuel consumption. Despite the fact we have also considered Quito’s mobility
behavior as a new case study for one of our solutions, we have used a completely different
strategy based on rerouting vehicles instead of adjusting traffic lights.

To sum up, we address in this PhD thesis the reduction of greenhouse gas emissions
and fuel consumption by suggesting alternative routes to drivers, preventing traffic jams,
and fostering eco-driving through the city’s streets. The proposals discussed are based on
evolutionary techniques, microsimulation, and real maps and traffic data.

2.4 Finding an Available Car Park Spot
Finding an available parking space is hard in most big cities, especially in the city center.
Off-street car parks are a viable alternative since on-street parking spaces are quite limited
and usually it is cheaper to find an off-street car park or pay and display bays rather than
wasting time (and fuel) in finding a free space. Nevertheless, whichever is the parking
modality chosen, it is a big advantage to know whether a free space would be available for
us, in advance. The prediction of car park availability has been studied in a context of smart
cities for many years, especially now when most parking facilities have installed sensors as
part of their infrastructure.

In [119] the authors fit a continuous-time Markov model to predict future occupancies in
several parking locations to propose different alternatives to drivers. They consider not only
the car park occupancy rate but also the estimated time of arrival obtained from the vehicle’s
navigation system in which the calculations are done. They provide two ad hoc examples
to test their proposal, showing promising results. The approach taken in this PhD thesis is
based on open data published by local authorities instead of using users’ personal devices.

In [253] two smart car park scenarios based on real-time information are presented. The
authors use historical data made available by the authorities of the cities of San Francisco,
USA and Melbourne, Australia. They employ Regression Tree (RT), Neural Networks (NN)
and Support Vector Regression (SVR) as prediction mechanisms for the parking occupancy
rate. Their experiments reveal that the regression tree using the historical data in combination
with time and day of the week, performs best for predicting parking availability on both data
sets. We have analyzed different predictors which present alternative results depending on
the number parameters used.

In [33] the authors propose a methodology for predicting parking space availability in
Intelligent Parking Reservation (IPR) architectures. It consists of a real-time availability
forecast algorithm which evaluates each parking request and uses an aggregated approach
to iteratively allocate parking requests according to drivers’ preferences, and parking avail-
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ability. They employ historical information of entering and leaving to update and predict
the availability for each parking alternative. The results provided, obtained from contrasting
predictions with real data, show that the forecast is adequate for potential distribution in
real-time. Our approach studies different predictors without interacting with the current
demand, relying just on the historical data.

In short, the car park prediction strategies analyzed in this PhD thesis consist in analyzing
the historical occupancy rates of car parks and forecast the future availability, presenting this
information to the users in a web page or a mobile application. The data source used comes
from open data published by local councils which are periodically collected by our system,
stored for historical purposes, and processed in order to predict available parking spaces.





Chapter 3

Our Scientific Base:
Bio-inspired Computing

In this chapter metaheuristics are described, especially those used in this PhD thesis. As
they are well-known techniques for solving hard combinatorial problems we have used them
either to compare their results with our algorithms, or as the starting point for building new
ones. Finally, the statistical methods used for validating our results are presented.

3.1 Introduction
Metaheuristics for combinatorial optimization problems [27] are frequently inspired by
natural processes such as Darwins’ theory of evolution: evolutionary algorithms are today a
classic example [14]. They are used to solve highly complex real-world problems. Usually,
they start with a set of initial candidate solutions and iteratively generate new ones in a
chain of increasingly fitted populations towards the optimum of the problem. Their non-
deterministic guided and intelligent search balances the exploration of the search space and
exploits its more promising regions, to hopefully find the optimal solution to the problem
being solved.

3.2 Metaheuristics
Formally, an optimization problem is defined as a pair (S, f ), where S ̸= /0 is the search space,
and f is the objective (fitness) function defined as: f : S→ R. Solving an optimization
(minimization) problem consists in finding a solution i⋆ ∈ S/ f (i⋆) ≤ f (i),∀i ∈ S. The
solution of maximization problems is equivalent as proposed in [14, 86]: max{ f (i), i ∈ S} ≡
min{− f (i), i ∈ S}.

Metaheuristics [84, 178] are approximate algorithms capable of finding good solutions
(usually the best) to hard problems which cannot be solved by using traditional exact
techniques, because they would need extremely long computation times and/or their high
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Figure 3.1: Classification of metaheuristics. The algorithms used in this PhD thesis are outlined.

memory requirements. There are two different search strategies in metaheuristics: trajectory
based and population based.

On the one hand, trajectory based algorithms (Figure 3.1) handle a single element of the
search space at time, i.e. one solution. These algorithms use some mechanism to escape
from a local optimum in their basic local search methods. Examples of trajectory based
algorithms are Simulated Annealing (SA) [118], Tabu Search (TS) [84], Greedy Randomized
Adaptive Search Procedures (GRASP) [67], Variable Neighborhood Search (VNS) [150],
Iterated Local Search (ILS) [85], and Multiple Trajectory Search (MTS) [228].

On the other hand, population based algorithms (Figure 3.1) work with a set of elements or
solutions, i.e. population, colony or swarm. There exists a learning factor in these algorithms
as they try to identify regions of the search space which present high quality solutions by
using the individuals in the population. We could say that these methods perform a biased
sampling of the search space. Evolutionary Algorithms (EA) [85], Scatter Search (SS) [83],
Estimation of Distribution Algorithms (EDA) [139], Differential Evolution (DE) [213], Ant
Colony Optimization (ACO) [57], Artificial Bee Colony (ABC) [115], and Particle Swarm
Optimization (PSO) [116] are all examples of population based algorithms.

This PhD thesis focuses on bio-inspired computing [143, 171] which takes the inspiration
from nature to design algorithms capable of solving high complex problems. From the
mathematical model of a neuron [146] to ants using pheromones to better foraging food as an
example of emerging intelligent behavior [114], bio-inspired algorithms have been grouped
in three main types depending on the source of inspiration:

1. Evolutionary Computing (EC): Evolutionary biology ideas used for designing Evolu-
tionary Algorithms (EA).
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2. Swarm Intelligence (SI): Algorithms in which a set of simple agents mimic the behavior
of social organisms.

3. Artificial Immune Systems (AIS): Models followed by immune systems are used to
develop computational tools.

Among the nature inspired metaheuristics we can name, Genetic Algorithms (GA) [86,
102], Simulated Annealing (SA) [118], Particle Swarm Optimization [116], Artificial Neu-
ral Network (ANN) [146], Ant Colony Optimization (ACO) [57], Harmony Search [254],
Bat-inspired Algorithm (BA) [245], Artificial Immune Systems (AIS) [47], Bee Colony Opti-
mization (BCO) [220], Cuckoo Search (CS) [246], Termite Colony Optimization (TCO) [99],
Firefly Algorithm (FA) [247], Krill Herd (KH) [74], Monkey Search (MS) [154], and Intel-
ligent Water Drops (IWD) [106]. The bio-inspired algorithms used in this PhD thesis are
described in the following sections.

3.2.1 Evolutionary Algorithms (EA)
As mentioned, evolutionary algorithms (EA) [85] are stochastic search methods which solve
a wide range of combinatorial (and continuous) problems very efficiently and effectively,
especially those that cannot be solved, using classic optimization tools: guided or efficient
exhaustive enumeration like in A⋆, mathematical programming, branch-and-bound and dy-
namic programming, to name a few. The multiple search at the same time, the representation
of the solutions in any convenient manner for the search, the absence of requirements of
continuity/derivability of the function being optimized, and many other advantages (like
dealing with any type of constraints, mixed variable domains, large dimensionality, etc.)
make EAs a great tool in modern research.

Evolutionary Algorithms are a population-based method and at each iteration several
operators are applied to the µ individuals of the population. After each iteration, the λ new
individuals are obtained in order to be incorporated in the next generation. Recombination,
mutation, selection, and replacement operators are commonly found in EAs as a way of
producing new individuals which can experiment self-adaptation and be naturally selected
based on their fitness value which is provided by the objective function. One of the most
commonly used EA is the Genetic Algorithm.

Genetic Algorithm (GA)

Genetic Algorithm (GA) [86, 102] is a very popular subclass of EA with proven efficacy
in solving combinatorial optimization problems, either static or dynamic versions [4]. Ge-
netic Algorithms simulate processes present in evolution such as natural selection, gene
recombination after reproduction, gene mutation, and the dominance of the fittest individuals
over the weaker ones. A typical GA consists of a population of µ individuals form which a
subset is selected using a selection operator. Then these individuals are recombined using
a crossover operator to obtain a new set of λ individuals based on the original ones. After
that, a probabilistic mutation is applied (mutation operator) introducing little modifications
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Algorithm 3.1 Pseudocode of Genetic Algorithm (GA).
procedure GA(Ni, Pc, Pm)

t← 0
P(0)← PopulationInitialization(Ni) ▷ P = population
Q(0)← /0 ▷ Q = auxiliary population
while not TerminationCondition() do

Q(t)← Selection(P(t)) ▷ Selection operator
Q(t)←Crossover(Q(t),Pc) ▷ Crossover operator
Q(t)←Mutation(Q(t),Pm) ▷ Mutation operator
Evaluation(Q(t)) ▷ Evaluation function
P(t +1)← Replacement(Q(t),P(t)) ▷ Replacement operator
t← t +1

end while
end procedure

to the individuals chromosome. Finally, after evaluating the new offspring, the replacement
operator selects the fittest to replace the former population.

Algorithm 3.1 shows the pseudocode of a canonical GA. There are two variants of GA:
steady state GA (ssGA) where the new individuals are directly generated and inserted into
the population using the replacement operator, and generational GA (genGA) where a new
auxiliary population is created which will replace the original one after each generation.

First, the number of steps t is set to 0 and the population P(0) is initialized. Then, after
initializing the auxiliary population Q(0), the main loop is executed while the termination
condition is not fulfilled. Inside the main loop, the Selection operator is applied to fill the
working population Q(t). Next, the Crossover operator is applied and after that, the Mutation
operator modifies the new offspring. Finally, after the Evaluation of Q(t), the new population
P(t +1) is obtained by applying the Replacement operator.

3.2.2 Simulated Annealing (SA)
Simulated Annealing (SA) [35, 118] is a well-known metaheuristic applicable to a wide range
of problems. This is a probabilistic method used to find an approximate global optimum
in a large search space. It is inspired in annealing in metallurgy where a previously heated
material is gradually cooled in order to increase its ductility and reduce its hardness. This
temperature decrement is interpreted in SA as a reduction of the probability of accepting
worse solutions while the search space is being explored.

At the beginning of the SA (Algorithm 3.2) an initial solution is randomly generated and
the initial temperature is set. Then, while the termination condition is not met, a new solution
is generated from the previous one. After that, the solution acceptance is checked. If the
evaluation of the new solution (X ′) turns out to be better than the previous one (X), this new
solution replaces the older. If not, there is a probability of accept this new worse solution,
depending on the current temperature (Tk). Finally, the temperature is updated (decreased)
and a new iteration begins.



3.2 Metaheuristics 23

Algorithm 3.2 Pseudocode of Simulated Annealing (SA).
procedure SA

X ← GenerateInitialSolution()
t← 0
Tk← InitialTemperature()
while not TerminationCondition() do

X ′← PickRandomNeighbour ▷ Generates a new solution
if (c(X ′)< c(X)) then ▷ New solution acceptance

X ← X ′

else
Accept(X ,X ′,Tk) ▷ Acceptance

end if
Tk+1←U pdate(Tk) ▷ Temperature decrement
k← k+1

end while
end procedure

The acceptance probability in SA often adopts one of the two forms [248] shown in
equation 3.1 and 3.2 where c(X) is the cost function which provides the fitness value of the
solution X .

Accept(X ,X ′,Tk) = min{1,e−
c(X ′)−c(X)

Tk } (3.1)

Accept(X ,X ′,Tk) =
1

1+ e
c(X ′)−c(X)

Tk

(3.2)

3.2.3 Ant Colony Optimization (ACO)
Ant Colony Optimization (ACO) [57] is an optimization technique inspired by the natural be-
havior of ants. It is a general-purpose heuristic method for identifying efficient paths through
a graph and has been successfully applied to solve different combinatorial optimization
problems with discrete representations.

The ACO algorithm simulates the foraging behavior of ants in search of food and their
collaborative effort model by pheromone trails. Algorithm 3.3 presents its pseudocode.

First, an initial solution is generated and the pheromones are initialized. Then, while the
termination condition is not met a new solution Xi is built and if it represents an improvement
on the current best solution X , it becomes the best one. At the end of each iteration, the
pheromones τ are updated to dissuade following solutions already visited.
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Algorithm 3.3 Pseudocode of Ant Colony Optimization (ACO).
procedure ACO

X ← GenerateInitialSolution() ▷ Initialization
τ ← IntializePheromone()
while not TerminationCondition() do

for i = 1→ m do
Xi←ConstructSolution(τ) ▷ Generates a new solution
if (c(Xi)<= c(X)) then

X ← Xi
end if

end for
τ ← EvaporatePheromone(τ) ▷ Pheromone update
τ ←U pdatePheromone(τ)

end while
end procedure

3.3 Statistical Validation
As metaheuristics are stochastic algorithms which include several random operators, one
single run is not enough to compare their results with another competitor algorithm. On the
contrary, a series of runs for each algorithm’s configuration is required in order to calculate
a global indicator such as median, mean, and standard deviation. However, using a single
global indicator can produce biased conclusions on any empirical analysis.

In this PhD thesis we will use a standard procedure recommended in [189] for statistical
comparison of metaheuristics, especially, parametric and non-parametric tests [49]. Para-
metric tests are meant to detect differences in distributions when they are obtained from
independent executions, they follow a Gaussian distribution, and they have sub-populations
presenting different variabilities from others. Non-parametric tests, are less restrictive and
can be applied regardless of the three previous conditions.

Figure 3.2 shows the general framework to perform a statistical analysis proposed in [3].
We follow it by performing first, a normality test using Kolmogorov-Smirnov to check if
the variables’ values follow a normal distribution. Then, if they are normally distributed,
ANOVA and Student’s t-test will be used to analyze the variance and ensure the statistical
significance. If not, Friedman and Wilcoxon are used instead. As the resulting distribution
could easily be non-normal in metaheuristics, we have used in this PhD thesis non-parametric
statistical validation (Friedman and Wilcoxon) and set our null hypothesis with a confidence
level greater than 99%, i.e. the statistical differences in our test are with a p-value < 0.01.
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Figure 3.2: Statistical validation of results in metaheuristics. The tests used in this PhD thesis are outlined.





Chapter 4

The Main Technological Base:
Microsimulation

In this chapter we discuss what is a traffic simulator and why it is present in our experiments.
We describe some well-know traffic simulators which are widely used nowadays as well as
OpenStreetMap as a source of geographical maps. Finally, we describe the SUMO traffic
simulator in detail as it is the one we are used in the studies conducted in this PhD thesis.

4.1 Introduction
The experimentation in a real city with real vehicles and people is very complicated and
almost impossible if we want to study an area bigger than just an intersection or two, not to
say that it has to be done in real time which would require experimenting for weeks or even
months. As in several disciplines such as robotics and mechanics, Smart Mobility requires
simulation to analyze and optimize a city case study. Of course, nothing prevents anyone
from going to the city later and checking the validity of the results obtained in the laboratory.
In fact, a third option is to experiment in a controlled environment with real data, which
represents an almost perfect option for carrying out scientific studies like the ones in this
PhD thesis.

Computer simulations [241] have been used in several disciplines since the very beginning
of the computer age. Whether it is about simulating physical objects, chemical processes,
weather phenomena, economic markets, astrophysics, etc., a model representing the behavior
of the real system is required, subject to simplifications and generalizations, especially in
those systems so complex that a describing equation is not available.

Traffic simulators [18, 25] are a very valuable tool for representing all the factors involved
in an actual scenario where city streets, traffic flows, vehicles, and even pedestrians can be
analyzed in vitro and in a short, affordable time, usually with a high degree of realism. Then,
a whole set of output metrics could be retrieved to analyze the vehicles’ performance and
suggest improvements for the real city (in silico), which would not be possible otherwise.
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Traffic simulators implement different flow models [32, 95, 140] to specify rules for car
movement, lane changing, etc. According to the level of granularity, they can be categorized
as macroscopic, mesoscopic, and microscopic simulators [18].

Macroscopic models represent traffic as continuous flows of vehicles inspired by the
fluid theory, hence, they do not consider each car individually. These models are used when
detailed information about the behavior of individual vehicles is not required but only a
general evaluation of traffic flows in a network. As this is the highest level of abstraction,
it is difficult to apply to an actual urban scenario composed of intersections, traffic lights,
left-turn restrictions, etc. However, they are often used for regional transportation planning,
instead [140].

Mesoscopic models use an intermediate level of detail. They describe some interactions
between cars at an individual level, although they move in groups. The position of each car
depends on a probability value, which also makes this model unsuitable for the details we
need in this PhD thesis.

Microscopic models describe the mobility parameters of each vehicle with respect to
others in detail, while macroscopic and mesoscopic models work at a higher level of abstrac-
tion [140]. They deliver estimated, but reliable and detailed information about the behavior of
each single vehicle in the simulation. Additionally, microscopic simulators allow us to better
know what is happening at each intersection, modify traffic light cycles, define individual
routes, etc., increasing the reality of our studies.

In the following section, microscopic traffic simulators are discussed as they will be used
to build and analyze realistic scenarios in Chapter 5 and in our Smart Mobility architectures
presented later in Part II.

4.2 Traffic Microsimulators
Microscopic traffic simulators implement the highest level of detail in the simulation involv-
ing not only the vehicles moving through streets, but also traffic lights, pedestrians, buses,
bicycles, etc. They need more computational resources than mesoscopic and macroscopic
simulator as each single vehicle is modeled and updated at a defined time step. In spite of that,
the outputs obtained such as travel times, emissions, queue lengths, and distance traveled,
are very accurate because they are calculated for each vehicle while traveling throughout the
road network.

Car following models are used to update the vehicles’ position during the microsimulation.
This makes it possible to model drivers’ behavior by using parameters such as acceleration,
deceleration, driver imperfection, eagerness for performing lane changing, driver impatience,
red light violation probability, among others. Furthermore, it is more likely to detect traffic
jams produced by saturated lanes, wrong traffic light cycles, or specific turn restrictions than
in the other simulation models.

As we are going to work with traffic microsimulators, we will analyze some of the most
commonly used in the following sections, before choosing the most suitable for the objectives
of this PhD thesis.
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4.2.1 TRANSIMS
TRANSIMS (TRansportation ANalysis and SIMulation System) [226] is an integrated
system of travel forecasting tools for modeling regional transport systems. This software
package has been made available through open-source licensing and is divided into modules,
being the traffic microsimulator the one which implements the microscopic simulation. The
transportation modeling and simulation is done from population synthesis, which is iteratively
obtained according to the first Wardrop’s principle [234].

The simulation is based on a Cellular Automaton (CA) to implement different car
following models, lane changes, etc. Consequently, each link is segmented into small cells of
equal length which can be either occupied by a vehicle or empty. TRANSIMS’s simulation
creates detailed snapshot data which can be visualized (Figure 4.1) and also processed to
obtain several metrics. The emissions reported by TRANSIMS are estimated from the
aggregate data due to the use of the aforementioned CA based simulation.

Other modules available in TRANSIMS are the activity generator to generate household
activities, priorities, locations, travel preferences, etc., and the route planner, which reads the
activities previously generated and calculates the fastest routes.

Figure 4.1: Snapshot of the TRANSIMS’s visualization component (TRANSIMS Studio Wiki1).

1https://sourceforge.net/p/transimsstudio/wiki/Home/
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4.2.2 VISSIM
VISSIM [232] is a microscopic traffic simulator developed by PTV [174]. It uses the psycho-
physical driver behavior model proposed by Wiedemann [238, 239], which considers the
psychological and physical aspect of the drivers, and the Helbing’s social force model for the
pedestrian dynamic [100].

This commercial software uses one-way links connected with connectors for representing
a road network instead of a graph of nodes, which allows modeling geometries with any level
of complexity. VISSIM can simulate several types of vehicles such as trams, cars, motorbikes
and also pedestrians, enabling individual parameterization of the drivers.

The graphical capabilities of VISSIM allow the creation of high-detailed 2D and 3D
animations (Figure 4.2) while collecting data from the simulation such as vehicles’ speed,
acceleration, emissions, trajectories, etc.

Figure 4.2: Unity Interface to PTV Vissim (PTV Vissim 10 Highlights2).

4.2.3 MATSim
MATSim (Multi-agent Transport Simulation) [144] is an open source software for micro-
scopic modeling of traffic. It is based on a multi-agent simulation framework designed for
large-scale scenarios which uses a queue-based model instead of a computationally expensive
car-following behavior [105].

The MATSim traffic flow model is based on the storage capacity and flow capacity of
links. The former is the maximum number of vehicles fitting on a network link, while
the latter represents how many vehicles can leave a link per time step. Additionally, a

2http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/release-highlights/
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co-evolutionary algorithm is used to optimize each agent’s plan to reach an equilibrium
where agents cannot further improve their plans.

MATSim’s working scenarios can be manually defined or imported from OpenStreetMap
[169]. It is possible to define traffic lights, number of street lanes, maximum speeds, etc.
Moreover, several vehicle types can be defined such as car, bike, bicycle, bus, taxi, and train.

After performing a MATSim simulation, several output metrics can be collected and
analyzed such as waiting times, travel times, emissions, among others. Furthermore, there
are two visualizers available for MATSim: the original one, OTFVis (Figure 4.3), which
is an open source software implemented as a MATSim extension, and Via, a commercial
visualizer developed by Senozon which presents a better user interface and stability.

Figure 4.3: Traffic and Public Transit in Berlin (BVG and PTV, MATSim scenario gallery3).

4.2.4 SUMO
SUMO (Simulation for Urban MObility) [123, 216] is a free and open microscopic traffic
simulator developed by the German Aerospace Center (DLR) [53]. It is actually a soft-
ware package which includes not only the traffic simulator but also visualization tools, a
network generator, a route generator, etc. SUMO is also capable of performing mesoscopic
simulations, although this characteristic was not used in our studies.

It implements several car-following models and several vehicle’s characteristics can be
easily defined. Moreover, simulation scenarios are manually defined or imported from several
sources, including OpenStreetMap [169]. Furthermore, SUMO can be externally controlled
via a socket-based interface to add more versatility to simulations.

SUMO includes a 2D graphical visualizer (Figure 4.4) of the simulation where the user
can interact and modify several vehicle and simulation parameters. Regarding the available

3https://www.matsim.org/gallery/berlin/
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outputs, the simulation generates individual vehicle metrics, simulation summary, trip data,
emissions and noise generated, routes used, queue lengths, etc. SUMO is explained in detail
in the following section.

Figure 4.4: SUMO’s GUI (Graphical User Interface).

4.3 SUMO: Simulation of Urban MObility
In this PhD thesis SUMO (Simulation for Urban MObility) [123, 216] is used for simulating
the mobility scenarios to be optimized in order to evaluate them using thousands of vehicles
and realistic maps.

4.3.1 Main Characteristics of SUMO
SUMO was chosen to be used as a simulation tool in our studies due to the following main
reasons:

• SUMO is an open source project which allowed us to compile and customize the
simulator to ours experiments.

• As a cross-platform software, the source code of SUMO is freely available.
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• There are several sources of documentation, tutorials, and forums to learn how to use
SUMO and solve possible doubts.

• It implements several car following models which can be highly customized.

• Maps can be imported from OpenStreetMap increasing the realism of the city layout.

• There are lots of data available after the simulation to collect and report as metrics.

• Simulation can be externally controlled and its entities modified to implement complex
behaviors that do not exist in SUMO.

• Despite the fact the SUMO’s GUI (Graphical User Interface) has not 3D capabilities, it
provided everything we needed to visually identify road traffic issues and make videos
to disseminate our results.

• SUMO’s development team is constantly evolving this software, adding new features
such as pedestrians, trains, electric vehicles, energy consumption models, and wireless
onboard devices.

SUMO includes several utilities related to traffic simulation:

• SUMO: The microscopic, space-continuous, and time-discrete traffic flow simulator.

• SUMO-GUI: The simulator plus a graphical user interface to visualize and interactively
modify the simulation.

• NETCONVERT: An utility to import and generate traffic roads networks.

• POLYCONVERT: Imports geometrical shapes and converts them into a graphical
representation to be used by NETCONVERT while building the network and then
visualized using SUMO-GUI.

• NETEDIT: A graphical network editor for SUMO.

• NETGENERATE: It is used to generate abstract road networks.

• OD2TRIPS: Imports Origin-Destination (OD) matrices and splits them into single
vehicle trips.

• DUAROUTER: Computes vehicle routes using a shortest path algorithm (Dijkstra [50]
or A⋆ [94]). It can also be iteratively called to perform Dynamic User Assignment
(DUA).

• JTRROUTER: Computes routes based on traffic volumes and junction turning ratios.

• DFROUTER: Computes routes by using data from induction loop sensors.

• MAROUTER: It is used to compute a macroscopic user assignment from OD matrices,
trip files or route files.

• ACTIVITYGEN: Reads the definition of a population and computes mobility wishes
for its members.
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SUMO implements several car-following models, including the one developed by Krauß
in [125], an extension of the Gipps model [81], and the lane change model proposed by
Krajzewicz in [121].

Vehicle type definition in SUMO includes acceleration, deceleration, vehicle length,
empty space between vehicles, maximum speed, vehicle class, color, emission class, shape,
driver’s impatience, person capacity, etc. It allows the simulation of multimodal traffic,
including sedans, vans, trucks, bicycles, motorbikes, public transport, trains, pedestrians,
and recently electric vehicles. Dynamic User Assignment (DUA) can be done by iteratively
computing the approximate Dynamic User Equilibrium (DUE) as proposed by Gawron
in [78]. Some of these features are shown in Figure 4.5.

Figure 4.5: Some of the features of SUMO.

In SUMO, road networks can be manually defined by positioning junctions (nodes)
connected by streets (edges) or be imported from OpenStreetMap. Additionally, NETCON-
VERT is able to import road networks from VISSIM, MATSim, VISUM, OpenDRIVE, etc.
Street definition in SUMO includes number of lanes, street width, vehicle classes permit-
ted/forbidden, priority, maximum speed, street name, sidewalk width, etc. Moreover, time
schedules of traffic lights are automatically generates and can also be manually defined and
adjusted during the simulation using programs.

SUMO allows external control of vehicle interactions and the simulation itself by using
the Traffic Control Interface (TraCI) [236]. Retrieving simulation values online, as well as
modifying traffic lights cycles, closing streets, etc., can be done by an external controlling
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program by using TraCI. As TraCI uses a client/server architecture and there are several
interfaces available written in Python, Java, C++, etc. We have used the TraCI Python
interface included into the SUMO package.

Finally, SUMO can generate several output files on demand, normally written in eXtensi-
ble Markup Language (XML) format. The most used are:

• Summary: Contains the number of vehicles that are loaded, inserted, running, waiting
to be inserted, have reached their destination, etc., in each simulation step.

• Trip Info: This output file contains the information about each vehicle’s departure time,
travel time, arrival time, distance traveled, departure and arrival lanes, gas emissions
and fuel consumption, etc.

• Emissions: A really big file containing the gases emitted, noise generated, and fuel
and electricity consumed, for every vehicle and simulation time step.

• Traffic Light States: It contains the state of each traffic light (green, yellow, or red) in
each simulation step for the current program.

• Induction Loop Detectors: This output file contains the number of vehicles that have
completely passed the detectors placed in the streets within each desired interval.

• Edge and lane emissions and noise: Contains edge/lane-based vehicular pollutant
emission and noise.

• Raw vehicle positions dump: Another huge file containing all vehicle positions, speeds,
etc., over time.

SUMO calculates the emission model according to the Handbook Emission Factors for
Road Transport (HBEFA) [98] or Passenger car and Heavy duty vehicle Emission Model
(PHEM) [96] standards. Formerly, it used the HBEFA v2.1 emission data base, however, the
last version supported (3.1) is recommended, especially due to the correspondence between
its classes and the European emission standards [65].

The use of an emission class in a vehicle’s definition, e.g. HDV_D_EU3 for diesel driven
heavy duty vehicle Euro norm 3, provides a set of constants internally used by SUMO to
calculate the vehicle’s emissions taking into account, not only its acceleration/deceleration in
each simulation step but also the terrain slope among others.

The calculated edge/lane noise output is based on Harmonoise [186] and the electricity-
consumption model is described in [126].

4.3.2 Building Mobility Scenarios with SUMO
In this PhD thesis we work with scenarios based on realistic maps imported form Open-
StreetMap (OSM). To build each case study we first select the desired area and then, using
the Java OpenStreetMap (JOSM) utility, extra objects are removed, including buildings,
POIs, car parks, pedestrian crossings, etc., which are not useful for our experiments and
may be misinterpreted by SUMO. Finally, the map is imported into SUMO by using the



36 The Main Technological Base: Microsimulation

NETCONVERT utility and the vehicles’ flows between origin and destination are added
(Figure 4.6).

Usually, each flow consists of several routes between the same origin and destinations, so
that each vehicle has different alternatives for its trips. However, there are scenarios in which
it is interesting to study what happens if all vehicles are taking the shortest (fastest) routes.

These flows, generated by the DUAROUTER utility, are called the experts’ solution
from SUMO in this PhD thesis. We use different cost functions such as travel time but also
different gas emissions, fuel consumption and noise emission in order to obtain several routes
even between the same origin and destination points as DUAROUTER uses the Dijkstra [50]
algorithm to calculate routes.

Figure 4.6: Scenario building schema.



Chapter 5

Facing Technology Gaps:
Incomplete Maps and Data

In this chapter we present the Flow Generator Algorithm for calculating realistic traffic flows
for traffic simulators. We start with an original map from OpenStreetMap and traffic data
collected at different measurement points, published by the city’s authorities, to produce a
model consisting of the simulation map and a series of traffic flows (routes + vehicles) which
match the real number of vehicles at those streets. This is extremely useful in practice, since
no city has all flows for cars (just some sensors that measure them), while Smart Mobility
services often need such flows. This is possible thanks to the use of evolutionary algorithms
for such a complex task and the SUMO traffic simulator to evaluate the generated scenarios.
We have tested our proposal on two geographical areas of the city of Malaga, comprising
different map sizes, number of sensors and vehicles. Our algorithm, as well as the realistic
scenarios generated by using it, can be used as the basis for other research approaches,
especially those focused on road traffic optimization.

5.1 Introduction
There are several ways of addressing a real world problem. Some of them are based on
mathematical models used to generate possible candidate solutions or to evaluate possible
sets of solutions [217]. Among generative models we can find mathematical models such
as linear, integer, dynamic, nonlinear programming, differential equations, network flow
models, decision analysis, number theory, tabu search, genetic algorithms, fluid dynamics,
and game theory [196]. While evaluative models include queueing models, queueing network
theory, Petri nets, decision models, data envelope analysis, simulation, and perturbation
analysis [196]. Due to the complexity of the problems we are solving in this PhD thesis, we
will use evolutionary techniques and a simulation environment to conduct our experiments.
The former is to address problems made of hundreds of variables, and the latter to allow us
to use a virtual world where the impossible has become possible.

Traffic simulators have been frequently used in the last decade to validate different
research approaches involving not only mobility issues, but also other different disciplines.
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Some examples of these are traffic light optimization [10], intermodal traffic systems in
disaster management [61], reducing the required total vehicle fleet size [28], alternative routes
for preventing traffic jams [203], evacuation planning [73], optimization of transmission of
live on-road videos [48], taxi dispatching [141], vehicle platooning [113], among others.

A mobility scenario is mainly composed of the map of a city (including streets, round-
abouts, turn restrictions, traffic lights, etc.) and its traffic flows. These traffic flows are
obtained from a origin-destination matrix (OD-matrix) where the travel demands between
vehicles’ origin and destination are specified. Since it is almost impossible to obtain data
for an entire large city so as to estimate the OD-matrix, flows must be generated based on
measurements from sensors.

In this chapter we study a new methodology to build realistic traffic flows, based on
evolutionary techniques, to be used in mobility scenarios supported by maps from Open-
StreetMap and vehicular data obtained from sensors placed around the city’s streets. We feed
these inputs into our Flow Generator Algorithm (FGA) and using an evolutionary algorithm
(EA) and a traffic simulator, SUMO in our case, we obtain a realistic simulation model. This
model contains traffic flows calculated according to an estimated OD-matrix, so that the
number of vehicles at each measurement point matches the real one. The resulting map can
be directly used by researchers to test their Smart Mobility proposals and other research work
involving road traffic simulations.

There are many studies (see survey in [22]) which focus on the estimation of origin-
destination matrix based on traffic counting locations. They can be static [131, 136] or
dynamic [97, 160]. However, these algorithms assume that all link costs are available, which
may not be true in practical situations such as our case study. Unfortunately, authors do not
usually detail the scalability of their algorithms for larger networks, which is a key issue for
the interest in their solutions.

In [252] a Hopfield Neural Network (HNN) model is used to estimate the urban origin-
destination distribution matrix. The author claims that due to the ability of quick computation,
parallel distributed processing and hardware realization of neural networks, it is possible to
overcome the difficulties of mathematical optimization models. He finds the global optimal
solution to the problem and experiments on a graph made of just five nodes representing the
same number of zones. To the contrary, our method focuses on individual streets rather than
zones (finer grain, higher realism) and we need to route vehicles via individual streets.

An open-source software, called TrafficModeler, is presented in [170]. This program
implements a traffic definition model consisting of a set of layers placed over a road network.
By using those layers it is possible to represent specific traffic patterns associated with
different attributes. Additionally, traffic flows can be obtained from virtual populations based
on demographic data (i.e. transportation between home, school and work). This tool for
modeling traffic flows differs from our proposal in that it cannot be applied when the only
source of data is the number of vehicles measured by sensors.

Finally, there are two utilities included in the SUMO [123] software package called
ACTIVITYGEN and DFROUTER. The former computes the mobility wishes for a group
of citizens matching a map, while the latter uses values from induction loops (sensors) to
compute vehicle routes. ACTIVITYGEN is quite similar in some aspects to the aforemen-
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tioned article, analyzed in this section, although it does not provide a graphical user interface.
DFROUTER is a tool that may be used in the same way as FGA, however, it assumes that
the map is completely covered by sensors, especially on its borders, and it requires the exact
timestamp in which vehicles were detected and their speed in all the measurement points.
None of these options are suitable for the problem we are solving as they cannot be applied
to calculate the traffic flows based on just the number of vehicles counted by each sensor.

There exist several methodologies for obtaining a valid city map, many of them are based
on importing it from OpenStreetMap [91, 169, 180]. While data regarding the number of
vehicles on city streets is being collected by different methods [51]. Some of them use
Wireless Sensor Networks (WSN) [229], magnetic sensors [38], or even Wi-Fi and Bluetooth
technology [68]. Furthermore, there are several studies (see [128] for a survey) about the
allocation of sensors on city streets, taking into account aspects such as maximum flow
coverage, and route coverage.

FGA is different from those discussed in this section as we can address real, large maps,
calculate the traffic flows by using an evolutionary technique, especially useful when there
are just a few sensors, and provide a simulation model which matches not only the urban
layout of the city but also the real number of vehicles at the measurement points.

5.2 Flow Generator Algorithm (FGA)
The Flow Generator Algorithm (FGA) [197, 201] is a new strategy to generate traffic
distributions in a city by using the data previously collected from sensors which count
vehicles in a few streets. In most of the cities the available data is scarce and many of them
cannot offer more than a few points of sensing. As this limitation comes from the very
nature of the problem (and belongs to the realm of activities that city managers do, not us as
scientists) we just tried to deal with this restriction and proposed a strategy to overcome it.

FGA is based on an evolutionary algorithm (EA) especially adapted to work with the
difficulties that are present in this problem, such as high complexity due to the high number
of vehicles and large scenarios, long evaluation times, and the high probability of traffic jams
occurring in a city scenario when the number of vehicles moving through its streets increases.

Formally, let v⃗∗ = (v∗1, . . . ,v
∗
N) be a vector containing the values collected from N sensors

in the real city, and v⃗ = (v1, . . . ,vN) a vector containing the values obtained from the evalua-
tion of the city map. Our objective is to minimize the error e⃗i = |⃗v∗i − v⃗i|, i ∈ {1, . . . ,N} by
modifying the vehicle flows f = ( f1, . . . , fM) in the city.

In short, by looking for appropriate flows (decision variables) we compute estimated
flows on a simulator with the goal that they match real measured ones in the city where they
are available. The set of flows also contain a subset of proposed ones for the streets where no
measurements are available at all, thus allowing the researcher to further study the city by
using existing and approximated flows for almost all the streets.

The FGA architecture in presented in Figure 5.1 where the inputs of the algorithm are
on the left, the processing carried out by the FGA in the center, and the output achieved, i.e.
SUMO’s real map imported from OpenStreetMap plus the vehicle flows, on the right.
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Figure 5.1: Architecture of FGA. The inputs are the map from OpenStreetMap and data from sensors. The
output is a realistic scenario consisting of the simulation map plus the calculated routes and vehicles.

We have chosen SUMO [123] because it is a widely used open source, microscopic,
multimodal traffic simulator. However, other traffic simulators could be used as our proposal
is not uniquely targeted at SUMO. This makes FGA generally useful for the domain, suitable
for many approaches, different technologies, and researchers’ preferences.

Regarding the measurement point problem, it has already been addressed by several
authors (see [190, 233, 244]). In this study we focus on using the already existing data which
are influenced by a number of factors, such as weather conditions, holidays, and special
events. Despite the difficulty of knowing the true demand, every single hour, throughout
the year, we wish to offer here a valid, average scenario which is closer to reality than just
adding random traffic, as it can be seen in many published studies. Moreover, to make our
scenarios still more realistic, we have included a warm up period before counting vehicles so
that the city already has vehicles on its streets when the study begins. Note that the number
of vehicles in each flow includes those vehicles filling the city during the warm up period.

A diagram of FGA is depicted in Figure 5.2. It is divided into two stages: The Setup
Stage which calculates the base scenario where each sensor is fed (covered) by at least one
route carrying vehicles, to be measured; and the Optimization Stage, which optimizes the
number of vehicles in each route in order to minimize the difference (error) between the real
number of vehicles measured in the city and the number in the simulated scenario.

At the very beginning of the execution of FGA, in the Setup Stage, the different routes
are generated from the origins placed at the borders of the area analyzed, to the destinations,
also placed at the borders. As a result, we obtain different routes throughout the entire area
(Figure 5.3a) which are generated by our Route Generator (RG). Note that RG does not
provide all the possible routes between two points as it relies on different weight values for
streets and the Dijkstra algorithm [50], and some streets might not be on an optimum route.

Then, if each sensor is covered (has counted at least one vehicle), the Setup Stage ends
because the calculated flows are covering all the streets with sensors. If not, a new origin is
placed in a street before reaching one of the sensors (randomly picked) have not yet registered
any vehicle (Figure 5.3b) and the routes are again calculated by RG.
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Figure 5.2: Flow Generator Algorithm (FGA). In the Setup Stage the initial routes are calculated by the RG in
order to cover all the available sensors. Then, in the Optimization Stage the number of vehicles for each flow is
calculated by the EA, using RG to generate new routes if needed.

The Optimization Stage begins when all sensors are measuring vehicles from at least
one route. The first step consists in optimizing the current set of routes by using our EA to
calculate the optimal number of vehicles in each route so that the measurements done by
each sensor are closer to the real values. After that, the Stop Condition is checked, i.e. if
the maximum error E = max{ei} is smaller than the maximum desired error ε . Should it be
fulfilled, the FGA ends and the current set of flows is returned as the solution.

If there is at least one sensor Si whose error ei is greater than or equal to ε , the next
step will consist in selecting the sensor whose error is the biggest, adding a new destination
D to the map for it, and running RG again. By doing so, we force the generation of new
routes which contributes to incrementing the number of vehicles detected by the sensor Si
(Figure 5.3c).

After that we need to optimize the traffic flows again, using our EA, and then check if
the error for Si has been reduced after the optimization process (ei(t+1) < ei(t)). If it is true,
the last optimization process was successful, and the Stop Condition will be checked again,
closing the loop. If not, the recently added destination D is discarded and a new origin O is
tried instead.

Adding a new origin O makes RG add new routes from O to the available destinations
which will increase the number of vehicles measured by Si (Figure 5.3d). If this fails, origin
O is discarded and a new, different destination D is selected and the process is repeated.
Otherwise, if ei has been reduced, the Stop Condition is checked again, and depending on the
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(a) Initial routes. (b) Routes from a new origin.

(c) New destination D for Si. (d) New origin O for Si.

Figure 5.3: Different phases when adding routes. In Figure 5.3a, there is one uncovered sensor. In Figure 5.3b,
a new origin has been added. In Figure 5.3c, a new destination D is tested for Si. And in Figure 5.3d, an
alternative origin O is used for increasing the number of vehicles in Si.

new maximum error value, FGA could end at that point or start a new loop, optimizing the
scenario by reducing the error of a new selected sensor.

Having explained how FGA works we move on to describe the internals of RG and EA.

5.2.1 Route Generator (RG)
The RG is invoked several times during the execution of FGA. It takes a road traffic scenario,
imported from OpenStreetMap, consisting of streets, roundabouts, traffic lights, junctions,
etc., and generates routes from the given origins and destinations. In our experiments we
have used the DUAROUTER utility provided with SUMO which generates routes using
the Dijkstra algorithm [50], although other traffic simulators and utilities can be used.
Additionally, RG discards routes not involving sensors as they do not affect the result of the
optimization. Finally, RG also ignores routes that have a high impact on results, i.e. those
which affect many sensors, as according to our preliminary tests, they make the scenarios
harder to optimize.

The RG, presented in Algorithm 5.1, has five parameters: O and D which are the set of
origins and destinations of the routes to be generated; BanList which is a list of destinations
unreachable from each origin (urban layout) or those which make unrealistic loops; Atributes
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Algorithm 5.1 Route Generator (RG).
function RG(O,D,BanList,Atributes,MaxS)

R = /0 ▷ Initialize the set of routes
for all o ∈ O do

for all d ∈ D do
if d /∈ BanList(o) then ▷ Not in the ban list

for all a ∈ Attributes do
r = di jkstra(o,d,a) ▷ New route
n = sensors(r) ▷ Number of sensors in the route
if 0 < n≤MaxS then

R = R∪ route(o,d) ▷ Adds the new route
end if

end for
end if

end for
end for
return R ▷ Returns the new set of routes

end function

which is a set of the different attributes (weights) to be used in the consecutive runs of the
Dijkstra algorithm, so that we get several routes for the same pair origin and destination
(diversity); and MaxS which is a positive integer number indicating the maximum number of
sensors allowed in a route (simplicity).

First, the algorithm initializes the empty set of routes R. Second, for all origins o and
destinations d whereas d is not in the forbidden destinations for the current origin o, the
algorithm calculates a new route using the Dijkstra algorithm (through DUAROUTER in
our case). Each new route from o to d is calculated using a different attribute in the given
attribute list Atributes (travel time and noise in our experiments).

Then, the number of sensors n included in the route is calculated and if n is into the
desired range (0−MaxS], the new route is added to the set R. We only add routes that
affects the sensors’ readings as we do not wish to raise the complexity of the problem to be
addressed by the EA later. Additionally, for the same reason, we wish to work with routes
that make small changes to the sensors’ measurements. As a consequence, we have limited
the maximum number of sensors in each route.

After visiting all the combinations of origins and destinations the algorithm ends returning
the new set of routes R. Now it is time to assign vehicles to each route that will be addressed
by our EA every time is needed (Figure 5.2).

5.2.2 Evolutionary Algorithm (EA)
An EA is proposed to calculate the number of vehicles in each route so that the differences
between the real values measured by the sensors and the ones obtained from the simulated
scenario can be minimized.
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In Algorithm 5.2 the pseudocode of our (10+2)-EA is presented. It has a population of ten
individuals (µ = 10) and generates a two-individual offspring per generation (λ = 2). This
configuration was chosen because our evaluation function (described later) is a costly one as it
requires a simulation to calculate an individual’s fitness value. Furthermore, each simulation
takes up to about 60 seconds to finish when evaluating our most complex scenarios.

The EA has the following parameters: crossover probability (PC), initial mutation proba-
bility (π1), final mutation probability (π2), threshold (θ ) for commuting from π1 to π2, α and
β used by the mutation operator, the minimum and maximum number of vehicles per route
(VMIN and VMAX ), maximum admitted error (εM), initial fill (IF ), and the initial value IV .

First of all, an initial population is created by generating ten new individuals consisting
of a vector of integers (vehicles in each flow). We randomly assign vehicles when creating
the initial population, under the following conditions: i) the vehicles are only assigned to a
reduced number of routes given by the Initial Fill parameter (IF ); and ii) the initial maximum
number of vehicles in each route is given by the Initial Value parameter (VMIN ≤ IV ≤VMAX ).
After generating an individual, the configuration represented by its flows is simulated in
order to check if there are any sensors exceeding the maximum deviation εM. If so, one of
those sensors is randomly selected and also one of the routes sending vehicles to it. Then
the number of vehicles in that route is set to VMIN , and then the individual is evaluated once
more. This process is repeated until all the sensor values are under the maximum error εM.

