On the Quality Properties of
Model Transformations:

Performance and Correctness

4 'ma
Ll

Loli Burgueno

Departamento de Lenguajes y Ciencias de la Computacién

University of Malaga

Supervised by

Antonio Vallecillo and Manuel Wimmer

April 2016



> JERS , 8,
S @

P ) UNIVERSIDAD

S - Y

1 -3/ DE MALAGA

oy 3
-7 S

AUTOR: Dolores Burguefio Caballero
http://orcid.org/0000-0002-7779-8810

EDITA: Publicaciones y Divulgacion Cientifica. Universidad de Malaga

OO0

Esta obra esta bajo una licencia de Creative Commons Reconocimiento-NoComercial-
SinObraDerivada 4.0 Internacional:
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Cualquier parte de esta obra se puede reproducir sin autorizacion

pero con el reconocimiento y atribucion de los autores.

No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer
obras derivadas.

Esta Tesis Doctoral esta depositada en el Repositorio Institucional de la Universidad de
Malaga (RIUMA): riuma.uma.es


http://orcid.org/0000-0002-7779-8810
http://orcid.org/0000-0002-7779-8810
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

To those I love. To those who love me.



YOV YW 30
avaISY3AINN




El Dr. Antonio Vallecillo Moreno, Catedratico de Universidad del Depar-

tamento de Lenguajes y Ciencias de la Computacion de la E.T.S. de Ingenieria

Informatica de la Universidad de Malaga, y el Dr. Manuel Wimmer, profesor

perteneciente al Business Informatics Group en la Universidad Tecnoldgica de

Viena,

Certifican que Dna. Dolores Burgueiio Caballero, Ingeniera Informatica,

ha realizado en el Departamento de Lenguajes y Ciencias de la Computacion

de la Universidad de Mélaga, bajo su direccién, el trabajo de investigaciéon

correspondiente a su Tesis Doctoral titulada:

On the Quality Properties of

Model Transformations:

Performance and Correctness

Revisado el presente trabajo, estimamos que puede ser presentado al

tribunal que ha de juzgarlo, y autorizamos la presentacién de esta Tesis

Doctoral en la Universidad de Malaga.

Fdo. Antonio Vallecillo
Catedratico de Universidad
Dpto. Leng. y Ciencias de la Computacion

Universidad de Malaga

Malaga, abril de 2015

Fdo. Manuel Wimmer
Associate Profesor
Bussiness Informatics Group

Vienna University of Technology



YOV YW 30
avaISY3AINN




Acknowledgements

This thesis has been supported by the fellowship BES-2012-057064 granted by
the Programme for the Training of Researchers of the Ministry of Economy and
Competitiveness of Spain and the Spanish research projects TIN2011-23795
and TIN2014-52034-R.



YOV YW 30
avaISY3AINN




Special Acknowledgements

Mucha gente me ha acompanado durante el desarrollo de esta tesis doctoral,
tanto en el ambito académico como en el personal. Algunos llevan conmigo
tanto tiempo que no recuerdo la vida sin ellos. Otros llegaron més tarde y
aun asi supieron hacerse notar. A todos y cada uno, gracias.

En primer lugar me gustaria mostrar mis agradecimientos a mis directores
de tesis, Antonio Vallecillo y Manuel Wimmer. Antonio, gracias por depositar
tu confianza en mi y ofrecerme la posibilidad de realizar esta tesis doctoral,
espero no haberte defraudado. Gracias por dedicarme parte de tu tiempo
aun estando tan ocupado, gracias por tus buenos consejos e ideas y gracias
por darme un trato tan agradable. Gracias por tener siempre una sonrisa
en la cara y por ser tan entusiasta y optimista, son cosas que se transmiten.
Sinceramente, no creo que hubiera podido tener un mejor director de tesis.
Manuel, although your stay in Mélaga was short (a year and a half is short)
and the distance makes the communication difficult, thank you for helping
me so much, for always being willing to share your ideas with me, for your
advice, for finding the way to work together, for inviting me to Vienna, and a
long etcetera. I wish you could have stayed longer in Malaga. We miss you.

También tengo que dar las gracias a todos los miembros de Atenea y
en especial a Javi Troya. Javi, gracias por prestarme tanta ayuda y por tu
paciencia, sobre todo al principio que era cuando més lo necesitaba.

Gracias también a todos mis compafieros del 3.3.3. por ayudarme en la
medida de lo posible, por hacer amenos tantos almuerzos y por los buenos
ratos que hemos pasado fuera de las cuatro paredes del laboratorio. Las
largas horas de trabajo se hacen mas pasajeras cuando la compaifiia es buena.
Gracias a Lola y Jose Luis Reyes por vuestra eficiencia y amabilidad a la hora

de resolver los temas administrativos.



I would like to thank Jeff Gray and Eugene Syriani for giving me the
chance to spend four months at the University of Alabama working with them.
It was a very fruitful stay from which I learnt a lot. At a personal level, thank
you, Jeff and Eugene, for treating me so well. Also, thanks to all the members
of the group for considering me one of them since the first day. Finally, all
my American friends, and specially my three roommates, deserve a special
thank you. Thank you for being like my American family and making me feel
at home. Without you, nothing would have been the same. Also, I want to
thank Gabor Karsai for offering me the possibility to live another experience
like this and learn from him and his team at the University of Vanderbilt.

I am very grateful to Martin Gogolla and his team. In the first place,
for putting their trust in me and, secondly, for their hard work on our
collaborations. It is always a pleasure to work with you.

Quiero dar las gracias a todos mis amigos, a los més cercanos y a los mas
lejanos, a los que veo con mas frecuencia y a los que veo con menos. Gracias
por hacerme pasar tantos buenos momentos. Como siempre digo, “no hay
que vivir para trabajar sino trabajar para vivir”, y en ese “vivir” es donde
vosotros ponéis vuestro granito de arena para que el “trabajar” merezca la
pena.

Por dltimo, gracias a toda mi familia por apoyarme y confiar en mi.
Gracias a mis hermanas, Petri y Mari Celi por estar siempre ahi, en las buenas
y en las malas. Gracias, papé, por desvivirte por mis hermanas y por mi para
que nunca nos falte nada, gracias por tu nobleza y por tus infinitos gestos de
carino. Gracias, mama4, por todo lo que haces por mi dia a dia, por ser un
ejemplo a seguir, por los valores que, junto con papéa, me has transmitido y me
sigues transmitiendo. Gracias también por tus castigos, por tu insistencia y
tu paciencia cuando de pequena no queria estudiar, sin ti ni esta tesis doctoral

existiria ni seria la persona que soy a dia de hoy.



Abstract

The increasing complexity of software due to continuous technological ad-
vances has motivated the use of models in the software development process.
Initially, models were mainly used as drafts to help developers understand
their programs. Later they were used extensively and a new discipline called
Model-Driven Engineering (MDE) was born. In the MDE paradigm, aside
from the models themselves, model transformations (MT) are garnering in-
terest as they allow the analysis and manipulation of models. Therefore,
the performance, scalability and correctness of model transformations have
become critical issues and thus they deserve a thorough study. Existing model
transformation engines are principally based on sequential and in-memory
execution strategies, and hence their capabilities to transform very large
models in parallel and in distributed environments are limited. Current tools
and languages are not able to cope with models that are not located in a single
machine and, even worse, most of them require the model to be in a single file.
Moreover, once a model transformation has been written and executed—either
sequentially or in parallel—it is necessary to rely on methods, mechanisms,

and tools for checking its correctness.

In this dissertation, our contribution is twofold. Firstly, we introduce
a novel execution platform that permits the parallel execution of both out-
place and in-place model transformations, regardless of whether the models
fit into a single machine memory or not. This platform can be used as a
target for high-level transformation language compilers, so that existing model
transformations do not need to be rewritten in another language but only
have to be executed more efficiently. Another advantage is that a developer
who is familiar with an existing model transformation language does not need

to learn a new one.



In addition to performance, the correctness of model transformations is
an essential aspect that needs to be addressed if MTs are going to be used
in realistic industrial settings. Due to the fact that the most popular model
transformation languages are rule-based, i.e., the transformations written
in those languages comprise rules that define how the model elements are
transformed, the second contribution of this thesis is a static approach for
locating faulty rules in model transformations. Current approaches able
to fully prove correctness—such as model checking techniques—require an
unacceptable amount of time and memory. Our approach cannot fully prove
correctness but can be very useful for identifying bugs at an early development

stage, quickly and cost effectively.



Table of contents

List of figures xvii
List of tables xxi
Acronyms xxiii
1 Introduction 1
1.1 Motivation and Challenges . . . . . . . . ... ... ... ... 4

1.2 Contribution . . . ... ... ... .. ... .. 4

1.3 Outline . . . .. .. 5

2 Background 9
2.1 Model-Driven Engineering . . . . .. ... ... ... .. ... 10
2.1.1 History . ... ... .. 10

2.1.2 Models and Metamodels . . . . . . .. ... ... ... 11

2.1.3 Model Transformations . . .. ... ... ... .... 14

2.2 Linda Coordination Language . . . . . . . . .. .. ... ... 16
2.3 Model Transformation Contracts. Tracts . . . . . . .. .. .. 17
2.3.1 Specifying Transformations with Tracts . . .. . . .. 17

2.3.2  Implementing Transformations with ATL . . . .. .. 21

2.3.3 Testing Transformations with Tracts . . . . . . . . .. 22

3 Parallel Out-place Model Transformations 25
3.1 LinTra and its Java Implementation jLinTra . . . . . . . . .. 28
3.1.1 Linda and Existing Implementations . . . . . . .. .. 29

3.1.2 Building a Common Interface: The Blackboard Metaphor 29
3.1.3 Models and Metamodels in LinTra . . . .. ... ... 33



3.1.4 Traceability . . . . .. ... ... . oL 34

3.1.5 Master-Slave Configuration . . . ... ... ... ... 37
3.1.6 jLinTra Transformation Definitions By-Example . .. 39
3.1.7 Distributed Models . . . . . . . ... ... ... 40
3.2 Model Transformation Chains . . . . . . ... ... ... ... 43
3.3 Evaluation and Performance Analysis . . . ... ... .... 44
3.3.1 Research Questions . . . . .. .. ... ... ...... 44
3.3.2 Case Studies . . . .. .. ... L 45
333 Setup . . ... 51
334 Results . ... .. . 52
3.3.5 Discussion . . . . . ... o 61
3.3.6 Threats to Validity . . . . .. ... ... ... ... ... 62
3.4 Related Work . . . . . .. ..o 63
3.4.1 Persisting Very Large Models . . . . . ... ... ... 63
3.4.2 Transforming Very Large Models . . . . .. ... ... 64
3.4.3 Coordination Models and Languages . . . . . . .. .. 65
3.4.4 Other Model Transformation Types . . ... ... .. 66
3.5 Summary ... 67
Parallel In-place Model Transformations 71
4.1 Background . . . . .. ... 73
4.2 Approach and Semantic Issues . . . . . . ... ... L. 74
4.2.1  Atomic Transformation Actions . . . . . . .. ... .. 74
4.2.2 Confluence Conflicts . . . . .. ... ... ... .... 75
4.3 Evaluation. . . . . . .. . .. 77
4.3.1 Research Questions. . . . . . ... ... ... ..... 78
4.3.2 Experiment Setup . .. ... ... ... L. 78
4.3.3 Performance Experiments . . . . . ... .. ... ... 79
4.3.4 Threats to Validity . . . . . .. ... .. ... ... .. 82
4.4 Related Work . . . . .. ... .. .. ... o 82
4.5 Summary ... ... e e 83



5

6

Testing Model-to-Model Transformations

5.1 Matching Tables . . . .. .. .. ... ... ... .. ...
5.1.1 Motivation and Challenges . . . ... ... ... ...
5.1.2 Methodological Approach . . ... ... ... .....
5.1.3 Footprint Extraction . . . . . .. ... ... ... ...
5.1.4 Footprint Matching and Matching Tables . . . . . ..
5.1.5 UML2ER Case Study: Pragmatics . . . .. ... ...
5.1.6 Putting the Approach into Context . . . . . .. .. ..

5.2 Implementation . . . . . . . ... ... L oL
5.2.1 Footprint Extraction from OCL Constraints . . . . . .
5.2.2 Footprint Extraction from ATL Rules . . ... .. ..
5.2.3 Matching Function . . . . .. ... ... ..o

5.3 Evaluation. . . . ... ... ... ... .. .. ... ...,
5.3.1 Research Questions . . . . . ... ... .. .......
5.3.2 Case Study Design . . . . .. ... ... ... ...,
53.3 Results . ... ... .
5.3.4 A-priori Applicability Test . . . . . . . ... ... ...
5.3.5 Experimenting with Faulty Transformations . . . . . .
5.3.6 Threats to Validity . . . . . . ... ... ... .. ...

54 Related Work . . . . . .. ..o o
5.4.1 Tracing Faults in Model Transformations . .. .. ..
5.4.2 Test Generation for Model Transformations . . . . . .
5.4.3 Model Transformation Footprinting . . ... ... ..

5.5 SUMMATY . . . o o v e e e

Extending Tracts for M2T and T2M Transformations

6.1 Generic Metamodel for Representing Text Repositories . . . .
6.1.1 M2T Example: UML to Java . . . . ... ... ....
6.1.2 T2M Example: USE to UML . . ... ... ... ...
6.1.3 Tool Support . . . .. ... ... ... ... .. ...,

6.2 Evaluation. . . ... ... ... ... .. ... . ... ..
6.2.1 Selected Tracts and Test Models . . . . ... ... ..
6.2.2 Selected Tools . . . ... .. ... ... ... ... ..

85

88

88

89

91

93
101
103
105
106
106
108
109
110
110
115
116
120
122
124
125
127
127
128



6.2.3 Evaluation Procedure . . . .. ... ... ... .... 143

6.24 Results . .. ... ... ... .. 143

6.3 Related Work . . . . . . .. ... .. ... .. 145
6.4 Summary . . . . ... 148

7 Conclusions and Future Work 149
7.1 Summary and Conclusions . . . . . . ... ... ... ..... 150
7.2 Publications . . . . . . ... 151
7.2.1 Publications Supporting this Dissertation . . .. . .. 152

7.2.2 Further Publications . . . . .. ... ... ... .... 154

7.3 Future Work . . . . . .. ... ... ... 155
References 159
Appendix A Similarity Matrixes 173
Appendix B Resumen 187

Appendix C Conclusiones y Contribuciones 189



List of figures

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

5.1

5.2
5.3
5.4

Organization in four layers proposed by the OMG. . . . . ..
Overview of the elements involved ina MT. . . . . ... ...
Building Blocks of a Tract [56]. . . . . .. ... ... .....