Having generated the initial population, the main loop begins and it will continue until
the Termination Condition holds. In the main loop, the parents are selected by using binary
tournament [87]. Then, the recombination operator is applied to obtain the offspring. We
have used a Uniform Crossover [87] here with a crossover probability PC. Now, the offspring
is changed by the Mutation Operator. We have tested different mutation strategies which are
analyzed later in this chapter. Before applying the replacement operator, the new individuals
are evaluated. We have chosen an elitist replacement [86] because we are working with a
small population and long evaluation times.

Algorithm 5.2 Evolutionary Algorithm (EA).

procedure EA(PC,π1,π2,θ ,α ,β ,VMIN ,VMAX ,εM,IF ,IV )
t← 0
P(0)← createPopulation(IF , IV ) ▷ P = population
while not terminationCondition() do

parents← selection(P(t)) ▷ Binary tournament
o f f sp←Uni f ormCrossover(PC, parents)
o f f sp←MutationOperator(θ ,π1,π2,α,β ,VMIN ,VMAX ,o f f sp)
evaluateFitness(εM,o f f sp)
P(t +1)← replace(o f f sp,P(t)) ▷ Elitist replacement
t← t +1

end while
end procedure
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Representation

Our representation consists of a vector of integers (Figure 5.4). Each value corresponds
to the number of vehicles arriving by origins Oi to destinations D j of each route Rm in the
simulated scenario which are represented by the traffic flows fm.

Figure 5.4: Problem Representation: Solution vector of M integer values corresponding to the number of
vehicles injected into each flow of the scenario. Note that we are using the EA to fill an OD-Matrix whose rows
and columns were calculated by RG.

We have restricted the range of vehicles between VMIN and VMAX especially to reduce the
complexity of the problem by limiting the possible values for each position of the solution
vector. Additionally, we have observed that if there are many vehicles in a route, they end
up in traffic jams, so this is another reason for keeping this number as low as possible. The
total number of flows, M (integers in the solution vector), depends directly on the number of
routes generated by the RG (Dijkstra algorithm and urban layout).

Evaluation Function

The evaluation function assigns a numeric value to an individual according to the configu-
ration of the vehicle flows (Equation 5.1). It calculates the square value of the difference
between the real values (v⃗⋆) measured in the city and the ones (⃗v) collected during the
simulation using the flows represented by the individual under evaluation.

F (⃗v) =

{
∑

N
i=1

(⃗vi−⃗v∗i )
2

v⃗∗i
if C(⃗v)≤ εM,

∞ if C(⃗v)> εM.
(5.1)

The fitness value of an individual is calculated by applying the evaluation function so
that the numeric value of F (⃗v) is the summation of the squared values previously calculated
divided into the corresponding real value for each sensor. However, if at least one sensor i
has exceeded the real value v⃗⋆i by a percentage greater than εM (C(⃗v) in Equation 5.2) we
apply a penalization of a large constant value in the algorithm because we are minimizing, so
the lower, the better.

C(⃗v) = max
(

v⃗i− v⃗∗i
v⃗∗i

)
, i ∈ {1, . . . ,N} (5.2)
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It does not seem appropriate to fix each individual during the evaluation as we did during
the generation of the population. It is a very costly process that considerably increases the
running time of the EA. Consequently, we decided to penalize inviable solutions which ended
up in traffic jams.

Operators

On the one hand, we have used the well-known standard Uniform Crossover [87] as the
recombination operator, whose crossover probability PC has been calculated according to the
parameterization shown in Section 5.4. On the other hand, we have evaluated three different
mutation operators in order to improve the results achieved by the EA: Blind Mutation (BM),
Flow Focused Mutation (FFM), and Sensor Focused Mutation (SFM).

First, we implemented the Blind Mutation (BM) operator where the number of vehicles
in each flow fi might be modified depending on the mutation probability PM (Algorithm 5.3).

Algorithm 5.3 Blind Mutation (BM).

function BM( f⃗ ,δ ,PM,VMIN ,VMAX )
for all fi ∈ f⃗ do

if rnd()< PM then
if rnd()< 0.5 then ▷ Equiprobable

fi← max( fi−δ ,VMIN) ▷ Decrement
else

fi← min( fi +δ ,VMAX) ▷ Increment
end if

end if
end for
return f⃗

end function

In BM, the decision on whether a flow is to be incremented or decremented is equiprobable
and the number of vehicles to be added to or subtracted from each flow is given by δ as
described in Equation 5.3.

δ = α−
√

β +
√

β ·mini{ f itnessi},∀i ∈ P (5.3)

We can see that δ depends on the best individual (minimum fitness) in the population
and two parameters: α and β . The former is used to define the minimum value of δ and the
latter is to control the incremental rate of it. The final value of fi, after being modified, is
kept in the valid range [VMIN ,VMAX ].

Second, we wished to evaluate a more complicated operator which takes into account
the number of vehicles that are needed in each flow fi, to reach the desired value in one of
the sensors s visited by the corresponding route. Consequently, we have designed the Flow
Focused Mutation (FFM) operator as described in Algorithm 5.4.
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Algorithm 5.4 Flow Focused Mutation (FFM).

function FFM( f⃗ ,⃗v,⃗v∗,δ ,PM,VMIN ,VMAX )
for all fi ∈ f⃗ do

if rnd()< PM then
s ∈ S( fi) ▷ Randomly picks a sensor s from i
if vs− v∗s < 0 then ▷ More vehicles for sensor s

fi = min{ fi +δ ,VMAX}
end if
if vs− v∗s > 0 then ▷ Less vehicles for sensor s

fi = max{ fi−δ ,VMIN}
end if

end if
end for
return f⃗

end function

As in the previous operator, the flows to be modified are selected according to probability
PM. Then, one sensor s is randomly selected from the sensors affected by the current flow. If
the number of vehicles vs measured by s is under the desired value v∗s , the number of vehicles
in fi is increased, and vice versa. Note that the value of δ for this operator is calculated in
the same way as for the BM operator.

Finally, a different approach was followed to design the third mutation operator under
evaluation, as shown in Algorithm 5.5). With the Sensor Focused Mutation (SFM) operator
we wished to fine tune the number of vehicles we were adding to or subtracting from each
flow fi. We then used a calculated value δ ′, based on the error εi corresponding to the
difference between vs and v∗s .

First, we randomly select a sensor s and then a flow fi which modifies the number of
vehicles counted by s. Then, we calculate δ ′ as stated and modify the number of vehicles in
fi accordingly, always taking into account the valid range of values. We have divided δ ′ into
twice the number of flows to take small steps towards the EA’s convergence depending on
the problem size. Note that δ ′ could be also a negative number.

Algorithm 5.5 Sensor Focused Mutation (SFM).

function SFM( f⃗ ,⃗v,⃗v∗,S,VMIN ,VMAX )
s ∈ S ▷ Randomly picks one sensor from S
fi ∈ f⃗ : s ∈ S( fi) ▷ Randomly picks one flow for s
δ ′← v⃗s−⃗v∗s

2·length( f⃗ )
▷ δ ′ depends on the error εs

fi = min(max( fi +δ ′,VMIN),VMAX)
return f⃗

end function
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Having defined the components of the EA we move on to describe the case studies and
the parameterization done. This is a much needed step prior to using any non-deterministic
algorithm on a given problem.

5.3 Case Studies
We address the flow calculation for two different geographical areas of Malaga, Spain. We
have imported them from OpenStreetMap into the SUMO traffic simulator by using the
utility provided by SUMO (Figure 5.5).

We worked first with a small area corresponding to the city center (Alameda Principal)
which encompasses an area of about 3 km2. In this area the local council has placed 12
sensors on the city’s streets for measuring the road traffic and their data are publicly available
on its web page [13]. Using this valuable resource we were able to calculate the average
number of vehicles for the fourth quarter of 2014 and the first of 2015, for Working Days
(WD), Saturdays (SAT), and Sundays (SUN). After those dates, works to build the subway
began which reduced the number of sensors available and severely altered the road traffic in
the area, which would have made our study incomplete.

For our second case study, we dealt with a bigger area, the whole of eastern Malaga,
which comprises an area of about 32 km2. In this more complex study, there are 23 sensors
(11 new plus the former 12 of the small area). We studied the traffic during the same quarters
as in the small area for the same reasons.

We have named the three scenarios of 2014 as 12.2014.WD, 12.2014.SAT, and
12.2014.SUN, of the first case study (12 sensors), and 12.2015.WD, 12.2015.SAT, and
12.2015.SUN the three of 2015. Additionally, we have labeled 23.2014.WD, 23.2014.SAT,
23.2014.SUN, 23.2015.WD, 23.2015.SAT, and 23.2015.SUN the scenarios of the second case
study (23 sensors).

5.4 Parameterization
We have conducted the parameterization study by optimizing the scenario 12.2014.WD in a
computer cluster comprising four processors Intel Xeon E5-2670v3 @ 2.30 GHz (96 cores).

First, we have analyzed the Uniform Crossover operator in our EA. Concretely, we
tested different crossover probabilities on the same problem instance by performing 300
independent runs of the EA (30 per probability value under test) as shown in Table 5.1.

We can see that 0.3 is the best ranked value (4.87) according to the Friedman test, followed
by 0.9 (5.13), 0.4 and 1.0 (both 5.27). Although it is not the best ranked value, we have
chosen 0.4 as probability value because it presents the lowest minimum and maximum values
(better stability). A crossover probability value of 0.4 has also improved the robustness of
the algorithm achieving by far the lowest standard deviation value. Note that the calculated
Wilcoxon p-value between results of 0.3 and 0.4 is 0.813 which shows us that the distribution
of their values are quite similar.
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Figure 5.5: Two case studies in Malaga, imported from OpenStreetMap (upper picture) into SUMO (lower
picture).

Regarding the mutation operator, we have conducted 30 independent runs of the EA
using each mutation operator (90 in total) to obtain the results presented in Table 5.2. We can
see there that BM presents the lowest fitness values and Friedman Rank. On the other hand,
FFM and SFM despite being more complex and using more information about the problem,
have not obtained good results. Consequently, we have chosen Blind Mutation (BM) as the
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Table 5.1: Fine tuning of the Uniform Crossover Operator.

PC
Fitness Friedman

Rank
Wilcoxon
p-valueMean StdDev Min Max

0.1 3.558 1.529 1.659 8.435 5.70 0.600
0.2 3.731 1.592 1.717 8.554 5.47 0.688
0.3 3.618 2.038 1.319 11.276 4.87 —
0.4 3.482 1.135 0.989 6.147 5.27 0.813
0.5 3.969 1.883 2.011 9.064 5.60 0.349
0.6 3.810 1.859 1.420 8.964 5.33 0.734
0.7 3.966 1.722 1.119 8.737 6.03 0.102
0.8 4.277 2.236 2.025 9.956 6.33 0.229
0.9 3.401 1.400 1.734 7.929 5.13 0.673
1.0 3.630 1.814 1.304 8.014 5.27 0.719

Table 5.2: Fine tuning of the Mutation Operator.

Strategy
Fitness Friedman

Rank
Wilcoxon
p-valueMean StdDev Min Max

BM 2.83 1.43 0.83 7.02 1.23 —
FFM 6.42 4.09 1.11 17.98 1.80 0.00
SFM 14.70 4.13 7.43 21.98 2.97 0.00

mutation operator. Note that we have also calculated the Wilcoxon p-value to confirm that
the results are statistically significant.

With respect to the rest of parameters, we have experimentally set the VMIN and VMAX
values so that the former was set to 10 and the latter to half the maximum number of vehicles
in a sensor. This VMIN value guarantees that each flow visited by the algorithm has some
vehicles running through it (take into account that the simulation has a warm up stage before
beginning to count vehicles). The value of VMAX is shown to be appropriate as it was never
reached by the EA in our tests as we did not wish to restrict the possible solutions by limiting
the number of vehicles in each flow (although we also wanted a reduced search space).

VMIN and VMAX are used with α and β (Equation 5.3) to calculate the value of δ according
to the minimum (best) fitness value in the population. We show an example of curve in
Figure 5.6 where α = VMIN and β = 1

VMAX
(VMAX

5 −α)2 so that when the best fitness of the
population is equal to half the maximum number of vehicles in a sensor (VMAX ), the value of
δ is equal to VMAX

5 .
We can see that initially, when the best fitness of the population is high, the number of

vehicles (δ ) to be added to/subtracted from the changing flows is also high. Then, when the
population evolves to better (lower) fitness values, δ is lower as well, so that the algorithm
better exploits the solutions found by taking small steps towards an optimal.

The rest of the parameters have been experimentally set to better explore the search space
(π1 =

5
L , π2 =

1
L , and τ = 2.0), to avoid overcharged scenarios full of vehicles stuck in traffic

jams (IF = 10% and IV = 10%), and to keep the sensor dependencies simple (MaxS = 2).
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Figure 5.6: Evolution of δ vs. the fitness value of the best individual in the population.

Table 5.3 shows the chosen parameters of FGA including those used in the simulation and
in EA. Note that the warm up time is different in the first case study (12 sensors) from the
second (23 sensors) as we needed more time to populate a larger scenario with vehicles.

Table 5.3: Parameters of FGA. Brief description and values.

# Generations 5000
Termination condition εs ≤ 10%,∀s ∈ S
Warm up time (seconds) 600 (12 sensors) & 1200 (23 sensors)
Simulation time Warm up time + 1 hour

µ # of individuals in the population 10
λ Offspring size 2
PC Crossover probability 0.4
PM Mutation probability π1 if min( f itnessi)> τ,π2 otherwise
π1 Initial mutation probability 5

L
π2 Final mutation probability 1

L
τ Fitness threshold 2.0
VMAX Maximum number of vehicles in each route max(⃗v∗s )

2 ,∀s ∈ S
VMIN Minimum number of vehicles in each route 10
α First parameter of the δ formula VMIN

β Second parameter of the δ formula 1
VMAX

(VMAX
5 −α)2

εM Maximum error rate in valid configurations 10%
IF Initial percentage of routes with vehicles 10%
IV Initial percentage of vehicles in each route 10%
MaxS Maximum number of sensors in a route 2

5.5 Results
Our experiments consisted in testing the FGA in different scenarios to validate it as a method
to achieve traffic flows which match the real ones in the city. In the following sections, we
first describe the results of the Setup Stage of FGA when generating the initial routes. After
that, once all the initial routes have been set, we will proceed with the Optimization Stage
where the number of vehicles in each route are calculated.
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5.5.1 Setup Stage
As the street distribution is the same in each case study (only the number of vehicles differs)
during the Setup Stage of FGA we used one scenario of 12 sensors and another of 23. The
objective of this stage is to generate the initial routes to work with in the next stage, taking
into account that each sensor needs at least one route with vehicles. The results obtained
after calculating the initial routes are presented in Table 5.4. We can see that only two steps
were enough to cover all the sensors in our small case study (12 sensors) (columns on the
left). The first step showed that there were only 11 sensors covered by the initial 55 routes
generated by RG. In the second step a new origin was added for the uncovered sensor (8) in
order to generate an extra route during a new execution of RG.

A bigger map with more sensors as in our second case study requires more steps of
the FGA during the Setup Stage. We can see in the columns on the right side of Table 5.4
that nine steps were performed by executing RG to generate routes to cover all 23 sensors.
Initially, there were 100 routes, however, RG almost doubled this number to complete this
Setup Stage.

Table 5.4: Optimization of both case studies using FGA (Setup Stage). We report the new origins added, the
number of sensors measuring vehicles, and the number of routes in the scenario.

Step
12 sensors 23 sensors

O # Sensors # Routes O # Sensors # Routes

1 - 11 55 - 15 100
2 8 12 56 1 16 115
3 2 17 127
4 3 18 139
5 6 19 157
6 8 20 163
7 9 21 179
8 13 22 185
9 14 23 195

With all the sensors covered by at least one route, the Setup Stage of FGA ended and the
case studies were ready to be optimized in the Optimization Stage.

5.5.2 Optimization Stage
After the Setup Stage, it was time to assign vehicles to each route. The FGA uses our fine
tuned EA to do that and also RG if more routes are needed (Figure 5.2). Table 5.5 shows the
results achieved after running the Optimization Stage of FGA on our 12 scenarios.

We can see that only one or two steps were necessary to match the desired values
(maximum error under 10%) for the first case study (12 sensors, 2014 and 2015). Both
scenarios corresponding to working days needed two steps and just one step for Sundays.
Note that each step in this stage involved running the EA. It seems that the higher the number
of vehicles in a scenario, the harder the optimization is, as expected. Additionally, the same
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Table 5.5: Optimization of 12 scenarios using FGA (Optimization Stage). We report the number of steps, the
origin or destination added in each step (O/D), the total number of routes (# R), the total number of vehicles (#
V), maximum error (Max ε), and average number of hours taken by each step. Note that the final Max ε values
achieved (below 10%) for each scenario are in bold.

12.2014.WD 12.2014.SAT 12.2014.SUN
Step O/D # R # V Max ε Hrs O/D # R # V Max ε Hrs O/D # R # V Max ε Hrs

1 — 56 4949 20% 62 — 56 4371 10% 49 — 56 3955 9% 36
2 D.7 57 5281 8% 46 D.7 57 4383 6% 51 — — — — —

12.2015.WD 12.2015.SAT 12.2015.SUN
Step O/D # R # V Max ε Hrs O/D # R # V Max ε Hrs O/D # R # V Max ε Hrs

1 — 56 5024 14% 57 — 56 4253 9% 43 — 56 3501 7% 28
2 D.7 57 5331 4% 53 — — — — — — — — — —

23.2014.WD 23.2014.SAT 23.2014.SUN
Step O/D # R # V Max ε Hrs O/D # R # V Max ε Hrs O/D # R # V Max ε Hrs

1 — 195 10678 33% 163 — 195 9096 45% 78 — 195 8047 41% 58
2 D.5 203 11610 30% 110 D.5 203 9365 34% 90 D.5 203 8278 38% 82
3 D.44 214 11434 32% 90 D.44 214 9497 32% 90 D.44 214 8089 36% 65
4 O.44 205 11373 16% 117 O.44 205 9801 9% 94 O.44 205 8292 9% 89
5 D.4 220 11472 9% 105 — — — — — — — — — —

23.2015.WD 23.2015.SAT 23.2015.SUN
Step O/D # R # V Max ε Hrs O/D # R # V Max ε Hrs O/D # R # V Max ε Hrs

1* — 220 11420 9% 102 — 205 9500 8% 90 — 205 7685 4% 68

sensor (7) always presented the biggest error in the first step making the FGA to add a new
destination (D.7) when it was needed (Max ε ≥ 10%). The time spent in the optimization
process was between 28 hours (12.2015.SUN) and 110 hours (12.2015.WD).

The optimization of the second case study was harder. A bigger map containing more
sensors required more routes and vehicles increasing the complexity. We addressed the
optimization of the three scenarios of 2014, whose results are also shown in Table 5.5. We
can see that again the scenario for Working Days required an extra step (and more routes) to
reduce the maximum error under 10%.

Nevertheless, the steps one to four for the scenarios of 23.2014 used the same routes, as
observed in the previous case study. We had at that point some evidence that routes seemed to
depend only on the street distribution. Consequently, we tried to do something different with
the 23.2015’s scenarios: instead of going through all the previous steps of the Optimization
Stage as we did until that moment, we took the routes from the last step of each 23.2014
scenarios and optimized them to match the sensor values of 23.2015.

What we did was to assume that we would reach the same configuration in the last step
of the optimization of each scenario, so we directly jumped to it, prescinding of the previous
steps, changing only the desired number of vehicles in 2015 as they are different from 2014.
By taking this shortcut, not only have we significantly reduced the number of steps and
shortened the optimization time (102 hours vs. 585 hours for Working Days), but in addition
we achieved good (even better) solutions in just one step as can be seen in the last row of
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Table 5.5. This will allow us to calculate flows for different traffic demands in just one step
when all the base routes are set, saving a lot of time and computing resources. Note that the
optimization process is performed only when building the models of the city (offline) and
then they can be used without running FGA again (no computation time needed whatsoever).

5.6 Discussion
In this chapter we have presented the Flow Generator Algorithm (FGA), based on the
designed RG and a new specialized EA, for generating routes according to real data measured
on the city’s streets. FGA is not a genetic algorithm, nor an optimization algorithm. FGA is a
novel method proposed in this PhD thesis, which is able to generate realistic scenarios based
on data published by local councils, using an EA, the SUMO microsimulator and its tools.

We have optimized two case studies (12 scenarios) imported from OpenStreetMap into
SUMO and compared the number of vehicles at measurement points against the real ones
published by the mobility department of Malaga council. This is a very complex problem
not only because the number of decision variables but also due to the few data available
plus some limitations such as the unknown traffic light cycles (which could reduce the flow
capacity of the streets), the wrong U-turns in available maps. We overcame many of these
limitations by filtering and correcting the information on OpenStreetMap.

FGA has been developed due to the necessity of validating the Smart Mobility proposals
of this PhD thesis. Being suitable for many approaches and different technologies, FGA is
a valuable tool that can be used by researchers to test their Smart Mobility proposals and
other research work involving road traffic simulations. The resulting flows can be useful for
performing different types of studies with the confidence of being able to work with a traffic
distribution close to reality.

Despite the fact that an OpenStreetMap model is needed to import the city layout into
SUMO, fortunately almost all cities are present it that platform nowadays. On the other
hand, the need for sensor measurements may be a problem, although the open data initiative
encourages the public administration to publish such data, and this is becoming very common.

After the experiments conducted and the results obtained showing an accuracy greater
than 90% in all sensors and scenarios, we can conclude that FGA actually computes realistic
traffic flows based on incomplete measurements obtained from a few sensors in the city. FGA
fills the current research gap with incomplete data on cities, a very common situation for
most cities in the world which have at most a few sensors installed. FGA also computes a
distribution of flows compatible to the measured ones in an efficient way, so that any tool for
Smart Mobility can use them to perform a wide range of applications.
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Chapter 6

Red Swarm:
Reducing Travel Times

This chapter presents an innovative approach to solve one of the most relevant problems
related to Smart Mobility: the reduction of travel times. This original approach, called Red
Swarm, suggests a potentially customized route to each vehicle by using several spots located
at traffic lights in order to avoid traffic jams by using V2I communications. That is quite
different from other existing proposals, as it deals with real maps and actual streets, as well
as several road traffic distributions. An Evolutionary Algorithm is proposed to optimize our
case studies which have been imported from OpenStreetMap into SUMO as they belong to a
real city. Additionally, a Rerouting Algorithm is developed which accesses the configuration
of the Red Swarm and communicates the route chosen to vehicles, using the spots (via Wi-Fi
link). Moreover, three competing algorithms have been developed in order to compare their
results to those of Red Swarm and have observed that Red Swarm not only achieved the best
results, but also outperformed the experts’ solutions in a total of 60 scenarios tested.

6.1 Introduction
One of the aforementioned problems that can be found in big cities when we are traveling
through their streets is experiencing a delay in our trip produced by an unexpected traffic
jam [215]. This is becoming more common nowadays, especially in city center, where the
number of vehicles in streets is continuously increasing [72]. As a consequence, citizen’s
quality of life is decreasing, not only because they take longer to reach their destination, but
also because these situations can become very stressful.

We propose Red Swarm as a solution for this matter. Red Swarm is a data information
system spread throughout the city at a low cost and able to redirect vehicles in movement
in the city to finally achieve shorter travel times and fewer traffic jams in urban areas. The
deployment of Red Swarm, a real time system for suggesting distributed personalized routes
in a modern city, not only provides customized routes to every single vehicle, but it is also
able to collect information from the road traffic (anonymously) enabling local authorities to
better know the online and historical data of the city.
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6.2 The Red Swarm Architecture (RS)
We propose a new system called Red Swarm (RS) [203, 204, 205] to optimize the traffic
in the whole city with the aim of reducing travel times. It implies a continuous distributed
exchange of data between vehicles and spots that will allow us to run intelligent algorithms
that compute optimized route segments, customized to each driver in the city.

The Red Swarm architecture consists of:

1. Several spots distributed throughout the city, installed at traffic lights, which use a
Wi-Fi connection to suggest new routes to vehicles.

2. The Rerouting Algorithm (RA), which selects the route to be suggested based on the
configuration of the system and the vehicles’ destination.

3. The Evolutionary Algorithm (EA), which computes the configuration of the system.

4. User Terminal Units (UTU), usually mobile phones or tablets which are able to
communicate with the spots, send their data, and receive the new routes suggested.
This function could also be fulfilled by On Board Units (OBU) installed in vehicles.

The Red Swarm architecture is divided into two stages: i) the configuration stage, and ii)
the deployment and use stage (Figure 6.1). In the Configuration Stage the EA calculates the
configuration for the spots by using the traffic simulator SUMO [122] in order to evaluate
each solution. In the Deployment and Use Stage, the calculated optimal configuration for the
Red Swarm spots is used by the RA (explained later) to suggest new routes to the vehicles
that are approaching a junction controlled by a Red Swarm spot by using a Wi-Fi link.

Although the configuration is not recalculated in the deployment and use stage, the routes
suggested to each vehicle are personalized, so as to split traffic into separate routes that
will benefit both the individual vehicles and the overall traffic flow. Regarding the Wi-Fi
communication, based on the results observed in [225], it presents a wide coverage area of
77 meters on average which supports our proposal.

As it was discussed in Chapter 4 we use in this PhD thesis realistic simulations, i.e.
SUMO. While SUMO simulates the traffic flow of each vehicle, TraCI [237] makes it

Figure 6.1: The Red Swarm architecture.
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possible to control SUMO externally (RA) to reroute the vehicles according to each spot’s
configuration. When the simulation ends, data from the itinerary of each vehicle such as
departure times, travel times, etc., can be obtained by parsing several XML files.

6.2.1 Evolutionary Algorithm (EA)
In the Configuration Stage of the Red Swarm architecture we use an EA to find the optimal
arrangement of routes in the city to then spread the traffic out in a way that is efficient for
drivers. Evolutionary algorithms are inspired by the evolution of individuals which are well
adapted to their environment (see Section 3.2.1).

We have designed an steady state, (10+2)-EA to optimize the probabilities for each route
(Section 3.2.1). We have chosen to work with a small population (µ = 10) only creating
two new individuals in each generation (λ = 2) to be more efficient, because our fitness
function takes, on average, about 20 seconds to be computed, due to the complexity involved
in analyzing the traffic distribution in the city.

Representation

Each Red Swarm spot should be placed at a traffic light situated at a street junction of the city.
Consequently, it can be thought of a set of input and output streets as depicted in Figure 6.2a.
The input streets (S1 and S2) are the streets by which the vehicles arrive at the junction and
the output streets are the streets by which the vehicles leave that junction.

When a vehicle is approaching the junction by an input street, the Wi-Fi link is established
which triggers the rerouting process. Then, this process suggests a new route to the vehicle
depending on the configuration of the Red Swarm (probabilities P1, P2 and P3 in Figure 6.2a)
and the vehicle’s final destination in the city.

In Figure 6.2b an example of a possible rerouting is presented. When the vehicle is
detected in the input street S1.1 belonging to the Red Swarm spot RS1, a new route is suggested
to the driver. The next step in the route of the vehicle might be the input street S2.3 (spot

(a) Red Swarm spot.

(b) Rerouting example.

Figure 6.2: Red Swarm spots rerouting vehicles.
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Figure 6.3: Rerouting of a vehicle through Red Swarm spots toward its final destination.

RS2) or the input street S3.1 (spot RS3), depending on the values of the probabilities P1 and
P2 which have been previously optimized for the traffic in this area in connection to the rest
of the areas by the EA in the Configuration Stage.

This process is repeated in each Red Swarm spot until the vehicle arrives at its final
destination. In this way, the new route of the vehicle is made up of several paths between
input streets of Red Swarm spots, from the first spot which has detected and rerouted it, to
the last spot which is placed in proximity to the vehicle’s final destination (Figure 6.3).

In the case study analyzed (see Section 6.3) there are ten Red Swarm spots, each with
several input streets which amounts to a total of 28 input streets in the area under analysis.
Furthermore, there are also nine possible destinations, so that the different routes from one
spot’s input street to its reachable ones are arranged in nine chunks. Therefore, each reachable
input street has a probability value associated with it which defines its chances of being
suggested to a vehicle as the next step in its personalized route to destination.

Figure 6.4 shows the schematic representation of the problem, i.e. the probabilities for
each reachable street of being selected, all of them mapped into a solution vector. In our
study the solution vector is made of 1098 floating-point numbers (the probability values)
which reveals the complexity of this problem. The probabilities included in each destination

Figure 6.4: Schematic representation of the configuration of the Red Swarm mapped into a probability solution
vector of floats.
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chunk are normalized by following Equation 6.1, so that each value is in the range of [0,1].
So, the sum of all the probabilities for the KN reachable streets in the destination chunk M,
which is part of the configuration of the street N, is equal to 1.

PSNDM = P(N,M)1 + · · ·+P(N,M)KN
=

KN

∑
i=1

P(N,M)i = 1, P(N,M)i ∈ [0,1] (6.1)

Evaluation Function

The evaluation of scenarios takes into account the average travel time of vehicles and the
number of vehicles inside the area analyzed, both of which are collected after simulating
several scenarios in the city. In Equation 6.2 we propose an evaluation function which
computes a real number indicating the fitness of the configuration being evaluated. As we
are minimizing this value, the lower it is the better.

F = ω1(N−n)+ω2
1
n

n

∑
i=1

(delay+ travel time)i (6.2)

In the first term, N is the total number of vehicles and n is the number of vehicles that
have arrived at their destination when the simulation ends. This term guarantees that all
vehicles arrive at their destination which is especially important as SUMO writes trip data
in output files only for those vehicles which complete their itinerary. Additionally, if there
are vehicles en route after the end of the simulation it is due to traffic jams, which is another
important reason to penalize those poor configurations.

In the second term, the travel time of a vehicle is calculated by adding the time that
it has waited before entering the area due to a congested input street (delay) and the time
that it has spent in arriving at its destination (travel time). Both terms are weighted by two
constants (ω1 and ω2). We assume that the vehicles which are in the city at the end of the
analysis would have spent (on average) half of the analysis time in completing their itinerary
(ω1 =

1
2analysis time). The second term is weighted by one (ω2 = 1), so that both terms are

in the same scale of time.

Selection Operator

The Selection Operator implemented chooses two individuals for reproduction by using a
uniform probability distribution without taking into account their fitness value.

Recombination Operator

We have designed and tested two different recombination operators: The Street Two Point
Crossover (STPX) and the Destination Crossover (DESX). The former keeps the configuration
of each input street intact, while the latter does the same with each destination chunk.

STPX consists of a standard two point crossover in which two individuals are crossed by
swapping their contents between two randomly selected points, to produce two descendants.
In our case we exchange all the probabilities between the input street blocks selected (the
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complete blocks including the destination chunks of probabilities). An example of STPX can
be seen in Figure 6.5a where the probability values of the street blocks from six to twelve
(crossover points) are exchanged.

The other operator, DESX, exchanges the configuration of destination chunks throughout
all the street blocks of the parents instead of exchanging the configuration of streets, as STPX
does. An example of DESX can be seen in Figure 6.5b where the probability values of
destination chunks three and four are exchanged in all the street blocks of the solution vector.

(a) Street Two Point Crossover (STPX).

(b) Destination Crossover (DESX).

Figure 6.5: Red Swarm’s recombination operators.

Mutation Operator

In [204] several mutation operators were proposed and tested. There, we decided to use two
different operators for the mutation of the individuals in the EA. The former was meant to
explore the search space and the latter, to exploit the accumulated search experience.

Then, we decided to unify these two operators in just one, called the Variable Mutation
Operator (VMO). In order to preserve the variability presented by the two former mutation
operators in VMO, we have used a variable mutation probability value. When the fitness
value of the best individual of the population is greater than a threshold θ , π1 will be used
as the probability of changing the values in a destination chunk. Otherwise, π2 will be the
probability used. VMO changes only the probabilities in destination chunks of just one street
block whether it is π1 or π2 used for the computations.

In Algorithm 6.1 the pseudocode of the VMO is presented. First, for each individual in
the offspring the input street s is randomly chosen. Then, the list of destinations is obtained
from the individual and some of the probabilities in each destination chunk are changed
depending on the value returned by the random function, and the mutation probability Pm
(which is equal to π1 or π2). Finally, when all the destinations in the street block have been
processed, the individual mutated is returned.

For example, Figure 6.6 represents the VMO applied to an individual when Street 4
has been randomly selected as the target street of the mutation. Then, destination chunks
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Algorithm 6.1 Variable Mutation Operator (VMO).
procedure VMO(Pm,o f f spring)

for all individual ∈ o f f spring do
s← getRandomStreet(individual) ▷ Input street
destinations← getDestinations(individual) ▷ All destinations
for all d ∈ destinations do

if random()< Pm then ▷ Pm ∈ {π1,π2}
AssignNewProbabilities(d)

end if
end for

end for
return o f f spring

end procedure

Destination 1, Destination 4, and Destination 5 have been randomly selected to be mutated.
Consequently, in this example VMO changes the probability values of the ranges P4.1.1 to
P4.1.K , P4.4.1 to P4.4.K , and P4.5.1 to P4.5.K corresponding to the K input streets which are
reachable from Street 4, when the final destination of the vehicle is either Destination 1,
Destination 4 or Destination 5.

Figure 6.6: Variable Mutation Operator (VMO).

Replacement Operator

We have used an elitist replacement [86] in which λ individuals of the population are replaced
only if they have a fitness value worse than an offspring individual.

Parallel EA (pEA)

We have addressed the optimization of several scenarios in the same run of the EA by doing
multiple evaluations (one per scenario) of the same individual in order to calculate its fitness.
In doing so, we expect to achieve a more general configuration for the spots. However, as
this implies an increment in the run time, we have developed a new parallel EA (pEA) to
tackle it. The block diagram of the designed pEA is shown in Figure 6.7. It calculates the
fitness function of an individual over n scenarios as the average fitness of them all.
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Figure 6.7: Parallel Evolutionary Algorithm (pEA).

6.2.2 Rerouting Algorithm (RA)
The Rerouting Algorithm (RA) is used to suggest a new route to vehicles which are approach-
ing a Red Swarm spot. The pseudocode of the RA is presented in Algorithm 6.2 and the flow
chart can be seen in Figure 6.8.

First, the current street is obtained from the data sent by the vehicle. Second, the final
destination is checked to avoid rerouting a vehicle already on the last street of its itinerary,
thus avoiding meaningless reroutings. To the contrary, if the vehicle has not yet reached its
destination, all the routes from the current street to the destination of the vehicle are obtained
from the system’s configuration previously calculated by the EA. If the final destination is
not directly reachable from the current street, the algorithm obtains the next input street
(belonging to another spot) which is directly reachable from the vehicle’s current street so
that it is sent to another Red Swarm spot. This next input street is selected based on the
probabilities stored in the configuration of the system. Finally, the next destination street

Algorithm 6.2 Rerouting Algorithm (RA).
procedure REROUTING(vehicle)

current← getStreet(vehicle)
if isDestination(current,vehicle) then ▷ Last journey’s street

nextDestination← current
else

nextDestination← getDestination(current)
if nextDestination = /0 then ▷ Destination is unreachable

nextStreets← getReachableStreets(current)
nextDestination← getStreetByProbability(nextStreets) ▷ Next RS spot

end if
end if
setNextDestinationStreet(nextDestination,vehicle)

end procedure
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Figure 6.8: Flow chart describing the Rerouting Algorithm.

(thus the route) of the vehicle is set to the chosen one (here we have supposed that all drivers
accept the change suggested) and the process ends. Note that if there is more than one route
to the destination suggested, one of these routes will be randomly selected (driver’s decision).

6.3 Case Study
We have applied the Red Swarm solution with the aim of reducing the average travel times
of vehicles in an area of the city of Malaga (Malaga Park) which is well-known for suffering
from traffic jams at peak times.

The geographical area analyzed which contains the park of Malaga is delimited to the
north by Carretería Street, to the south by the Mediterranean Sea, to the east by Gutemberg
Street, and to the west by the Guadalmedina River, and encompasses an area of about 2.5
km2. Figure 6.9a shows a snapshot of the area analyzed taken from OpenStreetMap while
Figure 6.9b the same area imported into SUMO is depicted. Finally, Figure 6.9c presents a
snapshot exported from SUMO to Google Earth™ where our ten Red Swarm spots, placed
at strategic junctions of the city, are represented by red circles.

We have used the method described in Section 4.3.2 to build our scenarios, all of
which have been imported from OpenStreetMap [169]. Each traffic flow generated by
DUAROUTER (experts’ solution) consists of several routes between the same origin and
the different destinations (including the different routes between them), so that we avoid
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(a) OpenStreetMap. (b) SUMO.

(c) Location of Red Swarm spots exported to Google Earth™.

Figure 6.9: Area of Malaga Park imported from OpenStreetMap into SUMO, and exported to Google Earth™.

all vehicles driving along the same streets, which would be much too easy to optimize (just
suggesting a pair of alternative routes).

In this PhD thesis we have worked with two different case studies called z8 and z12.
These two share the same characteristics (listed in Table 6.1) such as 262 traffic lights, ten
Red Swarm spots, four vehicle types (listed in Table 6.2), and nine input and output streets
where vehicles arrive at and exit from the analyzed area, respectively. We have defined
four different types of vehicles in order to create a more realistic approach. The differences
between them are the arrival probability which defines the distribution of vehicles in each
scenario, the maximum speed of vehicles which is also limited by the streets’ speed limit,
the acceleration and deceleration rates and the vehicles’ length.
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Table 6.1: Characteristics of the two case studies.

Case study z8 z12

# vehicles 800 1200
Analysis time (s) 2400 3000

# Traffic lights 262
# Red swarm spots 10
# Vehicle types 4
# Input streets 9
# Output streets 9

Table 6.2: Type and characteristics of vehicles.

Type Arrival
Prob.

MaxSpd.
(km/h)

Accel.
(m/s2)

Decel.
(m/s2)

Length
(m)

sedan 0.50 160 0.9 5.0 3.8
van 0.25 100 0.8 4.5 4.2
wagon 0.15 50 0.7 4.0 4.3
truck 0.10 40 0.6 3.5 4.5

6.4 Competitor Techniques for our EA
We propose in this section three other competing algorithms that could reduce travel times
by configuring the system in the configuration stage: i) The DJK algorithm, based on the
Dijkstra shortest path algorithm [50]; ii) the DV algorithm, based on the Bellman-Ford
algorithm [24]; and iii) the ACO algorithm, which is based on the Ant System algorithm
presented in [59].

6.4.1 Dijkstra (DJK)
The Dijkstra algorithm (DJK) proposed here is based on the implementation of the well-
known Dijkstra shortest path algorithm [50] included in the DUAROUTER utility, which is
part of the SUMO suite. The solution vector to be used by the RA will be calculated by the
DJK algorithm as an alternative to the EA.

DJK conceives the scenario as a graph in which inputs, the spots’ input streets, and
destinations are all the nodes, while the edges are the different paths between them. The
weight values for each edge are calculated by counting the number of preplanned routes that
include each street of that edge. Then, the solution vector is obtained by converting these
weights to probability values so that they can be managed by the RA.

Equation 6.3 calculates the probability for the route between the input street SN and the
destination DM. There, ωSNDM is the weight of the edge between SN and DM, and ∑i

1
ωSN Di

is the summation of all the destinations reachable from SN . As we want to distribute the
road traffic through different streets, the more congested is a street (more routes), the less
likelihood of being chosen the street has.

PSNDM =
1

ωSNDM∑
i

1
ωSNDi

(6.3)
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6.4.2 Distance Vector (DV)
We propose in this section another competitor of our EA. The Distance Vector (DV) algorithm
is based on the implementation included in the RIP Version 2 protocol (RFC 2453) of the
Distance Vector algorithm, which in turn is based on the Bellman-Ford algorithm [24].

Most of the current Internet routers implements this algorithm to know the length of the
shortest path from themselves to all the other destination routers. In this case, we calculate
routes between the input streets of the Red Swarm spots of the city and the final destinations
of vehicles. This algorithm and its implementation are found in most of the current Internet
routers and its main characteristic is that each node of the network knows the length of the
shortest path from itself to all the other destination routers.

The routing tables of each input street contain an entry for each destination in the city,
which are updated with the ID of the next input street in the route. This input street is selected
depending on the number of spots which will be in this journey to the vehicle destination
when it takes this route, the fewer the better.

In this case, instead of the RA we run a simplified version of the Rerouting Algorithm so
that the next street suggested to vehicles is taken directly from the routing tables calculated
by the DV algorithm, thus we are not calculating a solution vector of probabilities but actual
rerouting tables. When the rerouting takes place in each spot, the next street suggested to
vehicles will be obtained directly from the routing tables calculated for each input street,
instead of using the RA based on probabilities.

6.4.3 Ant Colony Optimization (ACO)
Ant Colony Optimization (ACO) [58] is an optimization technique inspired by the natural
behavior of ants, which has been described in Section 3.2.3. Inspired by the Ant System
model [59], we here provide a new algorithm to suggest routes in our system in a new way.

Our case study is represented by nine graphs (one per destination), whose nodes are
the 28 input streets and whose edges are the routes between them. In ACO, a set of ants
construct a solution by traveling through a graph which represents the environment. So, we
have created 56 ants per graph (twice the number of input streets) and placed them randomly
in the nodes which are different from the destination ones.

Then, each ant makes a sequence of probabilistic decisions when arriving at each Red
Swarm spot in order to choose the next input street to visit. This series of decisions represents
the path that the ant has followed to reach its target destination. Thus, we build the ants’
tours across the nodes of the graph (input streets) until the destination is reached.

When all the ants have ended their individual journey, a new iteration begins after marking
each edge of the graph with artificial pheromones. These pheromones influence the ants’
decisions in following iterations in such a way as to increase the likelihood of the paths
which have been transited most, being chosen in the current iteration. There also exists an
evaporation coefficient which prevents the pheromone values from having an influence for
too long on one iteration propagation, as happens in the natural ant system.

The pheromone trail update is done as explained in Equation 6.4, where τi j(t +1) is the
intensity of the trail in the next iteration, τi j(t) is the current intensity, (1−ρ) represents the
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evaporation of the trail in the current iteration, and ∆τi j is the sum of the quantity per unit of
length of pheromones laid on the edge (i, j) by the k-th ant (Equation 6.5). Finally, the ∆τk

i j
value is calculated by following Equation 6.6, where Q is the relative importance of the trail
and Lk is the tour length of the k-th ant.

τi j(t +1) = (1−ρ) · τi j(t)+∆τi j (6.4)

∆τi j =
m

∑
k=1

∆τ
k
i j (6.5)

∆τ
k
i j =

{
Q
Lk

if the k-th ant travels from street i to street j

0 otherwise
(6.6)

Moreover, the probability of transit from street i to street j is formalized in Equation 6.7,
where ηi j is the heuristic value which defines the visibility of the next street, and allowedk is
the set of the direct reachable streets. We have used the same heuristic as in DJK and DV, i.e.,
the number of routes that contain the streets. Furthermore, both α and β are the parameters
that control the relative importance of trail versus visibility in the transition equation.

pi j(t) =


[τi j(t)]α ·[ηi j]

β

∑k∈allowedk
[τik(t)]α ·[ηik]β

if j ∈ allowedk

0 otherwise
(6.7)

As we need probability values to configure the system, when all the ants have ended their
tours we evaluate the solution by mapping the paths (tours) into probabilities in order to get
the status vector to configure the Red Swarm spots. Since we have a set of routes from the
ACO system, at this point we count the number of paths transited by the ants, for each route,
from the nine graphs that include this route. Then, we calculate the normalized solution
vector of probabilities, so that the more transited a route is, the less likely it is to be selected.

6.5 Parameterization
Now, we describe the experiments that have been conducted in order to parameterize the
ACO algorithm (Section 6.5.1) and the EA algorithm (Section 6.5.2).

As we are dealing with a very complex problem and consequently with long execution
times, we cannot follow an exhaustive method of parameterization. Instead, we have tested
several parameter values for the operators and made decisions based on the data collected.

In all the experiments we have applied a Friedman test to determine the best parameter
and operator, and then we have studied the statistical significance of these data by using the
Wilcoxon test to compare the best ranked distribution to the rest (pairwise comparisons) [189].
All the experiments were conducted by performing 30 independent runs on the same scenario.
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6.5.1 Parameterization of the ACO Algorithm
Based on the values proposed in [59], we have conducted several experiments in order to
perform the parameterization that better suits our problem. The results of 30 runs of the
algorithm using different values for the quantity of trail laid by the ants (Q), the relative
importance of the trail (α) and the visibility (β ) are shown in Table 6.3. The number of ants
(m) was set to 504 (twice the number of streets multiplied by the nine destinations, thus, the
nine graphs), the trail evaporation in each iteration (1−ρ) was set to 0.25, and the initial
value for trails (τi j(0)) was set to 0.50.

Table 6.3: Parameter tuning of the ACO algorithm.

Parameters Best Fitness Friedman
Rank

Wilcoxon
p-valueQ α β Avg. StdDev

25
0.5 1.0 5215.6 141.6% 3.73 0.19
1.0 0.5 7613.4 216.1% 2.00 —
1.0 1.0 4317.3 183.7% 2.33 0.99

50
0.5 1.0 7552.4 121.1% 4.97 0.05
1.0 0.5 8840.0 225.8% 2.70 0.07
1.0 1.0 13853.8 147.7% 5.27 0.00

We have explored a large set of potential sets of parameters for ACO adding up to a final
large number of 180 experiments. As we can see, the best ranked algorithm, ACO25,1.0,0.5
(Q = 25, α = 1.0, β = 0.5) and the second best, ACO25,1.0,1.0 (Q = 25, α = 1.0, β = 1.0),
both share the same statistical benefits (p-value = 0.99), so we have chosen the latter because
its average fitness and standard deviation are lower than the former (4317.3 vs. 7613.4 and
183.7% vs. 216.1%, respectively).

6.5.2 Parameterization of the EA
We have tested the STPX and DESX operators for recombination probabilities (Pc) of 0.2,
0.4, 0.6, 0.8, and 1.0, by doing 30 runs for each operator and probability values (300
runs). Table 6.4 shows the results of the experiments conducted as well as the statistical
analysis performed. As we can see, STPX has outperformed DESX for all the recombination
probability values tested.

Then, we have conducted several experiments in order to parametrize the mutation
operator VMO, which are also listed in Table 6.5. We have tested π1 and π2 for probability
combinations of 1

9 (one over the number of destinations), 1
3 , 1

6 and 1.
We have chosen π1 = 0.33 and π2 = 0.11 based on their average fitness value in spite of

the fact that it is the second best ranked case (5.30 vs. 5.27) Moreover, the Wilcoxon p-value
denotes that this configuration (0.33,0.11) and the best ranked one (0.66,0.33) are not so
different (p-value = 0.91), which allows us to make this decision. All in all, the mutation
probability of a route will depend on the number of input streets, π1, and π2, so that it will be
1

28
1
3 = 1

84 for π1 and 1
28

1
9 = 1

252 for π2. All the parameters of the EA are shown in Table 6.6.
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Table 6.4: Tuning of EA’s recombination operator.

Street Two Point Crossover (STPX) Destination Crossover (DESX)

Pc
Fitness Friedman

Rank
Wilcoxon
p-value

Fitness Friedman
Rank

Wilcoxon
p-valueAverage StdDev Average StdDev

0.2 917.3 8.3% 4.07 0.27 964.0 14.6% 6.00 0.00
0.4 3930.3 398.0% 3.53 0.00 1301.2 151.3% 5.17 0.00
0.6 887.5 5.7% 2.37 0.50 14711.5 213.1% 8.00 0.00
0.8 941.8 12.0% 4.80 0.00 20301.9 179.1% 8.93 0.00
1.0 1068.5 84.7% 2.17 — 36507.2 140.0% 9.97 0.00

Table 6.5: Tuning of EA’s VMO (Pc = 0.6).

π1, π2
Fitness Friedman

Rank
Wilcoxon
p-valueAverage StdDev

0.11, 0.66 12707.1 484.9% 6.77 0.34
0.11, 1.00 9827.1 275.1% 8.90 0.05
0.33, 0.11 987.0 12.4% 5.30 0.91
0.33, 0.66 34553.9 371.2% 6.67 0.25
0.33, 1.00 2527.9 315.5% 7.40 0.23
0.66, 0.33 4664.1 318.0% 5.27 —
0.66, 1.00 4999.7 427.9% 7.83 0.15
1.00, 0.11 13455.8 397.6% 5.33 0.50
1.00, 0.33 10833.4 230.4% 6.67 0.27
1.00, 0.66 11510.1 321.3% 6.93 0.08

Table 6.6: Parameters of EA.

Parameter Value

PC 0.6
π1

1
84

π2
1

252
θ 1500
Max. generations 5000

6.6 Experimental Analysis
In the following sections we address the optimization of the case studies z8 and z12. We have
analyzed two versions of EA, EA10 where just one of the available routes between spots is
used, and EA05 where up to two routes can be probabilistically used.

First, we have run the EA and its competitors algorithms to compare their performance
as well as the solutions achieved. Second, we have set the best solution of each algorithm as
the configuration of Red Swarm and tested it in 30 different scenarios in order to discover
how scalable the solutions are. Finally, we have identified the best performing algorithms
and reported the improvement achieved in the average travel time of vehicles.

6.6.1 Optimization
In this section we have performed the optimization of z8 and z12 in order to achieve an
optimum for the configuration of the Red Swarm spots. This case study consists of 800
vehicles that arrive in the analyzed zone of the city via nine input streets and that drive
through the city until reaching their destination.

We do not include DJK and DV in this first experiment because they are deterministic
and only one execution is needed to get the configuration vector from those algorithms.
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In the case of the EA10, EA05 and ACO algorithms, we have carried out 30 runs as they
are nondeterministic in order to analyze their performance as well as achieve the best
configuration for the Red Swarm spots. In Table 6.7 we present the results of the optimization
of one scenario of z8 and another of z12 performed by our algorithms. We have included
the average of the best fitness achieved in the 30 runs as well as the standard deviation.
Furthermore, the average number of iterations and the standard deviation are also provided
together with the Friedman Rank and the Wilcoxon p-value.

Table 6.7: Fitness, number of iterations and statistical tests for the optimization of one scenario of z8 and z12.

Alg. Fitness # iterations Friedman
Rank

Wilcoxon
p-valueAvg. StdDev Avg. StdDev

z8

EA10 658.0 7.1% 2531.6 36.4% 1.00 —
EA05 760.0 8.1% 3485.0 32.5% 2.67 0.00
ACO 1610.4 172.7% 573.7 12.2% 2.33 0.00

z12

EA10 855.7 8.5% 3699.0 30.5% 1.00 —
EA05 1037.8 9.7% 3411.7 30.5% 2.67 0.00
ACO 7613.4 216.1% 579.8 15.3% 2.33 0.00

The first conclusion is that EA10 has achieved the lowest average fitness value for z8 and
z12 (658.0 and 855.7 respectively). It is also notable the small number of iterations (573.7
and 579.8 on average) performed by the ACO algorithm (thus a faster convergence) despite
its high average fitness. Based on the fitness values and the statistical analysis we have
selected the best configurations of each algorithm and tested them on 30 unseen instances of
both case studies, where we have also included the deterministic algorithms (DJK and DV).
We have configured the Red Swarm spots with the solution obtained from the five algorithms
in order to analyze how they behave in the 30 different scenarios of z8 and other 30 of z12.

Table 6.8 present the results where the high fitness values of DJK and DV confirm they
are not capable of rerouting vehicles to their destinations, while avoiding traffic jams in the
period of time analyzed. EA05 and ACO are also unable to obtain competitive results while
EA10 is the best performing algorithm although it only has improved the experts’ solution
(EXP) in some scenarios (53% of z8 and 83% of z12).

Therefore, in order to analyze how Red Swarm behaves when compared with the experts’
solution (EXP) when it is configured by EA10, we have illustrated the travel time vs. the
number of vehicles in the city in figures 6.10a and 6.11a. Although we have optimized case
studies of 800 and 1200 vehicles, we have tested the configuration obtained by EA10 with
up to 2400 vehicles.

As can be seen, EA10 becomes effective when there are more than 320 vehicles in z8 and
880 vehicles in z12. This is an interesting and high impact conclusion, since it means that, as
long as we have around 1000 vehicles in the geographical area (very likely) our solution is
more efficient for drivers and modern urban policies.
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Table 6.8: Fitness comparative and statistical test of 30 scenarios of z8 and z12. The best values are in bold.

z8 z12

Alg. Fitness Scenarios
Improved

Friedman
Rank

Wilcoxon
p-value

Fitness Scenarios
Improved

Friedman
Rank

Wilcoxon
p-valueAvg. StdDev Avg. StdDev

EXP 623.5 4.3% — 1.50 — 821.1 3.5% — 1.83 0.00
DJK 222588.6 8.3% 0.0% 6.00 0.00 1048164.2 12.8% 0.0% 6.00 0.00
DV 50229.1 15.2% 0.0% 5.00 0.00 146557.1 60.6% 0.0% 4.97 0.00
EA10 658.1 34.9% 53.3% 1.53 0.75 788.0 3.3% 83.3% 1.17 —
EA05 761.8 23.6% 0.0% 3.90 0.00 14494.9 510.0% 0.0% 3.83 0.00
ACO 837.6 71.3% 3.3% 3.07 0.00 923.2 6.8% 0.0% 3.20 0.00

(a) T. Time vs. # Vehicles. (b) Traffic density. (c) Travel Times.

Figure 6.10: Traffic density and travel times comparison for the best scenario of z8.

Moreover, in figures 6.10b and 6.10c we present the traffic density and the travel times of
vehicles in z8. We can see in both graphs the effects of the best solution of each algorithm
on the road traffic, which confirm that neither DJK nor DV are capable of managing such
a number of vehicles and that EA10 routes vehicles out of the city faster than the experts’
solution. The same behavior is be observed in figures 6.11b and 6.11c for vehicles in z12.

(a) T. Time vs. # Vehicles. (b) Traffic density. (c) Travel Times.

Figure 6.11: Traffic density and travel times comparison for the best scenario of z12.
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6.6.2 Parallel EA
Parallelism is central to carry out our experiments. We need to simulate the whole city, with
thousands of cars following driving directions, interacting with each other, communicating,
considering statistics and a large amount of data. Parallelism has been essential in reducing
the study time from several years of computation to five weeks. We used a parallel version
of our EA to optimize more than one scenario in the same run. Thus we have decided to
calculate the average fitness value of two, four and even eight scenarios of z8 and z12 as the
fitness value of an individual by using different versions of our pEA: pEA10.2, pEA10.4,
and pEA10.8, respectively. So, we have named as pEA10.x, the parallel version of the EA10
algorithm which evaluates x scenarios in parallel and obtains the individual’s fitness value by
averaging them.

We have tested our parallel algorithms by optimizing one scenario of z8 and one of z12
in 30 independent runs. As can be clearly deduced from the values in Table 6.9, the more
scenarios are optimized, the better the solution achieved. Consequently, pEA10.8 presents
the best results in the optimization scenarios of z8 and also in the z12 ones.

Table 6.9: Average fitness, average number of iterations and statistical tests for the parallel optimization of two,
four, and eight scenarios of the case studies z8 and z12. Note that the best values of each case study are in bold.

Alg. Fitness # iterations Friedman
Rank

Wilcoxon
p-valueAvg. StdDev Avg. StdDev

z8

pEA10.2 746.3 95.6% 2647.5 34.8% 2.73 0.00
pEA10.4 608.6 2.8% 2940.3 32.8% 2.07 0.00
pEA10.8 603.3 2.9% 3140.9 31.9% 1.20 —

z12

pEA10.2 6428.3 332.2% 2866.2 38.0% 2.67 0.02
pEA10.4 881.4 22.8% 2717.2 35.4% 2.57 0.00
pEA10.8 874.0 41.8% 3496.5 32.4% 1.43 —

Next, we tested our solutions in 30 different scenarios for each case study. The results
show that all the parallel algorithms have achieved better fitness values than EXP in all the
scenarios of z12 and in mostly all of them in z8 as shown in Table 6.10. Our results seem
to depend not only on the number of scenarios but also which scenarios are selected for
optimization. Consequently, the more scenarios that are optimized, the more robust the
solution achieved.

Figure 6.12a shows that the minimum number of vehicles from which Red Swarm is
effective has been reduced to 480 vehicles (it was 880 for EA10) as the behavior of the
configuration computed by pEA10.8 is more linear with respect to the number of vehicles
than the EA10 one. In addition, figures 6.12b and 6.12c show the improvement in traffic
density and travel times of the vehicles achieved in z12.
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Table 6.10: Fitness comparative and statistical test of 30 scenarios of z8 and z12. The best values are in bold.

Alg. Fitness Friedman
Rank

Wilcoxon
p-valueAvg. StdDev

z8

EXP 623.5 4.3% 2.30 0.01
EA10 658.1 34.9% 3.93 0.00

pEA10.2 595.7 2.1% 3.33 0.00
pEA10.4 599.5 2.4% 3.73 0.00
pEA10.8 584.3 1.8% 1.70 —

z12

EXP 821.1 3.5% 4.83 0.00
EA10 788.0 3.3% 3.53 0.00

pEA10.2 779.3 2.1% 3.13 0.00
pEA10.4 768.5 2.0% 2.50 0.00
pEA10.8 744.8 1.7% 1.00 —

(a) T.Time vs. # Vehicles. (b) Traffic density. (c) Travel Times.

Figure 6.12: Traffic density and travel times comparison for the best scenario of z12 using pEA.

Finally, the average travel times in the 30 scenarios tested as well as the average route
length of vehicles are listed in Table 6.11. Additionally, the metrics of the most improved
scenario are also listed.

We can see that pEA10.8 achieved an average improvement of 6.3% (19.2% maximum)
in z8 and 9.3% (18.8% maximum) in z12 on the average travel time, i.e., travel times which
are 173 seconds shorter (76 seconds on average). The average distance traveled by vehicles
when they are being rerouted by Red Swarm is always longer than in the experts’ solution.
This was to be expected because we are rerouting vehicles via alternative streets which are
not part of the shortest path, with the aim of reducing traffic jams. This extra length is
however minimal (10% percent on average) and has a huge advantage in reducing times for
drivers and the city.

In the last study carried out we have calculated the weak orthodox speedup [2] of our
parallel algorithms by carrying out 10 runs of each algorithm with a different random seed.
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Table 6.11: Results of the optimization of the vehicles’ average travel time, divided in the average of 30
scenarios and the best of them. Note that the best values of each case study are in bold.

Average 30 scenarios Best scenario

Alg. Travel Time Route Length Travel Time Route Length

Avg. StdDev Impr. Avg. StdDev Rate Avg. StdDev Impr. Avg. StdDev Rate

z8

EXP 623.5 4.3% — 1770.2 1.2% — 726.6 48.2% — 1771.3 42.0% —
EA10 658.1 34.9% -5.5% 1960.6 1.6% 10.8% 624.8 42.0% 14.0% 1945.9 45.9% 9.9%
EA05 761.8 23.6% -22.2% 2076.9 1.4% 17.3% 739.5 74.5% -1.8% 2097.9 49.1% 18.4%
ACO 837.6 71.3% -34.3% 2066.4 1.8% 16.7% 699.0 51.5% 3.8% 2066.7 48.4% 16.7%

pEA10.2 595.7 2.1% 4.5% 1895.8 1.4% 7.1% 599.0 41.1% 17.6% 1933.6 43.0% 9.2%
pEA10.4 599.5 2.4% 3.9% 1948.3 1.4% 10.1% 598.2 40.8% 17.7% 1972.5 44.2% 11.4%
pEA10.8 584.3 1.8% 6.3% 1901.4 1.6% 7.4% 587.1 40.7% 19.2% 1899.8 43.3% 7.3%

z12

EXP 821.1 3.5% — 1746.4 1.2% — 922.0 55.0% — 1716.5 43.5% —
EA10 788.0 3.3% 4.0% 2029.0 3.5% 16.2% 794.6 42.4% 13.8% 2017.3 47.6% 17.5%
EA05 14494.9 510.0% -1665.3% 2183.6 2.3% 25.0% 1085.7 46.7% -17.7% 2180.4 50.2% 27.0%
ACO 923.2 6.8% -12.4% 1927.0 1.9% 10.3% 935.1 55.1% -1.4% 1919.1 50.8% 11.8%

pEA10.2 779.3 2.1% 5.1% 2047.7 1.8% 17.3% 770.2 41.8% 16.5% 1903.9 45.1% 10.9%
pEA10.4 768.5 2.0% 6.4% 1973.5 1.0% 13.0% 776.4 44.5% 15.8% 1978.4 45.7% 15.3%
pEA10.8 744.8 1.7% 9.3% 1921.1 1.2% 10.0% 749.0 43.4% 18.8% 1931.7 45.3% 12.5%

Because of the huge demand on resources that each parallel execution requires we have not
done 30 runs in this case.

Table 6.12 lists the different experiments and results of the execution of the algorithm
optimizing one scenario in a one core machine (sEA10.1), two scenarios in a one core
machine (sEA10.2) and also in two core machines (pEA10.2), and so on. We have named the
sequential calculation of n fitness functions sEA10.n and the parallel calculation pEA10.n.

The results show that both pEA10.2 and pEA10.4 have nearly reached a linear speedup
by using parallelism (1.9 and 3.9 respectively). Moreover, when using 8 cores (pEA10.8) we

Table 6.12: Average execution times and speedup of ten independent runs of the sequential algorithm (sEA10.n)
and parallel (pEA10.n). The best speedup reached is in bold.

# Scenarios Algorithm # Cores Avg.Time (h) Speedup

1 sEA10.1 1 19.1 1.0

2 sEA10.2 1 35.8 1.0
pEA10.2 2 18.8 1.9

4 sEA10.4 1 40.0 1.0
pEA10.4 4 10.2 3.9

8 sEA10.8 1 93.0 1.0
pEA10.8 8 13.8 6.8
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got a very good speedup of 6.8 (an efficiency of 85%), not really the perfect 8 value because
of the overload that the execution of eight parallel threads in the same computer represents.

6.7 Discussion
In this chapter we have presented a solution to one of the more important Smart Mobility
problems, long travel times due to traffic jams.

The Red Swarm architecture configured by our EA suggests alternative routes customized
to drivers in order to avoid traffic jams and find a quicker way to reach destination.

The solutions achieved when we tested the configuration obtained by the EA in 30
different scenarios show that we have outperformed all of them when we use pEA10.8 as the
optimization algorithm. This indicates that our solution is robust enough in such a complex
problem like the one analyzed here.

We have also tested Red Swarm in different traffic conditions (number of vehicles) and
we found a threshold representing the minimum number of vehicles from which Red Swarm
becomes effective as a system for preventing traffic jams. In each case study, the threshold
is quite a bit lower than the usual average number of vehicles in the real geographical area.
However, with a small number of vehicles Red Swarm still works fine, but the enhancements
to the city are less noticeable.

Finally, we observed lower traffic densities and shorter travel times when we applied Red
Swarm to the most likely traffic situations in a modern city. This represents valuable aid to
the citizens of a smart city providing they become users of the Red Swarm.

In our work we have assumed that all drivers have a terminal (e.g. smartphone) and they
follow the routes suggested by the system. We expect a reduction in the average improvement
on travel times if a significant percentage of drivers do not follow the indications of Red
Swarm; the gradual penetration of the system will be the next step in our research. Moreover,
unexpected changes in the state of the city, such as accidents or suddenly closed streets, have
to be addressed in future work so as to be able to change the active configuration of the spots
according to the new situation. A city is a very complex organism, and so we need to move
step by step, gradually incorporating layers of human behavior and technologies.

Altogether, we think that our Red Swarm is a solution which could be used in current mod-
ern cities in order to reduce traffic jams and improve the citizens’ quality of life. Moreover, it
could be utilized to collect anonymous information from cars allowing local authorities to
better understand the online and historical state of the city.





Chapter 7

Green Swarm:
Reducing Carbon Footprint

This chapter proposes a mobility architecture, called Green Swarm, to reduce greenhouse gas
emissions from road traffic in smart cities. The traffic flow optimization of four European
cities: Malaga, Stockholm, Berlin, and Paris, is addressed with new case studies importing
each city’s actual roads and traffic lights from OpenStreetMap into the SUMO traffic simula-
tor, so as to find the best ways to redirect the traffic flow, and advise drivers. Additionally,
the proposal is compared with three other strategies, which are also combined with Green
Swarm in order to improve metrics such as travel times, gas emissions, and fuel consumption.
This results in reductions in gas emissions as well as in travel times and fuel consumption in
more than 500 city scenarios. The proposal has also been tested in scenarios where not all
drivers are using it, to observe the change in traffic conditions when it is only in partial use,
successfully paving the way for future sustainable cities.

7.1 Introduction
Another source of problems in big cities is air pollution and road traffic is a well-known
source of greenhouse gas emissions in urban areas [101]. Poor air quality contributes to
respiratory and cardiovascular diseases as well as to lung cancer [137] Air pollution is not
only an important issue for the economy, the environment, and human health, but it also
damages cities’ buildings and has a clear impact on our climate, since some air pollutants
behave as greenhouse gases [90].

Having observed the vehicles’ behavior when developing the Red Swarm architecture
for preventing traffic jams, we proposed in this chapter Green Swarm, an evolution of our
preliminary work [199] redesigned and adapted in this case to reduce not only travel times,
but also greenhouse gas emissions, and fuel consumption.
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7.2 The Green Swarm Architecture (GS)
The Green Swarm architecture (GS) [202], based on Red Swarm [203, 204, 205], is a
significantly different line of research where a large number of weak points have been
addressed, to finally design and implement a new system based on the following, new
contributions:

1. GS uses a new mathematical function to measure the quality of the solutions. This
generates a new search landscape where new algorithms and unseen performances are
analyzed.

2. The algorithms (now EfRA and GrA) have been revised and their performance im-
proved to get better results in shorter times.

3. There is a study of the relationships between metrics (travel time, CO2, fuel, etc.).

4. Four different cities (Malaga, Stockholm, Berlin and Paris) have been optimized, plus
one extra scenario consisting of real traffic flows (Alameda) which amounts to more
than 500 scenarios in five case studies. In previous work just one city or parts of it has
been tested. The conclusions drawn from working with four cities give this study a
robust endorsement as a comparison analysis for future work in this area.

5. We have pushed the boundaries of existing algorithms by significantly increasing the
number of vehicles in each scenario (up to 5800 vs. 1200). This means considerably
larger computational times, and improved realism.

6. There were no competitors whatsoever in past articles of the literature. Thus three
competitors have been introduced, not only to test our strategy, but also to complement
it. In this sense, our new proposal has been strongly tested compared to related systems.

7. As not everyone is keen on using new technologies until they are firmly established, in
our experimentation a user acceptance study has been conducted so as to address not
only the scientific aspect of the proposal but also the social one.

GS can be installed in modern cities with a minimum investment as it is able to use already
existing infrastructure such as traffic lights controlled by a computer, Wi-Fi connectivity,
mobile phones, and tablets. GS comprises the following components: i) Nodes installed at
traffic lights which communicate with vehicles to know their destination and send them a
new route around the city; ii) The Eco-friendly Route Algorithm (EfRA) which calculates
the configuration of the system; iii) The Green Algorithm (GrA) which is executed in the
nodes to suggest eco-friendly routes to vehicles; and iv) Mobile devices such as smartphones
and tablets for the user terminals, or even On Board Units (OBU) installed in vehicles.

In Figure 7.1 the schema of the GS architecture is depicted. It is divided into two stages:
an offline stage called Setup Stage and an online stage called Green Stage. In the Setup Stage,
the configuration of the nodes is calculated by EfRA so that each node will be able to suggest
an eco-friendly route to a vehicle depending on its final destination, based on a probability
value. These probabilities are calculated before deploying the system (training phase) by
optimizing four different traffic distributions of the city, as this improves the robustness of
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Figure 7.1: Green Swarm Architecture. In the Setup Stage the configuration of the GS nodes is calculated using
the EfRA and then, in the Green Stage, vehicles are rerouted by the GrA to prevent traffic jams.

GS [203]. In doing so, EfRA is provided with more diverse real situations to help make
better decisions when evolving the population toward configurations that are adjusted to
more general solutions instead of a specific one.

In the Green Stage, vehicles connect to the GS nodes as they pass by, which triggers
the execution of the GrA. Then, GrA suggests a new route for the vehicles according to the
configuration calculated by EfRA in the previous stage. These new routes are customized as
they are determined by the final destination of each vehicle.

Each node is implemented using a Wi-Fi spot connected to a processing unit capable of
running the GrA. Additionally, they can be remotely updated (via the mobile network or
the already existing connectivity found in traffic lights) to change the GS configuration in
the case of possibly closed streets, events, etc. The software running in the mobile devices
consists of a navigator-like screen with a graphical user interface for entering the driver’s
destination. Finally, the communication between a device and a node implies the former
sending the desired destination and the latter answering with the route to the next GS node or
to the driver’s destination. According to [225] we estimate an operational radius for each
node of 77 meters.

The placement of the nodes has been manually set for this study as it represents a
challenge in itself which needs and justifies a future, separate, scientific article. The main
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goal is: given a set of the more congested junctions controlled by a traffic light, identify
those which better improve the rerouting of vehicles, preventing traffic jams, and use them as
Green Swarm nodes.

An example of the rerouting performed by GS during the Green Stage is shown in
Figure 7.1. When the vehicle connects to Node 1 via a Wi-Fi link, the GrA suggests a new
route toward Node 2, potentially different from the original one. It is assumed here that the
driver accepts the new route, so that when he/she approaches Node 2 by Input Street IS2, the
vehicle will be routed to Node 3. Finally, in Node 3, which is near the vehicle’s destination,
the driver will be sent directly (no intermediate node) to the end of his/her journey.

By using GS the vehicle has probably traveled a longer distance than when following
the shortest path (which is usually the default choice made by drivers), but it has avoided
possible traffic jams while driving in an eco-friendly way. As a result, the amount of gas
emitted into the atmosphere and travel times have both been reduced. Even if this seems
not to be an intuitive result, it is demonstrated that taking into consideration the global flow
and driving events, leads to a greener trip in the end. In order to evaluate each case study,
the traffic simulator SUMO [123] has been used. SUMO implements realistic car following
models and it can be externally controlled by TraCI [237] to perform the reroutings suggested
by the GrA.

7.2.1 Eco-friendly Route Algorithm (EfRA)
What is being attempted in this study is finding a solution to a very difficult real problem
requiring high evaluation times and managing large vectors of numbers which encompass
a huge search space, very hard to explore by exhaustive methods. Furthermore, there is
no analytic equation, so traditional methods are not viable. In addition, low complexity
operations as used in metaheuristics are needed. All these reasons make this problem
suitable for solving with a bio-inspired algorithm [29]. Concretely, we have designed a new
evolutionary algorithm, based on a (10+2)-EA [15] and called Eco-friendly Route Algorithm.

EfRA is an elitist steady state EA, with a population of ten individuals, generating two
new individuals at each step, mainly because the evaluation of each individual requires a
simulation which takes more than 30 seconds to complete. EfRA is a light-weight algorithm
(compared to other metaheuristics like common EAs, PSOs, etc.), it performs well without
the need for an analytic equation which is impossible in this domain.

First, in EfRA (Algorithm 7.1), the number of steps t is set to zero and the population
P(0) (10 individuals) is initialized with random values. Then, while the termination condition
is not fulfilled the main loop is executed. In our experiments EfRA ends when the maximum
number of steps (5000) or the convergence criterion (500 generations without improvements)
are reached. Inside the main loop, after initializing the auxiliary population Q(0), two parents
are selected from the population by using binary tournament [87]. Next, the offspring (two
individuals) are obtained after applying the recombination operator (STPX) and after that, the
offspring are mutated by applying our Variable Mutation Operator (VMO), both described
later. Then, the new individuals are evaluated and inserted in the auxiliary population Q(t).



7.2 The Green Swarm Architecture (GS) 83

Algorithm 7.1 Eco-friendly Route Algorithm (EfRA).
procedure EFRA

t← 0
P(0)← createPopulation() ▷ P = population
while not terminationCondition() do

Q(0)← /0 ▷ Q = auxiliary population
parents← selection(P(t)) ▷ Binary tournament
o f f spring← ST PX(Pc, parents) ▷ Street Two Point Crossover
o f f spring←V MO(π1,π2,θ ,o f f spring) ▷ Variable Mutation Operator
evaluateFitness(o f f spring)
insert(o f f spring,Q(t))
P(t +1)← replace(Q(t),P(t)) ▷ Elitist replacement
t← t +1

end while
end procedure

Finally, the new population P(t +1) is generated by replacing the current one (P(t)) with
the individuals of the auxiliary one (Q(t)) in an elitist way, that is, the worst individuals in
P(t) (highest fitness values) are replaced by the individuals in Q(t) if and only if the new
ones have better (lower) fitness values and they are not yet in the population.

Representation

The goal is to suggest routes to vehicles as they are approaching a junction controlled by a
GS node, so the different probabilities for each route need to be stored in a configuration
vector. These probabilities are computed by an intelligent automatic technique according
to the layout and dynamic features of the traffic in the city: our EfRA. Additionally, the
suggested routes have to be personalized for each driver depending on his/her destination.
For this reason, the route probabilities have to be separated into groups (chunks) assigned to
each destination.

The problem representation chosen is shown in Figure 7.1 where it can be seen blocks
of routes starting in the same street (Input Street 1, Input Street 2, etc.) which are inputs to
a junction controlled by a GS node. These input streets are the points where the rerouting
takes place (providing that the driver takes into account the suggestion given). Then, the
available routes are replicated in several destination chunks in the same street block so as to
personalize the trip based on drivers’ destinations.

Finally, each route has a probability value associated with it, to define how likely it is to
be suggested to drivers. Note that the summation of probability values in the same chunk
must be equal to 1.
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Evaluation Function

According to our experimentation, explained in Section 7.5.1, several relationships have been
observed between the metrics, which has led to only CO2 being included in the evaluation
function to calculate the fitness value of the individuals.

The fitness function for EfRA is presented in Equation 7.1 where two terms can be seen.
The first is meant to penalize the individuals representing configurations for the GS nodes
which are unable to route all vehicles to their destination within the analysis time. Therefore,
N is the total number of vehicles and n is the number of vehicles which have completed their
itineraries, so we penalize the resulting fitness value with the number of vehicles which are
inside the area under analysis when the analysis time ends.

F = (N−n)+α
−1 1

n

n

∑
i=1

CO2i (7.1)

The second term of Equation 7.1 represents the average CO2 emissions from vehicles. It
is normalized by the α coefficient calculated as shown in Equation 7.2. There, λ represents
the number of training scenarios (four in this study), and ni is the number of vehicles in the
training scenario i. By using α in Equation 7.1 the fitness function is normalized, so that the
experts’ solution we are improving has a fitness value equal to 1. As the idea is to minimize,
values below 1 represent an improvement over the experts’ solution, i.e. the lower, the better.

α =
1
λ

λ

∑
i=1

1
ni

ni

∑
j=1

CO2i j (7.2)

Evolutionary Operators

Some of the operators tested in Chapter 6 have again been used in this new problem. Binary
Tournament is used as the selection operator; Street Two Point Crossover (STPX) (Sec-
tion 6.2.1) as the recombination operator, where the cross points are blocks of input streets’
configurations; Variable Mutation Operator (VMO) (Section 6.2.1) where two different
mutation probability values are combined using a threshold value to switch between them
(the first value is meant to explore the search space whilst the second is to refine the solution
by exploitation); and Elitism in the replacement operator. The recombination probability
value used is 0.6, the threshold θ = 1.0, and the mutation probabilities are π1 = 0.04 and
π2 = 0.01. Table 7.1 shows a summary of the parameters of EfRA.

Table 7.1: Parameters of the EfRA.

Parameter Value

Maximum iterations 5000
Crossover probability (PC) 0.6
Mutation probabilities (π1, π2) 0.04, 0.01
Threshold (θ ) 1.0
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7.2.2 Green Algorithm (GrA)
Our GrA runs in each GS node. When a vehicle connects with a node via Wi-Fi, GrA reads
the configuration previously calculated by EfRA for this node and suggests an alternative
route based on the probability values and the vehicle’s destination (Green Stage). Even
though the GrA cannot guarantee that each vehicle will reach its destination (as each spot is
only responsible for a section of the whole route), the evolution of the configurations in EfRA
toward an optimum makes it highly likely that each vehicle will reach its final destination.

The pseudocode of GrA is presented in Algorithm 7.2. First, the current street and the
vehicle’s destination zone are obtained from the approaching vehicle itself. Second, the
destination zone is checked to avoid rerouting a vehicle already in it. If the vehicle has not yet
reached its destination zone, all the routes from the current street to the vehicle’s destination
zone are considered in the GS configuration. If the destination zone is not directly reachable
from the current street (route = /0), the algorithm obtains the next Input Street (belonging
to another node) which is directly reachable from the vehicle’s current street so that it is
rerouted to another GS node. This Input Street is selected based on the probabilities stored in
the GS configuration. Finally, the route from the current to the next Input Street is suggested
to the vehicle in the last step.

Algorithm 7.2 Green Algorithm (GrA).
procedure GRA(vehicle)

current_street← getStreet(vehicle)
destination← getDestinationZone(vehicle)
if current_street ∈ destination then ▷ At destination?

route← getCurrentRoute(vehicle)
else

route← getRouteToDestination(current_street,destination)
if route = /0 then ▷ Rerouting to the next GS node

nextInputStreet← getStreetByProbability(current_street,destination)
route← getRouteToInputStreet(nextInputStreet)

end if
end if
suggestNewRoute(route,vehicle)

end procedure

7.3 Case Studies
For this approach four large European cities: Malaga (Spain), Stockholm (Sweden), Berlin
(Germany), and Paris (France) were chosen. This enabled the study of specific zones which
are prone to traffic jams, with the aim of improving traffic flow and reducing gas emissions.
Furthermore, a reduced area of Malaga (Alameda Principal) was also studied, where real
traffic conditions could be faithfully recreated and the accuracy of the study, improved.
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First, the GS system was applied to a small case study (0.4 km2) comprising the Alameda
Principal area of Malaga (Spain). In this case study data published by the local council for
peak time traffic at 2 p.m. on working days [13] was used and its real traffic flows were
generated by using our Flow Generator Algorithm [197, 201] described in Chapter 5. Second,
four new and larger geographical areas were used, representing zones not only in the city of
Malaga, but also in three major European cities: Stockholm, Berlin, and Paris which are all
shown in Figure 7.2.

In spite of the fact that the real number of vehicles in the larger areas was unavailable,
they were included to test our proposal against different cities, urban maps, and traffic
distributions. By doing so, a real case study to validate GS was addressed, and then a variety
of new case studies were analyzed (generalization and robustness).

To build each new case, the geographical areas in OpenStreetMap [169] were first selected
and then exported to individual map files (.osm files). The maps were then modified by using
the application JOSM (Java Open Street Map) thereby removing unhelpful, irrelevant data
such as parks, housing blocks, and pedestrian walkways. Based on these, the working maps
for SUMO were generated by NETCONVERT following the steps described in Section 4.3.2.

Finally, the traffic flows between the streets were defined using the DUAROUTER
utility and used as the inputs to the areas being analyzed (source streets) and the streets
which are destinations. Each flow contained several routes representing different, alternative
paths between the same source and destination pairs. These were obtained by using the
different weight metrics available in DUAROUTER such as travel times, emissions, and fuel
consumption. By using these flows the difficulty of the problem being addressed increased,
as vehicles do not always take the same routes toward their destination.

Other different case studies where vehicles are actually taking the fastest routes in the
cities under consideration have also been included. This was done so as to also address a
more realistic problem (people usually drive along avenues). The traffic light cycles were
assigned by NETCONVERT while generating the map, using the algorithms included in
SUMO. However, some corrections, especially in the lights’ synchronization, were made to
avoid problems of misconfigured cycles.

Wishing to provide a more realistic study, four different vehicle types were used (Ta-
ble 7.2) having different emission classes from the HBEFA [96] model, as it would not make
sense to have sedans and trucks emitting the same amount of gas nor consuming the same
liters per kilometer. The arrival probability states that half of the vehicles are sedans while
the rest are less common as they are heavier, which is to be expected in a city center.

Table 7.2: Characteristics of the four types of vehicles.

Type Arrival
Prob.

MaxSpd.
(km/h)

Accel.
(m/s2)

Decel.
(m/s2)

Length
(m)

Emission
class

sedan 0.50 160 0.9 5.0 3.8 P_7_7
van 0.25 100 0.8 4.5 4.2 P_7_5
wagon 0.15 50 0.7 4.0 4.3 P_7_6
truck 0.10 40 0.6 3.5 4.5 HDV_3_1



7.3 Case Studies 87

Figure 7.2: Case studies: Alameda (ALA), Malaga (MGA), Stockholm (STO), Berlin (BER), and Paris (PAR),
imported from OpenStreetMap into the SUMO traffic simulator.

In each working scenario, vehicles arrive at different times, through different streets and
taking different routes, which generates a variety of situations to train and test the proposal.
Since the assigned vehicles’ type and route depend on the random number generator included
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Table 7.3: Characteristics of the case studies: Alameda (ALA), Malaga (MGA), Stockholm (STO), Berlin
(BER), and Paris (PAR). The number of probability values in the solution denotes the complexity of each city.

Case study ALA MGA STO BER PAR

Analysis time (s) 3600

# Vehicles 4104 4700 4600 5800 5700
# Traffic lights 28 89 75 76 58
# GS nodes 3 7 6 6 4
# Input streets 9 17 14 24 16
# Vehicle types 4 4 4 4 4
# Source streets 4 26 21 16 15
# Vehicle flows 4 25 14 16 15
# Vehicle routes 15 430 196 229 210
Studied area (km2) 0.4 10.0 2.9 7.0 5.6
# Probability values 168 840 1314 450 732

in SUMO, by changing the simulation seed the different scenarios were defined for each
case study. These mobility solutions based on traffic distributions are called the experts’
solution as they were generated by the SUMO tools. The characteristics of the case studies
are presented in Table 7.3. All of them were analyzed for one hour, while the rest of the
characteristics were dependent on the road distribution obtained from OpenStreetMap as well
as the size of the geographical area. Note that we give the name Input Street to the different
streets which are, in fact, inputs to a junction controlled by a GS node, and Source Street to
each street by which the vehicles enter the case study being analyzed. Each case study is
described as follows.

7.3.1 Alameda (ALA)
The geographical area selected from the city of Malaga to build the case study called Alameda,
is delimited to the north by Calle Carretería, to the south and east by Avenida de Manuel
Agustín Heredia, and to the west by Avenida del Comandante Benítez, which encompasses
an area of about 0.4 km2. We defined 15 routes arranged in 4 different vehicle flows which
start at a Source Street by using DUAROUTER. Then, when each one of the 4104 vehicles
of the case study enter the area under analysis, one of these routes is assigned depending on
the flows calculated by the FGA (Chapter 5).

7.3.2 Malaga (MGA)
The area of Malaga analyzed is about 10 km2. It is delimited to the north by the Autopista
del Mediterráneo, to the south by the Mediterranean Sea, to the east by Paseo de Cerrado
de Calderón, and to the west by the Guadalmedina River. There are 430 routes arranged in
25 different vehicle flows in Malaga which are assigned to 4700 vehicles as they enter this
geographical area.
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7.3.3 Stockholm (STO)
Our Stockholm case study consists of 196 routes arranged in 14 different vehicle flows
to analyze the behavior of 4600 vehicles in a geographical area delimited to the north by
Odengatan, to the south by Riddarfjärden, to the east by Birger Jarlsgatan, and to the west
by Klarastrandsleden. The total area included is about 2.9 km2.

7.3.4 Berlin (BER)
The geographical area of Berlin is delimited to the north by Oranienstraße, to the south
by Columbiadamm, to the east by Kottbusser Damm, and to the west by Potsdamer Straße,
which encompasses an area of about 7 km2. In this case study we define 229 different vehicle
routes arranged in 16 flows and experiment with 5800 vehicles.

7.3.5 Paris (PAR)
The area chosen from the city of Paris is delimited to the north by Avenue Villiers, to the
south by Cours Albert 1er, to the east by Avenue Franklin Delano Roosevelt, and to the west
by Boulevard Pershing and Boulevard Lannes. There are 15 vehicle flows which contain
210 routes defined in our Paris case study as well as 5700 vehicles. The total area of Paris
analyzed is about 5.6 km2.

7.4 Competitor Techniques
Although comparing a contribution to existing competitors is a must in science, research
papers in this area frequently do not consider competitor systems. The reason is not only the
difficulty of finding closely similar work, but also that it is very difficult to find and manage
studies reporting so many technological tools, open data and algorithms. Notwithstanding, an
effort has been made to compare our proposal with others by including several competitors

Consequently, three different strategies presented in [142] in order to reduce local traffic
emissions have been chosen: i) reducing traffic demand by 20% (-20%), ii) introducing a
speed limit of 30 km/h (30km/h), and iii) replacing Heavy Duty Vehicles (HDV) with 1.5
Light Duty Vehicles (LDV). These strategies may seem at first glance to be trivial as they are
not based on optimization. However, they are widely applied by local councils, particularly
when the pollution levels are so high that people’s health is put at risk [221].

The authors of the aforementioned article tested these strategies in a single intersection
located in Bentinckplein in the city of Rotterdam, the Netherlands. Although they achieved
reductions in emissions of between 13% and 30% depending on the strategy and metrics
used, they analyzed only one intersection instead of large districts. This encouraged us to test
those strategies in our case studies as an additional contribution. In the following paragraphs,
we describe the modifications applied to the traffic demand implemented by each strategy.
The routes taken by vehicles are the same as those used in the experts’ solution to ensure a
fair comparison.
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7.4.1 Minus 20% (-20%)
A reduction in the number of vehicles of 20% has been implemented, while keeping the
original proportion of vehicle types. The result was 3282 vehicles in ALA, 3760 in MGA,
3680 in STO, 4640 in BER, and 4560 in PAR.

7.4.2 Maximum 30 km/h (30km/h)
In this strategy the traffic demand is the same as in the expert’s solution (number and types
of vehicles and their routes). However, the maximum speed has been restricted to 30 km/h
for all the vehicles.

7.4.3 HDV-LDV
Finally, the HDV-LDV strategy consists in replacing trucks, which have the worst emission
class of all the vehicle types studied, with 1.5 light duty vehicles (sedan, van, and wagon). As
HDV traffic (trucks) is 10% of our demand, after applying this strategy the number of vehicles
in the case study Alameda (ALA) is: 4104×0.9 = 3694; 3694+4104×0.15 = 4308. Note
that this represents an increase in demand of approximately 5% so that the number of vehicles
in the rest of the case studies is 4930 in MGA, 4830 in STO, 6086 in BER, and 5985 in PAR.

7.5 Experimentation
First, several experiments were conducted to determine which metrics were best for inclusion
in the evaluation function (Section 7.5.1). Second, the optimization of one case study was
addressed, consisting of real traffic flows obtained from data published by the council of
Malaga for the main streets included in the case study called Alameda.

Then, four other case studies were optimized, where vehicles used various, different
routes between their origin and destination (Section 7.5.2). At this point, our proposal was
compared with different, state of the art strategies where the behavior of GS when it is used
after applying the other strategies was evaluated. This allowed us to know if they were
compatible and if the metrics could be reduced even more (Section 7.5.3).

The best configuration obtained for GS in the previous experiments was tested in 500
unseen scenarios where vehicles either followed a number of different routes (more difficult
to optimize) or just the fastest ones (a situation closer to reality). The other strategies were
also included at this point and a combination of them were tested with GS in 1500 scenarios
(Section 7.5.4). Finally, a study was done to analyze how GS behaves when only a certain
percentage of people are using it (Section 7.5.5), followed by a discussion on the GrA
performance (Section 7.5.6).
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7.5.1 Metric Study
An initial series of tests were conducted to evaluate which emission metrics were more
suitable for optimization. We exploited the case study called Alameda (ALA) because its size
makes the analysis more affordable (in time) than the rest of the bigger scenarios. Moreover,
we think the analysis of just two different scenarios of ALA still being valid and do not lose
generality in the conclusions.

Four hundred and twenty runs were carried out, which lasted 31.2 hours on average. From
the results it could be observed that EfRA was able to reach the same optimal configuration
in each optimization process when using different metrics in the evaluation function (CO2,
Fuel, CO2 + Fuel, CO + CO2, CO + HC, PM + HC, and CO + CO2 + NOx). Based on these
results, CO2 was chosen as the metric to be optimized, because not only is it a well-known
gas causing global warming, but also because it keeps the evaluation function simple.

Figure 7.3 presents the graphs of the different metrics vs. CO2 from 16416 vehicles (4
scenarios of Alameda) in order to visualize and confirm the similarities between them. The
majority of the graphs show different slopes which correspond to the different emission
classes of vehicles. Some of them are mostly coincident, especially in the case of the fuel
consumption, where its linear relation with CO2 is evident. This fact supports even further
the decision made in respect to the variable (CO2) evaluated to calculate the fitness value of
our scenarios, as the rest of the metrics are reduced when reducing the CO2 emissions.