The Family and Person metamodels. . . . . . ... ... ...

LinTra architecture . . . . . . .. .. ... ... ... .. ...
LinTra interface. . . . . . . . . . . ... ... ... ......
BibTeXML metamodel excerpt. . . . . . . . . . . ... ... ..
DBLP Metamodel. . . . . .. ... ... ... ... ......
AuthorInfo Metamodel. . . . . . ... ... ... ... ...
IMDb Metamodel. . . . . . ... ... ... .. ... ...
Prefuse Graph Metamodel. . . . . . ... ... ... .....
Comparative chart for the DBLP case study. . . .. ... ..
Comparative chart for the IMDb-Identity case study. . . . . .
Comparative chart for the IMDb-FindCouples case study.

Comparative chart for the Java Refactoring case study. . . . .
Comparative chart for the Java-to-Graph case study. . . . . .

Comparative chart for the IMDb-Identity using RAM memory
and hard disk. . . .. .. .o Lo oL

Heterogeneities and Commonalities between Constraints and
Rules. . . . . . . .
Possible overlaps for C; and R;. . . . . . ... ... ... ...
Situations with differently sized rule/constraint footprints. . .
The UML and ER metamodels. . . . . . . ... ... .....

13
14
19
20

28
30
34
46
47
48
50
55
55
56
56
o7

60

90
95
97

xvii



5.5 Matching process. . . . . . ... oL 105

6.1 Metamodel for representing text artifacts and repositories. . . 132
6.2 Exemplary folder structure and corresponding text model. . . 133
6.3 Exemplary file content and corresponding text model. . . . . 133
6.4 A simplified metamodel for UML class diagrams. . . . . . . . 134
A.1 Similarity Matrix for the ATOM2XML example. . . ... .. 174
A.2 Similarity Matrix for the ATL2Problem example. . . . . . . . 174
A.3 Similarity Matrix for the ATOM2RSS example. . . . . . . .. 174
A.4 Similarity Matrix for the BibTex2DocBook example. . . . . . 175
A.5 Similarity Matrix for the CPL2SPL example. . . . . ... .. 175
A.6 Similarity Matrix for the ECORE2USE example. . . . . . .. 176
A.7 Similarity Matrix for the IEEE14712MoDAF example. . . . . 176
A.8 Similarity Matrix for the KM320WLF example. . . ... .. 177
A.9 Similarity Matrix for the KM32Problem example. . . . . . . . 177
A.10 Similarity Matrix for the Measure2Table example. . . . . . . 178
A.11 Similarity Matrix for the Measure2XHTML example. . . . . . 178
A.12 Similarity Matrix for the MySQL2KM3 example. . . . . . . . 178
A.13 Similarity Matrix for the PathExp2PetriNet example. . . . . 179
A.14 Similarity Matrix for the PathExp2TextualPath example. . . 179
A.15 Similarity Matrix for the PetriNet2Grafcet example. . . . . . 179
A.16 Similarity Matrix for the PetriNet2PathExp example. . . . . 180
A.17 Similarity Matrix for the PetriNet2PNML example. . . . . . . 180
A.18 Similarity Matrix for the PetriNet2XML example. . . . . . . 180
A.19 Similarity Matrix for the PNML2PetriNet example. . . . . . . 181
A .20 Similarity Matrix for the PNML2XML example. . . . . . .. 181
A.21 Similarity Matrix for the R2ZML2WSDL example. . . . . . . . 181
A .22 Similarity Matrix for the RSS2ATOM example. . . . . . . . . 182
A.23 Similarity Matrix for the RSS2XML example. . . . . . . . .. 182
A.24 Similarity Matrix for the UML2ER example. . . . . ... .. 182
A.25 Similarity Matrix for the XML2MySQL example. . . . . . . . 183

A.26 Similarity Matrix for the WSDL2R2ML example. . . . . . . . 183



A.27 Similarity Matrix for the XML2ATOM example. . . . . . .. 184

A .28 Similarity Matrix for the XML2PetriNet example. . . . . . . 184
A.29 Similarity Matrix for the XML2PNML example. . . . . . .. 185
A.30 Similarity Matrix for the XML2RSS example. . . . . . . . .. 185
A.31 Similarity Matrix for the XML2WSDL example. . . . . . .. 186

A .32 Similarity Matrix for the XSLT2XQuery example. . . . . . . 186



YOV YW 30
avaISY3AINN




List of tables

3.1 Example uses of trace function . . .. ... ... ... ....
3.2 Data management middleware comparison . . . . . . . . . ..
3.3 Results for the DBLP case study. . . . . . ... ... .....
3.4 Results for the IMDb-Identity transformation. . . . . . . . ..
3.5 Results for the IMDb-FindCouples transformation. . . . . . .
3.6 Results for the Java Refactoring transformation. . . . . . ..
3.7 Results for the Java-to-Graph transformation. . . . . . . . ..
3.8 Average speed-up of jLinTra w.r.t. the rest of the transforma-

tionengines. . . . . . ... Lo oo
3.9 Results for the Java-to-Graph-to-ReducedGraph transforma-

tionchain. . . . . ... L o
3.10 Results for IMDb-Identity using RAM memory and HDD. . .

4.1 Execution results and speedups. . . . . . ... ... ... ...

5.1 Footprints for the Families2Persons example. . . . . . . . ..
5.2  Families2Persons matching tables. . . . . ... .. ... ...
5.3 Matching table using CC metric. . . . . ... ... ... ...
5.4 Matching table using RC metric. . . ... ... ... .. ...
5.5 Matching table using RCR metric. . . . ... ... ... ...
5.6 Transformation Metrics Overview. . . . .. .. ... ... ..
5.7 Metamodel Metrics Overview. . . . . . . . . .. .. .. ....
5.8 Expected alignments for the UML2ER transformation. . . . .
5.9 Accuracy of case studies. . . . . ... ... L.
5.10 Similarity Matrix for the Rules in UML2ER. . . . . . .. ..

5.11 Summary of Similarity Matrixes. . . . . . .. ... ... ...

57

69
69

81

93

98
101
102
102
112
112
114
116
117

xxi



5.12 Possible Mutations for ATL Transformations (from [13]).. . . 120
5.13 Summary of mutations and fault localization results (CPL2SPL
Project). . . . ... 121

6.1 Evaluationresults . . . . . . . . . . ... ... ... 144



Acronyms

MDE
MDA
MT
M2M
M2T
ToM
MM
HOT
CASE
OMG
ATL
QVT
ETL
EMF
RQ
cC
RC
RCR
CT
USE
OCL

Model-Driven Engineering
Model-Driven Architecture

Model Transformation
Model-to-Model

Model-to-Text

Text-to-Model

Metamodel

High-Order Model Transformation
Computer-Aided Software Engineering
Object Management Group

ATLAS Transformation Language
Query /View /Transformation

Epsilon Transformation Language
Eclipse Modeling Framework
Research Question

Constraint Coverage

Rule Coverage

Relatedness of Constraints and Rules
Classifying Term

UML-based Specification Environment
Object Constraint Language

xxiii



YOV YW 30
avaISY3AINN




Chapter 1

Introduction

There is no doubt that software currently plays an essential role in our
society. The needs that we humans have for software are increasing. The more
present software is in our daily life, the more we demand from it. Therefore,
the problems it has to solve are increasingly complex. Software as we now
understand it, i.e., instructions that are executed in digital machines, first
appeared in the late 1940s and its instructions were written directly in binary
code. Since then, we have placed several abstraction layers on top of the
binary code to facilitate the writing of more complex programs—mnowadays, it
is not only a matter of easing the writing but of making it possible. One of
these attempts has led to Model Driven Engineering (MDE).

MDE is an approach for software development that was developed with
the intention of manipulating the complexity of large software systems by
considering only those aspects that were useful for a specific purpose and
leaving out superfluous details. All this is achieved through dedicated models.
Models capture the aspects of interest of systems and behave as an abstraction
of them, representing reality for a given purpose. Thus, models are simpler,
safer and/or cheaper than reality and allow users to deal with the interesting
parts of the real systems in a simplified and more focused way. This helps

avoid the complexity, danger and irreversibility of real scenarios.

Alongside models, Model Transformations (MT) play a central role in

all model-driven software engineering processes [16]. They manipulate these

1



Chapter 1. Introduction

models to accomplish different tasks: not only generating the system imple-
mentations from the high-level models, but also for model analysis, software
migration and modernization [19] and even for data integration, especially
when complex data structures are involved, e.g., in Social Web data manage-
ment [152].

Although MTs are essential for building systems in the MDE paradigm,
we believe they are not yet mature enough to be adopted by industry. For
instance, although there are different ways to represent models (such as XML
representations, graphs, etc.) and approaches for transforming them (such as
textual vs. visual languages, imperative/operational vs. declarative/relational
languages, graph transformation languages, etc.) that could be sufficient to
solve a wide range of problems, most of them are conceptual solutions and
the tool support they offer is only at prototype level, which only permits
the transformation of toy models. The problem is not merely a matter of
re-implementing tools, in fact it is more serious than that. For instance,
relational model transformation languages are computationally expensive
because they have to deal with subgraph isomorphism, which is an NP-
complete problem. Most of the existing solutions were designed considering
only the functional requirements given by the problem to solve, and leaving
out some key non-functional requirements such as performance or correctness.

Nowadays, huge amounts of data are handled and the use of the cloud
or networks of computers to store it—because a single machine does not
fulfil all the requirements (space, availability, etc.)—is needed. Furthermore,
engineers and developers are always rushing due to strict deadlines, which
means that their processes must be as efficient as possible. In practice, they
need to store and handle models with millions of instances, transform these
models in a reasonable amount of time and make better use of their current I'T
infrastructure—mnetworks of distributed computers and multi-core machines.
In the meantime, current model transformations engines lack concurrent
mechanisms to execute model transformations in parallel and they do not
provide the ability to transform models that are larger than the size of the
RAM memory of the machine in which the model transformation is being

executed.




Apart from the problems that one might find when executing a model
transformation, another reason that hinders the acceptance of MDE is that
MTs are hard to test and debug. Therefore, it is important to be able to count
on mechanisms to prove afterwards that the model transformation execution
was correct and there are no mistakes in the implementation that might affect
the result. Most MT languages and engines can be seen as a black box that
executes a piece of code and obtains certain results but there is no way to
know the steps it followed. This is a line of research that has already been
started in which some initial solutions have been proposed [1, 143]. There are
mechanisms available to fully prove MT correctness but they require so much
time or effort on the part of the developer to be applied that may not be
worth it in many cases. In those cases, approaches like Tracts [56] that certify
the correctness—instead of formally verifying it—provide useful solutions.
Tracts can be seen as a specific kind of model transformation contracts [7, 33].
They are suitable for specifying model transformations and count on tool
support for checking, in a black-box manner, that a given implementation
behaves as expected. Nevertheless, the Tracts approach may cause developers
to discard it as an option because it does not provide information as to
where the problem is located in the implementation. This lack of traceability
mechanisms between implementations and specifications is a serious problem
when the MT’s size and complexity grow in such a way that manual debugging
is no longer possible.

This chapter is structured as follows. In Section 1.1 we present the
motivation behind this work, Section 1.2 shows our contributions to the state

of the art and Section 1.3 explains the structure of this thesis.




Chapter 1. Introduction

1.1 Motivation and Challenges

Model Driven Engineering raises the level of abstraction in the software de-
velopment process and allows developers and engineers to deal with complex
problems using simpler solutions. Nevertheless, the afore-mentioned weak-
nesses of model transformations may prevent the extended adoption of the
MDE paradigm. These weaknesses have motivated our work, presented in this

thesis. Specifically, this thesis addresses the following two research questions:

RQ1 Is it possible to provide a concurrent approach and the appropriate

mechanisms to support the parallel and distributed execution of MTs?

RQ2 Is it possible to build traceability mechanisms between implementations
and specifications of MTs?

These research questions have been carefully studied throughout the course

of this dissertation.

1.2 Contribution

The research carried out in order to respond to this thesis’ research questions

has resulted in two main contributions:

(1) a model transformation engine called LinTra that transforms models—

that might be distributed over a set of machines—in parallel and,

(ii) a light-weight testing approach that can be used as a first step
towards identifying bugs in model transformation implementations at

an early stage, quickly and cost effectively.

These two contributions comprise several (sub-)contributions. With respect
to LinTra, we have developed a Java-based execution platform that makes use
of the Linda coordination language and provides the possibility of executing
model transformations in parallel even when models do not fit inside the

computer RAM memory. This platform lets the developer choose between

4



1.3 Outline

two execution modes: out-place and in-place. An out-place execution of a
model transformation involves two kinds of models: input models that are
read-only and output models that are created from scratch. By contrast,
in-place model transformations do not create new models but rather evolve the
input models. LinTra also provides the functionality to execute, in parallel,
model transformation chains, which are transformations in which the output of
a transformation is the input of the following. Current model transformation
languages that do not support concurrency or distribution could be compiled
to LinTra so that model transformations written in that language could be
executed in parallel, also allowing the transformation of larger models.
With regard to our testing approach, as rule-based model transforma-
tion languages are the most popular languages, our first contribution is a
light-weight and static approach for locating faulty rules in model-to-model
transformations. This is used in conjunction with Tracts in such a way that
when Tracts identify that there is a mistake in a model transformation, our
approach is able to point to where the problem might be in the implemen-
tation, i.e., it provides a traceability mechanism between implementations
and specifications of MT’s. Since our approach is not an exhaustive testing
technique nor it can fully prove correctness, we also provide a method to
identify whether or not a given transformation is suitable for our testing
approach. Our second contribution is the extension of the model-to-model

testing approach to model-to-text and text-to-model transformations.

1.3 Outline

The remaining dissertation chapters are structured as follows:

Chapter 2. Background

We present some concepts, technologies and tools that have served as the
basis of this dissertation. The MDE methodology is presented, together with
its main concepts which are models, metamodels and model transformations.

The Linda coordination language, on which our parallel model transformation




Chapter 1. Introduction

engine is based, is also presented. Finally, we present Tracts, a black-box
testing mechanism for model transformations, and a simple case study that

shows how Tracts are used.

Chapter 3. Parallel Out-place Model Transformations

This chapter presents a novel Java-based execution platform that offers a set
of core features for the parallel execution of out-place transformations that
can be used as a target for high-level transformation language compilers. It is
inspired by the concepts and principles of the Linda coordination language,
and the use of data parallelism to achieve parallelization. This platform also
provides mechanisms for parallel execution of model transformation chains—
where there are several transformations to be executed and the output of a
transformation is the input of the following transformation. The evaluation
presented in this chapter, in which we have compared our engine against
several state-of-the-art model transformation engines, reports significant gains

in performance and scalability.

Chapter 4. Parallel In-place Model Transformations

This chapter complements Chapter 3 by permitting the parallel execution
of in-place model transformations. It discusses the fundamentals of in-place
model transformations in light of their parallel execution and provide LinTra

with an in-place execution mode.

Chapter 5. Testing Model-to-Model Transformations

This chapter presents a light-weight and static approach for locating faulty
rules in Model-to-Model (M2M) transformations, based on matching func-
tions that automatically establish the alignments between specifications and
implementations using the metamodel footprints. It is implemented for the
combination of Tracts and ATL and is supported by the corresponding toolkit.
The chapter ends with an evaluation of the accuracy and limitations of the

approach and identifies kinds of transformations which are most suitable

6



1.3 Outline

for validation with the proposed approach and use mutation techniques to

evaluate its effectiveness.

Chapter 6. Extending Tracts for Model-to-Text and Text-to-
Model Transformations

While Chapter 5 presents an approach for testing Model-to-Model trans-
formations, this chapter presents a mechanism to reuse that approach for
model transformations for which there is no explicit model representation
in one of their domains (input or output), i.e., for Model-to-Text (M2T)
and Text-to-Model (T2M) transformations. We reduce the M2T or T2M
transformation specification problem into an equivalent M2M transformation
specification problem by representing the textual part conforming to a generic
text metamodel. Two case studies demonstrate its applicability. The chapter
ends with the application of the approach to evaluate the code generation

capabilities of several existing UML tools.

Chapter 7. Conclusions and Future work

This chapter summarizes the contributions explained in the different chapters
and highlights the contributions of our work. Furthermore, we detail the main
publications derived from these contributions and discuss the lessons we have

learnt. Finally, we outline our prospective lines of future work.

Appendix A. Similarity Matrixes

As we mentioned, Chapter 5 provides a mechanism to identify whether or
not a transformation is suitable for applying the testing approach it presents.
That mechanism generates a table, which is called a similarity matrix. The

similarity matrixes to which Chapter 5 refers are presented in this appendix.

Appendix B. Resumen

The content of this appendix is the same as in the Abstract but is written in

Spanish, i.e., it summarizes this dissertation.




Chapter 1. Introduction

Appendix C. Conclusiones y Contribuciones

This appendix reports our conclusions, the list of contributions of this disser-

tation and discusses future lines of work in Spanish.




Chapter 2

Background




Chapter 2. Background

2.1 Model-Driven Engineering

In the field of software engineering, abstractions are a key element for success.
Abstraction enables understanding and/or analyzing complex domains of
concern, such as programs, software systems, and their application domains,
which contain a plethora of detail. In this regard, a model is a simplified
and generalized representation of a real world system or concept created to
facilitate its understanding.

Model-Driven Engineering is a methodology that advocates the use of
models as first class entities throughout the software engineering life cycle.
It is meant to increase productivity by maximizing compatibility between
systems, simplifying the process of design and promoting communication

between individuals and teams working on the system.

2.1.1 History

Over the past five decades, software engineers have been creating abstractions
that help them program, focusing only on their design intent and leaving out
details from the underlying computing environment such as CPU, memory,
etc. and their complexities. For instance, languages such as C (released in the
early 1970s) raised the level of abstraction over assembly languages so that
programmers did not need to worry about low level details related to memory
position access. Similarly, early operating system platforms, such as OS/360
(released in 1967) and Unix (originally developed in 1969), shielded developers
from the complexities of programming directly with hardware devices [125].

Historically, Computer-Aided Software Engineering (CASE) tools devel-
oped in the 80s were considered to be the first tools to support MDE. These
tools aimed to provide a graphical means of simplifying software develop-
ment, whilst also generating implementation artifacts. However, they lacked
standardization.

In the past two decades, the advances in programming languages and
platforms have raised the level of software abstractions available to developers.

Examples of this are object-oriented languages such as C++4, Java, or C#,

10



2.1 Model-Driven Engineering

which offered a higher level of abstraction than Fortran or C. However, they
still had a distinct computing-oriented focus that was a problem when the
size of software as well as its complexity increased. When we talk about
complexity we mean both accidental and essential complexity. Accidental
complexity is caused by the specific solution that the engineer developed and
the problems that that solution might carry. On the other hand, the essential
complexity, named by Brooks et al. in [17], is given by the problem to be
solved itself.

New problems have appeared, related to the semantic gap between the
software design and its implementation—which requires an unacceptable
number of lines of code. This leads to the fact that developers need to pay
attention to so many programming details that it becomes difficult to focus
on strategic architectural issues such as system correctness and performance.

Model-Driven Engineering is a relatively new methodology that applies
lessons learnt from earlier attempts to develop higher-level platform and
language abstractions. MDE tools also help detect and prevent many errors

throughout the software development life cycle.

2.1.2 Models and Metamodels

A key concept in model-driven approaches is that of models. Ludewig claims
in [95] that they were not invented but rather we have been using them
since we have existed. Therefore, it is difficult to find a consensus of what
they are, or in other words to find, a definition for the concept of “model”.
Endless discussions have proved that there is no common understanding of
them. Nevertheless, most people seem to support the idea that the particular
strength of models is based on the idea of abstraction and promotion of
simpler models with a greater focus on the problem space. This combined
with executable semantics elevates the total level of automation possible.
According to Stachowiak a model needs to possess three features [130]:
(i) mapping: a model is a representation of an original, (i) reduction: not all
the properties of the subject are mapped onto the model, (i) pragmatic: a

model needs to be usable in place of the original with respect to some purpose.

11



Chapter 2. Background

The Object Management Group (OMG) developed a set of standards
called Model-Driven Architecture (MDA), thereby creating the foundation
for this advanced architecture-focused approach. In different documents, the
OMG gives different definitions. In [104] it is defined as the representation of
a part of the functionality, structure and/or behavior of a system. In [105],
the OMG defines a model as the description or specification of a system and
its environment defined for a specific purpose. Finally, in [107] the OMG
states that a model captures a view of a physical system, with a specific
purpose. The purpose determines what is to be included in the model and
what is irrelevant. Consequently, the model describes those aspects of the
physical system which are relevant to the model’s purpose, and at the right
level of abstraction.

From a software engineering perspective, engineers build models principally
to better understand the useful characteristics of an existing or desired system
and its environment, to predict the characteristics of a system by analyzing its
models, to communicate their understanding and design intent to others and
to specify the implementation of the system among others. Apart from the
definition and the purpose of models and modeling, there is a need to identify
the main functions of models. According to Gérard and Selic in a keynote!
given in 2010, a model must have the following characteristics in order to
be useful: (i) purposeful, (ii) abstract, (iii) understandable, (iv) accurate,
(v) predictive and (vi) cost-effective.

Related to models there are metamodels. A metamodel is a model that
is used to describe another model. It specifies the concepts of the language,
the relationships between these concepts, the structural rules that restrict
the possible elements in the valid models and those combinations between
elements with respect to the domain semantic rules. As a metamodel is also
a model, the term “meta” is therefore relative—depending on the perspective,
a model is either a model or a metamodel.

Each model is described in the language defined by its metamodel, so there
is a conformance relation between a model and its metamodel. A metamodel

'http://www.artist-embedded.org/docs/Events/2010/FESA /slides/1__
Keynote_ Gerard+Selic.pdf

12


http://www.artist-embedded.org/docs/Events/2010/FESA/slides/1_Keynote_Gerard+Selic.pdf
http://www.artist-embedded.org/docs/Events/2010/FESA/slides/1_Keynote_Gerard+Selic.pdf

2.1 Model-Driven Engineering

conforms to

75 | Meta-metamodel

T conforms to

we Metamodel

T conforms to

K4 Model

represented by

Fig. 2.1 Organization in four layers proposed by the OMG.

is in itself a model and, consequently, it is written in the language defined by
its meta-metamodel. The recursive process for defining models which conform
to models at a higher level of abstraction ends when a level where a model

conforms to itself, is reached.

The OMG supports the four-level architecture, called Meta-Object Facility
(MOF), that was illustrated by Bézivin in [14] and presented in Figure 2.1.
The MO layer refers to the system in the real world. A model represents those
systems at level M1. This model conforms to its metamodel defined at level
M2 and the metamodel itself conforms to the meta-metamodel at level M3.
Nevertheless, OMG’s standard is currently being challenged by multilevel
modeling [5, 89]. Multilevel modeling tries to overcome the limitation of
only four meta-levels by allowing an arbitrary number of meta-levels. This
results in the concept of clabjet which is a model element that has properties
of classes and objects. In a multilevel architecture, this dual type/instance
nature makes some metamodeling facilities available at each meta-level, which

can be beneficial in some situations.

A key difference between a software engineer and other engineers is that
the medium in which models are built is very different. Software engineers
share the same medium which is the computer, while for other engineers it

could be buildings, bridges, aeroplanes, and so on. This unique feature of

13



Chapter 2. Background

uses

Metamodel A —-— Metamodel B

T conforms to T conforms to

Modela f—-=" K Model b

accesses/creates/modifies accesses/creates/maodifies

Fig. 2.2 Overview of the elements involved in a MT.

software allows automatic transformations to be defined capable of generating
implementations from higher level models. This is something which is much
more expensive in other disciplines. Consequently, the purpose of MDE is to
make the implementation of systems as automatable as possible, achievable

thanks to model transformations.

2.1.3 Model Transformations

In the field of Model-Driven Engineering, a Model Transformation (MT) allows
a model to be manipulated and transformed. In the same way that there is no
universal definition for the concept of model, there is no universal definition
for the concept of model transformation. For instance, a highly extended
definition of model transformation is the one given by Kleppe et al. [79] which
states that “a transformation is the automatic generation of a target model
from a source model, according to a transformation definition”. On the other
hand, we have tried to be more general and in [143] we state that “a model
transformation is an algorithmic specification of the relationship between two
or more models, and more specifically, of the mapping from one model to
another”. Fig. 2.2 illustrates an overview of the main concepts involved in a
model transformation. There are two metamodels and two models, both of
which conform to their respective metamodels. The model transformation is
defined with respect to the metamodels and is executed on specific models.
As we have said, this is extensible to other domains (metamodels) and models
or there may be only one metamodel (this would be the case of inplace model
transformations).

Model Transformations can be classified according to different criteria:

14



2.1 Model-Driven Engineering

¢ Directionality: Unidirectional transformations are those that are de-
fined and executed in just one direction, i.e., establishing which is/are
the source and target metamodel(s) and model(s). Typical unidirectional
MT languages are ATL [75], QVT Operational [OMG], etc. Bidirec-
tional [68] the transformation can be executed either forwards (from
source to target) or backwards (from target to source). The most ex-
tended bidirectional MT language is QVT Relations [58]. Direction
neutral transformations are those for which the direction has not been
established and they only define the relationship between the metamodel-
s/models. An example of this kind of MT is what we call transformation

models and are defined by means of OCL expressions in [69].

e« Metamodels involved in the MT: Ezogenous transformations are
transformations defined between different metamodels while endogenous
transformations are transformations between models that conform to

the same metamodel.

e Number of Models Involved: Out-place MTs create model elements
in a model based on properties of another model. Contraryly, in-
place MTs only involve one model being evolved. Note that exogenous
transformations are always out-place and that in-place transformations

are a type of endogenous transformation.

e MT Language: There are different types of MT languages: declarative,

imperative and hybrid which combine declarative and imperative parts.

e Type of MT: Text artifacts might be involved in one of the domains of
model transformations which result in a further two kinds of MTs. Model-
to-Model transformations where only models are involved as input(s)
and output(s), Model-to-Text transformations where text artifacts are
generated from a model or a set of models, and Text-to-Model transfor-
mations where models are created from text artifacts/repositories—for

instance, MTs that reverse engineering code into models.

15



S w N -

Chapter 2. Background

Listing 2.1 Example of Linda pseudocode.

write ("circumference", 3, 47, 53)
write ("circumference", 7, 20, 21)
write ("square"', 5, 20, 30)
read(?, 7, 20, ?)

A particular kind of MT is the high-order model transformation (HOT)
where a model transformation is itself a model or a so-called transformation
model [15]. HOTs conform to a metamodel which is part of the model
transformation language’s definition, i.e., they are transformations which have

other transformations as input and/or output.

2.2 Linda Coordination Language

Linda is a coordination model that uses a shared memory space as the only
mean of communication among parallel processes. This model is implemented
as a coordination language for parallel and distributed processing. It was first
proposed by David Gelernter at Yale University in the mid-1980s [51] and in
recent years there has been a resurgence in interest in it, particularly with
regard to Java implementations of Linda [148, 149].

In distributed memory systems, such as networks of workstations, the
shared memory, which is called tuple space, is usually distributed among the
processing nodes. Independent from the implementation strategy employed,
the tuple space is structured as a bag of tuples. An example of a tuple with
four fields is ("circumference", 3, 47, 53), where 3 is the radius, and
47 and 53 indicate the position (x and y coordinates) of the circumference
represented by this tuple. Another example is ("square", 5, 20, 30) which
represents a square whose side length is 5, whose position on the X-axis is 20
and 30 on the Y-axis.