Figure 7.3: Similarities between CO2 and the rest of the metrics. Different slopes correspond to the different
emission classes of vehicles. Note that fuel consumption presents a linear relation with CO2.
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7.5.2 Optimization
In this section four training scenarios are optimized for each one of the five case studies. Each
scenario presents different traffic distributions to EfRA so that the optimization processes
can produce robuster solutions [203]. We ended up with vectors of 168 probability values
in ALA, 840 in MGA, 1314 in STO, 450 in BER, and 732 in PAR, after generating the
scenarios, which represents the high complexity of this problem. Thirty independent runs of
EfRA were carried out to optimize each case study and the results are presented in Table 7.4
(GS strategy).

Table 7.4: Improvements in the experts’ solution achieved by the strategies used to optimize our five case
studies. We report here all the metrics despite having optimized only CO2 to observe how they are reduced as
well. These results correspond to the scenarios used during the optimization. The best performing strategies are
in bold.

Metric Strategy ALA MGA STO BER PAR

T.Time

GS 69.7% 18.7% 41.7% 19.0% 10.2%

-20% 15.8% 25.0% 33.0% 33.0% 37.8%
30km/h -5.0% -12.5% -10.3% -12.8% -22.7%
HDV-LDV -4.8% 0.7% -4.1% -2.8% -5.1%

CO

GS 56.7% 10.6% 31.8% 12.8% 7.9%

-20% 11.3% 15.3% 25.0% 23.9% 23.6%
30km/h 4.6% 17.6% 5.9% 10.2% 8.0%
HDV-LDV -14.3% -6.2% -15.8% -7.9% -13.7%

CO2

GS 36.6% 5.3% 15.1% 5.2% 3.6%

-20% 7.8% 7.8% 13.4% 12.4% 12.5%
30km/h 6.0% 10.2% 6.4% 7.2% 9.3%
HDV-LDV 25.8% 35.7% 30.6% 31.7% 31.8%

HC

GS 54.3% 9.4% 29.3% 10.8% 7.3%

-20% 10.3% 13.5% 23.2% 21.2% 22.0%
30km/h 0.5% 4.2% 0.1% 0.3% -3.6%
HDV-LDV 1.9% 1.1% -1.5% 2.6% -2.4%

PM

GS 47.6% 8.0% 24.6% 8.7% 5.7%

-20% 8.6% 10.5% 20.6% 18.0% 18.2%
30km/h 2.1% 8.1% 4.2% 4.4% 3.6%
HDV-LDV 75.9% 68.2% 74.2% 70.0% 69.4%

NOx

GS 35.0% 5.4% 15.4% 4.8% 3.8%

-20% 6.3% 7.3% 13.4% 11.8% 12.1%
30km/h 5.4% 10.5% 7.1% 7.6% 9.1%
HDV-LDV 66.7% 63.5% 65.6% 63.2% 63.2%

Fuel

GS 36.3% 5.2% 14.8% 5.1% 3.6%

-20% 7.8% 7.7% 13.2% 12.2% 12.4%
30km/h 6.1% 10.2% 6.5% 7.3% 9.5%
HDV-LDV 25.3% 35.6% 30.3% 31.5% 31.7%
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GS achieves improvements in all the metrics and in all the cities. The results are especially
interesting in ALA, where there exists a real traffic challenge with a large number of vehicles
in a reduced area. There, GS has shortened travel times by 70%, reduced CO emissions
by 57%, CO2 by 37%, and fuel consumption by 36% on average. In MAL, GS achieves
19% shorter travel times and a reduction in CO of 11% . Moreover, it can be seen that in
STO there are important reductions in travel times (42%) and emissions (32% in CO and
29% in HC) when using GS. Vehicles driving through BER benefit from 19% shorter travel
times when using GS and emit 13% less CO and 11% less HC in the atmosphere, on average.
Finally, the best, improved metrics in PAR are travel times (10%), CO (8%), and HC (7%).

As a consequence of the rerouting strategy, some drivers have individually experienced
longer travel times. Concretely, 25% of drivers have longer travel times in ALA, 38% in
MAL, 39% in STO, and 47% in BER and PAR. This is a low price to pay for achieving
global reductions of travel times and gas emissions in the city, especially if we take into
account that it is not likely that the same drivers are penalized every day.

Next, the three competitor strategies were implemented as described in Section 7.4. Then,
they were applied to our case studies (again the same four scenarios of each) to obtain
improvements in each metric, also presented in Table 7.4. As can be seen, the improvements
vary notably among the metrics and scenarios, which makes it difficult to conclude which
strategy is the best one.

Nevertheless, looking at the different strategies it can be appreciated that a reduction
in the number of vehicles (-20%) has a positive impact on travel times as there are fewer
vehicles on the streets of our case studies. Reducing the number of vehicles has worked well,
especially in the reduction of CO, HC, and PM emissions. This strategy seems to achieve
similar results to GS: the former reduces the number of vehicles directly while the latter
reroutes them via alternative streets without restricting the drivers.

Fixing the maximum speed at 30 km/h has turned out to be the least effective measure to
reduce emissions, demonstrating the worst travel times as well. All in all, the reduction of
emissions is quite low in most of the cases, except for the case study MAL. Paradoxically,
this is the method applied by the majority of city authorities when the pollution levels are
high [221]. Our conclusions in this matter are in keeping with those discussed in [109] where
the authors illustrate the scientific uncertainties inherent in implementing speed management
policies [120].

Replacing trucks with sedans, vans, and wagons (HDV-LDV) enables a huge reduction of
CO2, PM, and NOx emissions, as they are the main gases emitted by trucks according to the
HBEFA class selected for this type of vehicle (HDV_3_1). Furthermore, this strategy also
reduces fuel consumption which is directly related to CO2 emissions as we have stated in
Section 7.5.1. The HDV-LDV strategy is a serious competitor to our system (emissions), but it
definitely has a negative impact on the economy of the city, as it is difficult to implement, and
will definitely incur protests. Our system is smoother and simultaneously more efficient with
shorter travel times whereas the other strategies show longer ones (negative improvements).

Our conclusion after this study is that despite the fact that some competitor strategies
perform better in some case studies, GS has competitive results. We must keep in mind
that we do not restrict the number, type, or speed of vehicles which would not be desirable
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or even viable in many cities in the world. Therefore, the next step taken was to optimize
the same four training scenarios after applying the competitor strategies to know how GS
behaves under these new conditions.

7.5.3 Green Swarm Combined with Other Strategies
In this section the combination of GS with other strategies is studied to discover not only if
they are viable but also if the strategies achieve better results when are applied together.

We took the traffic distributions obtained when the -20%, 30km/h, and HDV-LDV strate-
gies were applied in our training scenarios and applied GS as the optimization algorithm in
order to analyze how they combine with each other and see if some metrics could be improved
even further. After performing a further 30 independent runs of the EfRA in four scenarios of
our five case studies (150 runs per strategy) GS demonstrated the relative improvements over
the other strategies shown in Table 7.5. At first glance, the best improvements are made when
applying GS after limiting the vehicles’ maximum speed (30km/h+GS). However, the most
important conclusion here is that all the metrics have been improved by complementing the
competitors with GS which, in our opinion, validates our proposal as a promising solution
for improving the city’s streets reducing travel times, greenhouse gas emissions and fuel
consumption. Focusing on the numbers, the maximum improvements are nearly 50% in
travel times, 45% in CO, 30% in CO2, 41% in HC, 38% in PM, 30% in NOx, and 30% in
fuel consumption.

The total number of runs performed in the optimization processes (GS alone and combined
with other strategies) was 600 and the time spent on each of them was, on average, between
19 and 92 hours as shown in Table 7.6. Note that the diversity of values depends not only
on the case study and the number of vehicles but also on the heterogeneity of the hardware
used to conduct the experiments (Intel Core 2 Quad Q9400 @ 2.66 GHz, Core i7 920 @ 2.67
GHz, and Xeon E5-2670v3 @ 2.30 GHz).

7.5.4 Study on Unseen Scenarios
After the aforementioned optimization processes we wanted to test GS in unseen scenarios.
With this in mind, 50 new scenarios were generated for each city, where the vehicles followed
a variety of routes to their destination and another 50 in which they just flowed via the fastest
routes (subscript TT which stands for travel time). Then, the seven optimization strategies
on these scenarios (700 in total) were tested. The results are shown in Table 7.7 where the
average improvements achieved by each strategy in each case study and metric are displayed.
The GS configurations previously obtained were used here, so no extra optimization process
was needed. Note that GS was working in the Green Stage during the experiments conducted
in this section.

It can be seen in Table 7.7 that GS has improved the other strategies in this study as
well, even turning some of their results that were worse than the experts’ solution into actual
improvements. Most of the best performing strategies in each metric involve GS, either alone
or applied after another strategy. The HDV-LDV strategy shows the best reductions of PM
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Table 7.5: Relative improvements achieved by using GS after the other competitor strategies. These results
correspond to the training scenarios used in the initial optimization. The best improvements are in bold.

Metric Strategy ALA MGA STO BER PAR

T.Time
-20%+GS 43.1% 6.4% 31.9% 12.8% 7.4%
30km/h+GS 49.1% 15.1% 37.7% 14.1% 7.0%
HDV-LDV+GS 49.8% 18.8% 42.3% 16.8% 10.3%

CO
-20%+GS 33.4% 2.0% 20.6% 6.0% 4.7%
30km/h+GS 45.4% 11.9% 33.9% 11.5% 6.9%
HDV-LDV+GS 40.8% 10.6% 33.7% 9.6% 8.9%

CO2

-20%+GS 20.0% 1.9% 8.2% 2.1% 1.8%
30km/h+GS 30.4% 5.9% 14.6% 3.5% 3.3%
HDV-LDV+GS 30.4% 5.9% 19.3% 4.1% 4.6%

HC
-20%+GS 32.4% 1.8% 18.2% 4.4% 4.3%
30km/h+GS 40.9% 8.4% 27.7% 8.6% 5.9%
HDV-LDV+GS 36.6% 8.2% 27.3% 5.6% 7.2%

PM
-20%+GS 28.0% 2.9% 13.5% 4.8% 3.3%
30km/h+GS 38.1% 9.0% 23.8% 7.3% 5.9%
HDV-LDV+GS 20.1% 3.3% 10.0% 1.1% 2.4%

NOx

-20%+GS 19.5% 2.1% 7.8% 2.5% 2.0%
30km/h+GS 29.6% 6.3% 14.2% 3.3% 3.8%
HDV-LDV+GS 18.3% 2.9% 9.8% 0.6% 2.5%

Fuel
-20%+GS 19.8% 1.9% 8.0% 2.1% 1.8%
30km/h+GS 30.2% 5.8% 14.4% 3.4% 3.2%
HDV-LDV+GS 30.4% 5.9% 19.3% 4.1% 4.6%

Table 7.6: Average time spent by 30 independent runs in the optimization process of each case study.

Strategy Average time (hours)
ALA MGA STO BER PAR

GS 10.3 23.0 32.2 32.3 88.7
-20%+GS 8.0 11.5 31.1 27.2 19.0
30km/h+GS 56.1 20.2 32.4 126.9 47.1
HDV-LDV+GS 79.9 88.3 110.6 134.5 46.7

and NOx on average, -20%+GS reduces the most CO, HC, and travel times on average, and
HDV-LDV+GS achieves the biggest reductions in CO2 and fuel consumption on average.

In Figure 7.4 a graphical comparison is given between strategies in each case study
over six graphs for each metric. There, GS clearly performs especially well in our realistic
congested case study (ALA) and it always presents a consistent improvement in all metrics.
However, HDV-LDV and 30km/h encounter problems when improving travel times and
reducing HC. HDV-LDV alone or combined with GS demonstrates the biggest reductions
of CO2, NOx, and PM. Finally, we have calculated the Wilcoxon p-value to be sure that the
improvements reported on each metric are statistically significant. In all cases the p-value
obtained was less than 0.01, that is, a confidence level greater than 99%.
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Table 7.7: Average improvement achieved by applying the seven strategies analyzed to 50 unseen scenarios of
each case study (500 scenarios in total) during the Green Stage. Note that we have included scenarios where
vehicles follow a variety of routes to their destination (no subscript) and others in which they just drive via the
fastest routes (subscript TT). The best performing strategies in each case study are in bold.

Metric Strategy ALA MGA STO BER PAR ALATT MGATT STOTT BERTT PARTT Average

T.Time

GS 67.8% 14.5% 37.8% 15.0% 7.1% 63.5% 23.0% 59.6% 10.3% 15.3% 31.4%
-20% 21.3% 23.9% 38.1% 32.8% 37.0% 15.5% 21.0% 31.1% 37.4% 36.1% 29.4%
30km/h -2.6% -13.3% -5.0% -13.1% -23.3% -3.8% -13.0% -8.7% -9.9% -16.1% -10.9%
HDV-LDV 0.0% -1.0% -3.9% -1.9% -4.0% -1.2% -0.2% -1.8% -4.0% -0.8% -1.9%
-20%+GS 54.1% 27.8% 53.2% 39.4% 39.4% 52.8% 32.4% 67.0% 39.7% 43.9% 45.0%
30km/h+GS 48.4% 0.5% 31.2% -1.0% -16.9% 45.3% 10.4% 50.2% -3.9% 1.6% 16.6%
HDV-LDV+GS 49.8% 15.3% 38.2% 11.0% 0.0% -5.4% 32.8% 60.3% 7.8% 16.0% 22.6%

CO

GS 56.1% 7.4% 28.6% 10.3% 5.5% 51.9% 14.2% 48.2% 5.9% 11.3% 23.9%
-20% 18.6% 14.5% 30.0% 23.7% 23.3% 12.2% 13.6% 26.5% 25.0% 25.2% 21.3%
30km/h 6.0% 17.1% 10.5% 9.1% 8.0% 5.6% 15.0% 6.2% 12.0% 12.1% 10.2%
HDV-LDV -10.7% -9.6% -13.8% -11.2% -12.4% -11.7% -9.6% -12.5% -13.4% -9.9% -11.5%
-20%+GS 43.4% 15.7% 40.0% 27.5% 25.3% 41.7% 20.0% 53.5% 25.8% 31.0% 32.4%
30km/h+GS 49.9% 25.0% 37.9% 16.9% 12.4% 47.1% 30.6% 54.5% 14.8% 26.6% 31.6%
HDV-LDV+GS 34.1% 0.1% 22.4% -1.8% -8.6% -22.2% 21.8% 44.1% -5.2% 4.8% 8.9%

CO2

GS 36.2% 3.1% 13.3% 3.2% 2.1% 33.1% 6.5% 25.7% 1.2% 3.6% 12.8%
-20% 12.0% 7.5% 15.8% 12.2% 12.4% 8.1% 7.2% 15.8% 13.5% 14.0% 11.8%
30km/h 6.9% 10.5% 8.8% 6.4% 8.9% 7.0% 9.6% 7.7% 8.2% 10.3% 8.4%
HDV-LDV 28.2% 35.4% 30.2% 32.6% 32.3% 27.9% 34.6% 28.9% 31.6% 32.0% 31.4%
-20%+GS 28.5% 7.8% 20.0% 12.5% 12.7% 27.2% 9.7% 29.9% 12.0% 15.4% 17.6%
30km/h+GS 35.8% 13.1% 19.6% 7.8% 10.7% 33.8% 16.4% 30.6% 6.9% 16.2% 19.1%
HDV-LDV+GS 49.7% 38.3% 43.0% 34.0% 33.2% 25.0% 12.4% 51.8% 32.7% 36.6% 35.7%

HC

GS 53.7% 6.5% 25.7% 8.4% 5.0% 49.4% 12.3% 44.3% 4.6% 10.2% 22.0%
-20% 17.8% 12.7% 27.3% 21.2% 21.6% 11.9% 12.1% 25.1% 23.0% 23.8% 19.6%
30km/h 2.2% 3.5% 3.4% -0.9% -3.7% 1.7% 2.5% -0.2% 1.3% 0.3% 1.0%
HDV-LDV 4.6% -2.0% -0.5% -0.2% -1.4% 3.7% -0.8% 2.0% -1.5% 1.9% 0.6%
-20%+GS 41.9% 13.7% 36.3% 23.8% 23.5% 40.0% 17.4% 49.5% 22.6% 29.1% 29.8%
30km/h+GS 43.4% 9.7% 27.0% 5.2% 0.5% 40.2% 15.5% 43.2% 2.8% 13.6% 20.1%
HDV-LDV+GS 39.4% 4.9% 25.0% 4.7% 1.1% -3.3% 19.4% 43.2% 2.6% 12.1% 14.9%

PM

GS 46.6% 5.2% 20.5% 5.7% 3.9% 42.4% 9.9% 36.7% 3.0% 7.7% 18.2%
-20% 15.5% 10.1% 22.1% 17.6% 17.8% 10.6% 9.9% 21.6% 19.4% 20.3% 16.5%
30km/h 3.8% 8.4% 5.5% 3.1% 2.8% 3.8% 7.3% 3.8% 5.9% 5.5% 5.0%
HDV-LDV 76.9% 68.5% 73.0% 71.3% 69.5% 76.4% 69.4% 74.5% 71.1% 70.6% 72.1%
-20%+GS 36.8% 10.9% 29.1% 19.3% 19.0% 35.1% 13.9% 41.5% 18.8% 24.1% 24.9%
30km/h+GS 40.9% 12.9% 24.3% 7.3% 6.5% 37.8% 17.4% 38.6% 6.1% 16.0% 20.8%
HDV-LDV+GS 81.4% 69.1% 75.5% 71.1% 69.6% 76.5% 16.3% 79.3% 70.9% 71.4% 68.1%

NOx

GS 34.3% 3.0% 12.4% 2.7% 2.2% 31.1% 6.0% 24.0% 0.8% 3.5% 12.0%
-20% 11.6% 7.1% 14.8% 11.6% 11.8% 7.9% 6.8% 15.5% 13.1% 14.0% 11.4%
30km/h 6.6% 10.8% 8.2% 6.4% 8.4% 6.9% 9.9% 7.5% 8.5% 9.6% 8.3%
HDV-LDV 67.7% 63.2% 64.9% 64.0% 63.3% 67.4% 63.5% 65.4% 63.9% 63.8% 64.7%
-20%+GS 27.2% 7.3% 18.6% 11.8% 12.1% 25.8% 9.0% 28.0% 11.4% 15.3% 16.7%
30km/h+GS 34.4% 13.1% 18.3% 7.4% 10.4% 32.2% 16.1% 28.6% 6.8% 15.4% 18.3%
HDV-LDV+GS 73.5% 63.9% 68.0% 63.6% 63.4% 66.9% 11.8% 71.6% 63.4% 64.8% 61.1%

Fuel

GS 35.9% 3.1% 13.1% 3.2% 2.1% 32.8% 6.5% 25.3% 1.2% 3.5% 12.7%
-20% 11.9% 7.5% 15.6% 12.0% 12.2% 8.0% 7.1% 15.7% 13.4% 13.8% 11.7%
30km/h 7.0% 10.5% 8.9% 6.4% 9.0% 7.1% 9.7% 7.8% 8.2% 10.4% 8.5%
HDV-LDV 27.7% 35.4% 29.9% 32.4% 32.1% 27.4% 34.5% 28.5% 31.4% 31.8% 31.1%
-20%+GS 28.3% 7.7% 19.8% 12.3% 12.6% 27.0% 9.6% 29.5% 11.9% 15.2% 17.4%
30km/h+GS 35.6% 13.1% 19.5% 7.8% 10.8% 33.6% 16.3% 30.3% 6.9% 16.1% 19.0%
HDV-LDV+GS 49.4% 38.2% 42.7% 33.8% 33.0% 24.5% 12.3% 51.5% 32.5% 36.3% 35.4%
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(a) Travel Time (b) CO (c) CO2

(d) HC (e) PM (f) NOx

Figure 7.4: Average improvement of the strategies applied to 500 unseen scenarios (50 per case study). Note
that the case studies of the same city are stacked in the same bar, e.g. ALA and ALATT, MGA and MGATT, etc.

7.5.5 Study of User Acceptance Rates
Since GS could be delivered as an app for smartphones, it is quite realistic to think that
initially only a small number of drivers will have access to the system. Therefore, we have
analyzed how the traffic behaves when just a subset of the vehicles use GS in our case studies.

In Figure 7.5 the graphs for the five case studies analyzed when the rates go from 10%
to 100% in the best performing scenario are displayed. In the upper row, where the average
improvement with respect to the experts’ solution is plotted, it is clear that GS always reduces
the average levels of gas emitted in each case study, even at low acceptance rates.

In the bottom row of Figure 7.5, the percentage of scenarios improved vs. GS acceptance
rate is shown. The number of scenarios which are more eco-friendly when not all vehicles
are using GS decreases, so that less use equals lower improvement, as one would expect.
It is however noticeable that there is an average reduction in emissions in at least 48% of
scenarios (the worst case: CO2, Malaga), even when only 10% of drivers are using GS.

In addition, we observe that the behavior of GS in Paris has turned out to be a little
different from the rest of the case studies. In figures 7.5e and 7.5j we can see that the metrics’
variation for different usages is not as neat as in the rest of the case studies. This shows the
different characteristics of Paris, especially its wide avenues and large roundabouts which
leave little room for improvement.
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(a) ALA (b) MGA (c) STO

(d) BER (e) PAR

(f) ALA (g) MGA (h) STO

(i) BER (j) PAR

Figure 7.5: Graphs showing the average improvement achieved by GS for different user acceptance rates (upper
rows) and the percentage of the 50 scenarios improved (lower rows) for the five case studies analyzed.
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7.5.6 A Better Context for Understanding the Contributions of GS
In this section a study of the internal performance of Green Swarm is addressed. Concretely,
a comparison of the EfRA with a state of the art Genetic Algorithm (GA) [88, 102] (Sec-
tion 3.2.1) and Simulated Annealing (SA) [35, 118] (Section 3.2.2) is presented, followed by
a convergence analysis.

The competitor GA implemented is a steady state (µ = 10,λ = 2), using Binary Tour-
nament as selection operator, Uniform Crossover as recombination operator (PC = 0.6 as
in EfRA), VMO with probability 1/L as the mutation operator, and an elitist replacement.
The SA selected is a well-known metaheuristic applicable to a wide range of problems. In
this comparison we have used α = 0.9 and generated 50 random neighbors before each
temperature decrement. Thirty independent runs of each algorithm were made, stopping after
2000 evaluations to make a fair comparison, which amounts to 284 equivalent days.

The objective of this study is to know how EfRA performs against its competitors and
provide and internal statistical study [189] so as not to focus solely on the best fitness
value. After testing the normality of the distributions using the Kolmogorov-Smirnoff test,
we obtained p-values of 0.832 for the 30 runs of EfRA, 0.990 for GA, and 0.996 for SA.
Consequently, non-parametric statistics (Friedman Rank and Wilcoxon) were used in the
analysis. Table 7.8 shows the results of the comparison. EfRA achieved the best median
value and was the best ranked algorithm. Additionally, the Wilcoxon test indicates that the
differences between the results of the algorithms are statistically significant. We can therefore
claim that our proposal overcomes existing results of the state of the art in the literature.

Table 7.8: EfRA compared with GA and SA.

Alg. Fitness Friedman
Rank

Wilcoxon
p-valueMedian Best

EfRA 0.9625 0.9367 1.40 —
GA 1.0145 0.9783 2.93 0.000
SA 0.9779 0.9441 1.67 0.032

(a) Phenotype convergence of EfRA (b) Genotype convergence of EfRA

Figure 7.6: Convergence of the EfRA over 3000 generations.
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Moreover, a study on the EfRA fitness convergence over five independent runs (3000
generations, about 14 equivalent days) evaluating one instance of Malaga (MAL) was done.
Figure 7.6a shows that after the 180th generation, the experts’ solution has been improved by
our proposal. After that point the entropy, which had been falling until this moment, begins
to fluctuate below 0.1 (a very welcome exploration management of our algorithm) when the
VMO changes the mutation probability from π1 to π2 to better exploit the solutions found
(Figure 7.6b).

7.6 Discussion
In this chapter we have presented a system to reduce greenhouse gas emissions and used it to
optimize road traffic in five cities in terms of not only emissions but also fuel consumption
and travel times. After reducing travel times using Red Swarm, we have improved our
architecture to address also gas emissions.

In a smart city context, our proposal represents an interesting working strategy focused
on initially performing a micro analysis and then obtaining global results (bottom-up). It
could also be implemented in other domains belonging to smart cities apart from Smart
Mobility, such as Smart People and Smart Economy.

The results show that our system has been able to deliver reduced travel times (31.8% on
average, 74.4% maximum), CO emissions (24% on average, 61% maximum), CO2 (12.6% on
average, 41.2% maximum), HC (22% on average, 58.5% maximum), PM (18% on average,
52% maximum), NOx (11.8% on average, 39.1% maximum), and fuel consumption (12.5%
on average, 40.9% maximum).

There is a negligible increase in route lengths (2% on average) which is a consequence
of the eco-friendly rerouting of vehicles via alternative streets which are not included in
the shortest path (the needed trade-off between the individual and the community). In spite
of the variations observed in the results, which must be expected, as we are considering
different cities (cultures, locations), we have improved all the metrics, even when only 10%
of vehicles are using Green Swarm.

Our final reflexion about this study is that all the improvements achieved by GS are
obtained without restricting the number of vehicles in the city, or type, weight or maximum
speed, which the competitor strategies currently do. From a users’ point of view we strongly
believe that this is an added value as it does not debar anyone. In other words, everyone is
able to travel through a city without traffic jams when it is being optimized by Green Swarm.

As a matter for future work, we are working on different strategies to implement the
rerouting of vehicles by using city districts in order to be able to install GS throughout
the entire city as well as address the optimization of harder scenarios (computation time
and hardware requirements) involving hundreds of thousands of vehicles. We are currently
working on different strategies to address unforeseen events such as accidents, fires, public
demonstrations, which could suddenly close streets, turning open routes into invalid ones.



Chapter 8

Yellow Swarm:
Low-Cost Infrastructure for the City

In this chapter Yellow Swarm architecture is proposed for reducing travel times, greenhouse
gas emissions and fuel consumption of road traffic by using several LED panels to suggest
changes in the direction of vehicles (detours) for different time slots. These time intervals
are calculated using an evolutionary algorithm, specifically designed for our proposal, which
evaluates many working scenarios based on real cities, imported from OpenStreetMap into
the SUMO traffic simulator. Our results show an improvement in average travel times,
emissions, and fuel consumption even when only a small percentage of drivers follow the
indications provided by our panels.

8.1 Introduction
In the previous chapters we have been studying two architectures to prevent traffic jams and
reduce congestion in cities. Despite the good results achieved, those proposals require that
users need to have a device with Wi-Fi connectivity to use them. We propose in this chapter
a new architecture, called Yellow Swarm [206, 208, 211], for redirecting road traffic by using
LED (Light-Emitting Diode) panels, placed at strategic points of the city, to suggest possible
changes in the direction drivers can take (continue straight on, turn left, turn right, etc.).

By using Yellow Swarm we are able to evenly spread the traffic throughout the city
(without interfering too much with the drivers’ itineraries), prevent traffic jams, and reduce
travel times, greenhouse gas emissions and fuel consumption. As it uses LED panels to
inform of possible changes in direction throughout the city, Yellow Swarm also reinforces
the road safety and makes the system cheaper and easier to implement, develop and use.
By extracting knowledge from real data of the city and using evolutionary computation to
design the Yellow Swarm system, we hope to advance in the “smart” part of “smart cities”
by providing numerical evidence that these kinds of intelligent algorithms are usable both in
academia and industry.
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8.2 The Yellow Swarm Architecture
The Yellow Swarm architecture, presented in Figure 8.1, has two stages: The Offline stage in
which the system is configured, and the Online stage in which drivers are informed about the
suggested detours. If we carry out the two contiguous stages with a given frequency we can
improve the dynamics of the proposal and better fit changing scenarios in the city.

In the Offline stage, our Evolutionary Algorithm (EA) analyzes different scenarios (traffic
distributions) of our case studies, using the SUMO traffic simulator [123] which is controlled
by the TraCI module [237], in order to implement the decisions that drivers make during
their journey. The urban maps used to build the case studies have been imported from
OpenStreetMap so that we can test our system in realistic city districts including traffic lights,
roundabouts, etc. The training carried out in this phase results in the configuration of the
LED panels to be used in the next stage.

In the Online stage, the LED panels show the different detour options to drivers depending
on the time slots calculated in the previous stage, using the Panel Manager. The possible
signs are: go straight on, turn left, and turn right. However, their availability depends on the
type of junction the vehicles are approaching, i.e. the possible detour options, and the street
where the panel is placed. The first sign is visible during its previously calculated fixed time
interval, after that the next sign in the sequence will be presented to the drivers. Once the
cycle has finished it again starts with the first of the sequence. By using this strategy, Yellow
Swarm is able to prevent possible traffic jams in the city as well as improve the use of most
of the available secondary streets.

Figure 8.1: The Yellow Swarm architecture: In the Offline stage, it defines city scenarios and analyzes them
with the EA, and in the Online stage, the previously calculated configuration is applied to the LED panels in
order to suggest changes in the direction of the vehicles.

8.2.1 Evolutionary Algorithm (EA)
We have designed a (10+2)-EA (an elitist steady state EA with a population of ten individuals
generating two new individuals at each step) in order to obtain the periods of time that each
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sign is presented to drivers. We have used Binary Tournament as the selection operator,
Uniform Crossover as the recombination operator, and elitism as the replacement policy. The
mutation operator was designed especially for our problem as described later in Section 8.2.1.

Problem Representation

In Figure 8.2 we can see the status vector containing time values for each sign to be shown to
drivers. The total number of panels (P) will depend on the street layout and the number of
time slots, on the the junction characteristics.

The status vector for the case study Malaga consists of 16 integers which can take values
between 30 and 300 as the number of seconds the corresponding sign is active. For Madrid
we placed four LED panels consisting of two signs each (eight integers), and for Quito, there
were some left turn signs (panels 2, 3, 5, and 7) which amounts to 24 integers in total.

Figure 8.2: Status vectors of Malaga, Madrid, and Quito.

Evaluation Function

Two different evaluation criteria were followed depending on the optimization done. We
wished to reduce the average travel times of vehicles in Malaga and Madrid, and then observe
how this optimization affects the emissions and fuel consumption. To achieve our objective,
we proposes the evaluation function presented in Equation 8.1 which is used to calculate the
fitness of each individual. There, N is the total number of vehicles entering the city, n is the
number of vehicles leaving the city during the period of time analyzed, and travel timei is
the travel time spent by the vehicle i for its journey.

Moreover, α1 and α2 are the weights of each term calculated in order to normalize the
fitness value calculated by the function. Note that the first term of the function penalizes
individuals with one unit for each vehicle (α1 = 1) when there are still vehicles in the city at
the end of the analysis period. Only when all vehicles end their journeys can we include the
metrics from all of them in the fitness function computation, thereby the penalization term
is not present (N = n). Additionally, we have calculated α2 as described in Equation 8.2,
so that the fitness of the experts’ solution is equal to 1. There, λ is equal to four as we are
evaluating four scenarios and averaging their fitness values during the optimization process
in order to achieve more robust configurations to test in several unseen scenarios.
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Note that α2 will be different for each case study as the average travel time of vehicles
is different as well. It takes about one minute to calculate each fitness value as we need to
test the configuration of the training scenarios using SUMO. As we are minimizing these
variables, the lower the fitness value, the better.

On the other hand, we wished to reduce the number of vehicles in Quito in peak hours (i.e.
foster their arrival at their desired destinations) so that we can reduce travel times, greenhouse
gas emissions, and fuel consumption. The function presented in Equation 8.3 is meant to
calculate the fitness of each individual and maximize the number of vehicles arriving at their
destination when Yellow Swarm is active.

F (⃗x) = α
−1
3 (n f −n0), (n f ,n0) = Simulate(⃗x) (8.3)

α3 =
1
λ

λ

∑
k=1

sk f − sk0, s⃗k = (sk f ,sk0) = Simulate(scenk) (8.4)

Here, vector n⃗ is obtained by evaluating the individual x⃗ in SUMO. It consists of two
components: n f which is the number of running vehicles at the end of the optimization
interval and n0 which is the number of vehicles at the beginning of it. Additionally, α3
is a coefficient that normalizes the fitness function calculated as shown in Equation 8.4.
We calculate the differences between the number of vehicles running in the city during the
optimization interval (sk f − sk0) when the Yellow Swarm is not being used. As we are using
four training scenarios (scenk,k ∈ {1...λ}) in this study, we worked also with λ = 4.

After evaluating an individual, fitness values greater than 1 are improvements, as they
represent a higher number of vehicles leaving the city at the end of the optimization interval.
So, we want to maximize the fitness value meaning the higher, the better.

Operators

As we stated before, we have used Binary Tournament, Uniform Crossover, and elitism as
the replacement policy. The specific mutation operator is described in Algorithm 8.1.

First, all panels from the individual are obtained. Second, some panel configurations are
selected to be changed depending on the mutation probability (Pm). Third, all signs (all the
different detours) from the panel selected are obtained and one of them is randomly chosen
to have its time value incremented in τ1. The rest of the signs on the panel have their time
value decremented in τ2 Note that the time values are kept in the range of 30 – 300 so that
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Algorithm 8.1 Mutation Operator.
procedure MUTATE(individual)

panelCon f igs← getPanels(individual)
for all p ∈ panelCon f igs do

if random()< Pm then
signs← getAllSigns(p)
s← selectOneSignRND(signs) ▷ Selects one sign s
for all ss ∈ signs do

if ss == s then
incrementTime(ss,τ1) ▷ Increments time slot of s

else
decrementTime(ss,τ2) ▷ Decrements the rest

end if
end for

end if
end for
return individual

end procedure

the values can be truncated if necessary. Finally, when the main loop ends, the modified
individual is returned.

In Figure 8.3 an example of the mutation of an individual is depicted. We can see that the
third panel has been selected for mutation and its time values have been changed from (61,
274) to (56, 279). Additionally, we have experimentally found the values of the crossover
probability (Pc = 0.6), the mutation probability (Pm = 1/L,L = status vector length), and
τ1 = τ2 = 5.

Figure 8.3: Example of the mutation operator applied to an individual. Note that T3.2 is incremented in τ1 = 5
and T3.1 in decremented in τ2 = 5.
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8.2.2 Panel Manager
In the Online stage the Panel Manager selects the different detour options to be shown to
drivers by each panel. Figure 8.4 shows the schema of the Panel Manager running in the
panel i. Depending on the Yellow Swarm configuration, one sign is shown, e.g. turn right
during Ti.1 seconds, followed by the next sign (going straight on in the example) during the
following Ti.2 seconds. After that, the first sign is shown again, completing a cycle of period
Ti.1 +Ti.2. Note that each panel needs its own Panel Manager in order to follow the Yellow
Swarm configuration.

Figure 8.4: Panel Manager.

8.3 Case Studies
In this approach we have analyzed and optimized three important cities: Malaga and Madrid
in Spain, and Quito in Ecuador, all of which suffer from traffic congestion at peak hours.

8.3.1 Malaga and Madrid
After importing the maps of Malaga and Madrid into SUMO from OpenStreetMap we solved
several issues observed, such as those junctions, roundabouts, and traffic lights which tended
to form traffic jams. Our objective was to build more robust scenarios, more difficult to
optimize as they consist of a greater number of vehicles. Furthermore, we have defined two
case studies for each city. One of them corresponds to the case in which the vehicles use
various streets in the city to arrive at their destination, and the other (TT subscript) in which
only faster routes are used (TT stands for travel time). All these flows were generated by the
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Table 8.1: Type and characteristics of vehicles in Malaga and Madrid.

Type Arrival
Prob.

MaxSpd.
(km/h)

Accel.
(m/s2)

Decel.
(m/s2)

Length
(m)

Emission
class

truck 0.10 40 0.6 3.5 6.0 HDV_3_3
wagon 0.15 50 0.7 4.0 4.3 P_14_12
van 0.25 100 0.8 4.5 4.2 P_14_8
sedan 0.50 160 0.9 5.0 3.8 P_7_7

DUAROUTER utility included in SUMO which uses different streets’ weights such as travel
time, emissions, and fuel consumption to build the routes (see Section 4.3.2). Consequently,
we have named these scenarios as the experts’ solution from SUMO in our experiments. By
changing the random seed of a scenario we were able to modify the order and pace that
vehicles enter an area in order to define multiple scenarios of the same case study.

In order to make our study more realistic, we have defined four different vehicle types:
sedan, van, wagon, and truck. Each one has its own characteristics according to the class
they belong to, e.g. trucks are longer, slower and more pollutant than sedans, etc. The rest of
characteristics are the probability of arriving, maximum speed, acceleration, deceleration,
length, and the emission class from the HBEFA database [96]. In Table 8.1 the type of
vehicles and their characteristics are listed.

We have analyzed the behavior of 4500 vehicles in Malaga and 4840 in Madrid for 7200
seconds. In Malaga we placed eight LED panels but in Madrid only four were effective,
especially due to the street layout of this capital city, e.g. wide avenues, huge roundabouts,
lots of parallel streets. The localizations of the panels were mainly chosen by taking into
account several hot spots in the cities where traffic jams were more likely to happen. Due
to the streets distribution of Madrid, we have up to 1641 different routes in this case study,
compared with 365 in Malaga. Table 8.2 shows the rest of the characteristics of the case
studies.

The geographical area analyzed in the city of Malaga includes the following areas: Centro
Histórico, Olletas, Ciudad Jardín, and El Limonar, which together encompass an area of
about 10.7 km2. The case study Madrid includes the areas Barrio de la Latina, Parque del

Table 8.2: Characteristics of the four case studies: Malaga, MalagaTT, Madrid, and MadridTT.

Case study Malaga MalagaTT Madrid MadridTT

Analysis time (s) 7200

# Vehicles 4500 4840

# Traffic lights 515 515 942 942
# LED panels 8 8 4 4
# Vehicle types 4 4 4 4
# Source streets 18 18 14 14
# Destinations 8 8 25 25
# Vehicle routes 365 134 1641 574
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Figure 8.5: Case studies: Malaga and Madrid. Exported from OpenStreetMap (left) to SUMO (right).

Retiro, Salamanca, Chueca, Plaza de España, and Malasaña. The total area analyzed from
Madrid is about 10.3 km2. In Figure 8.5 both geographical areas including the locations of
the LED panels are depicted. The maps from OpenStreetMap are in the left-hand column,
and in the right-hand one, the corresponding models imported into SUMO.

8.3.2 Quito
We tried something different for this case study. Instead of generating data randomly or ac-
cording to common sense social patterns, we directly use real demographic and geographical
data as well as peak traffic hours in Quito, to confirm whether we can actually have an effect
on real scenarios as well as to provide evidence of the benefits of Yellow Swarm.

The city of Quito (Ecuador) is a large city in which almost two million people commute
every day for varied reasons such as work, study, leisure, and shopping, using private and
public transportation. The area of the study embodies 14 neighborhoods that represent 30%
of Quito’s population with approximately 560.000 inhabitants [11]. It includes the business
district, eight major universities, several hospitals, large malls, two large parks, and one
major soccer stadium, covering approximately 40 km2. The varied number of services and
the abundant population mean that the present daily demand has outstripped the existing
traffic infrastructure.
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(a) # of vehicles in the city during the day. (b) # of vehicles arriving the city per hour.

Figure 8.6: Number of vehicles in the Quito case study.

In order to create a more realistic study, we have generated four different traffic scenarios
(scen1, scen2, scen3, and scen4) by using the ACTIVITYGEN tool provided by the SUMO
microsimulator. ACTIVITYGEN allows us to implement not only the characteristics of
mobility around Quito such as peak hours, work areas, and residential neighborhoods, but also
a little variability based on a random number seed in order to generate the aforementioned
four realistic scenarios. Figure 8.6a shows the four distributions of traffic we have worked
with over 24 hours in the city and Figure 8.6b the total number of vehicles arriving the
scenario per hour.

(a) Quito in OpenStreetMap (b) Quito in Google Maps™

Figure 8.7: Yellow Swarm panels placed in the business district of Quito.
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The total number of journeys modeled for 24 h is approximately 245000 where 76% of
the journeys are inside the zone being studied and, the reminder outside, which reflects the
city behavior in that area. Additionally, we have placed ten panels in seven locations across
the area as shown in Figure 8.7. Some locations include several panels controlling different
flows of traffic. Their placement has been decided considering the behavior of the traffic in
the city after identifying zones where jams are likely to happen and that the infrastructure
permits a route that allows drivers to reach their destinations.

8.4 Experiments and Results
In the following sections we address the optimization of the case studies describe before.
Different studies were done as each case study has its own interesting characteristics.

8.4.1 Malaga and Madrid
First, we have optimized Malaga and Madrid by performing 30 independent runs of our EA
on four scenarios of each case study. Second, we have tested the best solution from each
algorithm in 200 different scenarios (Malaga, MalagaTT, Madrid, and MadridTT) in order to
discover how robust and scalable the solutions are. Finally, we carried out a deep analysis of
data and how Yellow Swarm behaves when the use rate is lower than 100%.

Training

We optimized four different scenarios of the case study Malaga (in total, 18000 vehicles) as
well as four of Madrid (19360 vehicles) in order to achieve a robust configuration for the
Yellow Swarm, using the EA. In previous similar approaches [203] this strategy has been
used to achieve more robust solutions as it is better than using just only one. We completed
30 independent runs on each case study (the same four scenarios) and achieved the results
presented in Table 8.3.

We can observe the mean values of not only travel times but also emissions, fuel con-
sumption, and distances, as well as the standard deviation. We present the mean and standard
deviation of the metrics from the experts’ solution versus Yellow Swarm in both case studies,
Malaga and Madrid, as well as the improvement achieved and the Wilcoxon p-value. The
best improvements are observed in travel time values as this is the metric we are optimizing.
However, we have also achieved a reduction of emissions and fuel consumption. Distances
traveled are slightly longer when vehicles take the detours suggested (0.2% maximum).
However, this was to be expected as they are driving through alternatives streets which are
not part of the shortest path in order to achieve the global improvements discussed. Note that
we have assumed, in this training, that drivers always follow the detours shown in the panels.

Furthermore, we have calculated the Wilcoxon p-value to be sure that the improvements
reported on each metric are statistically significant. We can see that in Malaga all the results
of the optimization have a confidence level of greater than 99%. However, in Madrid only
travel times, CO2, HC, and fuel consumption have that confidence level, which as we are
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Table 8.3: Results of the optimization process of Malaga and Madrid (four training scenarios). Note that the
improvements achieved are in bold.

Malaga

Metrics
Experts’ solution Yellow Swarm

Improvement Wilcoxon
p-valueAvg. StdDev Avg. StdDev

Travel Time (s) 1903.2 2.3% 1562.1 2.5% 17,9% 0.00
CO (mg) 15744.6 3.4% 13829.2 2.5% 12.1% 0.00
CO2 (mg) 1418052.7 1.5% 1332355.0 1.7% 6.0% 0.00
HC (mg) 2360.3 3.2% 2103.4 3.4% 10.9% 0.00
PM (mg) 224.9 6.2% 207.7 6.1% 7.6% 0.00
NOx (mg) 8904.6 5.2% 8483.0 5.5% 4.7% 0.00
Fuel (ml) 562.6 1.4% 529.0 1.7% 6.0% 0.00
Distance (m) 3451.3 0.7% 3457.2 0.3% -0.2% 0.00

Madrid

Metrics
Experts’ solution Yellow Swarm

Improvement Wilcoxon
p-valueAvg. StdDev Avg. StdDev

Travel Time (s) 1374.7 1.3% 1318.5 2.9% 4.1% 0.00
CO (mg) 12144.2 2.0% 11705.8 2.7% 3.6% 0.04
CO2 (mg) 1165631.8 1.0% 1148906.4 1.8% 1.4% 0.00
HC (mg) 1828.7 1.5% 1779.4 2.3% 2.7% 0.01
PM (mg) 172.4 3.1% 171.4 2.6% 0.6% 0.15
NOx (mg) 7188.5 2.2% 7158.3 2.2% 0.4% 0.11
Fuel (ml) 463.1 1.0% 456.5 1.7% 1.4% 0.00
Distance (m) 3096.3 0.2% 3099.8 0.2% -0.1% 0.18

mainly optimizing travel times, is satisfactory in spite of the lower confidence level of the
other metrics (96% in CO, 85% in PM, 89% in NOx, and 82% in Distance).

Table 8.4 shows the values obtained as the configuration of Yellow Swarm for each case
study. We can see that Panels 7 and 8 in Malaga and Panels 3 and 4 in Madrid present a
highly asymmetric configuration (91%, 88%, 87%, and 86%, respectively). That is, the traffic
which arrives at these panels is mainly being directed towards just one detour. It denotes that
the other detours have almost been discarded by the EA because they produce worser traffic
flows. Nevertheless, other time slots are more balanced, e.g. Panel 2 (48%) in Malaga, and
Panel 2 (42%) in Madrid.

Test of 50 Scenarios

We have tested our Yellow Swarm on 50 new different scenarios of each case study (Malaga
and Madrid) and a further 100 scenarios where vehicles only use the fastest routes (50
scenarios of MalagaTT and 50 of MadridTT) which results in a total of 200 different scenarios.