Linda provides operations, called primitives, to place tuples into tuple
spaces (write operations) and to retrieve tuples from them (read operations).
Read operations can be either blocking or non-blocking. A piece of Linda

code with examples of these operations is shown in Listing 2.1.

16



2.3 Model Transformation Contracts. Tracts

The specification of the tuple to be retrieved makes use of an associative
matching technique whereby a subset of the fields in the tuple have their
values specified. In our example, the read operation defines a pattern that
matches all the tuples whose position on the X-axis is 20. Therefore, the
tuples written in the second and third lines are retrieved.

As a coordination language, the Linda primitives were conceived to be
integrated with a programming language, which is called the host language.
There are different Linda implementations for different host languages such
as C-Linda [4] for C and JavaSpaces [96] for Java. Listing 2.2 shows a piece
of Java code that, using the Linda implementation JavaSpaces, is able to
read and write circumferences into the tuple space. For representing the
circumferences a class implementing the Entry interface is needed (lines 2-13).
The main program, after the configuration of the tuple space (lines 21-23),
writes two circumferences into the tuple space (lines 25-29) and then reads
the one that has radius 3 (lines 31-34).

2.3 Model Transformation Contracts. Tracts

2.3.1 Specifying Transformations with Tracts

Tracts were introduced in [56] as a specification and black-box testing mecha-
nism for model transformations. They provide modular pieces of specification,
each one focusing on a particular transformation scenario. Thus each model
transformation can be specified by means of a set of Tracts, each one covering
a specific use case—which is defined in terms of specific input and output mod-
els and how they should be related by the transformation. In this way, Tracts
allow partitioning the full input space of the transformation into smaller, more
focused behavioral units, and to define specific tests for them. Commonly,
what developers are expected to do with Tracts is to identify the scenarios of
interest (each one defined by a Tract) and check whether the transformation
behaves as expected in these scenarios.

In a nutshell, a Tract defines a set of constraints on the source and target

metamodels, a set of source-target constraints, and a test suite, i.e., a collection

17



00 N O WN -

W WWWWWWWNNNDNNMNMNNMNNMNDMNMNR R R RRRPB R R R
NO O WNEFR, O OVWONOODUTE WNFE O OWOWNOOUEd WNR O

Chapter 2. Background

Listing 2.2 Example of the JavaSpaces implementation of Linda for Java.

/*% Circumference class */

import net.jini.core.entry.:;

public class Circumference implements Entry {
public int radius, x, y;
public Circumference () {}
public Circumference(int radius, int x, int y) {
this.radius = radius; this.x = x; this.y = y; }
public void setRadius(int r) { this.radius = r;
public void setX(int x) { this.x = x; }
public void setY(int y) { this.y = y; }
public String toString() {

return("Circumferenceu("+radius+",u"+x+",u"+y+")"); }

}

/** Main Program */

import JavaSpacesUtils.SpaceAccessor;

import net.jini.core.lease.*;

import net.jini.space.JavaSpace;

public class HelloWorld {

public static void main(String[] args) {
SpaceAccessor newSpaceAccessor = new
SpaceAccessor("fileucontainingudetailsuofutheuspaceutouuse");

JavaSpace space = newSpaceAccessor.getSpace();

Circumference c¢ = new Circumference (3, 47, 53);
space.write(c,null ,Lease.FOREVER) ;

Circumference ¢ = new Circumference(6, 47, 70);
space.write(c,null ,Lease.FOREVER) ;

Circumference template = new Circumference ();
template.setRadius (3);
Circumference result =
(Circumference)space.read(template ,null ,Long.MAX_VALUE);
System.out.println(result);

18



2.3 Model Transformation Contracts. Tracts

source mm cd target mm cd

source mm constraints target mm constraints
transformation T

source tract iconstraints ; > target tract iconstraints

Elract test suite ET(tracl test suite )

source-target tract
constraints

Fig. 2.3 Building Blocks of a Tract [56].

of source models. The constraints serve as “contracts” (in the sense of contract-
based design [100]) for the transformation in some specific scenarios, and are
expressed by means of OCL invariants. They provide the specification of the
transformation. Test suite models are pre-defined input sets of different sorts,
to exercise an implementation of the transformation (they may be not only
be positive test models, satisfying the source constraints, but also negative

test models, used to know how the transformation behaves with them).

Fig. 2.3 depicts the main components of the Tracts approach: the source
and target metamodels, the transformation T under test, and the trans-
formation contract, which consists of a Tract test suite and a set of Tract
constraints. In total, five different kinds of constraints are present: the source
and target models are restricted by general constraints added to the language
definition, and the Tract imposes additional source, target, and source-target
Tract constraints for a given transformation. In the drawing, mm stands for

metamodel, and cd is a short for class diagram.

If we assume a source model M as being an element of the test suite and
satisfying the source metamodel and the source Tract constraints given, the
Tract essentially requires the result T'(M) of applying transformation 7" to
satisfy the target metamodel and the target Tract constraints, and the tuple

< M,T(M) > to satisfy the source-target Tract constraints.

19



D O W N

Chapter 2. Background

—® Family *>—
lastName : String Person
I I fullName : String
mother| 0..1 0..1| father %
o Member o ‘ Female ‘ ‘ Male |
firstName : String sons

daughters

Fig. 2.4 The Family and Person metamodels.

To demonstrate how to use Tracts, we introduce the simple transformation
example Families2Persons (the complete example is available on our project
website [23]). The source and target metamodels of this transformation are
shown in Fig. 2.4.

For this example, one Tract (Listing 2.3) is developed to consider only
those families which have exactly four members (mother, father, daughter,
son). The first constraint states that all families in the source model have
exactly one daughter and one son. The second and third constraints state that
all mothers and daughters are transformed into female persons. Constraint C'4
mandates that all fathers and sons should be transformed into male persons.
Constraints C'5 and C6 state, respectively, that all female and male objects
in the target model come from the corresponding object in the source model.
Then, C'7 checks that the size of the source and target models correspond.
Finally, C'8 checks that all names in the target model are neither the empty
String nor undefined. Note that although some of the constraints could have
been written using similar expressions (e.g., C2, C3, C4), we decided to
express them using different styles for illustration purposes, and also to be

able to differentiate them in our analyses.

Listing 2.3 Tracts for the Families2Persons case study.

-- C1: SRC_oneDaughterOneSon
Family.allInstances—>forAll (f|f.daughters—>size=1 and f.sons—>size=1)

-- C2: SRC_TRG_Mother2Female
Family.allInstances—>forAll (fam|Female.alllnstances—>exists(f |
fam.mother.firstName.concat(’,’).concat(fam.lastName)=f.fullName))

20



2.3 Model Transformation Contracts. Tracts

8 -- C3: SRC_TRG_Daughter2Female

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Family.allInstances—>forAll (fam|Female.alllnstances—>exists(f |
fam.daughters—>exists(d |
d.firstName.concat(’,’).concat(fam.lastName)=f.fullName)))

-- C4: SRC_TRG_FatherSon2Male
Family.allInstances—>forAll(fam|Male.allInstances—>exists(m |
fam.father.firstName.concat(’,’).concat(fam.lastName)=m.fullName
xor fam.sons—>exists(s |
m.firstName.concat(’,’).concat(fam.lastName)=s.fullName))

-- C5: SRC_TRG_Female2MotherDaughter

Female.allInstances—>forAll (f|Family.alllnstances—>exists(fam |
fam.mother.firstName.concat(’,’).concat(fam.lastName)=f.fullName
xor fam.daughters—>exists(d |

d.firstName.concat(’,’).concat(fam.lastName)=f.fullName)))
-- C6: SRC_TRG_Male2FatherSon -- analogous to C5

-- C7: SRC_TRG_MemberSize_EQ_PersonSize
Member .allInstances—>size=Person.alllInstances—>size

-- C8: TRG_PersonHasName
Person.allInstances—>forAll(p|p.fullName <> ’’ and
not p.fullName.oclIsUndefined())

Concerning the kinds of constraints defined, C'1 represents a pre-condition
for the transformation, C2 — C'7 define constraints on the relationships be-
tween the source and target models, i.e., constraints that should be ensured
by the transformation, and finally, C'8 represents a post-condition for the
transformation. Note that this approach is independent from the model
transformation language and platform finally used to implement and execute

the transformation.

2.3.2 Implementing Transformations with ATL

Given a specification of an MT, a model transformation language may be
selected to implement the transformation. The ATLAS Transformation Lan-
guage (ATL) [75] is a common choice. ATL was designed as a hybrid model

transformation language containing a mixture of declarative and imperative

21



Chapter 2. Background

constructs for defining uni-directional transformations. An ATL transforma-
tion is mainly composed by a set of rules. A rule describes how a subset
of the target model should be generated from a subset of the source model.
A rule consists of an input pattern (henceforth also referred to as left-hand
side)—having an optional filter condition—which is matched on the source
model and an output pattern (henceforth also referred to as right-hand side)
which produces certain elements in the target model for each match of the
input pattern. OCL expressions are used to calculate the values of target
elements’ features, in the so-called bindings. Given the metamodels in Fig. 2.4,
a possible implementation in ATL is shown in Listing 2.4.

This implementation comprises two helper functions (whose definition is
not shown in the listing) and two rules. One of the helpers is used to decide
whether a member is female or not, and the second is used to compute the
family name of a family member. Then, the first rule, R1, transforms male
members (note the use of the helper isFemale() to filter the corresponding
source objects) into male persons and computes their fullName attribute.
Rule R2 is analogous, but for female family members.

For illustration purposes, we have chosen this simple example. Nevertheless,
ATL allows the development of more complex transformations that require
advanced characteristics such as the capability to create references in the
target model and the use of the resolveTemp operation, which makes possible
to point to any of the target model elements that will be generated from a
given source model element. Model transformations with these characteristics
have been implemented and are presented as part of our case studies in the

following chapters.

2.3.3 Testing Transformations with Tracts

By running the transformation implementation for each model of the test suite
and checking the target as well as the source-target constraints for the resulting
input model and output model pairs, the validation of the transformation with
respect to the constraints is achieved. The output of this validation phase is

a test report documenting each constraint validation for the given input and

22



W N O WN -

el
N = O ©

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

2.3 Model Transformation Contracts. Tracts

Listing 2.4 Families2Persons ATL Transformation.

module Families2Persons;
create 0OUT: Persons from IN: Families;

helper context Families!Member def:isFemale:Boolean=
if not self.familyMother.oclIsUndefined() then
true
else

i

e

e

f not self.familyDaughter.oclIsUndefined () then
true

Ise
false

ndif

endif;

helpe
if
s

r context Families!Member def:familyName: String=
not self.familyFather.oclIsUndefined () then
elf . familyFather.lastName

else

i

f not self.familyMother.oclIsUndefined() then
self . familyMother.lastName

else

e

if not self.familySon.oclIsUndefined() then
self .familySon.lastName
else
self.familyDaughter.lastName
endif
ndif

endif;

rule
from
s:
to
t:

}

rule
from
s:
to
t:

Member2Male { -- R1
Families!Member (not s.isFemale)

Persons!Male(fullName<—s.firstName+’,’+s.familyName)

Member2Female { -- R2
Families!Member (s.isFemale)

Persons!Female(fullName<—s.firstName+’, ’+s.familyName)

23



© 00N O WN -

Chapter 2. Background

Listing 2.5 Test result for the Families2Persons example.

— Results for src_model001

Cl: SRC_oneDaughterOneSon: OK

C4: SRC_TRG_FatherSon2Male: KO
Instances of src_model001 violating the constraint
Set (Member001 , Member002, ...)

output model pairs. An example report for the Families2Persons example for
an input test model called src_model001 produced by the TractsTool [26, 21]
is shown in Listing 2.5. This model is composed of 1250 model elements (250
families, each one with one father, one mother, one son and one daughter),
and was generated by an ASSL [54] procedure (cf. [26]).

In order to fix the transformation implementation to fulfil all constraints,
the alignments between the transformation rules and the constraints are
crucial in order to track the actual faults in the transformation rules from
the observed constraint violations. While for the given example this may be
achieved by just looking at the constraints and the rules (actually R2 misses
the white space in the String concatenation), for larger examples automation
support is essential due to the complexity of model transformations. Even
in this example the alignment between the rules and the constraints is not

trivial, and this is precisely where our proposed approach comes into play.

24



Parallel Out-place
Model
Transformations

A wide range of different transformation languages already exists, each of
them comprising different characteristics [121]. However, the increasing size
and complexity of models are challenging the existing model transformations
languages and engines, whose performance and scalability need to be sig-
nificantly improved as the industry is progressively adopting model-driven
techniques [83].

In fact, current model transformation engines are mostly based on sequen-
tial and in-memory execution strategies and thus they have limited capabilities

to transform very large models in acceptable time.

This hinders the benefits of using models and model transformations
in different application domains that use huge models, including biology,

medicine and sociology.

At the same time, parallel computing has become increasingly important
as chipmakers are putting more and more processor cores on individual chips—
which are mainly wasted if sequential engines are used. Similarly, distributed
algorithms are gaining attention as computer communications are getting

much faster, cheaper and more reliable, and the Cloud is taking over.

25



Chapter 3. Parallel Out-place Model Transformations

In this chapter we present an approach to achieve parallel and distributed
execution of transformations, providing the performance and scalability re-
quired to transform very large models in distributed environments. We
introduce the LinTra approach and its Java implementation, jLinTra, which
are based on the Linda [52] coordination language, and the use of data paral-
lelism to achieve parallelization. LinTra offers concurrency and distribution
mechanisms using the well known principles of separation of concerns [42],
permitting concurrent access to distributed data in a transparent way. In
LinTra, distribution is achieved using the blackboard [29] distributed shared
memory approach, which also provides an abstraction over existing Java-based
data space platforms. Scalability is addressed by using data management
middleware platforms to implement the blackboards, which are able to deal
with very large volumes of distributed data in an efficient way. Finally, the
master-slave pattern [29] is used for achieving data parallelism.

The contribution of this chapter is fourfold. First, we present a novel
Java-based execution platform called jLinTra for the parallel execution of
out-place transformations that may also be used as a target for high-level
transformation language compilers. Second, we provide a mapping of model
transformation concepts into the LinTra framework. In particular, we define
the representation of models and metamodels and how those models are stored
over a set of machines using a blackboard approach. Third, we demonstrate
the performance and scalability of this platform by reporting the results
of running a model transformation test set using different Java middleware
platforms for presenting models, and by comparing it against several state-of-
the-art model transformation engines, including sequential and parallel ones.
Finally, we discuss some implementation solutions for dealing with models
that do not fit in memory or which are distributed over several machines, using
highly distributed, scalable NoSQL databases [120] as underlying technologies.

The structure of this chapter is as follows. Section 3.1 introduces the LinTra
framework, how model transformations are embedded in this framework and
jLinTra’s features for out-place transformations. Then Section 3.2 focuses on
the execution of transformation chains where the output of a transformation is

the input of the following. In Section 3.3 jLinTra is evaluated by using several

26



case studies where we investigate the execution performance of LinTra with
respect to different Java-based middleware platforms used to store and retrieve
models, and we compare jLinTra with other execution engines. Finally, in

Section 3.4 we discuss related work and Section 3.5 summarizes the chapter.

27



Chapter 3. Parallel Out-place Model Transformations

3.1 LinTra and its Java Implementation jLinTra

LinTra is a framework that allows the parallel execution of out-place model
transformations, regardless of whether the models are located in a single
machine or distributed over a set of nodes. We base our transformation
approach on Linda [52], the mature coordination model for parallel processes

that we introduced in Section 2.2.

Fig. 3.1 shows the architecture of the LinTra approach. For running
transformations on such architecture, we explored how model transforma-
tions fit into the Linda framework and we made the distinction between
two independent layers. The middleware layer contains the concrete Linda
implementation, while the jLinTra layer on top of it comprises the model
transformation written in Java and the models and metamodels represen-
tations. We also decided how trace links are encoded to allow for efficient
retrieval, and how the transformation rule execution is distributed over the

available computational resources (machines, cores, etc.).

conforms o | Input Metamodels Output Metamodels | conforms to
(jLinTra format) (jLinTra format)
A A
'"_RUt Models Transformation (jLinTra) Output Models
(jLinTra format) (jLinTra format)
Thread1 | Thread 2 Thread N
Model TS : H
Linda TS v 2

v
jLinTra Backend Connector
(Blackboard Interface)

Hazelcast Oracle Coherence GigaSpaces XAP Ehcache

Fig. 3.1 LinTra architecture

28



3.1 LinTra and its Java Implementation jLinTra

3.1.1 Linda and Existing Implementations

There is a wide variety of pure Linda implementations written in different
languages such as JavaSpaces [96] and TSpaces [91] in Java, C-Linda [4] in C,
Rinda [127] in Ruby and PyLinda! in Python.

In addition, there are other mature software solutions for data management
based on in-memory data grids (IMDG) or on distributed caches that are not
used as Linda implementations but that provide similar functionality and even
more. They are a specific kind of NoSQL databases called key-value caches.
In particular, they (i) scale-out because every node (computer) adds its CPU
and RAM to the cluster which can be used by all the nodes; (i7) can store
big data and enable fast access to it as it is manipulated in main memory;
(791) permit dynamic scalability as nodes can dynamically join other nodes in
a grid (cluster); (iv) enable elastic main memory as every node adds its own
RAM memory to the cluster’s memory pool; (v) implement fault-tolerance
mechanisms without data loss, and (vi) implement a programming model to
access the cluster as if it was a single machine. Some of these data management
solutions are Hazelcast, Oracle Coherence, GigaSpaces XAP, Ehcache and
Infinispan, to mention a few. In Section 3.3 we present a brief description for

each particular solution we have worked with.

3.1.2 Building a Common Interface: The Blackboard Metaphor

According to Linda [52], the data storage is called tuple space (or blackboard).
This tuple space can be thought of as a distributed shared memory that
follows the Blackboard architecture pattern [29].

Different Linda implementations provide different interfaces to access the
blackboard. To make the jLinTra model transformations independent from
the concrete Linda implementation, we have defined an interface reusing the
Linda primitives to read and write elements, adapting them to our needs.
In particular, we use identifiers for referring to model elements, and thus

we provide specific methods to read and write them using these identifiers.

'https://code.google.com /p/pylinda/

29


https://code.google.com/p/pylinda/

Chapter 3. Parallel Out-place Model Transformations

& iBlackboard & [Area
@ createArea(EString,Policy) : lArea @ read(EString) : IdentifiableElement
& clearArea(lArea) & readAll{EEList) : EEList
& destroyarea(larea) @ read(EInt) : EEList
& gethllareas() : EEList @ read(ISearch) : EEList
@ size(lArea) : Elnt @ take(EString) : IdentifiableElement
& size) : EInt @ takeall{EEList) : EEList
& clear() : EBoolean @ take(EInt) : EEList

@ take(lSearch) : EEList
< <enumerations » |3 identifiableElement & write(ldentifiableElement) : EBoolean
* policy @ writeAll{EEList) : EBoolean

- LOCK_TO_READ # setld(EString) @ clear{) : EBoolean
- LOCK_TO_WRITE
— ALWAYS_LOCK © (search

@ search{lArea) : EEList

Fig. 3.2 LinTra interface.

We also permit partitioning the tuple space in areas. Finally, the interface

provides methods to allow users to search for elements in the blackboard.

Fig. 3.2 shows the interfaces we have defined to access the blackboard.
Following the Linda approach, the jLinTra implementation is not aware of
how the distribution is done, nor the synchronization mechanisms needed for
providing concurrency to the solution. Both concepts are transparent to the

jLinTra model transformations, and the middleware layer takes care of them.

Focusing first on interface IBlackboard, we assume that the blackboard is
composed of different areas (of type IArea) having each one an specific access
policy. LOCK_TO_READ policy means that no more than one thread can access at
the same time the area to read (or read and delete) an element, thus the thread
accessing takes the token while the rest of the threads trying to read are blocked
until the token is released. LOCK_TO_WRITE policy implies that at most one
thread can access the area to write an element simultaneously. ALWAYS_LOCK
combines the two previous policies whereas NEVER_LOCK means that all threads
can freely access the area. These policies are internally managed by the LinTra
platform, depending on the kind of transformation (e.g., regular or chained)

and also to implement some internal processes, such as the assignment of

30



3.1 LinTra and its Java Implementation jLinTra

identifiers—for which a private area in the blackboard is used. Users do not
need to care about these policies.

Interface IBlackboard is shown in Listing 3.1. It offers methods to
create, clear and destroy areas dynamically. It also offers the possibil-
ity to obtain a collection with the areas available with getAllAreas().
Method size(IArea area) returns the number of elements stored in the
given area given and size() returns the number of elements stored in the
blackboard (which is equivalent to the sum of the size of all the areas belonging

to it). clear () deletes all the areas from the blackboard and their elements.

Listing 3.1 IBlackboard interface

1 public interface IBlackboard extends Serializable {

N

© 00 N O O W

10

Sw N e

public enum Policy{NEVER_LOCK, LOCK_TO_READ, LOCK_TO_WRITE,
<~>ALWAYS_LOCK };

public IArea createArea(String name, Policy p);

public boolean clearArea(IArea area);

public boolean destroyArea(IArea area);

public Collection<IArea> getAllAreas();

public int size();

public int size(IArea area);

public boolean clear () ;

In our approach, we consider that every element stored in the tuple space is
an object with a unique identifier of type String, and thus, it must implement

the interface IdentifiableElement shown in Listing 3.2.

Listing 3.2 IdentifiableElement interface

public interface IdentifiableElement extends Serializable {
public String getId();
public void setId(String id);

}

Regarding the interface IArea that is presented in Listing 3.3, its method read (String

id) reads without deleting and returns the element with identifier id or null if
the element does not exist in the area. Method readA11(Collection<String>
ids) reads without deleting and returns the collection of elements whose iden-
tifiers are contained in ids, while method read (int n) reads n elements from

the area and method read (ISearch searchMethod) receives as parameter

31



w N

N o o

[

10
11
12
13
14

Chapter 3. Parallel Out-place Model Transformations

a search method implementing interface ISearch—which requires to have a
method called search(IArea). This search method establishes the criteria for
which elements are retrieved from the area. Equivalent to the read methods,
the take methods have a similar behavior with the only difference that they
delete the elements from the area. Methods write(IdentifiableElement
elem) and writeAll(Collection<IdentifiableElement> elems) write the
given elements into the area, size() returns the number of elements in the

area and clear () removes all the elements stored in the area.

Listing 3.3 [Area interface

public interface IArea extends Serializable {

public IdentifiableElement read(String id);

public Collection<IdentifiableElement> readAll(Collection<String> ids
)5

public Collection<IdentifiableElement> read(int n);

public Collection<IdentifiableElement> read(ISearch searchMethod);

public IdentifiableElement take(String id);

public Collection<IdentifiableElement> takeAll(Collection<String> ids
=);

public Collection<IdentifiableElement> take(int n);

public Collection<IdentifiableElement> take(ISearch searchMethod);

public boolean write(IdentifiableElement elem);

public boolean writeAll(Collection<IdentifiableElement> elems);

public int size();

public boolean clear ();

To illustrate how the previously mentioned search method can be imple-
mented and how it works, Listing 3.4 provides a possible implementation.
Assuming that identifiers represent integers, it obtains the set of elements
whose identifiers are in the range given by min and max. Another possible
implementation of the search method could retrieve elements by type. This
decision may have an impact on the performance. We recommend to keep
the search method as simple as possible—i.e., avoid unnecessary accesses to

the area and complex computations.

For clarity, in all the listings we have omitted that the methods throw

BlackboardException when an FException occurs.

32



00 N O WN -

©

10
11
12
13
14

3.1 LinTra and its Java Implementation jLinTra

Listing 3.4 Search method

public class SearchByIdRange implements ISearch {
int min, max;
public SearchRange(int min, int max){
this.min = min; this.max = max; }
public Collection<IdentifiableElement> search(IArea area) {
List<IdentifiableElement> elems —
new LinkedList<IdentifiableElement >();
for (int i=min; i<=max; i++){
IdentifiableElement e = area.read(Integer.parselnt(i));
if (e!l=null) { elems.add(e); }

}

return elems;

}
}

3.1.3 Models and Metamodels in LinTra

In order to represent metamodels and models in Java so that they can be
used by jLinTra, we need to identify the mappings between the metamodeling
concepts and Java. In our approach we have worked with Eclipse Modeling
Framework (EMF) models and thus we have built a bridge between Ecore (i.e.,
the metamodeling language of EMF) and jLinTra. Every class in an Ecore-
based metamodel is mapped to a Java class that implements the Serializable
and IdentifiableElement interfaces. Attributes belonging to the Ecore
classes become Java fields, as well as the references that store the identifiers
of the target element(s). As we shall later see, this is an important design
decision in order to be able to write and execute transformation rules more
independently than using explicit object pointers in Java. However, it also
introduces additional challenges, e.g., when it comes to navigating between
objects. Single inheritance is represented by Java inheritance and multiple
inheritance is simulated with single inheritance and interface implementations.
Java classes also need a constructor that receives as arguments the values
of the attributes and references, and the getter and setter methods for all
its fields. Models in jLinTra are composed by the set of Java objects that
instantiate the Java classes. Note that, although we have implemented the
bridge between Ecore and jLinTra, we do not provide support for all the

features of EMF such as its operations (e.g. eContainer(), eContent(), etc.).

33



00N O WN -

Chapter 3. Parallel Out-place Model Transformations

- H article
B BibTexFile entries H SitTekfﬂ?fj-‘ T journal : String | authors H author
o 7| T ref : String <1 7 title String 1 7] T author : String

Fig. 3.3 BibTeXML metamodel excerpt.

Listing 3.5 Corresponding Java code for meta-class Article

public class Article extends BibTeXEntry
implements IdentifiableElement ,Serializable{
private static final long serialVersionUID = 1L;
String id, jourmal, title;
String[] authorsIds;
public Article(String id, String ref, String journal, String title,
String [] authorsIds){
super (ref);
this.id = id;
this. journal = journal;
this.title = title;
this.authorsIds = authorsIds;

public String getId() { return id; }
public void setId(String id) { this.id = id; }

Let us use the case study BibTeXML2DocBook available at the ATL Zoo [61],
in particular, the BibTeXML metamodel, to present how the generated Java
code looks like. Fig. 3.3 shows an simplified excerpt of the original metamodel
and Listing 3.5 presents a fragment of the generated jLinTra code for its class
Article.

The bridge between EMF and jLinTra has been implemented in Java, and
is able to work in parallel to optimize the load and translation of EMF models

into their Java representation in memory, and viceversa.

3.1.4 Traceability

Traceability is normally needed when executing an out-place model transfor-
mation because the creation of an element might require information about
some other elements previously transformed, or that will be transformed in the

future [124]. This means that there might be dependencies that can affect the

34



3.1 LinTra and its Java Implementation jLinTra

Input Id(s) Output Id(s)
1..1 1 1 ruleName
1..N 1 {1_ruleName.1, 1_ruleName.2, 1_ruleName.3}
N..1 {1, 2, 3} 1-2-3_ruleName
N..N {1, 2} {1-2_ruleName.1, 1-2_ruleName.2, 1-2_ ruleName.3}

Table 3.1 Example uses of trace function

execution performance, e.g., when one element needs to create a relationship

to an element that has not yet been created.

LinTra does not store information about the traces explicitly. Traceability
is implicitly implemented using a bidirectional function that receives as its
parameter the object identifier (or all the object identifiers in case that the
match comprises more than one element) in the source model, and returns the
identifier of the target element(s)—regardless of whether the target elements
themselves have already been created or not. Being a bidirectional function,
it can be applied in the opposite direction to obtain the source identifiers of

any target element.

Elements have identifiers, of type String. In the source model, these
identifiers correspond to sequential integers. For creating the identifiers of
target elements, we need to distinguish four different cases depending on
the cardinality of the relation they have with corresponding source elements.
Cardinality 1..1 is the simplest one; in this case every element is transformed
into another element, keeping its identifier followed by the name of the rule
that transforms it. We need to attach the rule name as the matches might not
be exclusive. In the case of 1..N cardinality, more than one output element is
generated for every input element, and thus the integers specifying the order in
which the elements are created are attached to the output elements’ identifiers.
The opposite case is N..1, where all the input identifiers are attached at the
beginning separated by dashes (—). Finally, the N..N case is the combination
of 1..N and N..1 situations. For illustration purposes, Table 3.1 shows an

example of some input identifiers and their corresponding output identifiers.