Table 8.5 shows the average improvements obtained in the four case studies when we
compare the experts’ solution to Yellow Swam. In addition, the best scenario and the
percentage of scenarios improved are shown.
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Table 8.4: Configuration of panels obtained by the EA.

Malaga

Panel 1 Panel 2 Panel 3 Panel 4 Panel 5 Panel 6 Panel 7 Panel 8

T1.1 T1.2 T2.1 T2.2 T3.1 T3.2 T4.1 T4.2 T5.1 T5.2 T6.1 T6.2 T7.1 T7.2 T8.1 T8.2

38 172 260 280 141 80 89 238 290 66 90 257 300 30 43 286

Madrid

Panel 1 Panel 2 Panel 3 Panel 4

T1.1 T1.2 T2.1 T2.2 T3.1 T3.2 T4.1 T4.2

194 30 215 294 30 228 46 286

In the case study Malaga, we can observe an average improvement of: 13.4% (18.4%
max.) in travel times, 10.3% (12.9% max.) in CO emissions, 5% (7.4% max.) in CO2
emissions, 9.5% (11.8% max.) in HC, 7.6% (10.6% max.) in PM, 4.9% (7,2% max.) in
NOx, and 4.9% (7.4% max.) in fuel consumption. Furthermore, the distance traveled by
vehicles is 0.9% longer on average as we are suggesting detours that are not part of the
shortest path. This, however, is negligible, especially when compared to the improvement
achieved in travel times. Yellow Swarm was able to improve upon the experts’ solution in all
50 scenarios tested (100%) in both travel times and emissions. In MalagaTT we achieved
even better results (vehicles’ travel times are up to 32.3% shorter on average) as its routes
involve only the fastest ones. Consequently, as traffic jams are more likely to happen in that
situation, Yellow Swarm has turned out to be more efficient preventing them.

When we decided to include Madrid in this study, we wanted to compare two cities with
different topologies. While the geographical area of Malaga consists of narrow streets and
very few avenues and roundabouts, Madrid boasts wide avenues with up to ten lanes, huge

Table 8.5: Improvement achieved in the average vehicles’ travel times, gas emissions, fuel consumption, and
distance traveled in the four case studies.

T. Time CO CO2 HC PM NOx Fuel Distance

Malaga
Average 50 Scenarios 13.4% 10.3% 5.0% 9.5% 7.6% 4.9% 4.9% -0.9%

Best Scenario 18.4% 12.9% 7.4% 11.8% 10.6% 7.2% 7.4% -0.6%
% Scenarios Improved 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 8.0%

MalagaTT

Average 50 Scenarios 22.2% 17.9% 9.8% 16.2% 13.1% 9.0% 9.6% -2.6%
Best Scenario 32.3% 25.3% 16.5% 23.3% 22.9% 16.6% 16.4% -1.1%

% Scenarios Improved 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 2.0%

Madrid
Average 50 Scenarios 2.1% 1.5% 0.8% 1.3% 1.1% 0.7% 0.8% -0.5%

Best Scenario 8.1% 10.1% 3.2% 8.9% 3.7% 2.5% 3.2% 0.5%
% Scenarios Improved 72.0% 66.0% 68.0% 68.0% 60.0% 62.0% 68.0% 34.0%

MadridTT

Average 50 Scenarios 2.3% 1.7% 0.8% 1.6% 1.4% 0.8% 0.8% -0.4%
Best Scenario 9.1% 7.5% 3.8% 6.4% 3.9% 2.9% 3.8% -0.2%

% Scenarios Improved 74.0% 70.0% 64.0% 70.0% 68.0% 68.0% 64.0% 16.0%
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roundabouts, and square blocks. Although it allowed us to include more vehicles in the
study of Madrid, it also made it more difficult to optimize. Regardless, our results show
travel times of 2.1% shorter on average (8.1% max.) and reductions in the gases emitted
between 0.7% and 1.5% (10.1% max.). Moreover, we were able to improve travel times in
72% of the 50 scenarios as well as emissions in more than 60% of them.

Finally, in MadridTT the results are better than in Madrid for the same reasons explained
when comparing Malaga to MalagaTT, i.e. vehicles are taking only faster routes.

Further Analysis

Our next step in our experimentation focused on analyzing the data collected even further.
We have studied the traffic density and the number of vehicles in the city when vehicles
follow the routes of the experts’ solution and when they follow the detours proposed by
Yellow Swarm. In Figure 8.8 we show plots on traffic density and number of vehicles in the
city. Figure 8.8a shows how vehicles behave during the analysis in Malaga where we can
see that Yellow Swarm keeps the number of vehicles to lower than the experts’ solution and
also how it ensures the last vehicle leaves the city earlier. Figure 8.8b shows how the system
scales with respect to the number of vehicles in the city.

(a) Traffic density in Malaga (b) Travel times in Malaga

(c) Traffic density in Madrid (d) Travel times in Madrid

Figure 8.8: Traffic density and travel time vs. number of vehicles in Malaga and Madrid. We compare the
values from the experts’ solution to the Yellow Swarm ones.
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We can see that the average travel time is always shorter when drivers follow the detours
suggested by Yellow Swarm as it does not depend on the number of vehicles. Figures 8.8c
and 8.8d present the same study for Madrid. In this case the curves are not so different
although the behavior is still better when vehicles follow the signs from panels.

Our final step consists of testing Yellow Swarm when it is used by just a few vehicles.
This situation makes common sense, as the directions are just suggestions and we cannot
expect all drivers to follow them (confusions, lack of trust or information, etc.) We have
tested it on 50 scenarios from a use rate of 10% to 90% (100% has been studied previously
in this chapter). All in all, it adds up to 450 scenarios of Malaga and 450 of Madrid which
have been used to produce the graphs presented in Figure 8.9. The average improvement in
Malaga as well as the percentage of scenarios improved are depicted in Figures 8.9a and
8.9b respectively. As can be seen, Yellow Swarm always reduces the average travel times
and levels of gas emitted in each case study, even at low penetration rates. This confirms our
optimization strategy as well as the correct placing of the panels. Nevertheless, the number
of scenarios improved when not all vehicles are following the detours decreases: fewer users,
lower the improvement, as expected.

However, the behavior of Yellow Swarm in Madrid has turned out to be different from
Malaga. In spite of the fact that the metrics are always improved for all the usage rates,

(a) Avg. Improvement in Malaga (b) Scenarios improved in Malaga

(c) Avg. Improvement in Madrid (d) Scenarios improved in Madrid

Figure 8.9: Average improvement and scenarios improved vs. panel use when a only percentage of the drivers
decide to follow the detours. The grater the acceptation of drivers, the greater the sustainability of the city.
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figures 8.9c and 8.9d show a behavior that is not as neat as in Malaga, especially due to the
reasons we have discussed before. However, it is clear that there is an improvement in each
metric when we use Yellow Swarm, even for penetration rates as low as 10%.

8.4.2 Quito
In the following sections we address the optimization of Quito. First, we calculate our
optimization interval and conduct experiments in order to analyze the best strategy to
maximize the number of vehicles that arrive at their destinations in this period. Second, after
selecting the best strategy, we test the best configuration obtained in 30 different unseen
scenarios so that we can measure the performance of the proposal presented here.

In both analyses we study not only the fitness value, but also travel times, gas emissions,
fuel consumption, and distances traveled as complementary metrics, which we strongly
believe are also important for this study.

8.4.3 Optimization Interval
In our experiments we wanted not only to optimize the city of Quito by using the Yellow
Swarm architecture, but also select the best strategy for doing so. In accordance with the
average number of vehicles in the city in a day, we set a threshold of 2000 vehicles to detect
when traffic jams are likely to happen, so that we could switch the Yellow Swarm on only
during these time intervals (Figure 8.10).

We observed that the threshold is crossed twice in a day (beginning at 8:30 and 16:30,
respectively) when people are going to their workplaces and when they are returning home.
In this first approach we decided to focus on the first one, so we divided the first time interval
into four sub-intervals to be optimized. Consequently, we trained the EA independently for
25%, 50%, 75%, and 100% of the peak hour interval to collect the results and evaluate which
was the best choice according to the quality of the solutions (fitness) and how long they
took to be calculated (longer optimization periods imply longer simulation times in order to
evaluate the panel configurations). The optimization sub-intervals are described in Table 8.6.
All of them begin at 8:30, and end at 9:45, 11:00, 12:15, and 13:30, respectively.

Figure 8.10: Average number of vehicles.

Sub-interval Begin End Duration (m)

25% 8:30 9:45 75
50% 8:30 11:00 150
75% 8:30 12:15 225
100% 8:30 13:30 300

Table 8.6: Optimization sub-intervals.
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(a) 25% (b) 50%

(c) 75% (d) 100%

Figure 8.11: Number of vehicles during the analysis period in Quito before and after the optimization process
using the four sub-intervals tested: 25%, 50%, 75%, and 100%.

After training our EA with four scenarios (more diversity implies more robust solu-
tions [203]) over 30 independent runs, we obtained the evolutions in the number of vehicles
shown in Figure 8.11. These graphs were obtained after using Yellow Swarm configured
with the best solution (out of 30) for each optimization sub-interval. As we can see, in all the

(a) Fitness. (b) Number of Generations. (c) Optimization Time.

Figure 8.12: Fitness, number of generations, and optimization time of the four optimization intervals analyzed.
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Table 8.7: Fitness values obtained from the four optimization process and statistical tests.

Sub-interval
Fitness Friedman

Rank
Wilcoxon
p-valueAverage StdDev

25% 1.023 0.15% 2.00 0.00
50% 1.043 0.27% 3.10 0.00
75% 1.053 0.44% 3.90 —

100% 1.019 0.10% 1.00 0.00

sub-intervals the number of vehicles running between 8:30 and 13:30 has been reduced. The
50% and 75% sub-intervals demonstrate interesting outcomes since the maximum number of
vehicles are the smallest. The optimization interval of 25% does not contain enough traffic
information for the EA to learn the characteristics of the traffic and the 100% has not been
the most successful which we can deduce from the results (it is even worse than using 25%).

In Figure 8.12 we can observe the box plots obtained from the 30 runs performed by the
four sub-intervals (120 in total). The fitness distributions confirm what we deduced from
the previous plots. Furthermore, the 75% sub-interval shows the best improvement of all,
even though the optimization time spent is longer than in 50%. In fact, the optimization time
scales with the optimization sub-interval used as expected, while the number of generations
needed to converge is quite similar for all them.

It is interesting to discuss here the optimization time we spent on our experiments. As
shown in Figure 8.12c, we spent 47 hours on average in optimizing the 25% sub-interval (30
runs), 108 in optimizing the 50% one, 173 in 75%, and 226 in the 100% sub-interval. These
long times reported are mainly due to the evaluation time required as we needed to simulate
the city, using SUMO.

The data presented in Table 8.7 confirm that 75% is the best ranked interval (3.9)
according to the Friedman test, followed by the 50% (3.1), 25% (2.0), and 100% (1.0).
Wilcoxon p-values were also calculated to ensure that these values are statistically significant.

Table 8.8: Fitness, travel times, gas emissions, and fuel consumptions obtained when using Yellow Swarm in
the four training scenarios of Quito configured with the best solution calculated by the EA for the four proposed
sub-intervals. We also include here the values of Quito without optimization.

Quito 25% 50% 75% 100%

Fitness 1.000 1.025 (2.5%) 1.048 (4.8%) 1.061 (6.1%) 1.020 (2.0%)

Travel Time (s) 1067.4 1007.3 (5.6%) 934.6 (12.4%) 939.9 (11.9%) 973.9 (8.8%)
CO (g) 15.2 14.5 (4.5%) 13.7 (9.8%) 13.6 (10.2%) 14.3 (6.0%)
CO2 (g) 1686.1 1641.6 (2.6%) 1590.7 (5.7%) 1593.5 (5.5%) 1633.7 (3.1%)
HC (mg) 529.5 504.5 (4.7%) 474.7 (10.4%) 475.2 (10.3%) 493.2 (6.9%)
PM (mg) 156.2 152.4 (2.4%) 148.4 (5.0%) 147.9 (5.3%) 152.7 (2.2%)
NOx (mg) 3129.8 3053.0 (2.5%) 2966.9 (5.2%) 2967.3 (5.2%) 3047.5 (2.6%)
Fuel (ml) 672.2 654.5 (2.6%) 634.2 (5.7%) 635.3 (5.5%) 651.4 (3.1%)
Distance (km) 5.6 5.7 (-0.2%) 5.7 (-0.8%) 5.7 (-1.2%) 5.8 (-1.8%)
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Finally, we report the metrics when using Yellow Swarm in Quito, configured with the
best solution achieved by the optimization process of each sub-interval. Table 8.8 shows the
fitness and the average values of Travel Time, CO, CO2, HC, PM, NOx, Fuel, and Distance.
We observe that, in spite of the best fitness values of 75%, 50% seems to be slightly better
in most of the metrics. Based on the Friedman ranks we chose the configuration for Yellow
Swarm obtained by the optimization using the 75% time interval to configure and test our
proposal in 30 different unseen scenarios in Quito. However, 50% would have been a valid
choice as well, especially if we wanted shorter optimization times.

8.4.4 Validation on 30 Unseen Scenarios
Our next step was to test the best configuration calculated by the EA in 30 unseen scenarios
in Quito. We activated Yellow Swarm between 8:30 and 12:15 (the 75% sub-interval) so
that the detours were presented to vehicles only during this interval, while the rest of the
day, the panels were off. Additionally we collected the metrics of the traffic over an entire
day to evaluate the impact of our proposal over 24 hours for 30 unseen traffic distributions
(scenarios). Table 8.9 presents the improvements obtained, including the average of each
metric, the standard deviation as a percentage of the mean value, minimum, and maximum
values, for the city of Quito without Yellow Swarm.

We can observe that Yellow Swarm reduces each emission metric, travel times, and
fuel consumption, even in the most difficult scenarios. The drivers following the detours
signaled by the Yellow Swarm achieve travel times 11.9% shorter, reduced by 9.6% their CO
emissions, 5.3% in CO2, 10% in HC, 4.7% in PM, 4.9% in NOx, and consumed 5.3% less
fuel. Moreover, the distances traveled are negligibly longer (1.3% maximum) as we divert
vehicles via alternative routes which are not part of the shortest path.

We report data from 30 different testing scenarios, also showing minimum and maximum
improvements in Table 8.9 where the most remarkable improvements are travel times which
are 28.4% shorter, a reduction of 13.2% in fuel consumption, and 23% in HC.

Table 8.9: Improvements achieved in the traffic of Quito city during an entire day when using Yellow Swarm
just for 225 minutes (75% of the morning peak hours).

Metrics
Improvement

Average StdDev Minimum Maximum

Travel Time 11.9% 0.4% 5.3% 28.4%
CO 9.6% 0.3% 5.2% 19.4%
CO2 5.3% 0.4% 2.4% 13.2%
HC 10.0% 0.4% 4.8% 23.0%
PM 4.7% 0.3% 2.4% 9.1%
NOx 4.9% 0.4% 2.3% 11.3%
Fuel 5.3% 0.4% 2.4% 13.2%
Distance -1.2% -0.1% -1.3% -1.0%
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8.5 Discussion
In this chapter we have studied the reduction of travel times, greenhouse gas emissions, and
fuel consumption of road traffic in three big cities using the Yellow Swarm architecture.

We have designed an evolutionary algorithm to optimize the training scenarios by using
a series of LED panels to propose detours to vehicles, and found solutions that improve
upon the experts’ ones during the optimization process with statistical significance. Two
different approach were followed. First, we minimized travel times in Malaga and Madrid
and observed also reductions in gas emissions and fuel consumption. Second, we maximized
the vehicles throughput in peak hours of Quito to obtain also shorter travel times and less
emissions. In both cases, we observed an increase in route lengths (2.6% max.) which is
a consequence of detouring vehicles via alternative streets which are not included in the
shortest path.

As we have considered different cities (topologies, avenues, roundabouts, intersections)
we have observed several variations in the results. However, we have improved all the metrics,
even when only 10% of vehicles are obeying the instructions of Yellow Swarm. This, and our
tests in several different unseen scenarios confirm Yellow Swarm as a valid and inexpensive
strategy to optimize road traffic. The use of Yellow Swarm in cities, would mean that people
not only get to work early and not spend their precious time stuck in traffic jams, but also
they would be healthier as they are breathing in cleaner air.





Chapter 9

Smarter Routes for GPS Navigators

In this chapter a new way of calculating alternative routes for GPS navigators is proposed in
order to foster a better use of the city’s streets. The experimentation presented involves maps
from OpenStreetMap, real road traffic, and the microsimulator SUMO, to reduce travel times,
greenhouse gas emissions, and fuel consumption in the city. Additionally, an analysis of the
sociological aspect of our proposal is done by observing the penetration (acceptance) rate
which shows that our strategy is competitive even when just 10% of the drivers are using it.

9.1 Introduction
Global Positioning System (GPS) navigators are now present in most vehicles and smart-
phones nowadays, as they are needed when driving through an unknown city or neighborhood.
The usual goal of these navigators is to take the user in less time or distance to a destination.

Although some of them use data representing the current state of the road traffic to
calculate the route shown to the driver, this kind of service is neither updated in real time nor
available everywhere in the world. As a result, routes end up being calculated by Dijkstra [50]
or A⋆ [94] algorithms which only use the length of the streets and their average speed to find
the best way to reach a destination (shortest path). Thus, the global use of navigators in a
given city could lead to traffic jams as they have a highly biased preference for some streets.

In this chapter we present an alternative way of calculating routes [198] based on the
concept of dynamic user equilibrium. The alternative routes can be provided (and updated)
as a complement to the cartography so they can be used by GPS navigators to improve traffic
flows when assigning routes to vehicles driving through a city. From a general point of view,
spreading the traffic throughout the city could be a way of preventing jams and making a
better use of public resources, reducing traffic jams, gas emissions and fuel consumption,
and improving the quality of life of citizens.
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9.2 Dynamic User Equilibrium (DUE)
The traffic assignment problem consists of assigning routes to vehicles which are moving
from their origin to their destination, usually taking into account variables such as cost and
benefits. It can be solved by calculating the user equilibrium route choice in which routes
are assigned to vehicles so that an alternative assignation would have worsened travel times.
According to the Wardrop’s first principle [234], the user equilibrium is the state in which
every driver chooses a route for which the travel time is minimal. Consequently, the resulting
network state is in equilibrium, since nobody can improve his travel time by choosing a
different route.

We have used an approach to the assignment model which is based on an iterated
simulation [78] to calculate the dynamic user equilibrium (DUE) by using tools provided
by SUMO. This model uses a probability distribution for the route choice so that a route is
stochastically picked for each vehicle traveling from its original location to its destination.

Our proposal consists in calculating the dynamic user equilibrium and using the new
routes generated to help a GPS navigator in rerouting drivers through different streets to
reach their destination, instead of using the shortest path. Concretely, we divide the city
into ad hoc zones and use the resulting input and output streets as origin and destination
of the routes throughout the zone. Then, when a vehicle enters the zone with the intention
of driving through it, it will follow one of the available routes according to a previously
calculated probability. Note that local trips (i.e. those whose starting and destination points
are within this area) are not considered by our proposal as our intention is to favor the traffic
flows that are crossing the area (and the city).

An example of the route assignment process when a driver intends to cross a defined zone
is given in Figure 9.1. The best route in terms of distance is obviously route A. Alternatively,
there are two other routes, B and C, which despite being longer, may lead to a reduction of
travel times for everyone, as possible congestions can be avoided by using them.

Our proposal involves not only calculating these routes but also testing three new strate-
gies to obtain the probabilities of using them to drive through the analyzed zone, and prevent

Figure 9.1: Possible routing example.
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traffic jams. Of course, the probabilities not only depend on the streets’ distributions (which
is the reason we are using OpenStreetMap as the source for the maps), but also on the number
and behavior of the vehicles involved (we use microsimulations and actual traffic data). In
the following sections we describe this three new strategies.

9.2.1 DUE.r & DUE.rp
The traffic simulator SUMO (Simulation of Urban MObility) [123] includes a tool, written
in Python, called DuaIterate, which is used to calculate the dynamic user equilibrium as
described in [78]. Using DuaIterate we have calculated the DUE for our case study and
extracted the different routes, whose origins and destinations are the input streets and exits,
respectively of the area under analysis, as presented in Algorithm 9.1.

First, the initial trips from the case study (malaga) are obtained in order to maintain the
initial demand when calculating the new routes. Second, by using DuaIterate the probabilities
are initialized and the first traffic simulation is carried out to assign routes to vehicles and
obtain travel times. After each traffic simulation, the probabilities are updated according
to the travel time values measured in the simulation so that the probability of assigning a
route is higher for those with lower travel times. This process is repeated until the algorithm
converges or the maximum number of steps is reached and DuaIterate ends.

Finally, the routes resulting from the DUE process are used to build the DUE.rp (Dynamic
User Equilibrium routes by probability) strategy, in which the probability of choosing a route
from a starting point to a destination from those available, depends on how frequently it has
been assigned by DuaIterate. Additionally, the DUE.r (Dynamic User Equilibrium routes)
assignation is obtained by keeping just the different routes (without repetition) so that all the
routes from each origin to a destination are equiprobable.

We propose a third strategy to assign the routes included in DUE.r. Instead of assigning
them according to how frequently they are used (DUE.rp) we propose an Evolutionary
Algorithm (EA) to calculate the best probabilities for each route to minimize travel times.
We have named our proposal DUE.ea and it is described in the next section.

Algorithm 9.1 DUE Routes.
procedure DUEROUTES

trips← SUMO(malaga) ▷ OD Matrix
Pd ← initializeProbabilities() ▷ begin DuaIterate
while not TerminationCondition() do

travelTimes← SUMO(malaga, trips,Pd)
Pd ← updateProbabilities(travelTimes)

end while ▷ end DuaIterate
routes← SUMO(malaga, trips,Pd)
DUE.rp← routes ▷ DUE.rp
DUE.r← getUnique(routes) ▷ DUE.r

end procedure
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9.2.2 DUE.ea
We have designed a (10+2)-EA (an elitist steady state evolutionary algorithm with a pop-
ulation of ten individuals generating two new individuals at each step) to calculate the
probabilities of assigning one of the available routes to vehicles which are driving through
the area under analysis. These routes were previously calculated by the aforementioned
DuaIterate utility. A diagram of the processes followed by DUE.ea is shown in Figure 9.2.

Figure 9.2: DUE.ea diagram and solution encoding. In our case study N = 8, S = 121.

Solution Encoding

The solution encoding consists of a numeric vector corresponding to the probabilities for
the routes to be chosen. The probability values correspond to the different routes from the
possible origins and their available destinations in area being analyzed.

Figure 9.2 shows the representation of the problem where N origins are arranged into
blocks containing the Mn reachable destinations from each origin. Finally, each destination
could be reached by Kn,m routes which have an associated probability value and are restricted
so that the sum of them in a destination block is equal to 1. Note that the number of possible
destinations (M) and routes (K) for each origin is not always the same as it depends on the
streets’ connectivity where not all destinations can be reached from each origin in the area
analyzed. Our case study (Figure 9.5) contains 121 routes between their eight origins and
seven destinations, so that the problem representation is a vector of 121 probability values.

Fitness Function

We define the fitness function presented in Equation 9.1 to reduce travel times and later
evaluate the rest of the metrics (gas emissions, fuel consumption, and route lengths) as a way
of checking how robust our solution is and what relationships are observed.
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F =
1
α

1
N

N

∑
i=1

travel timei (9.1)

The coefficient α is calculated as described in Equation 9.2. It is used to normalize the
value returned by the fitness function so that the evaluation of each scenario (sc) of the case
study is equal to 1.0. Consequently, fitness values lower that 1.0 indicate improvement in the
average travel times as our aim is to minimize them, i.e. the lower, the better.

αsc =
1

Nsc

Nsc

∑
i=1

travel time(sc)i (9.2)

sc ∈ {malagaWD,malagaSAT ,malagaSUN}

Operators

The selection strategy implemented in the EA is Binary Tournament. We have used a
standard two point crossover (Street Two Point Crossover) as the recombination operator
where the crossing points are the origin blocks as shown in Figure 9.3. It exchanges entire
block of probabilities between individuals, which gives the operator the ability to build new
configurations at the block level.

Figure 9.3: Crossover operator. Probabilities values for sensors i to j are selected to be exchanged.

Additionally, for the mutation operator, we have designed an operator that changes the
probability values for the routes in a destination block by first selecting one of them, then
incrementing its value, and finally decrementing the rest, in order to keep the sum total
equal to 1 (Figure 9.4). In the example the destination j of the origin i has been selected
for mutation. Then, probability Pi. j3 for route Ri. j3 is randomly selected to be incremented
by 0.1 (probability increment). We can see in the resulting individual that not only has Pi. j3
been incremented, but also the probabilities for the rest of routes in destination j have been
decremented to keep the sum total equal to 1.

We have experimentally set the crossover probability (Pc) to 0.9, the mutation probability
(Pm) to 0.1, and the probability increment performed by the mutation operator was set to
0.1. Finally, we have performed an elitist replacement, so that the worst individuals of the
population are replaced if they have a fitness value higher than the offspring produced in the
current generation in order to build the next one.
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Figure 9.4: Mutation operator. Probability value of Pi. j3 has been selected to be increased from 0.3 to 0.4
according to the defined increment 0.1. The rest of values are proportionally decreased to keep the sum total
equal to 1.

9.3 Case Study
We have chosen as our case study an area of the city center of Malaga (Spain), well-known
for suffering from traffic jams. The geographical area studied is delimited to the north by
San Bartolomé Street and Ferrándiz Street, to the west by the Guadalmedina River, to the
east by Keromnes Street, and to the south by the Mediterranean Sea, which encompasses an
area of about 3 km2 in total.

We have imported the chosen area (shown in Figure 9.5) into the SUMO traffic microsim-
ulator [123] from OpenStreetMap [169]. This allows us to work with a real scenario, e.g.
streets, traffic lights, left turns, and roundabouts. The traffic flows for our case study were
calculated using the method presented in Chapter 5 based on the Flow Generator Algorithm

(a) OpenStreetMap. (b) SUMO.

Figure 9.5: City center of Malaga. The original map (a) and how it looks after importing it into SUMO (b).
Note that most of the missing streets correspond to pedestrian ways.
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(FGA) [197, 201]. The algorithm assigns vehicles to the traffic flows generated by the
program DUAROUTER included in the SUMO software package. This assignation adjusts
the number of vehicles in the simulation to the values measured by real sensors in the city.

Using the data published by the local council of Malaga consisting of 12 sensors, we have
obtained three different scenarios corresponding to average traffic per hour during working
days (malagaWD), Saturdays (malagaSAT), and Sundays (malagaSUN). The real number of
vehicles in the city (Real), the value measured at each sensor when simulating the generated
scenarios (FGA), and the difference percentage (Diff) are presented in Table 9.1.

Table 9.1: Real number of vehicles and the values measured at each sensor during the simulation for the three
scenarios generated by the FGA.

Sensor
malagaWD malagaSAT malagaSUN

Real FGA Diff. Real FGA Diff. Real FGA Diff.

5 1071 1069 -0.2% 900 900 0.0% 803 803 0.0%
6 347 348 0.3% 273 276 1.1% 227 229 0.9%
7 279 278 -0.4% 246 246 0.0% 208 208 0.0%
8 254 251 -1.2% 239 240 0.4% 212 212 0.0%
9 256 256 0.0% 248 248 0.0% 222 221 -0.5%
10 644 646 0.3% 641 640 -0.2% 584 584 0.0%
13 229 230 0.4% 214 214 0.0% 172 171 -0.6%
14 479 479 0.0% 444 443 -0.2% 348 352 1.1%
15 631 633 0.3% 566 567 0.2% 467 469 0.4%
16 518 518 0.0% 420 422 0.5% 359 358 -0.3%
17 839 854 1.8% 684 683 -0.1% 617 619 0.3%
18 600 602 0.3% 466 469 0.6% 437 440 0.7%

Avg: 512.3 513.7 0.4% 445.1 445.7 0.3% 388.0 388.8 0.4%

9.4 Results
We tested our proposal in our case study for one hour, to obtain not only travel times but also
greenhouse gas emissions, fuel consumption, and distance traveled by vehicles. Additionally,
we performed a penetration rate study to know if our proposal would be useful when is used
by a little percentage of users.

9.4.1 Optimization
First, we took the three scenarios of our map (malagaWD, malagaSAT, and malagaSUN)
calculated by using the FGA as explained in Section 9.3. To achieve the desired precision
(greater than 99.6% in all the scenarios) we performed 90 independent runs of the FGA (30
per scenario) which lasted 5.2, 3, and 2.6 hours, respectively.

Second, we obtained the Dynamic User Equilibrium routes (DUE.r), and the DUE.rp
(Dynamic User Equilibrium routes by probability) as explained in Section 9.2. This process
took about 5 minutes to converge.



128 Smarter Routes for GPS Navigators

Then, we have tested the DUE.r and DUE.rp routes in our scenarios by making the GPS
navigators to suggest these routes. Note that DUE.r routes are equiprobable, while in DUE.rp,
the route probability depends on how much they have been assigned when calculating the
user equilibrium.

Furthermore, we tested the Dijkstra shortest path algorithm [50] (Dijkstra) to include
its results as we believe that it is the strategy most used by GPS devices nowadays. The
implementation of this algorithm and the weight function used in it are provided by SUMO,
which takes into account the travel time according to the street characteristics of the city.

Finally, we calculated new probabilities for the DUE routes using our EA (DUE.ea) and
tested them in our scenarios, as well. We performed 30 independent runs of the EA on each
scenario (90 runs) which lasted 3.5, 4, and 3 hours on average, respectively. Note that we
used several machines to execute the 30 independent runs in parallel so that we just had to
wait for the longest execution to get our results (8.3, 6, and 4.7 hours).

Table 9.2 shows the results obtained in terms of Travel Times (TT), Carbon Monoxide
(CO), Carbon Dioxide (CO2), Hydrocarbons (HC), Particulate Matter (PM), Nitrogen Oxides
(NOx), Fuel consumption (Fuel), and traveled distance (Distance). Note that we are supposing
that all the drivers crossing the area have a GPS device and follow the indications given.

We can see that in spite of the reduced travel times (and emissions) produced by DUE.r,
DUE.rp and even Dijkstra, the shortest travel times are obtained in the three scenarios when
using DUE.ea. Our strategy also has the lowest emissions and fuel consumption as vehicles
arrive at their destinations earlier, avoiding possible traffic jams. Differences in distances
between the strategies are negligible (variations below 1%).

In Figure 9.6 the results obtained are presented as improvement percentages when
vehicles are being routed according to the strategies analyzed here instead of following the
flows obtained from the available real data. We can see that the greatest improvements

Table 9.2: Results obtained for the scenarios when vehicles are using the routes based on data publish by
the Malaga local council (Malaga), shortest path (Dijkstra), Dynamic User Equilibrium (DUE.r), Dynamic
User Equilibrium with probabilities obtained by rate of use (DUE.rp), and Dynamic User Equilibrium with
probabilities obtained by our EA (DUE.ea). The best values are in bold.

Scenario Strategy # Veh. TT
(s)

CO
(mg)

CO2
(mg)

HC
(mg)

PM
(mg)

NOx
(mg)

Fuel
(l)

Dist.
(m)

Friedman
Rank

Wilcoxon
p-value

malagaWD

Malaga 4883 351.6 1591.9 322840.7 88.6 20.7 554.1 128.7 1926.6 3.20 0.00
Dijkstra 4883 297.3 1424.7 304507.5 79.6 19.9 526.7 121.4 1917.4 3.00 0.00
DUE.r 4883 294.5 1401.5 302745.6 78.8 19.8 523.5 120.7 1924.6 2.98 0.01
DUR.rp 4883 292.7 1390.5 301328.7 78.3 19.7 521.0 120.1 1924.1 2.93 0.09
DUE.ea 4883 288.5 1374.9 299418.3 77.4 19.6 518.1 119.4 1922.3 2.90 —

malagaSAT

Malaga 3961 344.1 1547.7 323919.4 87.1 20.9 557.0 129.1 2004.9 3.18 0.00
Dijkstra 3961 324.7 1481.6 316290.6 83.6 20.5 545.3 126.1 2000.2 3.06 0.00
DUE.r 3961 303.8 1399.7 309326.1 80.0 20.2 534.2 123.3 2008.0 2.95 0.00
DUR.rp 3961 314.0 1421.3 310741.4 81.2 20.2 535.6 123.9 2003.5 2.97 0.00
DUE.ea 3961 291.7 1363.9 305130.4 77.9 20.0 528.1 121.7 2011.0 2.84 —

malagaSUN

Malaga 3679 279.6 1292.4 291131.9 74.0 19.1 503.9 116.1 1933.3 3.09 0.00
Dijkstra 3679 275.7 1269.0 287901.5 72.9 18.9 498.4 114.8 1928.6 2.99 0.05
DUE.r 3679 275.8 1261.6 288565.0 72.9 18.9 499.4 115.0 1945.0 3.04 0.02
DUR.rp 3679 273.6 1248.3 286268.5 72.3 18.7 495.4 114.1 1937.9 2.96 0.03
DUE.ea 3679 271.1 1232.5 284807.0 71.6 18.6 492.9 113.5 1940.3 2.92 —
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(a) Travel Time (b) CO (c) CO2

(d) HC (e) PM (f) NO

(g) Fuel (h) Distance

Figure 9.6: Improvements in the metrics for the three scenarios of our case study when using different strategies
for routing vehicles instead of the routes obtained from the data published by the local council. Note that some
of the scales used are different for better visualization.

are achieved when there are more vehicles in the area (working days) and that DUE.r and
DUE.rp perform better than Dijkstra which was expected as they have more routes available
for vehicles. However, DUE.ea outperforms all of them in all the scenarios and metrics,
achieving improvements in travel times (up to 18%), CO (up to 14%), and fuel consumption
(up to 7%). Additionally, a statistical analysis is provided (Friedman Ranks and Wilcoxon
p-values) showing that our results are statistically significant.
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By using DUE.ea in the GPS navigators the city’s streets are exploited better by vehicles,
with drivers leaving the analyzed zone, on average 63 seconds earlier. Although our initial
concern was to shorten travel times, a better flow of vehicles preventing congestion has also
reduced pollution levels as well as fuel consumption (9.3 liters per hour on average).

9.4.2 Penetration Rate
We also wished to know if our proposal would be useful when it is not being used by every
single vehicle (a very real assumption). To answer this question, we tested the configuration
(probabilities) achieved by DUE.ea when no one was using it (Malaga real traffic) and
incrementing the penetration rate in steps of 10% until reaching a full usage (DUE.ea values
previously reported in Table 9.2).

We present our penetration rate results in Figure 9.7. It can be seen that, despite some
variations which make the increment inconsistent, all the metrics are improved with respect
to Malaga (0% usage) as the penetration rate increased. There is at least a minimum
improvement when just 10% of the drivers are using the routes and probabilities calculated
by DUE.ea in their GPS device, which gets better as the penetration rate increases.

(a) MalagaWD (b) MalagaSAT (c) MalagaSUN

Figure 9.7: Penetration rate study for the three scenarios of our case study. Note that some of the scales used
are different for better visualization. Even with a reduced use of our technique (10% of drivers), travel times
and other metrics are improved.

9.5 Discussion
In this chapter we have proposed a way of calculating alternative routes to be used by a GPS
navigator. Additionally, we have provided three different strategies to select which of these
routes are presented to the drivers by the navigator, and compared them with each other and
with the Dijkstra shortest path algorithm. Our results show that we have improved travel
times (up to 18%), greenhouse gas emissions (up to 14%), and fuel consumption (up to 7%)
in Malaga when using DUE.ea. Furthermore, we have also demonstrated that our proposal is
viable even when just 10% of drivers are using it.



Chapter 10

Know Your City: Car Park Spots

In this chapter a study of parking occupancy data of Birmingham, Glasgow, Norfolk, and
Nottingham in the U.K. is addressed. Different prediction strategies such as polynomial
fitting, Fourier series, K-means clustering, and time series, are analyzed. Moreover, cross
validation has been used to train the predictors and to test them with unseen occupancy data.
Finally, a web service to visualize the current and historical parking data in a map is also
presented. It allows users to consult the occupancy rate prediction in order to satisfy their
parking needs.

10.1 Introduction
Finding an available parking space could be difficult in most cities, especially in the city
center. Off-street car parks are a viable alternative, especially when the number of inhabitants
in urban areas is increasing and expected to rise to 75% of the world’s population by 2050 [17].
On-street parking spaces are quite limited and usually it is cheaper to find an off-street car
park or pay and display bays rather than wasting time (and fuel) in finding a free space.
Nevertheless, even paid spaces are scarce nowadays as, unfortunately, city infrastructures
have not grown in line with population growth.

Smart cities initiatives are here to take care of this [158]. Whether it implies populating
the city with sensors [68] or developing several apps [44] to encourage citizens not only to
use them but also to take an active part in the developing of the future smart city, the final
goal is to take advantage of the new technologies to improve our quality of life.

Despite how fast we can reach our destination by using different optimization strategies
to prevent traffic jams [75], there is a need of finding an available parking space at the end
of our trip. There are some studies which have already addressed this issue by using a time
Markov model [119], regression trees, neural networks and support vector regression [253],
or a real-time availability forecast algorithm [33], so that all the previous improvements do
still apply.

Although monitoring single parking spaces may not be economically viable, it is possible
to count the number of vehicles entering and leaving an off-street car park and make these
data publicly available to help make decisions (and predictions) based on them. In this



132 Know Your City: Car Park Spots

chapter we address the study of parking occupancy data of Birmingham, Glasgow, Norfolk,
and Nottingham in the U.K. We aim to test several prediction strategies such as polynomial
fitting, Fourier series, K-means clustering, and time series, and analyze their results. We have
used cross validation to train the predictors and then tested them with unseen occupancy data.
Additionally, we have developed a web service to visualize the current and historical parking
data in a map, allowing users to consult the occupancy rate forecast in order to satisfy their
parking need up to one week in advance. We believe that the use of these accurate intelligent
techniques conducts to final user services for citizens living in real smart cities as a way of
improving their quality of life, shortening wait times, and reducing fuel consumption.

Concretely, our proposal is a system to collect public data of car park occupancy values,
show them in a user-friendly web service, store them to be consulted as a historical archive
(most existing data sources provide only values corresponding to the last measurements),
and use these past data to predict the car parks’ occupancy rate of the following week. Thus,
citizens can use our proposed system to decide where to go, where to park and to know when
is the best moment to go there if they wish to find an available parking space.

10.2 Car Park Occupancy Prediction
Our main objective was to predict the future occupancy rate of car parks by using the previous
occupancy data collected from different data sources [34, 209, 210]. In addition, we wished to
analyze and compare our six different predictors taking into account not only their accuracy,
but also the number of parameters (complexity) needed to model a car park.

The architecture developed to predict car park occupancy rates [209, 210] is shown in
Figure 10.1. Currently, there are four downloaders which obtain occupancy values from the
different data sources (Birmingham, Glasgow, Norfolk, and Nottingham in this study). Then,
data is parsed by the data parser which put them in a common format to be stored in the
database. Finally, these data can be obtained from the database anytime to be shown to the
users as well as to be used by the predictors to obtain future occupancy values. This process
could be used to study any car park dataset available online as it does not depend on the
codification or format.

We have analyzed six predictors as shown in Figure 10.2. Some of them are well-known
prediction techniques; however, each one presents different characteristics to be exploited.

Figure 10.1: Schema of the prediction system architecture where the relationship between the downloaders, the
data parser, the data storage, the predictor and the web prototype, are shown.
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Our aim was not only to find the more accurate predictor, but also keep the model simple so
that we could represent each car park and weekday by using the minimum amount of data.
Each predictor is described as follows:

10.2.1 Polynomial Fitting (P)
This predictor consists in a polynomial fitted to each car park and weekday. A polynomial
describes a continuous function composed of terms of different degree. We have used it to
fit the several points that represent the occupancy values. We studied different polynomial
degrees to find which value presented a more accurate prediction keeping a reduced number
of parameters (its degree plus one) to represent each car park and weekday.

10.2.2 Fourier Series (F)
This predictor consists in fitting a Fourier series to each car park and weekday. Formally,
Fourier series decomposes a periodic function into the sum of sinuses and cosines which can
be used to fit a curve. In our case we considered different numbers of components (predictor’s
parameters) as alternatives which are always odd numbers, because an extra constant term.

10.2.3 K-Means (KM)
Clustering by using K-Means is a method that allows grouping pairs of car parks and
weekdays in different clusters whose centroid represents the whole set of occupancy measures
in the group. This technique was initially used in signal theory, however, nowadays is also
popular for cluster analysis and data mining. We wish to describe sets of car parks behaving
similarly during several weekdays by using the corresponding centroid as occupation rate
values instead of the individual ones. By using KM we can describe a set of car parks and
weekdays by using only the number of parameters which correspond with the number of
values in the centroid.

10.2.4 KM-Polynomial (KP)
This predictor fits a polynomial to the existing centroid points of each cluster calculated by
K-Means. This step was necessary to improve the accuracy of the predictions by interpolating
a polynomial to the points in each centroid as they are spaced according to the frequency of
the measures (30 minutes for Birmingham and 15 for Glasgow, Norfolk and Nottingham).

10.2.5 Shift & Phase (SP)
To improve the accuracy of the prediction even further, we defined a new predictor which
uses the KM-Polynomials described in the previous section and adds two new parameters
to the existing coefficients, in order to modify the shift (y axis) and the phase (x axis) of
the original polynomial. By doing so, we are adding a little complexity to the predictor to
customize it to each car park and weekday.
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10.2.6 Time Series (TS)
Time Series required a different approach. This is a well-known predictor which consists
of a series of values which are stored in time order to be statistically analyzed in order to
predict future values. This predictor needs the largest number of parameters for each car
park, growing in size as we include more training data.

Figure 10.2: Predictors analyzed and their relationship.

10.3 Case Studies
Several cities and counties in the United Kingdom have been publishing their open data to be
used, not only by researchers and companies, but also for citizens for better know the place
where they live. They are published under the U.K. Open Government Licence (OGL) [222]
or even Creative Commons Attribution [168], what allowed us to conduct this study.

Concretely, we have used data from the cities of Birmingham, Nottingham, Glasgow, and
the county of Norfolk, (Figure 10.3), all in the U.K. We have selected them for this study,
not only because the availability of data, but also because the number of car parks and values
they offer. Each region is describe as follows:

10.3.1 Birmingham
This is a major city in the West Midlands of England, standing on the small River Rea. It
is the largest and most populous British city outside London, with an estimated population
of 1,124,569 as of 2016 [164]. We have analyzed valid data of 22 car parks in Birmingham
after filtering the original dataset of 33 [26].
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Figure 10.3: Case studies: Birmingham, Nottingham, Glasgow, and Norfolk.

10.3.2 Glasgow
Being the largest city of Scotland, and the third one in the U.K, Glasgow is situated on
the River Clyde in the West Central Lowlands of the country. The estimated number of
inhabitants in the Greater Glasgow urban area is 1,209,143 [156]. The Glasgow city council
has published a dataset consisting of 18 car parks [82] many of which have been removed
after applying our quality filters. Thus, we ended up with just five valid car parks to be
analyzed in Glasgow.
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10.3.3 Norfolk
This is a county in England whose county town is Norwich. Its boundaries are Lincolnshire
to the west and north-west, Cambridgeshire to the west and southwest, and Suffolk to the
south. The northern and eastern limits are the North Sea and, The Wash, in the north-west.
Norfolk is a largely rural county with a population of 892,870 [164]. The available car park
dataset of Norfolk is composed of 18 car parks [161], although only eight of them presented
valid data.

10.3.4 Nottingham
This city of the East Midlands in England, belongs to Nottinghamshire. According to [164]
Nottingham had an estimated population of 325,282 in 2016. Additionally, its urban area
is the largest in the east Midlands and the second-largest in the Midlands. Nottingham city
council has published a dataset including 47 car parks [162] which after being thoroughly
filtered contains just 12 valid ones.

10.4 Training
Before using our predictors they needed to be trained. By doing so, we let them to create a
model of the occupancy of each car park and weekday by providing a training dataset. The
training dataset passed through a previous filtering stage of the available input data so that
each car park did not present duplicates, its occupancy values were not constant, there were
at least 75% of the number of expected values, and each car park had data for each weekday.

After that, the missing values (if any) in the occupancy dataset were completed by using
the average value of the four previous weekdays when an entire day was missing, or by
replicating the previous value when just one single measurement was needed. For example,
if one car park’s data for Monday 31st was missing (dataset sources usually stop working or
individual sensors become temporarily faulty) the occupancy values for that day would be
generated by using the average values of that car park for Mondays 3rd, 10th, 17th, and 24th.