35



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Chapter 3. Parallel Out-place Model Transformations

In jLinTra, there is a class in charge of creating and resolving identifiers.
By way of illustration, the piece of code corresponding to the cardinalities
1..N and 1..N is presented in Listing 3.6.

The create method is called by a rule at the same moment that it is
creating a target element in order to obtain its identifier. For instance, let
us assume that the rule “A-to-B” is creating a single target element from
an element whose identifier is 5, the identifier of the target element is given
by TraceFunction.create(5, "A-to-B"). On the other hand, the resolve
method is called when a target element has to reference another target element.
As we mentioned in the previous subsection, references are represented by
storing the identifiers of the referenced elements. The resolve method pro-
vides the identifier of the referenced element given the identifier of the source
element from which it is created and the name of the rule that transforms
it. Let us assume that a new target element is being created and it has to
reference the target element that is transformed by the rule “C-to-D” from a
source element with identifier 20. That new target element references the ele-
ment whose identifier is given by TraceFunction.resolve(20, "C-to-D").
Note that the target element with the identifier given by the resolve method

may or may not have been created yet.

Listing 3.6 TraceFunction class

public class TraceFunction {

// Methods for cardinality 1..1

private static String f(String id, String ruleName) {
return id+"_"4 ruleName;

}

public static String create(String id, String ruleName) {
return f(id, ruleName);

}

public static String resolve(String id, String ruleName) {
return f(id, ruleName);

}
// Methods for cardinality 1..N

private static String f(String id, int pos, String ruleName) {
return id+"_"4 ruleName + "." + pos;

}

public static String create(String id, int pos, String ruleName) {
return f(id, pos, ruleName);

36



18
19
20
21
22
23

3.1 LinTra and its Java Implementation jLinTra

}

public static String resolve(String id, int pos, String ruleName) {
return f(id, pos, ruleName);

}
}

3.1.5 Master-Slave Configuration

To run the model transformation, jLinTra uses the Master-Slave design
pattern [29]. The blackboard is also used by the master and the slaves
to communicate with each other.

The master partitions the input model and creates what we call jobs,
which are subsets of the input model. Those jobs are written in the shared
memory, in an area called TODO. Slaves access that area to get jobs. Given the
way in which the references are represented and the nature of the traceability
function, we do not need to take into account how the models are partitioned
or distributed.

The size of the jobs is critical for establishing the model partitioning.
There are several tradeoffs that must be considered when deciding the size of
the jobs.

e Given that our models are not currently preprocessed, the master does
not know how models are organized. Then, the bigger the jobs are, the
more homogeneous the submodels will be (with respect to the type of
elements that they contain), and therefore the more homogeneous the

work of the slaves will be.

o Access to the blackboard is normally costly, and then bigger jobs means

less accesses.

e The memory available for each thread is limited, and thus care must be

taken so that jobs fit into that memory.

e Smaller jobs permit better distribution of the tasks among the available

machines and slaves.

37



© 00 N O O W N

L e e
0 N O O W N = O

Chapter 3. Parallel Out-place Model Transformations

These decisions can have a significant impact on the performance of the
transformation. Given that there is no solution that suits all purposes, in
jLinTra the size of the jobs is a parameter given to the transformation in a
configuration file. In this way, users can experiment with different options to
find which is the optimal one for their transformation. Nevertheless, in the
future we plan to investigate how the size of the jobs can be optimized for

each particular case making use of the techniques used in distributed systems.

The code that the slaves execute is shown in Listing 3.7. Every slave reads
jobs from the TODO area (lines 6 and 7) and for each job, it searches in the
corresponding area for the model elements included in the job (line 8) and

applies the transformation to them, e.g., the one shown in Listing 4.3.

Listing 3.7 Slave Implementation

public class Slave implements Runnable, ISlave {
//Definition of variables
int threadId;

public Slave(int threadId, ITransformation transfolmpl,
IArea todoArea, IArea outArea) { ... }
public void run() {
Job job = askForWork() ;
while (job != null) {
Collection<IdentifiableElement> inElems = job.getArea()
.read (new SearchByIdRange (job.getMinID() ,job.getMaxID()));
Collection<IdentifiableElement> out = transfolmpl
.transform(inElems) ;
outputArea.writeAll (out);
job = askForWork () ;

An additional benefit of this architecture is that it permits process distri-
bution: the slaves can be executed in different machines. In this way, it can
maximize the use of available processing resources in a flexible and scalable

manner.

38



© 00 N O O W N

e e e o e e
© 00 N O O b W N = O

1
2

3.1 LinTra and its Java Implementation jLinTra

3.1.6 jLinTra Transformation Definitions By-Example

Let us use again the BibTeXML2DocBook case study to illustrate how transfor-
mations are written in jLinTra, and in particular a simplified version (shown
in Listing 3.8) where every Article is transformed into a Section, every
Author is transformed into a Paragraph, and every Section created from an
Article is linked to the corresponding Paragraphs created from the Authors
of that Article.

Listing 3.8 Example transformation excerpt

module BibTeX2DocBook;
create OUT : DocBook from IN : BibTeX;
rule article2section {
from
a : BibTeX!Article
to
s : DocBook!Section (
title <— a.title,
paras <— a.authors
)
}

rule author2paragraph {
from
a : BibTeX!Author
to
p : DocBook!Para (
content <— a.author

As Listing 4.3 shows, transformations written in jLinTra consist of iterating
over the elements received as parameter (line 4) and for every element, the
corresponding filters are applied in the form of “if” instructions (lines 5 and
10), to check if the element needs to be transformed, and how. In case they
are matched, the appropriate output elements are created. Note that this is a
very simple example where there are only two 1..1 rules. Further examples

are available from our project website [27] also involving more complex rules.

Listing 3.9 Example transformation excerpt

public class BibTeXML2DocBook implements ITransformation {
public Collection<IdentifiableElement> transform(

39



© 00 N O O b W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Chapter 3. Parallel Out-place Model Transformations

Collection<IdentifiableElement> elems) {
List<IdentifiableElement> out =
new LinkedList<IdentifiableElement >();
for (IdentifiableElement e : elems) {
if (e instanceof Article) {
Article a = (Article) e; out.add(article2Section(a));

}

else if (e instanceof Author){
Author a = (Author) e; out.add(author2Paragraph(a));

}

return out;

}

private Section article2Section(Article a){

return new Section(
TraceFuntion.create(a.getId() ,Rules.Art2Sec), a.getTitle(),
TraceFunction.resolveAll (a.getAuthorsIds () ,RuleNames.Auth2Par));

}

private Paragraph author2Paragraph(Author a) {
return new Paragraph (
TraceFunction.create(a.getId(),Rules.Auth2Par) ,a.getAuthor());

}

Note as well the use of the TraceFunction class not only to store the
traces but also to resolve the references to other elements regardless of whether
they have already been transformed or not. This is how relationships between

transformation rules are naturally managed in our approach.

3.1.7 Distributed Models

One of the benefits of the Linda approach lies on its independence from data
size and distribution, given that it uses a shared-memory architecture. Such
separation of concerns is also key in LinTra, which then permits dealing
with model storage and distribution in an independent manner. In fact, our
architecture clearly separates those aspects (see Fig. 3.1).

We have studied different technological solutions for implementing the
data management layer. In the first case we have one in-memory solution,
when the models fit into the computer memory, and we want just to use
the parallel features of jLinTra. It uses the Java HashMap collection type to
implement the Tuple spaces (i.e., the blackboard) and all its areas. This is the

40



3.1 LinTra and its Java Implementation jLinTra

technological solution we have used to compare the performance of jLinTra
with existing model transformation engines (ATL, QVT-O, ETL, etc.) since
all of them only support in-memory implementations.

Our approach also supports dealing with models that do not fit in memory,
or that are distributed over several machines, using in-memory data grids
that can be connected to distributed, scalable NoSQL databases [120] as
underlying technologies. Examples of NoSQL databases include Cassandra,
neo4j, FoundationDB and MongoDB. These new database technologies achieve
scalability through horizontally distributing data, and replace normalized data
models, strong data consistency guarantees, and SQL queries with schema-less
data models, weak consistency guarantees, and proprietary APIs.

We tested five different commercial solutions for key-value in-memory
data grids and/or caches that permit distribution and connection to NoSQL

databases:

e Oracle Coherence?

is an in-memory data grid from Oracle.
« Hazelcast? is an in-memory open source data grid based on Java.

« Ehcache? is an open source distributed cache.

« GigaSpaces XAP (eXtreme Application Platform)® is an in-memory

computing software platform provided by GigaSpaces.

« Infinispan® is a open source data grid platform and key-value data

store.

Table 3.2 shows the results of running the same jLinTra transformation
on different Java-based data management solutions for several models of

increasing size. The number in the leftmost column indicates the number of

*http://www.oracle.com/technetwork /middleware/coherence/overview /
index.html

*http://hazelcast.com/

*http://ehcache.org/

*http://www.gigaspaces.com/xap-in-memory-computing-event-processing/
Meet-XAP

®http://infinispan.org/

41


http://www.oracle.com/technetwork/middleware/coherence/overview/index.html
http://www.oracle.com/technetwork/middleware/coherence/overview/index.html
http://hazelcast.com/
http://ehcache.org/
http://www.gigaspaces.com/xap-in-memory-computing-event-processing/Meet-XAP
http://www.gigaspaces.com/xap-in-memory-computing-event-processing/Meet-XAP
http://infinispan.org/

Chapter 3. Parallel Out-place Model Transformations

No. elements | HashMap | Coherence | Hazelcast | Ehcache XAP | Infinispan
0.1x10° 0,138 2,133 19,654 0,299 8,757 0,189
0.2x10° 0,138 2,971 39,335 0,424 16, 542 0,313
0.5x10° 0,385 8,298 99, 740 0,276 38,796 0,877
1.0x10° 0,969 16,164 300, 105 0,795 78,810 1,688
1.5x10° 1,732 26,701 451,701 1,817 | 121,527 3,094
2.0x10° 3,034 35,561 590, 760 4,431 | 159,862 5,353
2.5x10° 5,105 44,142 724,658 11,811 | 177,273 6,536
3.0x10° 6,990 56,144 870,705 14, 280 — 9,527
3.5x10° 7,975 75,321 1016, 626 20, 329 — 13,202

Table 3.2 Data management middleware comparison

model elements in the input model. Since we are only interested in how the
read and write operations perform, we have applied the identity transformation
(more precisely, we used the IMDb Movie Database transformation presented
in Section 3.3.2). All execution times are shown in seconds. Cells with a dash
“—” mean that the model cannot be transformed due to a memory allocation

problem.

Among them, Infinispan was the one that offered more features. In
addition, its integration with the LevelDB database’ was easy and provided
us with all the functionality we required for implementing persistence (i.e., disk
storage) and distribution for large models. Although a detailed performance
comparison between the different NoSQL databases is out of scope for this
work and therefore left for future work, our initial experiments show that
the key-value data stores are the solutions which perform best and they all
present similar performance. Hence, in this thesis we have used Infinispan
(with Level DB as persistent database) to implement the blackboard layer of
jLinTra in case an in-memory solution was not enough to store and transform
models. Otherwise, the Java HashMap implementation of the blackboard is

used.

"http://leveldb.org/

42


http://leveldb.org/

3.2 Model Transformation Chains

3.2 Model Transformation Chains

As more complex problems are tackled in industry, the number of transforma-
tions involved in MDE solutions has increased. In fact, most real-world MDE
scenarios do not involve a single transformation from one source model to one
target model, but multiple model transformations organized in chains, with
the output of some transformations serving as input to others [146]. Thus,
smaller transformations can focus on specific concerns, are easier to develop
and maintain, and together constitute a more modular, extensible and main-
tainable architecture. Integrating them into chains is no longer an issue, with
domain specific languages for specifying and executing model transformation
chains [118]. The number of transformations in a chain depends on the domain
and in the particular application, but they can normally range between 5 and
12 in industrial projects [48]. Hence the importance of considering the parallel
execution of transformation chains.

Given the architecture of our platform, implementing the parallel execution
of chained transformations is rather natural. It was a matter of extending our
approach with (i) synchronization mechanisms between the transformations,
and (i7) pairs of element identifiers.

Synchronization between the different transformations is naturally im-
plemented by the use of the master-slave pattern and by the way in which
jobs are assigned to slaves. Thus, the slaves in charge of implementing the
second transformation will wait until they have jobs to do. These will be
generated by the master of the second transformation as soon as the output
elements of the first transformation are produced. Unlike regular model
transformations—where a complete source model is available at the beginning
of the transformation—transformation chains involve streaming models [37]—
i.e., those whose elements are not all present in disk or memory, but rather
arrive as one or more continuous data streams—that cause dependencies when
a rule needs to access an element that is not available yet. jLinTra uses
the synchronization mechanisms that Java provides. When a slave finds a
dependency, it invokes the wait() method and all the resources are released for

the use of other slaves until the master invokes the notify() method informing

43



Chapter 3. Parallel Out-place Model Transformations

that there are new elements are available in the model. The master and slaves
of a transformation know when the model has been totally loaded because an
EOF flag indicates when all the elements are already available.

Regarding the pairs of element identifiers, we previously mentioned that
model elements have unique identifiers, which were used to implement the
traces in an efficient manner by means of a bidirectional function. For
that, the identifiers of the output elements had a special form too (see, e.g.,
Table 3.1). In order for these elements to become the input elements of another
transformation, while still maintaining the tracing information, we need to
assign them other identifiers, which allow them to act as source elements
of the next transformation. Thus, our transformations always generate two
identifiers for all output elements. The one explained in Section 3.1.4 plus a
new one representing an integer which is the one used in case the target model
needs to be used as source of another transformation. A Hashtable is also
generated with the two identifiers, in order to optimize the search for elements
using their first identifier. Such a table is also stored in the blackboard, as

another artifact of the transformation itself.

3.3 Evaluation and Performance Analysis

In this section, we discuss the performance and scalability of jLinTra by
performing a set of case studies [90] based on a set of exemplar transformations.
The discussion follows the guidelines for conducting empirical explanatory case
studies by Roneson and Hoérst [119]. Detailed information on the metamodels
and input models used in these examples (number of elements, file size on
hard disk, etc.), and on the transformations themselves, is available from our

project’s website.

3.3.1 Research Questions

We have defined two research questions that compare the performance and
scalability of jLinTra with respect to state-of-the-art sequential transformation

engines and emerging parallel transformation engines, one about the parallel

44



3.3 Evaluation and Performance Analysis

execution of transformation chains, and a final one about the effect on the

performance when models are stored in disk, and not in memory. More

specifically, we aimed at answering the following research questions (RQs):

RQL.

RQ2.

RQ3.

RQ4.

How does jLinTra perform compared to existing sequential execution
engines? One main goal of jLinTra is to improve the performance and
scalability of current sequential execution engines. Thus, we evaluate

the achieved speedup compared to such approaches.

How does jLinTra perform compared to other emerging parallel execu-
tion engines? jLinTra is also compared against other existing parallel

execution engines w.r.t. performance and scalability.

How does jLinTra model transformation chains perform? The perfor-
mance of running a model transformation chain in jLinTra is compared
to the performance of running the same transformation sequentially one
after the other.

How is the performance of jLinTra affected when models do not reside
i memory? jLinTra provides an abstraction from data management
middleware solutions, permitting transparent access to data indepen-
dently from where it resides (in-memory, on-disk, distributed). It is
important to evaluate the costs of dealing with models that do not reside
in memory (because of their size or their origin) and how this affects
the performance of jLinTra model transformations in terms of speed

degradation, scalability, etc.

3.3.2 Case Studies

This section describes five examples that have been used to evaluate jLinTra

and compare it with other model transformation languages and engines. These

examples were chosen to capture different relevant features of model matching,

navigation and element traceability involved in most commonly used model

transformations.

45



Chapter 3. Parallel Out-place Model Transformations

L

H Record
o ee : EString H Author
o url : EString 0." 0" = pame : Estring
= key : EString records  authors
= mdate : EString

| I | | |
H Book H www H InCollection H InProceedings H proceedings
= title : EString = title : EString = title : EString = title : EString = title : EString
= year : Eint = year : Eint = bookTitle : EString | | & bootitle : EString | | & year : Eint
= menth : EString | | = month : EString = year : Eint = year : Eint = month : EString
= yolume : Eint = fromPage : Eint = fromPage : Eint = isbn : EString
= series @ EString = toPage : Ent = toPage : Ent
= edition : EInt = menth : EString = menth : EString
= isbn : EString
0.1 lsponsoreday 0.1 orgafization
H oOrganization .
0.1,publisher = name : EString L 1500nsareqsy - :
B Publisher 0. 1publisher 0.* editors  0.* |editofrs
= pame : EString : H Editor
o address : EString | 0-1publisher i = name : EString
0..*editors
0.1 publisher 0..* editors
— |
H Article H MastersThesis H PhDThesis
= title : EString o title : EString = title : EString
o fromPage : Eint ) g Journal O year : Elnt O year : Ent
o toPage : Eint 0* (=TI p— Estring o month : EString | | = month : EString
O number : Eint  |articles 0.1
= yolume : EString school school
= month : EString 0.1 0.1
= year : EInt H school

= name : EString
= address : EString

Fig. 3.4 DBLP Metamodel.

DBLP—Model queries

The first example uses the complete DBLP database® as source model. It
has 5,654,916 elements when stored as a model. Its metamodel is shown in
Fig. 3.4. This is an example of model queries over a large model. This case
study defines four different transformations, covering four types of queries

which exercise different accesses to model elements. Those transformations

$http://dblp.uni-trier.de/xml/

46


http://dblp.uni-trier.de/xml/

3.3 Evaluation and Performance Analysis

coauthor
; : H Journa
0.r H Autho L p——
= name : EString K name : ng
= numOfPapers : EInt [pyblishesinC
= active : EBoolean o H Conference
" | & name : EString

Fig. 3.5 AuthorInfo Metamodel.

extract information using the AuthorInfo metamodel as transformation target
(Fig. 3.5).

e Find all the authors that have published at the International Conference
on Model Transformation (ICMT) conference and their number of

papers.

o Find if those ICMT authors are still publishing (active) or if they are

inactive (active means that they have published in the last 5 years).

e Find the conferences where people who stopped publishing at ICMT

are now publishing.

e Find all journals where people who are actively publishing at the In-
formation & Software Technology (IST) journal (i.e., have published

something in the last 10 years) are also publishing.

IMDb Movie Database—Model copy and traversal

The second example uses the “Movie Database” (IMDDb) proposed in the
Transformation Tool Contest (TTC) 2014 [70], whose metamodel is shown in
Fig. 3.6.

The first transformation is the identity, which checks how fast the com-
plete model graph can be traversed and copied. The second one copies all
the elements in the input model (movies, actors and actresses—3.5 million
elements) and finds all pairs of people who played together in at least in three

movies. This second transformation involves navigating the source elements

47



Chapter 3. Parallel Out-place Model Transformations

< <enumerations > H movie H Group
£ MovieType o title : EString o avgRating : EDouble
= MOVIE = rating : EDouble | g »
= VIDEC = year : Ent commonMovies
=TV = type : MovieType
= VIDEQGAME _ H couple H clique
0..*| mowvies

0.."| persons
H person 0.1
= name : EString 0.1

1
2

(=} =]

& 0.* persons
[ |
B actor H Actress

Fig. 3.6 IMDb Metamodel.

before transforming the elements (this model transformation uses same source
and target metamodels).

In this case we run the transformations over a set of 9 different models,
emulating different sizes of the database model to check how different model
transformations engines scale up (from 100,000 elements to the complete

model with 3.5 million elements).

Java Refactoring—Model modification

This case study is taken from the 2015 edition of TTC?. This is an example of
program transformation rules for code refactoring, where all the @Singleton
annotations are removed from Java programs and their implicit behavior is
replaced with the actual Java code they represent. More precisely, given an
annotated Java program, all classes annotated with the @Singleton keyword
must be modified as follows: the annotation is removed; all constructors
are set to private; a public and static variable named instance whose type
coincides with the class type is created; and a getInstance method is created
for each constructor that initializes the variable instance in case it was not

already initialized, and then returns it. Each getInstance method has the

*http://www.transformation-tool-contest.eu/solutions_ refactoring.html

48


http://www.transformation-tool-contest.eu/solutions_refactoring.html

N o WwN -

00 ~NOoO O WwN -

3.3 Evaluation and Performance Analysis

Listing 3.10 Code to be refactored

@Singleton
public class ContextDataFilter extends ViewerFilter {
private String pattern;
public ContextDataFilter (String pattern){
this.pattern = pattern;
}

Listing 3.11 Refactored code

public class ContextDataFilter extends ViewerFilter {
private static ContextDataFilter instance;
private String pattern;
private ContextDataFilter (String pattern){
this.pattern = pattern;

public ContextDataFilter getInstance(String pattern){
if (instance=—null){
instance = new ContextDataFilter (pattern);
}

return instance;

same parameters as the corresponding constructor. This is an example where
strong dependencies between the transformation rules exist.

An illustrated example of a Java class annotated is shown in Listing 3.10
while Listing 3.11 shows the code after having applied the transformation.

The input models are obtained from Java code using MoDISCO [19]. The
Java metamodel has a total of 125 classes from which 15 are abstract, 166
relationships among them and 5 enumeration types. As source model we
have selected the complete Eclipse project, containing 4,357, 774 entities. In
order to assess how the transformation scales up with this kind of input,
we generated 11 smaller sample source models (with subsets of the Eclipse

project) ranging from 100, 000 elements to the complete model.

Java to Prefuse Graph—Model transformations

This case study is taken from the model visualization domain. Tools for the

analysis of large models that use visualization techniques require efficient

49



Chapter 3. Parallel Out-place Model Transformations

H Node 1 target
O name : EString H Edge
s 1 source
O type : EString
= size : EDouble

Fig. 3.7 Prefuse Graph Metamodel.

mechanisms for transforming models, since a change in a model normally
means having to rework all artifacts.

In our case studies, starting from a model of a large Java program, we
transform it into a graph of the Prefuse visualization tool'?, where every class
is represented by a Node and every Java attribute whose type is another class
as an Edge. The size of every node depends on the number of outgoing edges,
and the color depends on the type of Java class: red if the class is abstract,
blue if it is final, and green if it is a regular class. The target metamodel is
shown in Fig. 3.7.

For the source models, we have used once again the source models and
submodels from the complete Eclipse project. The transformation produces

26,426 elements.

Java to Prefuse Graph and then to Reduced Graph—Model trans-

formation chains

Apart from model-to-model transformations, we wanted to explore the use
of parallel techniques in model transformation chains, as stated in RQ3. For
that we will use a dedicated example. It uses the previous Java-to-Graph
transformation as the initial transformation of a chain that reduces the original
graph in order to become easier to understand and to manipulate by final users.
Normally, the resulting graph after applying the Java-to-Graph transformation
is still too large, and in this example a second transformation (Graph-to-
ReducedGraph) is applied to the resulting model that reduces the graph. It
does so by removing the nodes that have five or less outgoing edges. The

corresponding edges are also removed so that no dangling edge exists in the

http://prefuse.org/

50


http://prefuse.org/

3.3 Evaluation and Performance Analysis

final graph. For instance, the graph given for whole Eclipse project has 26, 426
elements and this second transformation reduces it to 2,936 elements. We
will refer as Java-to-Graph-to-ReducedGraph to the chained transformation
composed of the two individual transformations: Java-to-Graph and then
Graph-to-ReducedGraph. We will discuss the nature of this composition (it

could be either sequential or in parallel) later in Section 3.3.4.

3.3.3 Setup

Transformation languages. We have selected several transformation lan-
guages to compare against jLinTra: QVT-O, ATL, parallel ATL (p-ATL),
ATL and ETL. First, QVT-O [OMG] is an imperative language with a similar
syntax to Java. We used the QVT-O execution engine!! currently supported
in Eclipse. ATL [75] is a hybrid language containing a mixture of declarative
and imperative constructs. ATL supports three different execution engines:
the sequential ATL engine provided as part of the standard distribution
package (ATL); a sequential ATL EMF Transformation Virtual Machine with
advanced features, called EMFTVM [147] (ATL-VM); and a parallel ATL
engine [137] in which the parallelization is automatically performed by the
transformation engine. Finally, the Epsilon Transformation Language (ETL)
is a hybrid model transformation language developed atop the Epsilon model
management infrastructure [82].
Measurement method. For all the approaches we have only taken into
account the time of the transformation execution, i.e., we do not consider the
time used for loading the models into memory or the time taken to serialize
them to the disk. We launched the transformations using a Java program that
invokes the model transformations using the APIs provided by the evaluated
languages for running transformations programmatically, and registered the
computation times using the System.currentTimeMillis() Java method.
The execution results shown in the following tables are computed as the
average value after executing each transformation 20 times for every input

model, having discarded the first 5 executions as the VM has a warm-up phase,

“https://projects.eclipse.org/projects/modeling. mmt.qvt-oml

51


https://projects.eclipse.org/projects/modeling.mmt.qvt-oml

Chapter 3. Parallel Out-place Model Transformations

where the results are not optimal (it is worth mentioning that all the engines
need a warm-up phase, which means that the first transformation always
takes longer than the following ones; for this reason, we first warmed up the
Java virtual machine by running another transformation whose result was
discarded, and only considered the results after the warm-up phase). Outliers
were also considered. In fact, during the measurement phase to compute the
resulting values we identified a very small number of outliers (less than .05%
in total). These executions were discarded for computing the average values.
Measurement environment. We executed all the transformations on a
machine whose operating system is Ubuntu 12.04 64 bits with 11.7 Gb of
RAM and 2 processors with 4 hyperthreaded cores (8 threads) of 2.67GHz
each. The Eclipse version is Luna. The Java version is 8, where the JVM
memory as been increased with the parameter -Xma11000m in order to be
able to allocate larger models in memory. The version of QVT-O we have used
is 3.4.0 and for ATL it is 3.6.0. There are more than one virtual machines
offered for ATL, among which we have selected the default one and EMFTVM
in its version 3.6.0. Regarding the p-ATL, we have used the only available
prototype'?. The version of ETL is 1.2.0.

3.3.4 Results

Results concerning RQ1 and RQ2.

Tables 3.3 to 3.7 show the results obtained for the different transformation
runs, answering RQ1 and RQ2 (examples 3.3.2 to 3.3.2). Execution times are
shown again in seconds. Cells marked with dashes “—” indicate that both the
input and output models did not fit into memory.

Figures 3.8-3.12 shows the graphical representation of the times presented
in Tables 3.3 to 3.7. The X-axis represents the number of model elements
expressed in millions (except in the first chart), and the Y-axis represents
the time taken by the transformation in seconds. Paying individual attention

to each case study, we can see that jLinTra is the engine that achieves the

2http://web.emn.fr/x-info/atlanmod /index.php?title=Parallel ATL

52


http://web.emn.fr/x-info/atlanmod/index.php?title=Parallel_ATL

3.3 Evaluation and Performance Analysis

DBLP
ATL | ATL-VM | QVT-0O ETL | p-ATL | jLinTra
DBLPv1 | 14,304 25,821 78,891 | 5148,403 | 13,312 11,004
DBLPv2 | 15,129 36,974 90,014 | 5165,910 | 14,191 11,060
DBLPv3 | 30,585 38,696 44,403 | 5177,700 | 30,967 12,147
DBLPv4 | 30,885 27,187 44,359 | 5195,066 | 29,645 17,691
Table 3.3 Results for the DBLP case study.
IMDb-Identity
No. elements ATL | ATL-VM | QVT-0O ETL | p-ATL | jLinTra
0.1x10° 1,707 0,884 2,922 | 1,047 1,478 0,138
0.2x10° 3,559 1,880 5,645 | 2,145 3,114 0,138
0.5x10° 9,557 5,158 14,806 | 5,852 8,756 0,385
1.0x10° | 22,036 11,009 | 33,535 | 14,465 | 21,019 0,969
1.5x10° | 35,026 18,471 | 52,796 | 27,438 | 34,414 1,732
2.0x10° | 46,957 27,985 | 71,044 | 36,965 | 48,917 3,034
2.5x10° 61, 586 36,274 92,435 | 48,332 | 63,871 5,105
3.0x10° 75,968 47,496 | 125,451 | 71,360 | 76,967 6,990
Complete | 94,765 73,858 | 170,280 | 78,825 | 89,487 7,975

Table 3.4 Results for the IMDb-Identity transformation.