To test how well a predictor behaved, i.e. how accurate it was, we decided to use the
average Mean Squared Error (MSE) [129] of all the predictions done so that the lower this
value, the better. To improve the training process we have used K-Fold cross validation as
we have done in [210]. This method consists of dividing the entire dataset into subsets (folds,
weeks in our study), choosing one as the testing set and using the rest as the training set.

For example, in Birmingham we had 193 training days giving us 27 weeks for training
(it begins on Tuesday and ends on Wednesday). They allowed us to perform 27 training
processes for each car park in that city, the first one using weeks 2nd to 27th and testing with
the 1st, etc. After calculating the MSE for the 27 training processes we have chosen the
training set with the lower MSE value.

We set up a training process for each predictor by creating training sets for each weekday.
As each dataset has a different number of available days, we ended up with 28 folds for
Birmingham and Glasgow, 57 for Norfolk, and 26 for Nottingham. This training process was
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Table 10.1: Characteristics of the available datasets before and after applying our training filter.

Dataset Date Range Available
Car Parks

Valid Car
Parks

Values Per
Day

Training
Values

Training
Days

Training
Sets

Birmingham 04-Oct-2016 32 22 18 95,733 193 2705-Apr-2017

Glasgow 27-Oct-2016 9 5 96 227,275 193 2807-May-2017

Norfolk 27-Oct-2016 15 8 64 388,908 393 5723-Nov-2017

Nottingham 27-Oct-2016 22 12 96 633,926 181 2624-Apr-2017

useful not only for selecting the best training set (the one which minimized the prediction
errors) buy also for selecting the best parameters for each predictor (polynomial degrees,
Fourier series’ components, etc.), so that it is accurate enough with a minimum complexity.

Table 10.1 summarizes the characteristics of the datasets corresponding to the case studies
analyzed including the number of training days and folds. Note that despite the number of
training days, the number of training values depends also on the number of measurements
per day which differs between cities. Additionally, the SP and TS predictors do not have any
parameters to be set (the former depends on the KP’s degree and the latter does not need any
parameter). SP was also trained using the different folds to obtain the best, accurate results.
We have used a different approach for TS, incrementing the number of weekdays in each
iteration and testing with the following one as the training dataset has to be time ordered.

After training our predictors we have selected the parameters for P, F, KM, and KP, by
using the elbow method [214]. We dealt with a trade-off between accuracy and number of
parameters in our study so that we tried to keep the number of parameters as low as possible,
as shown in Table 10.2.

Additionally, we present the distribution of car parks and weekdays in different clusters
(KM predictor) as a result of the training process in Figure 10.4. We can see that in Birming-
ham (Figure 10.4a) some car parks were included in more than one cluster (variability), while
in Glasgow (Figure 10.4b) the first cluster is for car park CPG21C and the rest of car parks
were assigned to the second one. Figure 10.4c shows the cluster distribution for Norfolk
where half of car parks are in both clusters (different weekdays), and finally, in Figure 10.4d
we can see the only existing cluster (according to this predictor all the occupancy data follow

Table 10.2: Parameters for the predictors calculated by using K-Fold cross validation.

Dataset Polynomials (P)
(degree)

Fourier Series (F)
(# components)

K-Means (KM)
(# clusters)

KM Polynomials
(KP) (degree)

Birmingham 2 3 3 2
Glasgow 4 3 2 4
Norfolk 3 3 2 3
Nottingham 4 3 1 4
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(a) Birmingham (b) Glasgow

(c) Norfolk (d) Nottingham

Figure 10.4: Car parks in each cluster for Birmingham, Glasgow, Norfolk, and Nottingham, when using
k-means to group car parks and weekdays.

a similar pattern throughout the weekdays) for Nottingham where all the car parks and week
days were included.

Furthermore, we present the training of the SP predictor by using K-Fold cross validation
in the datasets of Birmingham (Figure 10.5a), Glasgow (Figure 10.5b), Norfolk (Figure 10.5c),
and Nottingham (Figure 10.5d). We can see there that the average MSE varies considerably
depending on the chosen training subset (n-th fold). All in all, the more accurate predictions
were achieved for the 8th fold in Birmingham, the 2nd in Glasgow, the 53rd in Norfolk, and
the 14th in Nottingham.

In Figure 10.6 we present the training of the TS predictor. As was mentioned before,
the number of days in each training process is increased keeping the right time order of the
values. We can see that despite some anomalous fluctuations, TS is quite accurate, presenting
the lowest MSE values after the third weekday of training in the four case studies.

10.5 Testing
After training our predictors it was time to test how well they performed when used to predict
an entire unseen week. To do that, we used the last week of data (not seen in the training
process) to compare their real occupancy values to the ones provided by our six predictors, P,
F, KM, KP, SP, and TS.

Figure 10.7 shows the box plots corresponding to the results achieved by our predictors
in Birmingham, Glasgow, Norfolk, and Nottingham. Note that we are plotting the MSE so
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(a) Birmingham (b) Glasgow

(c) Norfolk (d) Nottingham

Figure 10.5: Training of Shift + Phase (SP) by using K-Fold cross validation with our datasets.

that lower values are better, and that in order to favor the graphical comparison between
predictors, the graphs do not include most of the few existing outliers. We can see that in
Birmingham (Figure 10.7a), TS has achieved the most accurate predictions, especially on
Mondays, Thursdays, and Fridays, while P, F, and SP were quite accurate as well, although
their MSE values were bigger. The accuracy values of the predictions done for Glasgow are
shown in Figure 10.7b. We can see that TS presented the lowest MSE, except by Mondays,
where there was a bigger variability in its results. P and F have shown good results too, while

Table 10.3: Average MSE values achieved after testing our predictors on an unseen week and comparing the
predicted values against the real ones.

Dataset Polynomials
(P)

Fourier Series
(F)

K-Means
(KM)

KM Polynomials
(KP)

Shift & Phase
(SP)

Time Series
(TS)

Birmingham 42.3 63.1 89.7 94.9 46.0 29.8
Glasgow 106.8 127.5 286.7 286.2 167.8 38.7
Norfolk 171.1 255.6 340.1 334.9 276.0 85.6
Nottingham 89.8 104.8 374.9 374.6 223.3 34.7
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(a) Birmingham (b) Glasgow

(c) Norfolk (d) Nottingham

Figure 10.6: Training of Time Series (TS) with the datasets for our case studies.

KM and KP were far away of the desired accuracy. Note that, as KP interpolates the KM
points, their results were similar for most weekdays and scenarios. Figure 10.7c shows the
MSE values for our six predictors in Norfolk. Again TS presented the most accurate values,
this time far better that the rest of the predictors.

Finally, in Figure 10.7d we can see the accuracy values achieved for the car parks in
Nottingham. This last experiment confirmed that TS was the best predictor of our comparison,
followed by P and F. These results are also presented in Table 10.3, where we can see that
that SP has always improved KM and KP which was its main aim. Nevertheless, its accuracy
was lower than TS to be considered as an option.

10.6 Web Prototype
As a way of bringing all these prediction techniques to the inhabitants of a smart city we have
developed a web service prototype. In Figure 10.8a we show the web page where the past,
current and future occupancy rates of a car park can be seen. The region, day and hour can
be selected and if it is a future date, the corresponding prediction done by the TS predictor is
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(a) Birmingham

(b) Glasgow

(c) Norfolk

(d) Nottingham

Figure 10.7: Comparison of the accuracy of our predictors for our case studies over the weekdays.

shown (up to 7 days in advance). By using this service users could plan their trips, looking
for available parking spaces in the future to decide when is the best moment for going to
downtown according to their needs.

Furthermore, in Figure 10.8b the prediction stats page is shown. It can be accessed from
the main page to see how accurate the predictions have been in the past for each car park and
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(a) Real-time occupancy. (b) One-week prediction.

Figure 10.8: Snapshots of our web prototype showing the current occupancy of the car parks of Glasgow (a)
and the predictions done (red dashed line) compared to the real values (blue continuous line) for one car park of
Norfolk (b)

region. At the top of the page the region, car park, and date range can be selected, while in
the central graph a continuous blue line indicates the real occupancy rate and a dashed red
line, the values predicted by the TS predictor. Finally, in the upper left corner of the graph
the calculated MSE value for the selected data range is shown.

10.7 Discussion
In this chapter we have presented six very accurate predictors for forecasting car park
occupancy rates in Birmingham, Glasgow, Norfolk, and Nottingham. We have trained them
by using real data published by local councils and presented the results obtained after testing
them with one week of unseen parking data. Our results show that TS turned out to be the
most accurate predictor although it required the larger amount of data to represent each car
park and weekday. Polynomials and Fourier series also performed quite well, the former
needed between two and four parameters to represent each car park and weekday, while the
latter always needed three. Hence, their use can be interesting in some applications where
the size of the model is more relevant that an extreme accuracy. Moreover, our proposal
includes a novel web service that can be used for real, despite the fact that there are web
pages offering information on car park’s occupancy rates, they rarely make predictions of the
next day’s state nor offer historical data. The use of our proposal in a smart city would mean
that people are not only wasting their precious time looking for a parking space, but also they
would be healthier as they are living a happier, less stressed life, breathing in a cleaner air.
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Chapter 11

New Bio-inspired Algorithms

This chapter presents a new set of ideas on how to build bio-inspired algorithms based on the
new field of epigenetics. By analyzing this domain and extracting working computational
ideas we want to offer a set of tools for the future creation of representations, operators,
and search techniques that can competitively solve complex problems. To illustrate this, we
describe an epiGenetic Algorithm, analyze its behavior and solve a set of instances of the
multidimensional knapsack problem. Since we are in some measure opening a new line
of research, we include a description of epigenetics and computational search, show their
working principles and show an example algorithm solving a real problem. Our aim is to
offer ideas as well as put them to work, to show that they are actually competitive, not just a
nice new inspiration.

11.1 Introduction
According to the Lamarckian inheritance, organisms are able to transmit a number of
characteristics acquired during its lifetime to their offspring. Later, Darwin in his theory of
evolution by natural selection, rejected Lamarck theories as it explains the existing variations
as random mutations that arise in the genome of an individual which are passed to offspring.
After that, Mendelian inheritance was set in a form of three laws which explained the
inheritance in terms of genes, which are passed from one generation to the next based on
rules of probability. This led to a general neglect of the Lamarckian theory of evolution
in biology. Recently, epigenetics has turned up the interest in Lamarckism, as it involves
the possible inheritance of behavioral traits acquired by the previous generation from the
expression of only one allele in the same nuclear environment [157].

Darwin, and many others before (e.g., Owen) and after him (e.g., Weismann), contributed
to dismissing some of the ideas of J.B. Lamarck [151]. In fact, several of these ideas were
clearly, correctly discredited, such as the linear concept of evolution (known as recapitulation).
The inheritance of acquired characters from Lamarck was also dismissed at this moment
until now [192]. Epigenetics (relating heritable traits that respond to the environment and
cannot be explained by changes in DNA sequences) is here to stay, after so much evidence of
its existence and so many applications in biology, pharmacology and medicine [62, 66, 191].
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It seems that we have to consider a second “cock of the walk” for a better understanding
of nature, and that is what we do in this study: we combine the ideas of Darwin and Lamarck
into one single computational algorithm, obviously within the niche of research into nature-
inspired algorithms. In addition to a nice, appealing inspiration for future work, we of
course aim for a competitive evaluation of the resulting techniques, to prove that not only are
epigenetic algorithms new as a class (not a renaming of an existing algorithm!), but also that
they are useful for solving combinatorial and other kinds of problems in modern research.

Metaheuristics for combinatorial optimization problems [27] are frequently inspired by
natural processes such as Darwins’ theory of evolution: evolutionary algorithms are today
a classic example [14]. Some algorithms work better with specific types of problems and
perform worse over others [243]. This first study is targeted to develop a new bio-inspired
algorithm family based on epigenetics, that can be later adapted to different problems. This
is possible not just in the traditional manner (as with EAs) but also by using a variety of
epigenetic mechanisms that we successfully translate from biology to computer optimization.

In summary, this chapter studies the diverse epigenetic mechanisms controlled by specific
DNA methylation as a method of modifying DNA expression, that may be reversible and
inheritable. From this study, we define a methodology to generate EAs that efficiently
solve many different problems by using epigenetic concepts on information representation,
such as histones, nucleosomes, and chromatin, and epigenetic operations such as genomic
imprinting, reprogramming, paramutation, position effect, X-inactivation, bookmarking, and
gene silencing. As initially stated, we move from the pure inspiration to the traditional
optimization analysis, to ensure that this idea is noteworthy to know and usable in the future
of bio-inspired computing.

11.2 Background
Epigenetics have inspired several articles in computer science in the last decade, we comment
on some of them here. Even if the term has been mentioned in the past, nothing similar to a
methodology for building efficient algorithms has been developed in these few papers.

In [172] the authors describe the optimization strategies that bio-molecules utilize and
propose an intragenerational epigenetic algorithm based on them. The authors also present
an agent-based cell modeling and simulation environment, called SwarmCell, whose model
has been built as an autopoietic system that represents a minimal biological cell. Then, they
implement the epigenetic strategies in the model to better clarify the disease mechanisms
at the sub cellular level. This strategy’s proposed study cancer development patterns in
different cell types which have been differentiated by various trans-generational epigenetic
mechanisms. The authors state that their epigenetic algorithm can prove to be a fundamental
extension to existing evolutionary systems and swarm intelligence models. They discuss
improving problem-solving capabilities by implementing epigenetic strategies in their model.
Finally, for future work, they intend to develop a trans-generational epigenetic algorithm
to demonstrate how the internal organization of a system can pass on its traits to the next
generation. Although epigenetic techniques are also proposed in their work, our study focuses
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on a new set of algorithms based on natural evolution rather than autopoietic systems and
swarm models.

An epigenetic approach in artificial life (ALife) is presented in [195] where the model
proposed (EpiAL) uses a dynamic environment to influence the regulation of organisms and
the possible inheritance of epigenetic acquired marks. The objective of the EpiAL model is
to study the plausibility for the existence of epigenetic phenomena and its relevance to an
evolutionary system, from an ALife point of view. Therefore, each agent is able to modify
its phenotypic expression due to environment conditions, pass on epigenetic marks between
generations enabling the existence of acquired traits which can be transmitted through
consecutive generations of agents. The experimentation performed with the EpiAL model
in order to study the mechanisms that influence the evolution of the agents shows that the
epigenetic populations are able to regulate themselves for dynamic conditions, while the non
epigenetic populations find it hard to prosper in dynamic environments. The authors plan a
future development of the model with a focus on both, biological knowledge (developmental
biology) and possible problem solving techniques (dynamic environments). This epigenetic
approach is focused on the evolution of epigenetic agents to gain more knowledge about this
field while we propose an algorithm and solve problems with it.

The authors in [219] incorporate an explicitly controlled gene expression through histone
modification in strongly-typed genetic programming (STGP) and call it, epigenetic program-
ming. They propose a double cell representation of the simulated individuals represented by
their respective chromatin structures. The authors view their proposed approach of epigenetic
programming as a form of epigenetic learning (EL) incorporated into genetic programming
via the beneficial modifications of histone code, which take place within the life cycle of
evolved simulated organisms. They achieve phenotypic diversity of genotypically similar
individuals by using the cumulative effect of polyphenism. They preserve individuals from
the destructive effects of crossover by silencing genotypic combinations and explicitly acti-
vate them when it is more beneficial. Based on the empirically obtained results, the authors
indicate that epigenesis contributes to a 2.1-fold improvement in the computational effort of
genetic programming when it is used to evolve the social behavior of predator agents in the
predator-prey pursuit problem.

Although these three approaches use concepts related to epigenetic theory, to the best of
our knowledge, none of them have proposed an epigenetic algorithm to solve problems related
to combinatorial optimization as we do in this PhD thesis. We believed that the epigenetic
model, including problem representation and operators, has not been comprehensively
described and exploited to build a working search algorithm, especially in those studies
concerned with solving complex optimization problems. Additionally, we compare our
proposal to other well-known models and evaluate their numeric results to see whether our
results are competitive or even can improve upon theirs. We first present the natural processes
explaining epigenetics.
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11.3 Epigenetics From an EA Representation
A DNA molecule consists of two strands coiled around each other forming a double helix.
Each strand is composed of nucleotides containing nucleobases such as guanine (G), adenine
(A), thymine (T), and cytosine (C) [63]. DNA is organized into long structures called
chromosomes (23 pairs in humans, consisting of approximately 25000 genes) which are
duplicated during cell division. Inside each chromosome, proteins such as histones compact
and organize DNA to guide the interactions with other proteins, controlling which genes are
expressed. DNA molecule carries genetic information that can be passed from one generation
to the next [12]. This is the concept that we can find in current EAs, where the chromosome
is a vector of symbols representing DNA genes, usually in a haploid manner (although some
diploid representations were once proposed in [88] and [194]).

In contrast to the classic Mendelian inheritance of phenotypic traits, caused by mutations
of the DNA sequence, under the natural selection explained by Darwin’s theory of evolution,
epigenetic changes are long-term alterations in the transcriptional potential of a cell, due to
the activation of certain genes, that are not necessarily heritable [5].

Epigenetics is the study of the biological mechanisms which cause longterm alterations
in the transcriptional potential of cells (first step of gene expression, in which a particular
segment of DNA is copied into RNA) during their development without changing the DNA
sequence, i.e. it does not involve mutations of the DNA itself [23]. These alterations can be
heritable and, perhaps, not visible in the next generation but in a generation after. The gene
expression process might also be modified by environmental factors [193], diet, personal
habits, aging, or random changes, which may contribute to the development of abnormal
phenotypes [112]. In addition, epigenetic marks between generations can be reset, and the
genome reverted to its original state [249]. Epigenetic processes are essential for development
and differentiation, but they can also be present in mature humans as well.

In the nucleus of eukaryotes (organisms whose cells contain a nucleus enclosed within
membranes), DNA is packaged into a smaller volume so that it can fit in the cell. This
combination of DNA and proteins is called chromatin (Figure 11.1), which also prevents
DNA damage, strengthens the DNA to allow mitosis (cell duplication where the cell nucleus
is separated into two identical sets of chromosomes), and controls gene expression and DNA

Figure 11.1: DNA packaged by the chromatin in eukaryotic cells.
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Figure 11.2: An epigenetic factor, i.e. methylation, bound to a histone in a nucleosome.

replication. During the metaphase (the most condensed and coiled stage) the structure of
chromatin is optimized for physical strength and manageability, forming a chromosome struc-
ture to prevent shear damage to the DNA when the chromosomes are separated. Epigenetic
chemical modification of the structural proteins in chromatin also alters its local structure.

The primary protein components of chromatin are histones [23], in which eukaryotic
DNA is wrapped to form nucleosomes (Figure 11.2). Nucleosomes are the fundamental unit
into which DNA and histones are packaged. They are the basic components of a chromosome
where the DNA helix is wrapped around to form a series of beads compacting the DNA. Each
nucleosome consists of eight histones called the histone octamer. Histones have long tails
protruding from the nucleosome, which can be modified by methylation, acetylation, etc.

DNA methylation is an epigenetic factor which is recognized as the main contributor to
the stability of gene expression states through mitotic cell division [104] because it establishes
a silent chromatin state that modifies nucleosomes [242]. Epigenetic mechanisms constrain
expression by adapting regions of the genome to maintain either gene silencing or gene
activity [21]. This is achieved through direct chemical modification of the DNA region itself
and by the modification of proteins that are closely associated with the location of each
gene [112]. Additionally, DNA methylation and histone modification serve as epigenetic
marks for active or inactive chromatin, and such epigenetic marks can be heritable [130].

Epigenetic regulation of gene expression can occur when DNA methylation is lost to
allow active or inactive genetic states to be potentially reversible. If methylation fails to
be maintained during multiple rounds of DNA replication, a passive loss occurs. On the
other hand, active demethylation takes place in non-dividing cells and requires enzymatic
activities [112].

11.4 Epigenetic operators
Epigenetic Mechanisms [5] are the temporal and spatial controllers of gene activity during
the development of complex organisms [104]. DNA methylation and histone modification
are clear examples of epigenetic mechanisms [182], all of which can affect long-term gene
expression, which constitutes the basis for the accurate execution of developmental programs
and the maintenance of the cell types over subsequent cell divisions [117].
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Figure 11.3: Schema of each epigenetic mechanism and the modifications made to the cell’s DNA thru
methylation.

Epigenetic Mechanisms can be used as operators to modify the solution of a problem
represented as a chromosome following the epigenetic methylation rules. Most of the
mechanisms use references to the cell’s parents to calculate new values for the chromosome
as depicted in Figure 11.3. In the following sections we analyze seven epigenetic mechanisms.

11.4.1 Genomic Imprinting
Genome Imprinting [37] is a non-Mendelian phenomenon by which a gene expression
depends on whether its origin is paternal or maternal [166, 242]. Mammals are diploid
organisms whose cells have two matched sets of chromosomes, one inherited from the
mother and one from the father. Therefore, mammals have two copies of each gene with
the same potential to be active in any cell. Genome Imprinting changes this potential by
restricting the expression of a gene to one of the parental chromosomes. If an allele inherited
from the father is imprinted, only the allele inherited from the mother will be expressed, and
vice versa.
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11.4.2 Reprogramming
Epigenetic reprogramming [179] is an important aspect of normal mammalian development.
Several changes to DNA methylation and histones are imposed on the two parental genomes
during cell division, differentiation and other stages of vertebrate development. Many
environmental factors, stochastic events, diet, and early experiences may contribute to the
variations in the epigenome [9].

11.4.3 Paramutation
Paramutation [36] is the epigenetic alteration of one allele induced by the other one in the
same location. It occurs when certain alleles impose an epigenetic imprint on the susceptible
ones. The paramutated allele could be inherited in traits of later generations even if the gene
behind those traits is absent. Paramutation violates Mendel’s first law as alleles do not remain
unchanged, which differs from the expected classical Mendelian inheritance patterns [46].

11.4.4 Position Effect
Position Effect [20] consists in the juxtaposition of genes with heterochromatin (a tightly
packed form of DNA) either by rearrangement or by transposition, resulting in a variation of
the phenotype to indicate that the gene has been silenced in cells where it is usually active.

11.4.5 X-Inactivation
Human DNA is packed into 23 pairs of chromosomes (22 pairs of autosomes and one pair
of sex chromosomes) of varying size. One chromosome of each pair in inherited from the
individual’s father and the other from his mother. The sex chromosomes differ between the
sexes so that females have two copies of the X chromosome (XX) and males have one X and
one copy of the Y chromosome (XY). One of the mechanisms to compensate this difference
between members of the same species is switching off genes on one of the female Xs [181].
In some cells it is the paternal X, in others it is the maternal X, but once inactive, all of the
clonal descendants of the cell have the same inactive X [111].

11.4.6 Bookmarking
Gene bookmarking is a epigenetic mechanism that controls cell fate and lineage commitment
as cells must propagate the gene pattern through mitosis, to daughter cells [187]. It is
believed that this pattern of gen activity is somehow marked before mitosis to avoid suffering
modifications and let daughter cells know how to reassemble the transcription machinery
on the promoters of these genes once mitosis is completed. Bookmarking describes the
retention of phenotype-specific transcription factors mitotic chromosomes, allowing the
necessary information to be conveyed to progeny cells by inheritable histone marks and DNA
methylation [250].
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11.4.7 Gene Silencing
Gene silencing describes the epigenetic mechanism of gene regulation by “switching off” a
gene without using genetic mutation. Transcriptional gene silencing is the result of histone
modifications and post-transcriptional gene silencing is the result of the messenger RNA
(mRNA) destruction of a particular gene [177]. This epigenetic mechanism plays a central
role in the regulation of gene expression, genome stability and is involved in defense against
changes in position of a DNA sequence and RNA viruses [173].

11.5 The epiGenetic Algorithm (epiGA)
Now we have briefly presented the basis of epigenetic chromosomes and operations on them,
we start the pure, computational part where we show different ideas to build algorithms based
on the previous concepts.

Our novel proposal, the epiGenetic Algorithm (epiGA) [200], consists of a set of strate-
gies, based on evolutionary computation, inspired in nature, especially in epigenetics, with
the aim of solving complex combinatorial problems. The foundation of epiGA is epigenesis.
We are interested in how the DNA and histones are collapsed to form nucleosomes, how
this affects the gene replication during reproduction, and how the epigenetic mechanisms
modify the gene expression through methylation, all of them in order to build the bio-inspired
operators of our algorithm. We think this is a way of building our algorithm that, while
different from known models, remains close to a standard GA which will make it easier for
other authors to adopt it.

In Figure 11.4 we present the block diagram of the epiGA where the epigenetic operations
are highlighted. During the Population Initialization, new individuals containing cells are
created. The Nucleosome Generation creates the nucleosome structure where the DNA is
collapsed and made inaccessible during reproduction. The Nucleosome Based Reproduction
operator is where the most promising cells combine with each other following epigenetic rules.
Finally, the block called Epigenetic Mechanisms is the place in which those mechanisms are
applied according to DNA methylation and the surrounding environment.

Figure 11.4: epiGenetic Algorithm (epiGA). Note that the specially built epigenetic blocks are highlighted.
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Algorithm 11.1 epiGenetic Algorithm (epiGA).
procedure EPIGA(Ni, Nc, Pe, Pn, R, Mechanisms, Environment)

t← 0
P(0)← PopulationInitialization(Ni,Nc) ▷ P = population
Q(0)← /0 ▷ Q = auxiliary population
while not TerminationCondition() do

Q(t)← Selection(P(t))
Q(t)← NucleosomeGeneration(Q(t),Pn,R) ▷ NG
Q(t)← NucleosomeBasedReproduction(Q(t)) ▷ NBR
for all m ∈Mechanisms do

Q(t)← E pigeneticMechanisms(Q(t),Pe,m,Environment) ▷ EM
end for
P(t +1)← Replacement(P(t),Q(t))
t← t +1

end while
end procedure

The pseudocode of the epiGA is described in Algorithm 11.1. There are a few necessary
parameters such as these: Ni: number of individuals; Nc: number of cells; Pe: epigenetic
probability; Pn: nucleosome probability; R: nucleosome radius; Mechanisms: set of epige-
netic mechanisms to be applied; Environment: epigenetic environment rules. Most of these
parameters depend on the problem to be solved, consequently their values will be studied in
Section 12.3.

First, the number of steps t, the population P(0), and the auxiliary population Q(0) are
initialized. Then, the main loop is executed until the termination condition holds. In the main
loop, the auxiliary population Q is filled with individuals from the population P by using the
Selection operator, as in standard GA. Next, the nucleosome chain is generated for each cell
belonging to the individuals in Q. Then, the offspring is obtained after reproduction taking
into account the nucleosomes previously generated.

The cells of the offspring in Q are then exposed to the epigenetic environment while the
different epigenetic mechanisms are applied. Then the modified chromosome of each cell is
evaluated to obtain their new fitness values. Finally, the new population P(t +1) replaces
the current one (P(t)) with the individuals of the auxiliary population Q(t) by using the
Replacement operator. This implies that the individuals of P(t) with the worst fitness values
are replaced by the individuals of Q(t) if and only if the new ones have better fitness values
(lower values if we are minimizing and vice versa). Each part of the algorithm, including its
operators, are explained as follows:

11.5.1 Population Initialization
The initial population could be randomly initialized or could be created by seeding according
to the problem knowledge or by a greedy algorithm. In this study we address, without loss
of generality, the solution of combinatorial optimization problems represented as a binary
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Figure 11.5: Population of the epiGenetic Algorithm.

vector. Consequently, we present in Figure 11.5 the structure of the population for epiGA.
Each individual in the population made of N individuals contains M cells which can represent
different solutions of the problem. Inside each cell we find four binary vectors of the same
size of the chromosome (problem representation). They are the x vector (chromosome) where
the solution is encoded, the f and m vectors which contain the chromosomes of the parents
of the cell ( f stands for father and m for mother), and finally the n vector where the binary
mask (nuclesome mask) representing the nucleosome structure is stored.

The pseudocode of the Population Initialization is presented in Algorithm 11.2. The
parameters Ni and Nc are the number of individuals and cells that will be in the population.
Each new cell is generated by the constructor function, Cell, which fills the x vector with a
new solution that can be either randomly generated or made especially, depending on the
problem’s characteristics. After that, the cell is evaluated to obtain its fitness value according
to its chromosome and the problem being solved. The result of this operator is the set of Ni
individuals, I, containing Nc cells each, which will become the algorithm’s initial population.

Algorithm 11.2 Population Initialization.
function POPULATIONINITIALIZATION(Ni, Nc)

for all i ∈ Ni do ▷ Ni individuals
for all c ∈ Nc do ▷ Nc cells

C(c)←Cell() ▷ Constructs a new cell
Evaluate(C(c))

end for
I(i)← Individual(C) ▷ set of individuals

end for
return I ▷ set of Ni individuals, each one containing Nc cells

end function
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11.5.2 Selection
If the termination condition is not satisfied, the algorithm enters a new iteration whose
first step is the Selection operator. In this study we have used the well-known binary
tournament [87] as the selection operator although a different selection strategy could be
used here. As a result, the auxiliary population P′ is obtained and the epigenetic cycle of
epiGA continues.

11.5.3 Nucleosome Generation (NG)
The next operation is the Nucleosome Generation (NG) which generates a new nucleosome
vector as a mask for each cell in the individuals of the population as shown in Algorithm 11.3.

Each position of the nucleosome vector n in each cell is likely to be a center of a
nucleosome in the vector. Depending on the nucleosome probability Pn new nucleosomes
will be generated, centered in the chosen position j, with a radius R, representing a collapsed
DNA region. At the end of this operation all the cells in the population have a new nucleosome
mask in n.

Algorithm 11.3 Nucleosome Generation (NG).
function NUCLEOSOMEGENERATION(P, Pn, R)

for all i ∈ P do ▷ Each individual i
for all c ∈ i do ▷ Each cell c

n← getNucleosome(c)
for all j ∈ n do

if rnd()< Pn then ▷ Chromosome is probabilistically collapsed
Collapse(n,R) ▷ n[j-R] – n[j+R] = 1

end if
end for

end for
end for
return P

end function

11.5.4 Nucleosome Based Reproduction (NBR)
The Nucleosome Based Reproduction (NBR) operator (Algorithm 11.4 and Figure 11.6) uses
the nucleosome mask generated by the previous operator in the epigenetic cycle to guide the
recombination of the solutions stored in each cell.

First, an empty population P′ is initialized. Second, two individuals (i1 and i2) are taken
from the current working population P. Third, the best cells (c1 and c2) from i1 and i2 are
extracted as well as their chromosomes x1 and x2 and nucleosomes n1 and n2. Next, a new
nucleosome mask N is calculated by carrying out the boolean operation OR between the n1
and n2. After that, the contents of the chromosomes are swapped only where the DNA is not
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Algorithm 11.4 Nuclesome Based Reproduction (NBR).
function NUCLEOSOMEBASEDREPRODUCTION(P)

P′ ← /0
for all {i1, i2} ∈ P do ▷ Each two individuals

c1← getBestCell(i1)
Let c1,c2 be the best cells from i1 and i2 ▷ According to fitness value
Let x1,x2 be the solution vectors from c1 and c2
Let n1,n2 be the nucleosome vectors from c1 and c2
N← n1 OR n2 ▷ New nucleosome mask
while j < size(N) do

if N( j) then ▷ Collapsed DNA zones (N( j) = 1) do not change
x1′( j)← x1( j)
x2′( j)← x2( j)

else ▷ Non-collapsed DNA zones do change
x1′( j)← x2( j)
x2′( j)← x1( j)

end if
j← j+1

end while
c1′ ←Cell(x1′,x1,x2,N) ▷ New cells with new parents and nuclesomes
c2′ ←Cell(x2′,x1,x2,N)
i1′ ← replaceWorst(i1,c1′) ▷ New individuals based on the former ones
i2′ ← replaceWorst(i2,c2′)
P′ ← P′∪{i1′, i2′}

end for
return P′

end function

collapsed, i.e. where the nucleosome mask value is zero, and stored in two new chromosomes
x1′ and x2′. At the end of the loop, two new cells c1′ and c2′ are created by using the new
chromosomes x1′ and x2′, the former ones x1 and x2 and the new nucleosome mask N. Note
that the former chromosomes are needed to store the father f and mother m in the new cell
(Figure 11.6), as they could be needed when applying Epigenetic Mechanisms later. Finally,
two new individuals i1′ and i2′ are created by replacing the worst cell in them by the new
cells c1′ and c2′, respectively. Then i1′ and i2′ are added to the population P′. This operation
is especially useful to preserve the diversity of the cells in the individual and thus in the
population. At the very end of the code, the resulting population P′ is returned to be used by
the next operator in the epigenetic cycle of the epiGA.

11.5.5 Epigenetic Mechanisms (EM)
This operator applies to each cell of the population P, the epigenetic mechanism specified in
the parameter m with a probability Pe and under the effects of the epigenetic environment
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Figure 11.6: Nucleosome Based Reproduction (NBR). Both vectors x change only where the DNA is not
collapsed (positions of vector n with zeros). New vectors f and m are taken from the parents of the new cell.
Offspring’s vectors n are calculated by applying the boolean OR to the parents’ vector n.

rules contained in Environment, as shown in Algorithm 11.5. After that, the new content
of the cell, i.e. the x chromosome, is evaluated. Although we discussed seven different
epigenetic mechanisms in Section 11.4 and showed them in Figure 11.3, in this first approach
we are only studying the Gene Silencing mechanism. Not only does it frequently appear in
biology, it is also easy to implement as follows.

Algorithm 11.5 Epigenetic Mechanisms (EM).
function EPIGENETICMECHANISMS(P, Pe, m, Environment)

for all i ∈ P do ▷ Each individual i
for all c ∈ i do ▷ Each cell c

ApplyMechanisms(m,c,Pe,Environment)
Evaluate(c)

end for
end for
return P

end function

Gene Silencing (GeS)

The pseudocode of Gene Silencing is presented in Algorithm 11.6. It receives cell c, epi-
genetic probability Pe, and environment E, as parameters. As we have mentioned, only
collapsed DNA is likely to be changed by methylation. In GeS, the probability of methylation
is provided by the environment (a vector of probabilities) for each gene (position of vector x).

First, the chromosome x and the nucleosome mask n is obtained from the cell c. Second,
each position of the chromosome x is selected and, if the corresponding position in the
nucleosome mask n indicates that the DNA is collapsed, the value of x( j) may change
according to the probability Pe and the environment E. Here we are supposing a binary
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Algorithm 11.6 Gene Silencing (GeS).
procedure GENESILENCING(c, Pe, E)

x← getSolution(c)
n← getNucleosome(c)
while j < size(x) do

if n( j) then ▷ Only Collapsed DNA methylates
if rnd()< Pe then ▷ Epigenetic probability

x( j)← rnd()< E( j) ▷ Influence of the environment
end if

end if
j← j+1

end while
end procedure

problem, as a result, each position of x is a binary value, and E is a vector of probabilities
that modifies the likelihood that each value x has of being “1”.

By using the nucleosome mask (n), we control which parts of the solution are likely to
change, i.e. the ones that were not modified by the reproduction. Moreover, the epigenetic
environment allows us to define a different probability distribution for each position of the
solution vector. It could be just a floating point number if we have a binary vector as the
solution, or a more complex expression for a solution comprising integers, for example. Note
that we can prescind from the environment’s influence if we set 0.5 as the probability value
for every position of the solution, making them all equiprobable.

In Figure 11.7 we present an example of Gene Silencing applied to chromosome x,
according to the nucleosome mask n. It can be seen that the positions 1, 2, 3, 7, 8, and 9,
correspond to a collapsed DNA (vector n). After using the random number generator and
comparing the result with Pe, only positions 2, 7, and 9, are candidates for changing their
value. Finally, the influence of the epigenetic environment changes positions 2 and 7 to “1”,

Figure 11.7: Gene Silencing (GeS). Only collapsed DNA is likely to be methylated. The methylation probability
is given by the environment.



11.6 Discussion 159

and position 9 to “0”. Note that this is not just a bit flip operator as the value of position 7
has not been changed this time despite having been initially selected.

11.5.6 Replacement
The last operator in the epigenetic cycle is the Replacement operator. Here, we have used
an elitist replacement [86] although another replacement operator could be used instead. In
doing so, we have selected the new working population in an elitist way, copying the best
individuals to it. Note that the concept of best individuals depends on their fitness values and
the problem that is being solved, e.g. if we are minimizing, the lower, the better.

11.6 Discussion
Through this chapter we have introduced epigenetics and its mechanisms with the aim of
using it to build new computational algorithms. Our goal was to understand a biological
domain that could represent an interesting source of inspiration on building new algorithms.
These new algorithms will not only have different operators with respect to the standard ones,
but a different representation that takes ideas from nature itself. They are used to evolve more
complex structures while expressing different relationships between genes beyond simple
Mendelian ideas. The additional interest in learning from the environment and acting on
inherited chromosomes is also a particular way of thinking that could be exploited later by
other researchers.

We strongly believe that the epiGenetic Algorithm presented in this PhD thesis could be a
powerful tool for solving combinatorial optimization problems as it can be tuned to different
types of problems by using specially made representations, environments, and choosing the
right set of epigenetic mechanisms to explore the solution space.





Chapter 12

Solving Problems with epiGA

In this chapter our epiGenetic Algorithm (epiGA) is used to solve the Multidimensional
Knapsack Problem (MKP) which has been selected to test our proposal. Additionally, four
strategies are proposed as competitors. Finally, the parameterization and evaluation of epiGA
is done plus a convergence analysis to better know the behavior of this new algorithm.

12.1 Multidimensional Knapsack Problem (MKP)
The Multidimensional Knapsack Problem (MKP) is a well-known NP-Hard combinatorial
problem [76] that has been studied for decades since it first appeared in [93, 138].

We have chosen this problem because it is a highly complex binary problem and because
there are several studies available to be compared to our results. Different methods have
been used to solve the MKP [175], many of them are based on kernel search [8], multi-level
search strategy [30], Particle Swarm Optimization (PSO) [39], Genetic Algorithms (GA) [42],
branch and bound techniques [71], and greedy techniques [152]. Our goal here is to add
experimentation to our proposed algorithm based on epigenesis, test how it performs against
the state of the art, and validate the use of the epigenetic operators as a viable way of solving
hard combinatorial problems.

The MKP consists of n items and m different knapsacks of capacity ci, i ∈ {1, . . . ,m}.
Each item j, j ∈ {1, . . . ,n}, has an associated profit p j and consumes a quantity wi j from the
knapsack i, if the item has been selected through the variable x j by setting it to 1, otherwise
0. The objective is to maximize the profit of the items in the m knapsacks (Equation 12.1)
without exceeding the maximum capacity of each one (ci), according to the constraints
described in equations 12.2 and 12.3.
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Maximize z =
n

∑
j=1

p jx j (12.1)

Subject to
n

∑
j=1

wi jx j ≤ ci, i = 1,2, . . . ,m (12.2)

x j ∈ {0,1}, j = 1,2, . . . ,n (12.3)

To solve the MKP we have defined the fitness function as presented in Equation 12.4.

F (⃗x) =

{
∑

n
j=1 p jx j if ∑

n
j=1 wi jx j ≤ ci,∀i

−1.0 otherwise
(12.4)

There, the fitness value is the sum of the profits corresponding to the objects included in
all the knapsacks (x j = 1) providing they do not exceed the maximum capacity of each one
(ci). If this happens, the result is a negative value, e.g. -1, so that the Evaluate function can
repair the solution as described in Algorithm 12.1.

First, solution x is obtained from cell c. Second, the fitness value is calculated according
to Equation 12.4. Third, if the fitness value is less than 0 a random position of x where its
value is 1 is changed to 0 (an item is removed from the knapsacks). After that, the fitness
value is calculated again and the internal loop is repeated until the fitness value is greater or
equal to 0. Finally, the solution in cell c is replaced by the new one and the fitness value is
returned. Note that we have preferred to use a simple repairing technique instead of a greedy
one [42] or just a penalization term [52].

We have adapted the environment to the MKP so that it represents the probability of
including an item in the knapsacks. Instead of being equiprobable, all the available items
have a probability bias which depends on the relation between its profit and weight in all the
knapsacks (Equation 12.5).

Algorithm 12.1 Evaluate.
function EVALUATE(c)

x← getSolution(c)
f ← Fitness(x) ▷ Evaluates solution x
while f < 0 do ▷ Is invalid?

i← f indRndOne(x)
x(i)← 0 ▷ Removes an item randomly
f ← Fitness(x) ▷ And reevaluates x

end while
setSolution(c,x) ▷ Updates the solution in the cell c
return f

end function
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E( j) =
p j

∑
m
i=1 wi j

(12.5)

We calculate the environment (E) for all the items at the very beginning of the algorithm,
when the characteristics of the available items are known. The values are normalized so that
the probabilities E( j) are between 1

3 for the item j with worst relation value (Equation 12.5),
and 2

3 for the best one. Although we have tested with other limits, 1
3 has worked the best.

We have chosen the OR-Library [19] to evaluate epiGA. This is a well-known set of
instances of the MKP consisting of problems with n = 100, 250, and 500 variables and m =
5, 10, and 30 constraints. There are 30 instances of each combination of n and m. We have
named them according to the pattern: n.m_i, so that the instance 250.5_1 corresponds to the
first instance of MKP problem with 250 variables and 5 constraints. In this approach we
have addressed the optimization of 30 instances of the following problems: 100.5, 500.5,
100.10, and 250.10, i.e. 120 instances in total. In the next section we describe the selected
competitors for epiGA.

12.2 Competitors
Even if our goal is to create a new methodology and contribute new ideas to the domain, we
are aware of the advantages of showing from the very beginning that the resulting algorithms
could actually work versus published competitors in the literature.

We have chosen several competitors for epiGA, some of which are taken from the state
of the art, providing their results are available and can be compared to ours. Specifically,
the SACRO-PSO algorithms and Resolution Search + Branch & Bound are included in our
comparison. In addition, we have included an exact optimizer (CPLEX), and two well-known
metaheuristics for solving combinatorial problems, Simulated Annealing (SA) and a Genetic
Algorithm (GA). These five algorithms help us to prove performance for new ideas, even if
this PhD thesis is just devoted to introducing them for future exploitation.

12.2.1 IBM ILOG CPLEX
IBM ILOG CPLEX [108] is a commercial software developed by ILOG and currently
owned by IBM, based on linear programming and the simplex method [155]. We have
formalized each working instance as a linear programming problem to be solved by CPLEX
as a maximization task (Equation 12.6) subject to the restrictions defined in each instance
(Equation 12.7).
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Maximize ob j = p0 · x1 + p1 · x2 + . . .+ pn · xn (12.6)
Subject to c1 = w1,1 · x1 +w1,2 · x2 + . . .+w1,n · xn (12.7)

c2 = w2,1 · x2 +w2,2 · x2 + . . .+w2,n · xn

. . .

cm = wm,1 · x1 +wm,2 · x2 + . . .+wm,n · xn

To make a fair comparison we have restricted the execution of CPLEX (version 12.6.2.0)
to one CPU and thread. Furthermore, we have set the relative and absolute MIP gap tolerance
(mipgap and absmipgap) to 0 in order to improve the precision when finding the maximum.

12.2.2 SACRO-PSO Algorithms
In [39] the author presents a novel Self-Adaptive Check and Repair Operator (SACRO)
combined with particle swarm optimization (PSO) to solve the MKP. SACRO is based on the
check and repair operator (CRO) explained in [42]. However, in SACRO the profit/weight
utility and profit density are used as alternative pseudo-utility ratios.

In the two resulting algorithms, based on the existing BPSO-TVAC and CBPSO-
TVAC [40], the values for all particles are randomly generated and evaluated to obtain
the corresponding fitness value. If the constraints of the knapsack are not satisfied, the infea-
sible solutions are converted into feasible ones, using SACRO. The repair of the infeasible
solutions is based on alternative pseudo-utility ratios which varies the approach directions
allowing the particles to visit different feasible regions of the search space.

In our study we have used the results of SACRO-BPSO-TVAC and SACRO-CBPSO-
TVAC published in [39] corresponding to 100 runs and 20.000 iterations.

12.2.3 Resolution Search + Branch & Bound (RS + B&B)
An exact method based on a multi-level search strategy for solving the MKP is proposed
in [30]. First, the top level branches are enumerated by using Resolution Search Strategy, in
which the authors proposed an improvement of the waning phase in the resolution search
principle [43].

Second, the middle level branches are solved by using Branch & Bound [231]. In this
stage, the algorithm first searches in the most promising parts of the search tree. In the
implementation of the algorithm proposed in [231], done by the same authors, the specific
reduced cost propagation was removed to save time.

Third, the lower level branches are enumerated according to a simple Depth First Search
enumeration brute force. The branching strategy in this phase consists in fixing the first free
variable to 0 and then to 1.



12.2 Competitors 165

12.2.4 Genetic Algorithm (GA)
In addition to these competitors, we want to compare our results to a well-known imple-
mentation of a Genetic Algorithm (GA) [86, 102], since our epiGA could easily be seen as
the next step in the evolution of algorithms like GA, when epigenetics are used. This is a
metaheuristic inspired by nature, specifically by natural selection and genetics, which has
been described in Section 3.2.1.

We have designed an elitist, generational GA [15], and used it to solve the selected
instances of the MKP after performing a first phase of parameterization and population size
studies, in order to achieve a fair comparison afterwards. The pseudocode of the GA was
already presented in Algorithm 3.1. We have used Binary Tournament [87] as selection
operator, Uniform Crossover [87] as recombination operator, Bit Flip Mutation, and, the new
population P(t +1) has been obtained in an elitist way, as in epiGA.

12.2.5 Simulated Annealing (SA)
Finally, one last competitor is presented in this section. It consists in an implementation of
Simulated Annealing (SA) [35, 118] a well-known metaheuristic applicable to a wide range
of problems which has been described in Section 3.2.2.

We have used five parameters in our implementation (Algorithm 12.2): N is the number
of iterations in the same temperature (internal loop), T0 is the initial temperature, Tmin is the
minimum (final) temperature, and Pmin and Pmax are two extra parameters set up for initially
exploring the search space and lately exploiting the best solutions found.

Algorithm 12.2 Simulated Annealing (SA).
procedure SA(N, T0, Tmin, Pmin, Pmax)

X ← GenerateInitialState()
repeat

for i = 0 to N do
Y ← Generate(X ,Tk) ▷ Generates a new solution
if Accept(X ,Y,Tk) then ▷ New solution acceptance

X ← Y
end if

end for
Tk+1←U pdate(Tk) ▷ Temperature decrement
k← k+1

until Termination Condition
end procedure

First, the SA algorithm generates an initial solution X as done in GA and epiGA. Second,
the main loop begins until the Termination Condition is met. Third, the internal loop begins
performing N iterations. Each iteration generates a new solution Y (Algorithm 12.3) which
is accepted depending on the current temperature Tk (Equation 12.10). After that, the current
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temperature Tk is updated following Equation 12.8 as used in the Fast Simulated Annealing
(FSA) [218]. Finally, if the Termination Condition is not fulfilled a new iteration begins.

T (k) =
T0

1+ k
(12.8)

Algorithm 12.3 presents the pseudocode of the function used to generate a new solution.
There, the positions (bits, as we are working with binary representations) of the current
solution X are visited and their values are flipped depending on probability p. In order to
reduce the number of changes made to the solution following the reduction of the temperature,
the value of p decreases following a line defined by slope m and intercept value h.

Algorithm 12.3 Generate Function.
procedure GENERATE(X , Tk)

p← m∗Tk +h ▷ Calculates probability p
while j < size(X) do

if rnd()< p then
X( j)← not X( j) ▷ Changes j-th value

end if
end while

end procedure

Equation 12.9 shows the calculation of both parameters based on the initial temperature
T0, the minimum one Tmin and the parameters Pmax and Pmin which were obtained during the
parameterization of the SA we have done (Section 12.3). By including these parameters, we
are tuning the SA to efficiently solve the MKP in order to be a better competitor of epiGA.

m =
Pmax−Pmin

T0−Tmin
; h = Pmin−m (12.9)

Finally, the acceptance of a new generated solution Y is defined in Equation 12.10 and
is known as the Metropolis probability [118]. There, the energy function c is the fitness of
the solutions X and Y , which is calculated as in epiGA. Furthermore, we have included the
process that fixes the invalid solutions in the fitness calculation to keep the comparison fair.

Accept(X ,Y,Tk) = min{1,e−
c(Y )−c(X)

Tk } (12.10)

12.3 Parameterization
In this section we address not only the parameterization of the epiGA, but also the GA and
SA in order to improve their performance when solving the MKP and foster a fair result
comparison later. All the runs performed in this section were limited to max 1,000,000
evaluations and executed by the same hardware.
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12.3.1 epiGA
The epiGA has three main parameters: the epigenetic probability Pe, the nucleosome probabil-
ity Pn, and the nucleosome radius R. Additionally, we have included in the parameterization
two different population sizes.

First, we have performed 30 independent runs of epiGA with a different combination
of the parameters in the same instance of MKP (one of the hardest available so that the
maximum should not be found during the optimization time). We have tested Pe,Pn ∈
{0.01,0.02, . . . ,0.10} and R ∈ {1,2, . . . ,10} which accounts for 1,000 combinations, i.e.
30,000 runs. On the left of Table 12.1 we present the 30 best results achieved (according
to the Friedman Rank), the standard deviation, the Friedman Rank itself, and the Wilcoxon
p-value for the selected combinations of the parameters. There are two solutions which are

Table 12.1: Parameterization of the epiGA. The left of the table shows the parameter tuning (30 best ranked
combinations) while the second experiment, (population sizes of 200 and 400), is shown on the right.

Pe Pn R
Fitness Friedman

Rank
Wilcoxon
p-value Instance

Average Fitness Wilcoxon
p-valueAverage StdDev 200 400

0.01 0.03 3 114966.2 123.8 996.75 0.028 1 115337.6 115577.9 0.000
0.01 0.03 4 114974.9 188.6 986.35 0.084 2 114170.8 114461.3 0.000
0.01 0.03 5 114999.2 131.1 1013.95 0.162 3 116055.2 116280.3 0.000
0.01 0.03 6 114977.3 178.9 989.72 0.086 4 114701.4 114961.7 0.000
0.01 0.03 7 114983.4 155.5 997.73 0.202 5 115862.3 116061.3 0.000
0.01 0.04 4 115032.6 149.8 1024.25 0.604 6 115049.3 115348.0 0.000
0.01 0.04 5 114985.5 159.8 1001.35 0.150 7 113463.1 113678.5 0.000
0.01 0.04 6 114981.0 135.1 997.68 0.047 8 113599.1 113873.7 0.000
0.01 0.05 2 114996.2 158.8 1009.07 0.459 9 114761.4 114971.8 0.000
0.01 0.05 3 115006.2 177.5 1006.45 0.355 10 116383.8 116616.1 0.000
0.01 0.05 4 114985.8 173.7 993.80 0.241 11 217648.7 217839.6 0.000
0.01 0.06 2 115020.2 134.7 1019.98 0.399 12 214049.5 214272.5 0.000
0.01 0.06 3 115054.3 177.9 1025.62 0.951 13 215404.8 215617.2 0.000
0.01 0.07 2 114971.8 141.0 995.82 0.026 14 217361.0 217593.3 0.000
0.01 0.07 3 114983.1 172.5 993.67 0.100 15 215164.7 215382.2 0.000
0.01 0.08 1 114962.1 149.8 988.78 0.053 16 215319.6 215489.4 0.000
0.01 0.08 2 114962.7 185.1 985.00 0.074 17 215459.2 215676.3 0.000
0.01 0.09 1 114997.8 169.2 1004.78 0.399 18 215950.6 216179.8 0.000
0.01 0.10 1 115051.6 154.6 1028.90 — 19 216871.6 217073.0 0.000
0.01 0.10 2 115023.2 141.2 1020.02 0.497 20 214209.3 214448.2 0.000
0.02 0.02 5 114976.3 180.2 992.13 0.206 21 301207.0 301384.7 0.000
0.02 0.04 1 114966.7 169.3 986.25 0.074 22 299644.1 299811.3 0.000
0.02 0.04 2 115008.3 211.7 1001.72 0.376 23 304751.7 304876.9 0.000
0.02 0.04 3 114960.1 136.0 989.23 0.048 24 301554.4 301728.8 0.000
0.02 0.05 3 114993.5 170.3 998.97 0.171 25 304021.4 304219.3 0.000
0.02 0.06 2 114998.1 119.3 1013.88 0.109 26 296549.0 296755.2 0.000
0.02 0.07 2 114975.0 184.7 988.93 0.079 27 302981.1 303122.5 0.000
0.02 0.08 1 114964.3 170.3 984.52 0.018 28 306585.8 306771.8 0.000
0.02 0.09 1 115012.1 138.0 1016.67 0.258 29 302782.0 302947.3 0.000
0.02 0.10 1 114994.9 193.4 997.33 0.202 30 300114.7 300302.7 0.000
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statistically equivalent: Pe = 0.01, Pn = 0.10, R = 1 and Pe = 0.01, Pn = 0.06, and R = 3. If
we compare the existing Wilcoxon p-value between these two combinations (0.951) we can
see that it is high enough to allow us to use any of them. Figures 12.1a, 12.1b, and 12.1c show
the parameterization performed and how the fitness evolves for the different combinations of
values when we fix the selected ones. It can be seen that the lower the Pe and R, the better,
while Pn tends to depend on the value of R for this problem.

(a) Pe = 0.01 (b) Pn = 0.10 (c) R = 1

Figure 12.1: Fitness variation of epiGA when we set one of the parameters to the best value according to the
parameterization done.

Second, we performed 30 independent runs of epiGA optimizing 30 different instances,
using two different population sizes: 200 and 400, which amounts to 1800 runs. We have
used as parameters the best combination obtained in the previous experiment (Pe = 0.01,
Pn = 0.10, and R = 1). On the right of Table 12.1 we present the results obtained from the
parameterization of the population size performed. We can see that epiGA always obtains
a better average fitness when using a population (µ) of 400 individuals to solve the MKP.
Additionally, we provide the Wilcoxon p-value of each comparison which shows that they
are statistically significant.

12.3.2 GA and SA
The left of Table 12.2 shows the parameterization of GA for different combinations of its two
parameters, the crossover probability Pc, and the mutation probability Pm. We have performed
30 independent runs for values of Pc ∈ {0.1,0.2, . . . ,1.0} and Pm ∈ {0.01,0.02, . . . ,0.10}
which accounts for 100 combinations, i.e. 3,000 runs. We can see that the combination of
Pc = 1.0} and Pm = 0.01 is clearly the best for solving the MKP with a confidence interval
greater than 99% according to the Wilcoxon p-value calculated.

Furthermore, we have tested two population sizes as in epiGA by performing 30 inde-
pendent runs on the 30 different instances as in epiGA (900 runs). The center columns of
Table 12.2 show that the average fitness values are always better when using a population
of 400 individuals (as in epiGA) and that the results are statistically significant for all the
instances (above 97%). The parameterization of GA (Figure 12.2a) shows that the fitness
values improve as the mutation probability decreases and the crossover probability increases.
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Table 12.2: Parameterization of the GA and SA (30 best ranked combinations). We tested different values for
the parameters for GA (Pm and Pc) and two population sizes (µ = 200 and µ = 400). Additionally, we tested
two parameters for SA (Pmin and Pmax). We provide the Friedman Rank and the Wilcoxon p-value as well.

GA SA

Pe Pm
Fitness
(Avg.)

Friedman
Rank

Wilcoxon
p-value Ins.

Average Fitness Wilcoxon
p-value Pmin Pmax

Fitness
(Avg.)

Friedman
Rank

Wilcoxon
p-value200 400

0.10 0.01 112528.6 92.10 0.000 1 115294.8 115416.2 0.001 0.002 0.01 114142.3 19.12 0.054
0.10 0.02 109344.5 80.13 0.000 2 114157.9 114297.0 0.000 0.002 0.05 114135.3 18.37 0.044
0.20 0.01 112638.2 92.92 0.000 3 115971.2 116174.0 0.000 0.002 0.10 114233.3 20.43 0.365
0.20 0.02 109880.0 82.27 0.000 4 114621.9 114795.4 0.000 0.002 0.15 114144.7 18.83 0.049
0.20 0.03 107497.9 71.93 0.000 5 115801.9 115956.8 0.000 0.002 0.20 114211.8 20.33 0.225
0.30 0.01 112826.4 93.57 0.000 6 114968.7 115165.2 0.000 0.002 0.25 114175.8 19.13 0.064
0.30 0.02 110002.7 83.23 0.000 7 113429.9 113543.0 0.001 0.002 0.30 114227.5 20.70 0.510
0.30 0.03 107749.3 72.90 0.000 8 113546.7 113712.4 0.000 0.004 0.01 114224.5 19.83 0.382
0.40 0.01 112990.6 94.27 0.000 9 114625.8 114813.7 0.000 0.004 0.05 114302.5 23.40 —
0.40 0.02 110328.6 84.40 0.000 10 116323.1 116493.3 0.000 0.004 0.10 114195.8 19.33 0.285
0.40 0.03 107845.1 73.37 0.000 11 217599.7 217690.0 0.001 0.004 0.15 114287.9 21.87 0.902
0.50 0.01 112950.9 94.00 0.000 12 213993.6 214164.6 0.000 0.004 0.20 114286.8 22.72 0.537
0.50 0.02 110414.8 84.47 0.000 13 215408.3 215526.0 0.000 0.004 0.25 114209.7 19.50 0.202
0.50 0.03 108239.4 75.00 0.000 14 217298.4 217488.6 0.000 0.004 0.30 114279.0 23.03 0.781
0.60 0.01 113173.8 95.12 0.000 15 215107.7 215289.1 0.000 0.006 0.01 114105.9 16.80 0.014
0.60 0.02 110753.0 85.97 0.000 16 215241.5 215359.6 0.000 0.006 0.05 114164.9 18.63 0.088
0.60 0.03 108481.9 76.53 0.000 17 215481.5 215551.3 0.013 0.006 0.10 114287.8 22.33 0.491
0.70 0.01 113448.7 96.80 0.000 18 215928.1 216048.2 0.000 0.006 0.15 114174.7 19.77 0.102
0.70 0.02 110886.3 86.67 0.000 19 216825.4 216950.4 0.000 0.006 0.20 114245.7 21.08 0.572
0.70 0.03 108739.9 77.50 0.000 20 214177.3 214289.6 0.001 0.006 0.25 114129.7 18.23 0.086
0.80 0.01 113668.2 97.60 0.000 21 301204.8 301317.8 0.000 0.006 0.30 114280.5 20.97 0.789
0.80 0.02 111209.3 87.70 0.000 22 299656.5 299738.7 0.000 0.008 0.01 114064.6 15.50 0.006
0.80 0.03 108817.1 77.80 0.000 23 304702.9 304774.6 0.002 0.008 0.05 114142.1 18.75 0.040
0.90 0.01 113974.0 98.70 0.000 24 301527.0 301632.3 0.000 0.008 0.10 114056.2 15.00 0.003
0.90 0.02 111435.8 88.73 0.000 25 303996.0 304099.6 0.000 0.008 0.15 113993.2 15.32 0.013
0.90 0.03 109108.8 79.10 0.000 26 296499.3 296625.5 0.000 0.008 0.20 114039.1 14.98 0.001
1.00 0.01 114278.7 99.77 — 27 302960.5 303007.4 0.024 0.008 0.25 114008.0 15.27 0.000
1.00 0.02 111697.3 89.60 0.000 28 306571.6 306673.2 0.000 0.008 0.30 114047.1 16.73 0.015
1.00 0.03 109307.8 80.13 0.000 29 302778.7 302860.5 0.001 0.010 0.15 114000.6 14.90 0.001
1.00 0.04 107172.6 69.87 0.000 30 300122.5 300206.0 0.000 0.010 0.25 113970.0 14.67 0.001

(a) GA (b) SA

Figure 12.2: Parameterization of the GA and SA.
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SA has just two parameters to tune as this type of algorithm does not include a pop-
ulation. These parameters are used for adjusting the decrement rate of the probability of
accepting a solution. We have performed 30 independent runs for 35 combinations of
Pmin ∈ {0.002,0.004, . . . ,0.010} and Pmax ∈ {0.01,0.05, . . . ,0.30} which accounts for 1,050
runs. Table 12.2 (right) presents the 30 best ranked parameter combinations for SA. We can
see that the combination Pmin = 0.004 and Pmax = 0.05, presents the best average fitness and
is also the best ranked one. There are also other best ranked combinations that might be used
as well, as they present a p-value high enough to be considered equivalent.

The parameterization of SA can be seen in Figure 12.2b. It is noticeable that the resulting
fitness values do not show a big sensitivity to the two parameters (i.e. very robust behavior).
Finally, Table 12.3 presents the best values for the parameters of epiGA, GA, and SA,
obtained after the parameterization described.

Table 12.3: Configuration of epiGA, GA, and SA.

epiGA Pe = 0.01 R = 1 GA Pc = 1.00 µ = 400 SA Pmin = 0.004
Pn = 0.10 µ = 400 Pm = 0.01 Pmax = 0.050

12.4 Evaluating epiGA
In this section we evaluate epiGA on 120 instances (four different MKP types) and compare
its results to the selected competitors when possible. We wished to know if epiGA is capable
of solving these instances and also to compare how competitive it could be. Finally, we
address a convergence analysis where we compare the behavior of the epiGA, GA, and SA.

The instances of the MKP are of four different types obtained from the OR-Library [19]:
100 variables and 5 constraints (100.5), 500 variables and 5 constraints (500.5), 100 variables
and 10 constraints (100.10), 250 variables and 10 constraints (250.10). In our experimentation
we conducted one run of the CPLEX algorithm (it is deterministic) and 30 independent runs of
GA, SA, and epiGA, per instance and problem, which amounts to 10,920 runs. Additionally,
we have included the results from two SACRO-PSO algorithms [39] (SACRO-BT and
SACRO-CBT) and Resolution Search + Branch & Bound [30] (RS + B&B) for the instances
in which they were available.

We wished to test if epiGA was able to solve the different instances but also to know
if its results were competitive not only against the standard GA and SA, but also against
the state-of-the-art algorithms included in our study. We have replicated the results already
published according to the experimentation done on SACRO-PSO and RS + B&B algorithms
so that we have more data to compare. The author of the SACRO-PSO algorithms carried out
100 runs, optimizing each instance for 20,000 iterations. RS + B&B, like CPLEX, needed
just one run. We set up the conditions for CPLEX, GA, SA, and epiGA, equally, i.e. one
execution core and thread, 2 Gigabytes of RAM, and one hour as maximum execution time.

In the following tables we show the results obtained from our experiments consisting of
the best fitness (profit) found by the algorithms and also whether they are better or worse
compared to the epiGA’s results (negative percentages mean worse values, and vice versa).
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Table 12.4 shows the results of the optimization of 30 instances of the MKP with 100
variables and 5 constraints done by CPLEX, SACRO-BT, SACRO-CBT, GA, SA, and epiGA.
We can see that CPLEX, GA, and epiGA have reached the best profit over the 30 instances.
In fact, those are the best-known values for these instances. SACRO based algorithms, in
turn, have found the best result only in roughly 50% of the instances (16 SACRO-BT and
15 SACRO-CBT), and SA only in 18 of them. It is good to see that the idea of epigenetics,
put to work in an algorithm is able to beat published results and, in this case, completely
accurately for all 30 instances.

The average execution time of each algorithm when the best value was found was 241
seconds for CPLEX, 5 seconds for GA, 240 seconds for SA and 3 seconds for epiGA. It was

Table 12.4: Accuracy of the algorithms on 30 instances of the 100.5 MKP (100 variables and 5 constraints).

Instance
CPLEX SACRO-BT SACRO-CBT GA SA epiGA

Best % Best % Best % Best % Best % Best

100.5_1 24381 0.00% 24343 -0.16% 24343 -0.16% 24381 0.00% 24381 0.00% 24381
100.5_2 24274 0.00% 24274 0.00% 24274 0.00% 24274 0.00% 24274 0.00% 24274
100.5_3 23551 0.00% 23538 -0.06% 23538 -0.06% 23551 0.00% 23538 -0.06% 23551
100.5_4 23534 0.00% 23527 -0.03% 23527 -0.03% 23534 0.00% 23527 -0.03% 23534
100.5_5 23991 0.00% 23991 0.00% 23966 -0.10% 23991 0.00% 23966 -0.10% 23991
100.5_6 24613 0.00% 24601 -0.05% 24601 -0.05% 24613 0.00% 24601 -0.05% 24613
100.5_7 25591 0.00% 25591 0.00% 25591 0.00% 25591 0.00% 25591 0.00% 25591
100.5_8 23410 0.00% 23410 0.00% 23410 0.00% 23410 0.00% 23410 0.00% 23410
100.5_9 24216 0.00% 24204 -0.05% 24216 0.00% 24216 0.00% 24216 0.00% 24216
100.5_10 24411 0.00% 24399 -0.05% 24411 0.00% 24411 0.00% 24399 -0.05% 24411
100.5_11 42757 0.00% 42705 -0.12% 42705 -0.12% 42757 0.00% 42757 0.00% 42757
100.5_12 42545 0.00% 42494 -0.12% 42471 -0.17% 42545 0.00% 42510 -0.08% 42545
100.5_13 41968 0.00% 41959 -0.02% 41959 -0.02% 41968 0.00% 41946 -0.05% 41968
100.5_14 45090 0.00% 45090 0.00% 45090 0.00% 45090 0.00% 45090 0.00% 45090
100.5_15 42218 0.00% 42218 0.00% 42218 0.00% 42218 0.00% 42192 -0.06% 42218
100.5_16 42927 0.00% 42927 0.00% 42927 0.00% 42927 0.00% 42886 -0.10% 42927
100.5_17 42009 0.00% 42009 0.00% 42009 0.00% 42009 0.00% 42009 0.00% 42009
100.5_18 45020 0.00% 45010 -0.02% 45020 0.00% 45020 0.00% 45000 -0.04% 45020
100.5_19 43441 0.00% 43441 0.00% 43381 -0.14% 43441 0.00% 43441 0.00% 43441
100.5_20 44554 0.00% 44554 0.00% 44529 -0.06% 44554 0.00% 44554 0.00% 44554
100.5_21 59822 0.00% 59822 0.00% 59822 0.00% 59822 0.00% 59799 -0.04% 59822
100.5_22 62081 0.00% 62081 0.00% 62081 0.00% 62081 0.00% 62081 0.00% 62081
100.5_23 59802 0.00% 59802 0.00% 59754 -0.08% 59802 0.00% 59802 0.00% 59802
100.5_24 60479 0.00% 60478 0.00% 60478 0.00% 60479 0.00% 60479 0.00% 60479
100.5_25 61091 0.00% 61055 -0.06% 61079 -0.02% 61091 0.00% 61079 -0.02% 61091
100.5_26 58959 0.00% 58959 0.00% 58937 -0.04% 58959 0.00% 58959 0.00% 58959
100.5_27 61538 0.00% 61538 0.00% 61538 0.00% 61538 0.00% 61538 0.00% 61538
100.5_28 61520 0.00% 61489 -0.05% 61520 0.00% 61520 0.00% 61520 0.00% 61520
100.5_29 59453 0.00% 59453 0.00% 59453 0.00% 59453 0.00% 59453 0.00% 59453
100.5_30 59965 0.00% 59960 -0.01% 59960 -0.01% 59965 0.00% 59965 0.00% 59965

Average: 42640.4 0.00% 42630.7 -0.02% 42626.9 -0.03% 42640.4 0.00% 42632.1 -0.02% 42640.4
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also a good finding to see our epiGA needed the lowest running time out of all the techniques:
this at least suggests that its complexity is average-to-low, which is again good news.

Table 12.5 shows the results of the optimization of 30 instances of the MKP with 500
variables and 5 constraints for all the algorithms In this second set of larger instances, CPLEX
and RS + B&B have found the best profit for all the 30 instances. Our proposal, epiGA,
has found the best values for nine instances and its average results are almost the same than
CPLEX and RS + B&B (lower than 0.01% on average, 0.04% max). GA, SA, and SACRO
algorithms have found values which are far worse than the RS + B&B, never achieving the
highest values, although GA’s results are 0.02% under epiGA on average.

CPLEX took 35 minutes on average, GA and SA consumed their 60 minutes without
finding any best value, and epiGA needed 22 minutes on average to find nine. On these
instances, epiGA had a better run time than a standard GA and an SA, only improved by
CPLEX and RS + B&B. Note that when an algorithm does not find the optimum, it keeps
running until reaching the maximum execution time, i.e. one hour. We can see that values
for the 15th instance of SACRO algorithms are missing in the original paper [39].

Table 12.6 shows the results of the optimization of 30 instances of the MKP with 100
variables and 10 constraints by CPLEX, SACRO-BT, SACRO-CBT, GA, SA, and epiGA. It

Table 12.5: Accuracy of the algorithms on 30 instances of the 500.5 MKP (500 variables and 5 constraints).

Instance
CPLEX RS + B&B SACRO-BT SACRO-CBT GA SA epiGA

Best % Best % Best % Best % Best % Best % Best

500.5_1 120148 0.03% 120148 0.03% 119867 -0.20% 120009 -0.08% 120050 -0.05% 119438 -0.56% 120107
500.5_2 117879 0.00% 117879 0.00% 117681 -0.17% 117699 -0.15% 117843 -0.03% 117037 -0.71% 117879
500.5_3 121131 0.01% 121131 0.01% 120951 -0.14% 120923 -0.16% 121050 -0.05% 120218 -0.74% 121116
500.5_4 120804 0.02% 120804 0.02% 120450 -0.28% 120563 -0.18% 120720 -0.05% 119875 -0.75% 120783
500.5_5 122319 0.01% 122319 0.01% 122037 -0.22% 122054 -0.20% 122248 -0.04% 121538 -0.62% 122302
500.5_6 122024 0.01% 122024 0.01% 121918 -0.08% 121901 -0.09% 121960 -0.04% 121241 -0.63% 122011
500.5_7 119127 0.00% 119127 0.00% 118771 -0.30% 118846 -0.24% 119055 -0.06% 118371 -0.63% 119126
500.5_8 120568 0.00% 120568 0.00% 120364 -0.17% 120376 -0.16% 120486 -0.07% 119744 -0.68% 120568
500.5_9 121586 0.03% 121586 0.03% 121201 -0.29% 121185 -0.30% 121504 -0.04% 120732 -0.67% 121552
500.5_10 120717 0.04% 120717 0.04% 120471 -0.17% 120453 -0.18% 120665 -0.01% 119934 -0.61% 120674
500.5_11 218428 0.00% 218428 0.00% 218291 -0.06% 218269 -0.07% 218347 -0.03% 217748 -0.31% 218419
500.5_12 221202 0.01% 221202 0.01% 221025 -0.07% 221007 -0.08% 221130 -0.03% 220490 -0.32% 221188
500.5_13 217542 0.01% 217542 0.01% 217337 -0.09% 217398 -0.06% 217470 -0.02% 216815 -0.33% 217524
500.5_14 223560 0.00% 223560 0.00% 223429 -0.06% 223450 -0.05% 223513 -0.02% 222925 -0.28% 223558
500.5_15 218966 0.00% 218966 0.00% N/A — N/A — 218962 0.00% 218304 -0.30% 218966
500.5_16 220530 0.00% 220530 0.00% 220337 -0.09% 220428 -0.04% 220490 -0.02% 220034 -0.22% 220527
500.5_17 219989 0.00% 219989 0.00% 219686 -0.14% 219734 -0.12% 219982 0.00% 219349 -0.29% 219989
500.5_18 218215 0.00% 218215 0.00% 218094 -0.06% 218096 -0.05% 218175 -0.02% 217647 -0.26% 218215
500.5_19 216976 0.00% 216976 0.00% 216785 -0.09% 216851 -0.06% 216967 0.00% 216316 -0.30% 216976
500.5_20 219719 0.00% 219719 0.00% 219561 -0.07% 219549 -0.08% 219675 -0.02% 219082 -0.29% 219717
500.5_21 295828 0.00% 295828 0.00% 295346 -0.16% 295309 -0.18% 295790 -0.01% 295429 -0.13% 295828
500.5_22 308086 0.00% 308086 0.00% 307666 -0.14% 307808 -0.09% 308054 -0.01% 307581 -0.16% 308083
500.5_23 299796 0.00% 299796 0.00% 299292 -0.17% 299393 -0.13% 299788 0.00% 299298 -0.16% 299788
500.5_24 306480 0.00% 306480 0.00% 305915 -0.18% 305992 -0.16% 306441 -0.01% 305932 -0.18% 306476
500.5_25 300342 0.00% 300342 0.00% 299810 -0.18% 299947 -0.13% 300301 -0.01% 299957 -0.13% 300342
500.5_26 302571 0.00% 302571 0.00% 302132 -0.15% 302156 -0.14% 302536 -0.01% 302194 -0.12% 302571
500.5_27 301339 0.00% 301339 0.00% 300905 -0.14% 300854 -0.16% 301305 -0.01% 300832 -0.16% 301329
500.5_28 306454 0.01% 306454 0.01% 306132 -0.10% 306069 -0.12% 306433 0.00% 305948 -0.16% 306430
500.5_29 302828 0.01% 302828 0.01% 302436 -0.12% 302447 -0.12% 302788 -0.01% 302318 -0.16% 302809
500.5_30 299910 0.00% 299910 0.00% 299456 -0.15% 299558 -0.12% 299881 -0.01% 299510 -0.13% 299904

Average: 214168.8 0.00% 214168.8 0.00% 213701.6 -0.21% 213735.3 -0.20% 214120.3 -0.02% 213527.9 -0.29% 214158.6
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can be seen that CPLEX, GA, and epiGA have found the best results for all the instances of
100.10 MKP. SACRO-BT has found 18 optimums and SACRO-CBT, 17 of them, while SA
has only found the optimum for 7 instances. This again represents a nice endorsement of
the recently born epiGA, as we are more convinced that it is not just a new nice inspiration,
but an accurate and efficient technique. The average execution time was 386 seconds for
CPLEX, 75 seconds for GA, 557 seconds for SA, and 59 seconds for epiGA. Authors of RS
+ B&B algorithm have not included these instances into their experimentation.

Our last experiment consists in the optimization of 30 instances of MKP with 250
variables and 10 constraints. The results achieved by CPLEX, RS + B&B, GA, SA, and
epiGA are presented in Table 12.7. We can see that again RS + B&B has achieved the best
results, followed by CPLEX, failing to achieve them in only two instances (just because of

Table 12.6: Accuracy of the algorithms on 30 instances of the 100.10 MKP (100 variables and 10 constraints).

Instance
CPLEX SACRO-BT SACRO-CBT GA SA epiGA

Best % Best % Best % Best % Best % Best

100.10_1 23064 0.00% 23064 0.00% 23064 0.00% 23064 0.00% 23055 -0.04% 23064
100.10_2 22801 0.00% 22739 -0.27% 22750 -0.22% 22801 0.00% 22739 -0.27% 22801
100.10_3 22131 0.00% 22131 0.00% 22131 0.00% 22131 0.00% 22081 -0.23% 22131
100.10_4 22772 0.00% 22772 0.00% 22717 -0.24% 22772 0.00% 22650 -0.54% 22772
100.10_5 22751 0.00% 22751 0.00% 22751 0.00% 22751 0.00% 22697 -0.24% 22751
100.10_6 22777 0.00% 22725 -0.23% 22716 -0.27% 22777 0.00% 22614 -0.72% 22777
100.10_7 21875 0.00% 21875 0.00% 21875 0.00% 21875 0.00% 21785 -0.41% 21875
100.10_8 22635 0.00% 22551 -0.37% 22542 -0.41% 22635 0.00% 22476 -0.70% 22635
100.10_9 22511 0.00% 22511 0.00% 22438 -0.32% 22511 0.00% 22511 0.00% 22511
100.10_10 22702 0.00% 22702 0.00% 22702 0.00% 22702 0.00% 22561 -0.62% 22702
100.10_11 41395 0.00% 41395 0.00% 41388 -0.02% 41395 0.00% 41354 -0.10% 41395
100.10_12 42344 0.00% 42344 0.00% 42344 0.00% 42344 0.00% 42227 -0.28% 42344
100.10_13 42401 0.00% 42350 -0.12% 42350 -0.12% 42401 0.00% 42347 -0.13% 42401
100.10_14 45624 0.00% 45585 -0.09% 45511 -0.25% 45624 0.00% 45479 -0.32% 45624
100.10_15 41884 0.00% 41799 -0.20% 41833 -0.12% 41884 0.00% 41884 0.00% 41884
100.10_16 42995 0.00% 42995 0.00% 42995 0.00% 42995 0.00% 42941 -0.13% 42995
100.10_17 43574 0.00% 43497 -0.18% 43517 -0.13% 43574 0.00% 43553 -0.05% 43574
100.10_18 42970 0.00% 42970 0.00% 42970 0.00% 42970 0.00% 42914 -0.13% 42970
100.10_19 42212 0.00% 42212 0.00% 42212 0.00% 42212 0.00% 42212 0.00% 42212
100.10_20 41207 0.00% 41123 -0.20% 41134 -0.18% 41207 0.00% 41050 -0.38% 41207
100.10_21 57375 0.00% 57375 0.00% 57375 0.00% 57375 0.00% 57375 0.00% 57375
100.10_22 58978 0.00% 58922 -0.09% 58978 0.00% 58978 0.00% 58975 -0.01% 58978
100.10_23 58391 0.00% 58391 0.00% 58391 0.00% 58391 0.00% 58370 -0.04% 58391
100.10_24 61966 0.00% 61966 0.00% 61966 0.00% 61966 0.00% 61903 -0.10% 61966
100.10_25 60803 0.00% 60803 0.00% 60803 0.00% 60803 0.00% 60803 0.00% 60803
100.10_26 61437 0.00% 61368 -0.11% 61368 -0.11% 61437 0.00% 61336 -0.16% 61437
100.10_27 56377 0.00% 56377 0.00% 56377 0.00% 56377 0.00% 56353 -0.04% 56377
100.10_28 59391 0.00% 59332 -0.10% 59391 0.00% 59391 0.00% 59391 0.00% 59391
100.10_29 60205 0.00% 60205 0.00% 60205 0.00% 60205 0.00% 60165 -0.07% 60205
100.10_30 60633 0.00% 60629 -0.01% 60629 -0.01% 60633 0.00% 60633 0.00% 60633

Average: 41606.0 0.00% 41582.0 -0.06% 41580.8 -0.06% 41606.0 0.00% 41547.8 -0.14% 41606.0
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the time restriction, with enough time the optimum will of course appear). Additionally,
epiGA has reached the best results in 17 instances and its average best profit is otherwise just
0.01% around RS + B&B and CPLEX. On the other hand, GA found the optimums in only 11
instances while SA found none, actually it presents the worst values (0.3% below the epiGA
ones). SACRO’s values are not reported here because its authors have not experimented with
these more complex instances.

Now, we aim to clarify the internal behavior of epiGA and its relationship with GA and
SA. Figure 12.3 shows the convergence analysis of epiGA for the first instance of the four
instance sets addressed. The graphs, which correspond to the best run (out of 30), show that
SA converges very slowly compared to the other two algorithms. Additionally, epiGA hits
the best value before GA and usually it is a better (higher) value.

Table 12.7: Accuracy of the algorithms on 30 instances of the 250.10 MKP (250 variables and 10 constraints).

Instance
CPLEX RS + B&B GA SA epiGA

Best % Best % Best % Best % Best

250.10_1 59187 0.00% 59187 0.00% 59187 0.00% 58859 -0.55% 59187
250.10_2 58781 0.13% 58781 0.13% 58705 0.00% 58390 -0.54% 58705
250.10_3 58097 0.01% 58097 0.01% 58094 0.00% 57625 -0.81% 58094
250.10_4 61000 0.02% 61000 0.02% 60957 -0.05% 60763 -0.37% 60989
250.10_5 58092 0.00% 58092 0.00% 58070 -0.04% 57728 -0.63% 58092
250.10_6 58824 0.00% 58824 0.00% 58765 -0.10% 58325 -0.85% 58824
250.10_7 58704 0.00% 58704 0.00% 58618 -0.15% 58174 -0.90% 58704
250.10_8 58933 0.00% 58936 0.01% 58933 0.00% 58547 -0.65% 58933
250.10_9 59387 0.01% 59387 0.01% 59381 -0.01% 59056 -0.55% 59384
250.10_10 59208 0.00% 59208 0.00% 59208 0.00% 58777 -0.73% 59208
250.10_11 110913 0.02% 110913 0.02% 110875 -0.02% 110542 -0.32% 110894
250.10_12 108715 0.01% 108717 0.01% 108689 -0.01% 108317 -0.35% 108702
250.10_13 108932 0.00% 108932 0.00% 108932 0.00% 108581 -0.32% 108932
250.10_14 110086 0.00% 110086 0.00% 110037 -0.04% 109687 -0.36% 110081
250.10_15 108485 0.00% 108485 0.00% 108458 -0.02% 108209 -0.25% 108485
250.10_16 110845 0.00% 110845 0.00% 110821 -0.02% 110452 -0.35% 110845
250.10_17 106077 0.00% 106077 0.00% 106075 0.00% 105797 -0.26% 106075
250.10_18 106686 0.00% 106686 0.00% 106686 0.00% 106380 -0.29% 106686
250.10_19 109829 0.00% 109829 0.00% 109825 0.00% 109518 -0.28% 109825
250.10_20 106723 0.00% 106723 0.00% 106723 0.00% 106502 -0.21% 106723
250.10_21 151809 0.01% 151809 0.01% 151801 0.00% 151639 -0.11% 151801
250.10_22 148772 0.00% 148772 0.00% 148772 0.00% 148545 -0.15% 148772
250.10_23 151909 0.00% 151909 0.00% 151900 -0.01% 151765 -0.09% 151909
250.10_24 151324 0.03% 151324 0.03% 151269 0.00% 151035 -0.16% 151275
250.10_25 151966 0.01% 151966 0.01% 151948 0.00% 151694 -0.17% 151948
250.10_26 152109 0.00% 152109 0.00% 152109 0.00% 151795 -0.21% 152109
250.10_27 153131 0.00% 153131 0.00% 153131 0.00% 152884 -0.16% 153131
250.10_28 153578 0.00% 153578 0.00% 153578 0.00% 153383 -0.13% 153578
250.10_29 149160 0.00% 149160 0.00% 149160 0.00% 148879 -0.19% 149160
250.10_30 149704 0.00% 149704 0.00% 149704 0.00% 149474 -0.15% 149704

Average: 106365.5 0.01% 106365.7 0.01% 106347.0 -0.01% 106044.1 -0.30% 106358.5
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(a) 100.5_1 (b) 500.5_1

(c) 100.10_1 (d) 250.10_1

Figure 12.3: Convergence analysis of epiGA, GA, and SA.

12.5 Discussion
In this chapter we have introduced four state-of-the-art competitors to the epiGA, IBM ILOG
CPLEX, SACRO-PSO algorithms (SACRO-BT and SACRO-CBT), and Resolution Search +
Branch & Bound. Moreover, we have implemented two well-known metaheuristics, namely
Genetic Algorithm and Simulated Annealing, as complementary competitors.

We have moved from explanation/construction in the previous chapter to actual evaluation.
For this, we have parameterized all the algorithms implemented and tested them on 120
instances of the Multidimensional Knapsack Problem extracted from the OR-Library.

Although our goal in this study is not to improve upon the state of the art, we did perform
similarly or better than published results in the literature. In general, our actual goal is to
provide the basis for a versatile customizable tool, despite our results showing that not only
the values obtained are similar to the state of the art algorithms ones but also our execution
times are very competitive.





Chapter 13

Bio-inspired Computing
and Smart Mobility

In this chapter we are revisiting the Yellow Swarm architecture to reduce travel times in a
big area of the city of Malaga by using the epiGenetic Algorithm, finalizing in this way the
research work proposed in this PhD thesis, i.e. solving Smart Mobility problems with our
new bio-inspired proposal.

13.1 Introduction
Having presented the Yellow Swarm Architecture in Chapter 8 and the epiGenetic Algorithm
(epiGA) in Chapter 11 we present in this chapter the integration of our research work by
optimizing a big geographical area of Malaga, featuring realistic traffic flows calculated by
our Flow Generator Algorithm (FGA) (Chapter 5). After the optimization, we compare the
epiGA’s performance with the Evolutionary Algorithm (EA) formerly used in Yellow Swarm.

13.2 Yellow Swarm Revisited
We have selected the Yellow Swarm architecture [206, 208, 211] to test our epiGenetic
Algorithm (epiGA) [200] in a realistic map of the city of Malaga.

Yellow Swarm suggests possible detours to vehicles by showing different cyclical indica-
tions to drivers using LED panels. We have modified the fitness function in this new study
to take into account the maximum travel time of vehicles. Initially, we have just reduced
average travel times (Equation 8.1) and the vehicle flowing throughout the city (Equation 8.3).
However, we wish now to sacrifice a little of the average improvement to keep every driver
under a maximum travel time, so that everyone is not penalized.
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13.2.1 Evaluation Function
Equation 13.1 presents the evaluation function. It consists in calculating the average travel
time of vehicles for a panel configuration, X⃗ , plus a penalization term (α2, Equation 13.3)
which depends on the observed maximum travel time, compared to the maximum travel time
observed in Malaga (the scenario without panels). Finally, the entire expression is normalized
by α

−1
1 so that the fitness value of Malaga without panels is 1.0 (Equation 13.2). Note that

fitness values under 1.0 represent improvements as we are minimizing travel times.

F(X⃗) =
1

α1

[(1
n

n

∑
i=1

TravelTimei(X⃗)
)
+max{0,α2}

]
(13.1)

α1 =
n

∑
i=1

TravelTimei(city) (13.2)

α2 = max
i
(TravelTimei(X⃗))−max

i
(TravelTimei(city))) (13.3)

13.2.2 Problem Representation
We have placed eight LED panels in our case study whose configuration is represented by
the vector of 19 integer values shown in Figure 13.1. They are the time slot for each possible
detour and panel. Panels 6, 7, and 8, have three possible detours while the rest has just two,
mainly due to the city’s street layout.

Figure 13.1: Representation of the panel configuration (19 integer values).

13.2.3 The epiGenetic Algorithm (epiGA)
We propose our new epiGA to optimize the road traffic by calculating the optimal time slots
for each sign of Yellow Swarm. This version of epiGA has a population of 28 individuals,
uses Binary Tournament for selection, Nucleosome Based Reproduction, Gene Silencing as
epigenetic mechanism, and an elitist replacement.

Gene Silencing was adapted to work with integer values in this case, modifying the
solution vector by increasing/decreasing the current values by a fixed value. The decision
on the operation was set to be equiprobable by using the Epigenetic Environment. The
pseudocode of this operator was presented in Algorithm 11.6.

13.2.4 Evolutionary Algorithm (EA)
Previously, in Chapter 8, we have developed an Evolutionary Algorithm to calculate the
configuration of the Yellow Warm panels. It consisted of a (10+2)-EA, featuring Binary
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Tournament as the selection operator, Uniform Crossover as the recombination operator,
and elitism as the replacement policy. The mutation operator used was already explained in
Section 8.2.1. We have used this EA again in this study to compare its results with epiGA to
see if they can be improved.

13.3 Case Study
As our case study, we have used the big map calculated by the FGA [197, 201] in Chapter 5,
comprising an area of about 32 km2 as described in Section 5.3. We have selected the
scenarios called 23.2015.WD and 23.2015.SAT, both presenting realistic road traffic during
working days and Saturdays in the city of Malaga.

13.4 epiGA vs. EA
We have optimized the proposed scenarios by conducting 30 independent runs of epiGA and
EA (120 runs in total). As we wanted a fair comparison, we have set 10000 evaluations as
the stop condition for both algorithms. The results of the optimization process is presented
in Table 13.1, where we can see that both algorithms have improved each scenario (fitness
values under 1.0).

Table 13.1: Comparison of the results obtained by EA and epiGA when optimizing our scenarios.

Scenario Algorithm
Fitness Travel Time

Avg. StdDev Min Avg. Max.

2015.WD
Malaga 1.00000 — 1.00000 580.9 1735
EA 0.98528 0.00438 0.97902 557.0 1686
epiGA 0.97377 0.00183 0.97063 563.9 1502

2015.SAT
Malaga 1.00000 — 1.00000 574.3 1436
EA 0.99326 0.01576 0.98066 565.2 1346
epiGA 0.98169 0.00220 0.97762 561.5 1342

Additionally, epiGA has turned out to be the most accurate, presenting a better (lower)
standard deviation. Regarding the vehicles’ travel times, epiGA achieved the lower values
and it has also reduced the maximum travel time.

Figure 13.2 presents the boxplots representing the distribution of the fitness values from
the algorithms’ runs. We can see there evidences which confirm that epiGA has outperformed
the EA’s results. Moreover, the algorithm comparisons are statistically significant (Wilcoxon’s
p-value < 0.00).
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(a) Working Days (b) Saturdays

Figure 13.2: Comparison of the algorithms’ fitness distributions.

13.5 Discussion
In this chapter we have closed the circle of our research work. We have selected one of
the Smart Mobility problems studied and solved it using our new proposal of bio-inspired
algorithm. By using an adapted epiGenetic Algorithm we have optimized a realistic sce-
nario generated by our FGA, using the Yellow Swarm panels. Our results have shown an
improvement on the performance of EA which represents shorter travel times in the city.
This confirms that epiGA is a viable alternative to the traditional optimization algorithms,
not only for combinatorial optimization problems, but also for continuous ones.
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Chapter 14

Conclusions and Future Work

This chapter contains a general review of this PhD thesis and the main conclusions drawn
from our studies and experimentation. Finally, future lines of research are discussed.

14.1 Global Conclusions
In this PhD thesis we have defined a set of Smart Mobility problems and how they affect the
citizens living in cities around the world. We have described the tools used in our studies, i.e.
traffic simulators, especially SUMO, and existing metaheuristics, especially the bio-inspired
ones. Moreover, we have built a new tool to generate realistic vehicular flows based on
incomplete traffic data published by local councils and called it Flow Generator Algorithm.

Then, we have presented our Smart Mobility proposals, three new architectures: Red
Swarm, Green Swarm, and Yellow Swarm, with the aim of reducing travel times, greenhouse
gas emissions, and fuel consumption of vehicles in urban areas. Additionally, a method
for calculating alternative GPS routes was also proposed. Finally, the last Smart Mobility
approach was the analysis of six different predictors to forecast car park occupancy rates and
a web prototype as an example of use.

All in all, we have presented solutions to very important Smart Mobility problems: long
travel times and high gas emissions due to traffic jams. Our proposals have been tested
in different geographical areas of European cities such as Malaga and Madrid in Spain,
Stockholm in Sweden, Berlin in Germany, Paris in France, and Quito in Ecuador.

The last part of this PhD thesis was focused on new intelligent algorithms. Specifically,
a new family of algorithms based on epigenesis was proposed to solve hard computational
problems. We have tested a specific implementation of the epiGenetic Algorithm to solve
the Multidimensional Knapsack Problem and compared our competitive results with other
state-of-the-art algorithms. Finally, we have solved one of our smart mobility proposals using
an epiGenetic Algorithm improving the results of an EA.

Using the Flow Generator Algorithm we have faced incomplete data when building our
maps. By using our (10+2)-EA, we have generated traffic flows based on data from sensors
and obtained accurate results presenting errors below 10%.
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The Red Swarm architecture configured by our EA to suggests alternative routes cus-
tomized to drivers helped them avoid traffic jams and find a quicker way to reach their
destination. Red Swarm based on probabilistic routes, also reduced traffic densities in the
most likely traffic situations in a modern city. We have shortened travel times by 18.8% by
using Red Swarm.

One step further was the Green Swam architecture where we have taken advantage of
our previous work, improving our design to address also the reduction of greenhouse gas
emissions and fuel consumption. Not only have we compared our results with other strategies
but also combined Green Swarm with them to improve the city metrics even more. Green
Swarm achieved shorter travel times (68%), reduced gas emissions (56% CO, 36% CO2,
54% HC, 47% PM, 34% NOx), and saved up to 36% of fuel.

At that point, we realized that despite being very useful and interesting proposals, Red
Swarm and Green Swarm required using a terminal such as a smart phone or an on-board unit
to inform of new routes. As we wished to present a proposal even easier to use, especially in
less developed countries, we designed the Yellow Swarm architecture, a system based on
LED panels which can be seen by users while driving throughout the city. Using Yellow
Swarm, drivers are able to discover alternative routes to their destination by following the
detours suggested by its panels. Yellow Swarm was found to be useful to reduce travel times
(up to 32%) and gas emissions (18% CO, 10% CO2, 16% HC, 13% PM, 9% NOx), helping
users to save fuel (up to 10%).

The last Smart Mobility proposal based on new routes was the calculation of alternative
routes for GPS navigators based on the Dynamic User Equilibrium. Again, we have obtained
results that encourage exploring new ways that vehicles can reach destination instead of
following the same congested routes. We have observed improvements in travel times (up to
18%), CO (up to 14%), CO2 (up to 7%), HC (up to 13%), PM (up to 5%), and NOx (up to
7%), and fuel consumption (up to 7%).

There was a negligible increment in route lengths in all our proposals which is a con-
sequence of rerouting vehicles via alternative streets which do not belong to the shortest
path. In spite of the variations observed in the results, which must be expected as we are
considering different cities (topologies, avenues, roundabouts, intersections), all the metrics
were improved, even when only 10% of vehicles were using one of our systems, according
to the user acceptance analyses done.

Another different approach was followed to enhance the citizens’ quality of life in modern
cities: the prediction of car park occupancy rates. We have analyzed six very accurate
predictors for forecasting car park occupancy rates in Birmingham, Glasgow, Norfolk, and
Nottingham, in the U.K. We have trained them by using real data published by open data
initiatives and found that Time Series turned out to be the most accurate predictor although it
required the larger amount of data to represent each car park and weekday. Furthermore, our
proposal includes a novel web prototype that offers information on real time occupancy rates
and historical data.

The use of our proposals by citizens would mean that they are not spending their precious
time looking for a parking space or stuck in a traffic jam. They will be happier and healthier,
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living a less stressed life, breathing in a cleaner air. Perhaps the city of the future will
resemble that of our childhood dreams.

Bio-inspired algorithms are an efficient way of solving problems using models and
techniques inspired by nature. We believe in the wisdom of nature and natural selection, so
that after studying the epigenetic theory and its mechanisms we have used them to build new
computational algorithms. New operators, an environment that can influence chromosomes,
DNA methylation, histones and nucleosomes were used in our experiments for solving
combinatorial optimization problems. We have used our epiGenetic Algorithm to solve 120
instances of the Multidimensional Knapsack Problem. Although our goal in that study was
not to improve upon the state of the art, epiGA did perform similarly or better than published
results in the literature.

Finally, we revisited the Yellow Swarm architecture, optimizing the panel’s time slots
by using epiGA, and compared its performance to the formerly used EA. According to our
results, epiGA has outperformed our EA achieving shorter travel times in the scenarios tested.

14.2 Future Lines of Research
As a matter of future work we hope to test epiGA in other, different problems. Also, we will
expand its capabilities by including several cells into each individual, which will allow us
to implement a parallel version of it. Since we have not tested all the existing epigenetic
mechanisms, we plan to do so in the near future to further improve the searching process,
adapting it to each problem’s characteristics and environments.

Regarding our Smart Mobility architectures, we wished to extend the geographical area to
be analyzed to include entire cities. It will imply working on different strategies to implement
the rerouting of vehicles by using city districts in order to be able to address the optimization
of harder scenarios (computation time and hardware requirements) involving hundreds of
thousands of vehicles. Another interesting aspect to take into account is unforeseen events
such as accidents, fires, demonstrations, which could suddenly close streets turning open
routes into invalid ones. Possible strategies to address this could be switching off rerouting
nodes or dynamically updating their configuration.

As part of our future work, we want also to test different strategies to optimally place
LED panels throughout the city. Moreover, we want to improve upon our results, especially
in the harder scenarios, extend our study to the entire city (slower evaluations as SUMO
needs more time and the search space is bigger), and include actual traffic distributions at
different hours of the day in order to adapt our system to the many possible variations

The optimization of the afternoon traffic in Quito is another pending study, as there exists
a second road traffic peak in the day. Moreover, we need to study the scalability of Yellow
Swarm not only in the number of panels, but also in the size of the city we wish to analyze.
Furthermore, we want to combine Yellow Swarm with other optimization techniques such as
traffic light cycle optimization, maximum speed reduction, and vehicle type constraints. By
doing so, we hope to create a holistic approach to improve mobility in smart cities, as well as
to define new problems and challenges for intelligent algorithms.
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Urban traffic is an actual matter of concern for governments and citizens. Whether for
reasons of health, efficiency, or fuel saving, everyone should be we worried about it and
bio-inspired algorithms can really help to improve the daily trips in the city as we have shown
in this PhD thesis. Our proposals have not only proven to be efficient and adaptable to many
different situations and domains but can also be implemented with little effort and budget.

Eventually, urban traffic will be improved to zero emissions and traffic jams will be a
thing of the past. Our intention was to contribute to those goals, and it was only possible
because we were standing on the shoulders of giants.
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Appendix B

Resumen en Español

B.1 Introducción
Las ciudades hoy día evolucionan rápidamente. Un gran número de personas residen o están
contemplando la posibilidad de trasladar su domicilio habitual a una gran ciudad, aumentando
así la demanda de servicios, lo que supone una nueva fuente de problemas complejos [230].

Se observa un notable aumento en el número de traslados que los ciudadanos realizan
así como su duración [224]. Estos viajes son con frecuencia para ir a los lugares de trabajo,
de estudio, o para llevar los niños al colegio, situaciones que ocurren usualmente en los
mismos momentos del día. Otras fuentes de tráfico rodado en la ciudad incluyen personas
visitando hospitales, yendo de compras, o realizando desplazamientos para encontrarse con
sus familiares o amistades [215].

Estos problemas se hacen evidente en forma de atascos [215], los cuales han ido incre-
mentando su frecuencia en las últimas décadas, convirtiéndose en un problema serio para los
residentes de las ciudades. Como resultado, el viajar en coche se ha vuelto más lento, siendo
la causa más común para los retrasos, pérdidas económicas y estrés, debido al efecto negativo
que una ciudad congestionada tiene sobre las horas de ocio y trabajo de las personas.

Otra consecuencia es la cantidad de gases de efecto invernadero emitidas a las atmósfera.
Los vehículos, moviéndose ahora a muy baja velocidad o detenidos en un atasco, emiten aún
más gases provenientes de su motor [101]. Entre las emisiones más comunes se encuentran el
dióxido de carbono (CO2), monóxido de carbono (CO), partículas (PM), óxidos de nitrógeno
(NOx), hidrocarburos (HC), metano (CH4) y ozono de superficie (O3).

Varias propuestas se han realizado para prevenir atascos y reducir las emisiones [70, 133].
Algunas de ellas se basan en la simulación de tráfico a nivel microscópico (microsimulación)
en donde cada vehículo se modela como un agente sujeto a un modelo de movilidad, que
se desplaza por una ciudad construida a partir de mapas realistas [212]. Estos estudios tan
detallados tienen como contrapartida los largos tiempos de computación necesarios para
simular muchos vehículos en escenarios grandes. Como ejemplo, una hora de simulación
puede tranquilamente ser equivalente a varios minutos de tiempo real utilizando los orde-
nadores más recientes. Esto es algo a ser tenido en cuenta cuando se realizan estudios y
optimizaciones que requieren evaluar (simular) muchas configuraciones para obtener su valor
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de fitness. Además, la alta complejidad de los problemas de movilidad, en especial los que
presentan muchas rutas que elegir basándose en un criterio de optimización, hace que sean
muy difícil de resolver utilizando una heurística exacta (determinista).

El uso de Tecnologías de Información (TI) para resolver problemas de una ciudad del
siglo XXI [207] hace más fácil combinar varias técnicas para recolectar datos así como el
uso de algoritmos inteligentes basados en metaheurísticas [27]. Estas metaheurísticas están
con frecuencia inspiradas en procesos naturales como la teoría de evolución de Darwin, cuyo
clásico ejemplo son los Algoritmos Evolutivos [14].

Esta tesis doctoral se encuentra centrada en el diseño de nuevos algoritmos basados en
la epigénesis y en la aplicabilidad de sus resultados para mejorar el tráfico rodado en las
ciudades. El trabajo de investigación se ha realizado en conexión con los siguientes proyectos
de investigación orientados a aplicaciones del mundo real, inteligencia holística y movilidad
inteligente: roadME [183], MAXCT [145], moveON [153], CI-RTI [184] y 6city [1].

B.2 Bases Tecnológicas y Científicas

B.2.1 Problemas de Movilidad Inteligente
Un 50% de los europeos utilizan el coche cada día [224], mientras que el 38% de ellos se
encuentran con problemas de movilidad mientra viajan por las calles de la ciudad. Algunos
de los problemas más importantes que preocupan a nuestra sociedad son la salud de las
personas, el desarrollo económico, el consumo de energía, los atascos de tráfico, el precio
del combustible, polución, y gestión de residuos.

Estos problemas, relacionados con el crecimiento y desarrollo, representan un desafío
para las autoridades de la ciudad si desean gestionarlos de forma inteligente. Aquí es donde la
investigación en ciudades inteligentes en conjunto con los sistemas de transporte inteligente
se convierte en algo obligatorio, tal como ha sido ya reportado por una infinidad de agencias
a lo largo y ancho del planeta [55, 159].

Esta tesis doctoral se concentra en problemas de movilidad tales como tiempos de viaje
largos, altas emisiones de gases de efecto invernadero y consumo de combustible, y su
optimización utilizando algoritmos bioinspirados. Además se aborda la predicción de plazas
libres de aparcamientos, ya que de nada sirve optimizar rutas si cuando se llega a destino se
pierde tiempo dando vueltas en busca de un sitio para aparcar el coche, emitiéndose incluso
más gases y consumiendo un valioso combustible.

B.2.2 Computación Bioinspirada
Llamamos metaheurísticas [84, 178] a una familia de algoritmos aproximados que son ca-
paces de encontrar buenas soluciones (frecuentemente la mejor) a problemas de optimización
complejos, los cuales no pueden resolverse utilizando las técnicas exactas tradicionales, dado
que éstas necesitarían tiempos de cómputo extremadamente largos y/o altos requisitos de
memoria. Las metaheurísticas presentan dos estrategias de búsqueda: basada en trayectoria o
en población.
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Por un lado, los algoritmos basados en trayectoria exploran un solo elemento del espacio
de soluciones a la vez. Estos algoritmos utilizan algún mecanismo para escapar de los
óptimos locales dentro de sus métodos de exploración. Como ejemplo, se pueden nombrar:
Simulated Annealing (SA) [118], Tabu Search (TS) [84], Greedy Randomized Adaptive
Search Procedures (GRASP) [67], Variable Neighborhood Search (VNS) [150], Iterated
Local Search (ILS) [85], y Multiple Trajectory Search (MTS) [228].

Por otro lado, los algoritmos basados en población, trabajan sobre un conjunto de solu-
ciones, por ejemplo una población, colonia, o enjambre. Existe un factor de aprendizaje en
estos algoritmos ya que los mismos intentan identificar regiones del espacio de búsqueda
conteniendo soluciones de alta calidad mediante el uso de su población. Podemos decir
entonces, que estos métodos realizan un muestreo sesgado del espacio de búsqueda. Los
algoritmos evolutivos (Evolutionary Algorithms, EA) [85], Scatter Search (SS) [83], Estima-
tion of Distribution Algorithms (EDA) [139], Differential Evolution (DE) [213], Ant Colony
Optimization (ACO) [57], Artificial Bee Colony (ABC) [115], y Particle Swarm Optimization
(PSO) [116], son todos ejemplos de algoritmos poblacionales.

Esta tesis doctoral se enfoca en el uso de computación bioinspirada [143, 171], la cual
se inspira en la naturaleza para el diseño de algoritmos capaces de resolver problemas
de alta complejidad. Desde el modelo matemático de una neurona [146] hasta el uso de
feromonas por hormigas para recoger alimentos de forma más eficiente [114], los algoritmos
bioinspirados se agrupan en tres tipos principales, atendiendo a la fuente de inspiración:

1. Computación Evolutiva (Evolutionary Computing, EC): Ideas tomadas de la biología
evolutiva para diseñar algoritmos evolutivos.

2. Inteligencia de Enjambre (Swarm Intelligence, SI): Algoritmos en los cuales un con-
junto de agentes sencillos se comportan como organismos sociales.

3. Sistemas Inmunitarios Artificiales (Artificial Immune Systems, AIS): Los modelos que
siguen los sistemas inmunitarios se utilizan para desarrollar herramientas computa-
cionales.

En esta tesis doctoral se utilizarán variantes de algoritmos evolutivos (Evolutionary
Algorithm) y genéticos (Genetic Algorithm), Simulated Annealing y Ant Colony Optimization,
no sólo como base para el desarrollo de nuevos algoritmos, si no que también para comparar
los resultados obtenidos con los del estado del arte.

B.2.3 Microsimulación
Experimentar sobre una ciudad real implicando vehículos y personas reales resulta muy
complicado y es casi imposible, en especial si el área de estudio es más grande que una
intersección o dos. Ni hablar si el estudio se pretende realizar en tiempo real lo que requeriría
extenderlo por semanas o incluso meses.

La simulación por computador [241] ha sido utilizada por muchas disciplinas desde los
comienzos de la informática. Sin importar si se trata de la simulación de objectos físicos,
procesos químicos, fenómenos atmosféricos, mercados económicos, astrofísica, etc., siempre
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es necesario contar con un modelo que represente el comportamiento real del sistema bajo
estudio, el cual puede estar sujeto a simplificaciones y generalizaciones.

Los simuladores de tráfico [18, 25] han probado ser una herramienta muy útil para
representar todos los factores involucrados en un escenario real, donde las calles de una
ciudad, flujos vehiculares, e incluso peatones pueden analizarse in vitro, empleando tiempos
abordables y usualmente con un alto grado de realismo. Al finalizar la simulación, se dispone
de un completo conjunto de valores para analizar el desempeño de los vehículos y sugerir
mejoras para la ciudad real (in silico), lo que de otro modo sería imposible.

Los simuladores de tráfico implementan diferentes modelos para los flujos vehiculares [32,
95, 140] para definir las reglas del movimiento de los vehículos, cambios de carril, veloci-
dad máxima, etc. Según su grado de granularidad, los simuladores se categorizan como
macroscópicos, mesoscópicos, o microscópicos [18].

En los trabajos de investigación presentados en esta tesis doctoral se ha utilizado el
simulador microscópico SUMO (Simulation for Urban MObility) [123, 216] desarrollado
por el Centro Aeroespacial Alemán (German Aerospace Center, DLR) [53]. El mismo
incluye varios programas dentro del mismo paquete para visualización, generación de rutas,
importación de mapas, procesamiento de los resultados, etc.

SUMO implementa varios modelos de movilidad [81, 121, 125], pudiéndose definir tam-
bién muchas características de los vehículos. Además, los escenarios de simulación pueden
definirse manualmente o importarse desde OpenStreetMap [169], por ejemplo. SUMO
incluso puede ser controlado externalmente utilizando una conexión por socket y la interfaz
TraCI (Traffic Control Interface) [236] .

B.2.4 Mapas y Datos de Tráfico Incompletos
Hay varias maneras de enfrentarse a un problema del mundo real. Algunas se basan en
modelos matemáticos para generar soluciones candidatas posibles y otras en evaluar un
conjunto de soluciones [217].

Entre los modelos generativos, se encuentran los modelos matemáticos del tipo pro-
gramación lineal, modelos de flujo, dinámica de fluidos, algoritmos genéticos y teoría de
juegos; mientras que los modelos evaluativos comprenden teoría de colas, redes de Petri,
simulaciones y análisis de perturbaciones [196]. Dada la complejidad de los problemas que
se resuelven en esta tesis doctoral, se utilizarán técnicas evolutivas en conjunto con entornos
de simulación para la realización de experimentos. Las primeras con el objeto de abordar
problemas compuestos por cientos de variables, mientras que los segundos como un medio
de inmersión en un mundo virtual para evaluar distintas configuraciones.

Los simuladores de tráfico se han utilizado con frecuencia en la última décadas para
validar distintos trabajos de investigación, y no sólo los relacionados con vehículos. Un
escenario de movilidad se encuentra compuesto principalmente por el mapa de la ciudad
(incluyendo calles, rotondas, restricciones de giro, semáforos, etc.) y sus flujos vehiculares.
Estos flujos se obtienen a partir de una matriz de origen-destino (OD-matrix) donde se
especifica la demanda de viajes de los vehículos entre su punto de partida y de llegada. Dada
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la imposibilidad de obtener estos datos para una ciudad grande al completo y así estimar la
matriz, los flujos vehiculares pueden generarse a partir de mediciones realizadas por sensores.

En este estudio se presenta una nueva metodología para generar flujos de tráfico realistas,
basándose en técnicas evolutivas, los cuales podrán ser incluidos en escenarios de movilidad,
utilizando mapas importados desde OpenStreetMap [169] y datos de vehículos obtenidos
desde sensores colocados en las calles de la ciudad. Con estas entradas se alimenta nuestro
Flow Generation Algorithm (FGA) [197, 201] el cual usando un Algoritmo Evolutivo (EA) y
un simulador de tráfico (SUMO [123] en nuestro caso), obtiene un modelo de simulación
realista (Figura B.1). Este modelo contiene flujos de tráfico calculados de acuerdo a una
matriz de origen-destino de forma tal que el número de vehículos en cada punto de medición
de ajusta al real de la ciudad. Luego el mismo podrá ser utilizado por investigadores
para experimentar con sus propuestas de movilidad inteligente así como otros trabajos de
investigación que incluyan simulaciones de tráfico y requieran mapas realistas.

Figura B.1: La arquitectura del Flow Generator Algorithm (FGA).

Formalmente, sea v⃗∗ = (v∗1, . . . ,v
∗
N) un vector que contiene los valores recolectados desde

N sensores en la ciudad real, y v⃗ = (v1, . . . ,vN) un vector que contiene los valores obtenidos
en este caso de la evaluación del modelo de la ciudad en el simulador. Se busca minimizar
el error e⃗i = |⃗v∗i − v⃗i|, i ∈ {1, . . . ,N} a través de modificaciones de los flujos vehiculares
f = ( f1, . . . , fM).

Resumiendo, buscando flujos apropiados (variables de decisión) se computan flujos
estimados para el simulador con el objecto de que se aproximen a los reales medidos en la
ciudad. Este conjunto de flujos vehiculares también contendrá un subconjunto que cubre las
calles que no disponen de sensores, permitiendo así que los investigadores estudien la ciudad
completa, disponiendo de datos para prácticamente todas las calles.

Se experimentó con el FGA sobre 12 escenarios de la ciudad de Málaga utilizándose datos
de hasta 23 sensores, publicados por el área de movilidad del ayuntamiento de la ciudad [13].
Tras la optimización se consiguieron resultados (mapas + flujos) con una precisión mayor al
90% en todos los puntos de medición.
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B.3 Modelado y Resolución de Problemas

B.3.1 Red Swarm: Reducción de Tiempos de Viaje
En esta sección se propone un nuevo sistema llamado Red Swarm (RS) [203, 204, 205] para
la optimización del tráfico rodado en toda la ciudad con el objetivo de reducir los tiempos
de viaje. Esto implica un intercambio constante y distribuido de datos entre los vehículos
y nodos que nos permite utilizar un algoritmo inteligente para computar segmentos de ruta
optimizados y personalizados para cada conductor en la ciudad.

La arquitectura Red Swarm consiste en:

1. Varios nodos distribuidos por la ciudad, instalados en los semáforos, que hacen uso de
conexión Wi-Fi para sugerir nuevas rutas a los vehículos.

2. El algoritmo de cambio de rutas (Rerouting Algorithm, RA), que selecciona la ruta
para cada conductor basándose en su destino y en la configuración del sistema.

3. El Algoritmo Evolutivo (Evolutionary Algorithm, EA), que computa la configuración
del sistema.

4. Las terminales de usuario (User Terminal Units, UTU), que pueden ser teléfonos
inteligentes o tabletas, que se utilizan para comunicarse con los nodos, enviar datos y
recibir las nuevas rutas.

Figura B.2: La arquitectura Red Swarm (RS).

La arquitectura Red Swarm se encuentra dividida en dos etapas: i) la etapa de configu-
ración, y ii) la etapa de despliegue y uso (Figura B.2). En la etapa de configuración, el EA
calcula la configuración para los nodos utilizando el simulador SUMO [122] para evaluar
cada solución. En la etapa de despliegue y uso, el RA utiliza la configuración de los nodos
calculada en la etapa anterior, para sugerir nuevas rutas a los vehículos que se acercan a una
intersección controlada por un nodo Red Swarm, mediante un enlace Wi-Fi.

Si bien la configuración no se recalcula en esta segunda fase, las rutas son personalizadas
para poder dispersar el tráfico por diversas rutas que benefician tanto a los conductores
individualmente como a todo el tráfico en su conjunto. Respecto a las comunicaciones, éstas
son posibles en un radio medio de 77 metros tal como se demuestra en [225].
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En este estudio se utilizan simulaciones realistas mediante el simulador SUMO y la
interfaz TraCI [237] que permite controlar externamente al simulador, implementando así
el RA en cada uno de los nodos. Cuando la simulación termina, se obtienen y procesan los
datos de cada vehículo tales como tiempo de partida, tiempo de viaje, emisiones, etc.

Red Swarm ha sido probado en escenarios de la ciudad de Málaga mediante el uso de
diez nodos. Los resultados obtenidos luego de analizar el comportamiento de hasta 1200
vehículos, presentan reducciones medias en los tiempos de viajes del 9%, llegándose a
alcanzar hasta un 19% en el mejor escenario.

B.3.2 Green Swarm: Menos Emisiones de Gases
Otra fuente de problemas en las ciudades grandes es la polución, y el tráfico rodado es
una fuente claramente establecida de emisiones de gases de efecto invernadero en áreas
urbanas [101]. Siendo conscientes de ello y habiendo observado el comportamiento de los
vehículos durante el desarrollo de la arquitectura Red Swarm, se propone aquí una nueva
arquitectura, llamada Green Swarm (GS) [199, 202], como una evolución de la primera sujeta
a un rediseño y adaptación para reducir ahora no sólo tiempos de viaje, si no que también
emisiones de gases de efecto invernadero, y además ahorrar combustible.

La arquitectura Green Swarm sigue una línea de investigación diferente en la cual se
abordan escenarios con un número mayor de vehículos, presentando las siguientes nuevas
contribuciones:

1. GS utiliza una nueva función de optimización para medir la calidad de las soluciones.

2. Los algoritmos utilizados han sido revisados, mejorando su desempeño para conseguir
mejores resultados en tiempos más cortos.

3. Se han optimizado cuatro ciudades diferentes (Málaga, Estocolmo, Berlín y París) y
un escenario extra (Alameda) que utiliza flujos vehiculares realistas.

4. Se ha incrementado considerablemente el número de vehículos analizados lo que
implica un realismo mayor pero tiempos de cómputo también mayores.

5. Se ha realizado además un estudio de aceptación ya que no todo el mundo va a estar
interesado en esta propuesta inicialmente.

Green Swarm, al igual que Red Swarm, puede instalarse en las ciudades modernas con
una inversión mínima ya que aprovecha la infraestructura existente consistente en semáforos
controlados por ordenador, conectividad Wi-Fi, teléfonos inteligentes y tabletas.

Esta arquitectura se puede ver representada en la Figura B.3. La misma se encuentra
dividida en dos etapas: una etapa offline llamada la etapa de configuración y una etapa online
llamada la etapa verde. En la primera el algoritmo EfRA (Eco-friendly Route Algorithm)
computa la configuración de los nodos y en la segunda, los vehículos que se conectan a un
nodo Green Swarm reciben una ruta alternativa hacia su destino facilitada por el GrA (Green
Algorithm). La ubicación de los nodos se ha realizado manualmente para este estudio ya que
esto representa un desafío por si mismo y requeriría un artículo científico dedicado.
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Figura B.3: La arquitectura Green Swarm (GS).

Tras utilizar GS un vehículo viajará probablemente una distancia mayor que cuando
seguía su ruta original (usualmente el camino más corto), pero dado que esta es la elección
primera de la mayoría de los conductores, el uso de rutas alternativas evitará la formación
de atascos favoreciendo una la conducción ecológica. Como resultado, menos emisiones
globales y tiempos de viaje más cortos.

Nuevamente los escenarios se evalúan utilizando el simulador SUMO [123] y los cambios
de ruta están implementados haciendo uso de TraCI [237].

Green Swarm ha sido probado en escenarios de la ciudad de Málaga, Estocolmo, Berlín
y París, habiéndose utilizado siete, seis, seis, y cuatro nodos, respectivamente. Los resultados
obtenidos luego de analizar el comportamiento de hasta 4700 vehículos en una hora, presentan
reducciones medias en los tiempos de viajes del 31%, un 24% menos emisiones, y un 13%
de ahorro de combustible. Además el estudio de porcentajes de utilización realizado ha
demostrado que se obtienen mejoras incluso cuando sólo un 10% de los conductores utiliza
Green Swarm.

B.3.3 Yellow Swarm: Infraestructura de Bajo Coste Para la Ciudad
Tras estudiar las dos previas arquitecturas y obtener resultados prometedores, se propone
aquí un nuevo enfoque que no requiere que los usuarios utilicen dispositivo alguno. Esta
nueva propuesta, la arquitectura Yellow Swarm [206, 208, 211], utiliza paneles LED (Light-
Emitting Diode) los cuales ubicados en puntos estratégicos de la ciudad sugieren posibles
cambios de ruta a los conductores, con el afán de utilizar mejor las calles de la ciudad y
prevenir atascos.

Al utilizar una indicación visual (girar a la izquierda, girar a la derecha, o continuar hacia
adelante), Yellow Swarm colabora con la seguridad vial evitando distracciones, siendo a la
vez una propuesta fácil de implementar y de utilizar, manteniendo los costes muy bajos.

La arquitectura Yellow Swarm, presentada en la Figura B.4, dispone de dos etapas: una
Offline donde se obtiene la configuración de los paneles mediante el Evolutionary Algorithm
(EA), y otra Online, en la que los paneles informan a los conductores de los posibles desvíos.
Ejecutando iterativamente ambas etapas a una frecuencia dada, es posible mejorar la dinámica
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de esta propuesta para que se adapte a los escenarios cambiantes que se pueden encontrar en
una ciudad medianamente grande.

Figura B.4: La arquitectura Yellow Swarm (YS).

Los mapas urbanos utilizados para crear los casos de estudio han sido importados
desde OpenStreetMap para experimentar sobre distritos reales de las ciudades utilizando el
simulador SUMO [123] y la interfaz TraCI [237] como en los estudios anteriores.

La configuración del sistema consiste en los distintos intervalos de tiempo para cada
señal a visualizar en cada panel, de esta manera, ajustando estos tiempos se controla como
los vehículos se distribuyen por las calles de la ciudad. Esto disminuye la congestión de las
calles, acortando los tiempos de viaje y reduciendo además las emisiones de gases de efecto
invernadero y el consumo de combustible.

Yellow Swarm ha sido probado en escenarios de la ciudad de Málaga, Madrid y Quito,
habiéndose instalado ocho, cuatro y diez paneles, respectivamente. Los resultados obtenidos
luego de analizar el comportamiento de hasta 4840 vehículos en dos horas (Málaga y Madrid)
o bien escenarios completos de 24 horas (Quito), presentan tiempos de viajes hasta 32% más
cortos, 25% menos emisiones, y un 16% de ahorro de combustible. El estudio de porcentajes
de utilización realizado, ha demostrado que también se obtienen mejoras incluso cuando sólo
un 10% de los conductores utiliza Yellow Swarm.

B.3.4 Rutas más Inteligentes Para Navegadores GPS
Hoy en día podemos encontrar navegadores GPS en la mayoría de vehículos y teléfonos
inteligentes, siendo muy utilizados cuando viajamos por ciudades o vecindarios que nos son
desconocidos. El objetivo principal de estos navegadores es dar al usuario las indicaciones
correspondientes para alcanzar el destino final de su viaje en un tiempo menor, tomando el
camino más rápido.

Si bien muchos de estos dispositivos conocen el estado actual del tráfico y lo utilizan para
calcular la ruta ofrecida al conductor, generalmente este servicio no se actualiza en tiempo
real y tampoco se encuentra disponible en cualquier parte del mundo. Entonces las rutas
terminan calculándose utilizando el algoritmo de Dijkstra [50] o A⋆ [94] que sólo utilizan la
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longitud de las calles y a lo sumo el tiempo medio de viaje por ellas, para calcular el mejor
camino para llegar a destino. Como consecuencia el uso de navegadores GPS en una ciudad
dada podría conducir a la formación de atascos y congestiones de tráfico por el uso preferente
de ciertas calles en detrimento de otras.

Nuestra propuesta consiste en el cálculo de rutas alternativas [198] basadas en el concepto
del equilibrio dinámico por usuario (Dynamic User Equilibrium, DUE). Estas rutas luego son
provistas junto con la cartografía de los navegadores y pueden ser usadas para mejorar las
condiciones de tráfico al ser asignadas a los vehículos que atraviesan la ciudad aprovechando
mejor las vías disponibles, reduciendo los tiempos de viajes y emisiones, y mejorando la
calidad de vida de las personas.

El problema de la asignación de tráfico consiste en asignar rutas a los vehículos que
viajan desde su origen a destino, teniéndose en cuenta diversas variables como el coste y
beneficio. Se suele resolver calculando una situación de equilibrio en la selección de rutas
en la cual una asignación alternativa sólo puede conducir a una situación peor (tiempos de
viaje más largos, por ejemplo). Según el primer principio de Wardrop [234], el estado de
equilibrio es aquel en cual cada conductor escoge una ruta para la cual el tiempo de viaje
es mínimo. Por lo tanto, la red resultante se encuentra en equilibrio dado que nadie puede
mejorar su tiempo de viajes escogiendo una ruta diferente.

Nuestra propuesta utiliza el método de simulaciones iterativas [78] para calcular el DUE
utilizando SUMO como medio de cálculo de un conjunto de rutas. Éstas se utilizarán luego en
conjunción con un navegador GPS para proveer rutas alternativas a los conductores diferentes
al camino más corto (shortest path). Un ejemplo de uso puede verse en al Figura B.5. La
mejor ruta en términos de distancia es claramente la ruta A. Las rutas alternativas, B y C, a
pesar de ser más largas, podrían conducir a una reducción de los tiempos de viaje para el
tráfico de la ciudad en su conjunto, al evitarse situaciones de congestión.

Figura B.5: Ejemplo de cambio de ruta.

La experimentación realizada comprende el área centro de la ciudad de Málaga en la cual
el tráfico rodado se ha modelado de forma realista utilizando el FGA antes descrito. Los
resultados muestran reducciones en el tiempo de viaje medio del 18%, se emiten un 14%
menos gases de efecto invernadero, y también se observa un ahorro de combustible del 7%.
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Las rutas alternativas suponen un aumento medio del 3% en las distancias recorridas, muy
por debajo de las ventajas obtenidas a cambio.

B.3.5 Conoce tu Ciudad: Plazas de Aparcamiento
Dado que de nada sirve llegar pronto a destino si luego no es posible aparcar al encontrarse
todas las plazas ocupadas, se realizó también una propuesta de predicción de plazas de
aparcamiento libres. En concreto, nos enfocamos en los aparcamientos cerrados, usualmente
subterráneos, que disponen de sensores y que publican esa información libremente en Internet.

La arquitectura desarrollada para la predicción de las plazas libres [209, 210] se muestra
en la Figura B.6. La misma utiliza la información sobre los aparcamientos, públicamente
disponible, para evaluar seis predictores diferentes: Polinomios; Series de Fourier; K-
Means clustering; Polinomios ajustados a centroides; Polinomios basados en los anteriores,
adaptados a cada aparcamiento; y Series Temporales. En cada caso se propone un predictor
para cada aparcamiento y día de la semana para aumentar la precisión de las predicciones y
aislar los diferentes comportamientos que suelen observarse entre los días laborables y fines
de semana.

Figura B.6: Esquema de la arquitectura del sistema de predicción.

Para el entrenamiento se utilizaron conjuntos de datos de las ciudades de Birmingham
(22 aparcamientos, 95733 mediciones), Glasgow (5 aparcamientos, 227275 mediciones),
el condado de Norfolk (8 aparcamientos, 388908 mediciones), y la ciudad de Nottingham
(12 aparcamientos, 633926 mediciones), todas pertenecientes al Reino Unido. Estos datos
se encuentran publicados bajo la licencia U.K. Open Government Licence (OGL) [222] o
Creative Commons Attribution [168].

Como estrategia de entrenamiento se ha utilizado validación cruzada (K-folds) para los
cinco primeros predictores, mientras que las Series Temporales se entrenaron incremen-
talmente. Dado que los datos con los que se ha trabajado no estaban completos debido a
sensores intermitentemente defectuosos u otros motivos, antes del entrenamiento se realizó
el filtrado de los datos inválidos, mientras que los valores faltantes se completaron utilizando
el promedio de los cuatro valores previos correspondientes.

Luego de su entrenamiento y configuración, los predictores se pusieron a prueba com-
parando sus resultados con una nueva semana de valores no vista durante el entrenamiento.
En la comparación se utilizó el error cuadrático medio (Mean Squared Error, MSE) para
medir la precisión de cada predictor, observándose que las Series Temporales alcanzaron los
mejores resultados, seguidas de los Polinomios y las Series de Fourier.
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B.4 Nuevos Algoritmos Bioinspirados
Una molécula de ADN consiste en dos hebras entrelazadas una sobre la otra formando una
doble hélice. Cada hebra se compone de nucleótidos conteniendo bases nitrogenadas como la
guanina (G), adenina (A), timina (T), y citosina (C) [63]. El ADN se organiza en estructuras
largas llamada cromosomas (23 pares en humanos que consisten a aproximadamente 25000
genes) los cuales se duplican durante la división celular. Dentro de cada cromosoma, unas
proteínas llamadas histonas compactan y organizan el ADN para guiar las interacciones de
este con otras proteínas, controlando así como los genes se expresan.

La molécula del ADN porta información genética que puede pasarse desde una generación
a la siguiente [12], un concepto que puede encontrase en los actuales algoritmos evolutivos
donde un cromosoma se representa como un vector de símbolos, correspondiéndose cada
uno con un gen. Por lo general esta representación se realiza en forma haploide, aunque
también se han utilizado diploides para ello [88, 194].

Contrastando con la herencia Mendeliana clásica de los rasgos fenotípicos, provocada por
las mutaciones en la secuencia del ADN, bajo la selección natural explicada en la teoría de la
evolución de Darwin, los cambios epigenéticos son alteraciones a largo plazo del potencial
de transcripción de una célula, debido a la activación de ciertos genes, los cuales no son
necesariamente heredables [5].

La Epigenética es el estudio de los mecanismos biológicos que causan alteraciones a
largo plazo en el potencial de transcripción de células (primer paso de la expresión génica
en la cual un segmento particular del ADN se copia en el ARN) durante su desarrollo sin
cambiar la secuencia del ADN, o sea que no implica mutaciones en el ADN en sí mismo [23].
Estas alteraciones pueden ser heredables y no visibles en la generación siguiente, si no
en la generación posterior. La expresión génica también puede ser modificada por fac-
tores medioambientales [193] como la dieta, hábitos personales, envejecimiento, o cambios
aleatorios, que podrían contribuir al desarrollo de fenotipos anormales [112]. Además, las
marcas epigenéticas entre generaciones pueden restaurarse, revirtiendo el genoma a su estado
original [249].

En el núcleo de los organismos eucariotas (organismos cuya células contienen un núcleo
rodeado de membranas), el ADN se compacta en un volumen pequeño para que quepa dentro
de la célula. Esta combinación de ADN y proteínas se denomina cromatina (Figura B.7),
la cual también protege al ADN, lo refuerza para facilitar la mitosis (duplicación celular
donde el núcleo se separa en dos conjuntos de cromosomas iguales), y controla la expresión
génica y replicación del ADN. Durante la metafase (la etapa más comprimida) la estructura
de la cromatina forma la estructura del cromosoma para prevenir que el ADN sufra cualquier
daño cuando los cromosomas se separan. Las modificaciones químicas epigenéticas de las
proteínas estructurales en la cromatina también alteran su estructura local.

Los componentes principales de la cromatina son las histonas [23], en las cuales se
enrolla el ADN eucariota para formar los nucleosomas (Figura B.8). Los nucleosomas son
la unidad fundamental dentro de la cual se empaquetan las histonas y el ADN, para formar
una serie de cuentas, como en un collar, compactando así el ADN. Cada nucleosoma consta
de ocho histonas las cuales poseen largas colas proteicas que pueden ser modificadas por
metilación, acetilación, etc.
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Figura B.7: ADN empaquetado por la cromatina en las células eucariotas.

La metilación del ADN es un factor epigenético reconocido como el principal con-
tribuyente a la estabilidad de los estados de expresión génica en la división celular por
mitosis [104] dado que el mismo establece un estado silencioso en la cromatina que modifica
los nucleosomas [242]. Los mecanismos epigenéticos delimitan la expresión, adaptando
regiones del genoma para mantener el silenciado o la expresión génica [21]. Esto se consigue
mediante modificaciones químicas directamente sobre la región del ADN junto con la modi-
ficación de proteínas que están asociadas con la ubicación de cada gen [112]. Además, la
metilación del ADN y la modificación de histonas sirven como marcas epigenéticas para la
cromatina (activa o inactiva), y pueden ser heredables [130].

Figura B.8: Factor epigenético: metilación, en una de las histonas del nucleosoma.

Los mecanismos epigenéticos [5], como la impronta genética (Genomic Imprinting),
pueden ser utilizados como base para la construcción de operadores, que modifican la
solución a un problema representado por un cromosoma siguiendo las reglas de la metilación.

El Algoritmo Epigenético (epiGenetic Algorithm, epiGA) [200] es una nueva propuesta
que consiste en un conjunto de estrategias, basadas en la computación evolutiva, inspiradas
en la naturaleza, en especial en la epigenética, con el fin de resolver problemas combinatorios
complejos. La base de epiGA es la epigénesis. Nuestro principal interés se halla en como las
histonas y el ADN se colapsan para formar nucleosomas, como esto afecta la replicación
génica durante la reproducción, y como los mecanismos epigenéticos modifican la expresión
génica a través de la metilación, todo ello para construir los operadores bioinspirados de
nuestro algoritmo. Creemos que esta es una forma de construir algoritmos diferente a
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las existentes en los modelos conocidos que no pierde de vista a los algoritmos genéticos
estándares, lo que la hace más fácil de adoptar por otros autores e investigadores.

En la Figura B.9 se presenta el diagrama en bloques del epiGA en donde los operadores
epigenéticos se encuentran resaltados.

Figura B.9: Diagrama del Algoritmo epiGenético (epiGA).

Durante la Inicialización de la Población se generan nuevos individuos conteniendo
células, luego se realiza la Selección (usualmente torneo binario) para obtener una población
temporal de trabajo. El siguiente paso consiste en la Generación de Nucleosomas (Nucleo-
some Generation, NG) en los cuales el ADN se colapsa haciéndose inaccesible durante la
siguiente etapa, la Reproducción Basada en Nucleosomas (Nucleosome Based Reproduction,
NBR). Habiéndose generado los descendientes de la población temporal del actual ciclo
epigenético, se aplican los Mecanismos Epigenéticos a los mismos según la metilación del
ADN y un entorno previamente definido. Por último el ciclo termina, reemplazándose los
individuos peor valuados (fitness) por los mejores, usualmente en un modo elitista.

Utilizando epiGA se han resuelto 120 instancias (OR-Library [19]) del problema de la
mochila multidimensional (Multidimensional Knapsack Problem, MKP) [93, 138] de distinta
complejidad, y se han comparado los resultados obtenidos con otros algoritmos del estado
del arte (IBM ILOG CPLEX [108], SACRO-PSO [39], Resolution Search + Branch & Bound
(RS + B&B) [30], Genetic Algorithm (GA) [86, 102] y Simmulated Annealing (SA) [35,
118]. Los resultados obtenidos muestran que epiGA presenta un mejor comportamiento que
GA, SA, y SACRO-PSO en todas las instancias y un comportamiento similar CPLEX y RS +
B&B con diferencias menores al 0.2% en los valores máximos obtenidos.

Además se ha puesto a prueba epiGA, un algoritmo bioinspirado (Bio-inspired Comput-
ing), resolviendo un problema de movilidad inteligente (Smart Mobility). En concreto se
han optimizado dos escenarios de la arquitectura Yellow Swarm, en los cuales los tiempos
para las indicaciones visualizadas en los paneles LED se calcularon utilizando un Algoritmo
epiGenético. Como referencia, se realizó también la optimización utilizando el algoritmo
evolutivo que formaba parte de la propuesta inicial para la arquitectura, obteniéndose mejoras
de hasta el 3% sobre los tiempos de viaje en la ciudad de Málaga y un 13% sobre el tiempo
de viaje más largo. Respecto al algoritmo evolutivo, las mejoras fueron del 1% y 11%,
respectivamente, todas ellas con significancia estadística (test de Wilcoxon).
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B.5 Conclusiones y Trabajo Futuro
En esta tesis doctoral se han definido una serie de problemas de movilidad inteligente, se
han descrito las herramientas existentes a utilizar y se han propuesto diferentes soluciones
para resolverlos. Además se ha presentado un nuevo algoritmo inteligente, basado en la
epigenética, para resolver problemas de optimización, entre ellos, los incluidos en este trabajo
de investigación.

Todas las arquitecturas propuestas se han mostrado eficientes y competitivas a la hora de
optimizar el tráfico rodado de la ciudad, reduciendo tiempos de viaje y emisiones. Mientras
que el nuevo algoritmo propuesto, el Algoritmo epiGenético, ha igualado o superado a los
otros algoritmos del estado del arte en la mayoría de las instancias optimizadas.

Como trabajo futuro resta por estudiar el funcionamiento del epiGA sobre otros problemas
así como implementar más operadores basados en los mecanismos epigenéticos. En cuanto
a las arquitecturas de movilidad inteligente, nuestro deseo es extender las áreas analizadas
a ciudades completas que incluyan cientos de miles de vehículos, lo que requiere afrontar
nuevos desafíos en términos de potencia de cómputo requerida, eficiencia de los algoritmos,
nivel de paralelismo, etc.
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