IMDb-FindCouples

No. elements ATL | ATL-VM QVT-0 ETL p-ATL | jLinTra
0.1x10° 21,257 16, 086 198,822 44,346 21,949 1,149
0.2x10° 38,818 27,407 345,627 74,958 39,801 2,092
0.5x10° 103,374 91,268 | 1406,258 24,284 | 113,283 6,534
1.0x10° 288,549 377,605 | 8071,292 | 225,684 | 290,359 17,225
1.5x10° 541,643 960,045 | 27077,018 | 1488,706 | 560,301 33,115
2.0x10° 952,579 1925, 698 — | 2240,208 | 997,052 51,811
2.5x10° 1496, 316 4026, 594 — | 3606,062 | 1476,207 76,139
3.0x10° 2373,767 7727,816 — | 5433,614 | 2261,381 | 122,971

Complete | 3522,418 | 10674, 105 — | 7293,901 | 3240,343 | 192,316

Table 3.5 Results for the IMDb-FindCouples transformation.

lowest execution time in the DBLP case study, followed by p-ATL and ATL.

The execution times are similar in this case because parallel ATL follows

a rule-based design which means that every rule is executed in a thread.

Although the input models are large, transformations are very small, they

53




Chapter 3. Parallel Out-place Model Transformations

Java Refactoring
No. elements ATL | ATL-VM | QVT-0O ETL | p-ATL | jLinTra
0.1x10° 14,912 14, 415 3,26 | 16,047 | 1,793 0,163
0.2x10° 45,767 36,651 6, 56 35,872 3,869 0,28
0.5x10° 240,75 188,771 | 16,823 | 113,607 | 15,487 0,771
1.0x10° 947,133 710,489 32,635 318,412 | 21,133 2,422
1.5x10° 2088, 758 1552,695 50, 086 606,131 | 31,209 3,911
2.0x10° 3826, 694 2744, 669 74,283 | 949,207 | 38,118 4,934
2.5x10° 6492, 396 4498, 775 90,798 | 2386,584 | 50,036 5,695
3.0x10° 12385,465 | 11563,646 — | 3654,23 | 67,245 11,786
3.5x10° 16382,859 | 13802, 342 — | 4742,888 | 80,386 12,361
4.0x10° 16836, 713 | 14414, 278 — | 4844,773 | 82,367 | 14,233
Complete | 20148,078 | 18501, 348 — | 5792,249 | 93,441 15,748
Table 3.6 Results for the Java Refactoring transformation.
Java-to-Graph
No. elements | ATL | ATL-VM | QVT-0O ETL | p-ATL | jLinTra
0.1x10° 0,099 0,134 0,280 | 0,334 0,065 0,064
0.2x10° | 0,198 0,215 0,522 | 0,748 | 0,124 0,134
0.5x10° 0,508 0,408 1,273 | 2,025 0,295 0,344
1.0x10° | 0,909 0,705 2,572 | 4,045 | 0,580 0,701
1.5x10° 1,361 1,006 3,406 | 6,001 0, 805 1,037
2.0x10° 1,829 1,309 4,926 | 8,498 | 1,057 1,456
2.5x10° 2,239 1,601 6,004 | 10,869 1,394 1,799
3.0x10° | 2,830 2,449 7,751 | 11,710 | 1,686 2,049
3.5x10° 3,245 2,733 8,724 | 14,890 1,881 2,293
4.0x10° | 3,284 3,211 9,919 | 16,130 | 1,933 2,74
Complete 3,720 2,660 11,711 | 20,835 2,201 3,474

Table 3.7 Results for the Java-to-Graph transformation.

have only one to two rules and thus, the number of processors available does

not matter because most of them are simply not used.

jLinTra is also the one that executes the transformation faster in the

case of the IMDb identity transformation. The second best performance
corresponds to ATL-VM, closely followed by ETL and by ATL and p-ATL.
Finally, QVT-O has the worst performance.

In the IMDb FindCouples transformation, jLinTra and QVT-O have again
the best and the worst performance, respectively, while p-ATL and ATL are

54




3.3 Evaluation and Performance Analysis
E
5000 I o
5
— g

—
g E
80
60 o
g
5]
40
20 . |
0

DBLPv1 DBLPv2 DBLPv3 DBLPv4

=
=
w

QVTo

ATL-VM
ATL-VM
PATL
ATL
ATL-VM

e
=
(E
-

Fig. 3.8 Comparative chart for the DBLP case study.

180

QTVo
160
140
120
100 ATL
pATL
80 ETL
60 ATL-VM
40
20
LinTra
0 "
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Fig. 3.9 Comparative chart for the IMDb-Identity case study.

followed by ETL and ATL-VM. Although this transformation has more rules
than the DBLP transformation, the behavior of ATL and its parallel version

is similar again because given the nature of the case study and the input

models, one rule needs much more time than the rest of them — which means

that most of the time only one core is actively used. Thus, the execution

shows a sequential behavior from certain moment onwards.

55



Chapter 3. Parallel Out-place Model Transformations

30000
QVTo
25000
20000
15000
10000 ATL-VM
ETL
5000 ATL
/ pATL
0 Lo - — . —_— LinTra
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0

Fig. 3.10 Comparative chart for the IMDb-FindCouples case study.

100000 ATL
ATL-VM
10000
ETL
1000
VT
100 QvTo =@ p-ATL
10 /‘ =® jLinTra
1 /_/
0.1
0 1 2 3 4 5

Fig. 3.11 Comparative chart for the Java Refactoring case study.

The Java Refactoring transformation shows with a logarithmic scale that

jLinTra beats the rest of the execution engines. It is followed by p-ATL and
QVT-O—although QVT-O is not able to transform models with 3 millions
of elements or more. The next best option is ETL followed by ATL-VM and

ATL which present very similar results.

The Java-to-Graph case study shows a weakness of LinTra. When a

transformation needs to navigate through relationships, LinTra needs to

access the data layer in each hop to get the corresponding element, given

its identifier. In this particular case, the navigation path for the rule that

56



3.3 Evaluation and Performance Analysis

25

ETL
20

15

QVTe
10

5 ATL

LinTra
ATL-VM
e —— ATL
0 g » P
0 1 2 3 4 5

Fig. 3.12 Comparative chart for the Java-to-Graph case study.

transforms classes to nodes needs 1 + depth j,ss hops, where depth j,ss is the
depth of the class with respect to its root package; and the rule to create
the edges from attributes needs 5 + depthiype + depthapsTypeDect hops where
depthiype and depthapstypeDect are the corresponding depths of the attribute
type and the class that contains the attribute with respect their root packages.
As this transformation requires long navigation paths, the jLinTra performance
is affected and p-ATL is slightly faster. The less successful languages are
QVT-O and ETL.

ATL | ATL-VM | QVT-0O ETL | p-ATL

DBLPv1 1,300 2,347 7,169 | 467,863 1,210
DBLPv2 1,368 3,343 8,139 | 467,100 1,283
DBLPv3 2,518 3,186 3,656 | 411,477 2,549
DBLPv4 1,746 1,537 2,507 | 293,648 1,676
IMDb-Identity 17,350 9,754 27,367 12,311 | 16,486
IMDb-FindCouples 17,960 33,375 | 367,936* 29,904 | 18,123
Java Refactoring 749,678 616,913 17,500 | 243,059 9,276
Java-to-Graph 1,334 1,179 3,656 5,837 0,808

Table 3.8 Average speed-up of jLinTra w.r.t. the rest of the transformation
engines.

57



Chapter 3. Parallel Out-place Model Transformations

Table 3.8 summarizes the results previously discussed by showing the
average speed-ups for jLinTra with respect to each engine and model trans-
formation. The speed-up for the engine F; and the transformation 7} is

computed as:

ZN time(E;,T;,My)
n=1 time(jLinTra,T;,My,)

N

N being the number of input models for which the transformation has been

speed-up;; =

executed and M,, the n'* model. Cells marked with an asterisk (“*”) in
Table 3.8 indicate that not all the executions finished because the largest
models did not fit into memory.

We can conclude that jLinTra is the one that performs better in all but
one case, running an average of 97 times faster than the rest of the model
transformation engines in the conducted case studies. The only case in
which jLinTra was beaten corresponds to its worst-case scenario, when heavy
navigation through relationships is required for each element to transform.
And even in this case the only engine that beat jLinTra was p-ATL, also
because in this case the number of rules was large in the transformation and
hence p-ATL could make use of all the machine cores. In summary, jLinTra is
between 1.5 and 749 times faster than ATL; between 1.5 and 616 times faster
than ATL-VM; between 2.5 and 367 times faster than QVT-O; between 6 and
467 times faster than ETL, and between 0.8 and 18 times faster than parallel
ATL.

Results concerning RQ3.

None of the engines with which we are comparing jLinTra permits the parallel
execution of model transformation chains but the transformations must be
executed sequentially one after the other. In our case, we can start executing
the second transformation as soon as the first one produces elements. This is
why we conducted this last experiment, in which we compare the performance
of jLinTra executing the two transformations in order (the second one starts

its execution once the first one has finished and the intermediate model is

o8



3.3 Evaluation and Performance Analysis

available) versus executing them in parallel (the second one starts as soon as
there are elements in the intermediate model). Table 3.9 shows the comparison

results.

These results show that the execution times are similar no matter if the
transformations are executed in parallel or not. This makes sense because
LinTra follows a data-parallelism approach which means that as long as
there are elements to transform available, all the cores are working on the
transformation all the time. So all the computing resources are maximally

used all the time.

In fact, there is a very slight increase of time when the two transformations
are executed in parallel (1% in average). This is due to the synchronization
mechanisms needed to execute the two transformations in parallel. Neverthe-
less, this extra time is justified when the priority is not the overall time but

having results in the output model as soon as possible.

Results concerning RQA4.

One of the issues we address in this chapter is the transformation of very
large models that do not fit into a single machine memory. Given that all
the previous models fit into our machine memory, we have created synthetic
models for the IMDb case study according to the procedure described in
the TTC case [70]. It explains that the synthetic models must be built by

replicating N times a given pattern which has 20 elements and 32 references.

In order to easily see the influence on the access time to a database and
the storage latency, we decided to execute the identity transformation, which
has a linear complexity. We executed the transformation on our machine until
we ran out of memory space. Models with 8 million of elements and less were
executed using only RAM memory. Larger models started using the hard
disk drive to store the parts that could not fit into memory, using Infinispan
with a Level DB database. The execution times (in seconds) obtained for the
different models as well as the amount of hard disk space used are shown in
Table 3.10.

59



Chapter 3. Parallel Out-place Model Transformations

3000
RAM + HDD

2500
2000
1500

1000
RAM (expected)

500

RAM
0 lowme—2
0 10 20 30 40 50 60 70

Fig. 3.13 Comparative chart for the IMDb-Identity using RAM memory and
hard disk.

Considering only the times obtained for models which needed only RAM
memory and applying an interpolation process, the data fit a straight line
whose equation is 11.729z — 7.91 with a coefficient of determination (R?) of
0.9911 (z represents the size of the models, expressed in millions of elements).
We have used that function to predict the execution times we could obtain
for the models that do not fit into memory should our machine have more
RAM. All the curves are depicted in Fig. 3.13 where the X-axis represents the
number of model elements expressed in millions and the Y-axis represents the
time taken by the transformation in seconds. Then, we have computed the
speed-up between that values and the times obtained experimentally. The
results for the models shown in Table 3.10 starting from the model with 10
million of elements are: 3.632, 3.515, 3.687, 3.847, 3.736 and 3.929. The
average speed-up is 3.724 which means that the penalty introduced by the
hard disk leads to executions 3.7 times slower.

Fig. 3.13 also shows that the disk storage solution is slower, but still linear
(46.487 — 107.08 with R? = 0.999). The fact that the introduction of disk
does not change the growth model of the runtime function, only changes the

constants, is probably the most important aspect for RQ4.

60



3.3 Evaluation and Performance Analysis

We also wanted to see the impact of using a solid-state drive (SSD) instead
of a hard disk drive (HDD). We run the same experiments changing the storage
medium and the results showed that the transformations were executed 1.5

times faster when the SSD was used (as expected).

3.3.5 Discussion

Based on the reported results, let’s answer the four research questions.

e Answering RQ1. The results presented in Subsection 3.3.4 show
clearly that jLinTra is always much faster than any sequential engine
that we have evaluated. Of course, this is expected because concurrent

solutions usually perform faster than sequential ones.

e« Answering RQ2. The comparison between p-ATL and jLinTra is
more interesting as both approaches execute transformations in parallel,
although each one uses a different model: data parallelism in jLinTra vs.
process parallelism in p-ATL (each rule is executed in one processor).
The results obtained in Subsection 3.3.4 show a significant speed-up of
jLinTra with respect to p-ATL in all cases but one. Analyzing these
speed-ups, we can draw two conclusions. First, and as we expected, the
use of navigation paths is more expensive in jLinTra than in p-ATL.
This seems to be the only weakness of jLinTra with respect to p-ATL
(we also outline the way in which this problem can be addressed later in
Section 7.3). In every other case, jLinTra performs better. And second,
the size of the input model does not seem to have a significant impact

on the performance difference.

e« Answering RQ3. For practical purposes, jLinTra transformation
chains perform basically in the same way when they are executed in
parallel as if the transformations are executed sequentially one after the
other. That means that no price must be paid when data in the output
model is needed as soon as possible, although the output model is not

complete.

61



Chapter 3. Parallel Out-place Model Transformations

¢ Answering RQ4. Once the models are large enough to not fit in
memory, parts of them are kept in a database in the file storage. The
experimental results shown in Subsection 3.3.4 suggest that using a SSD
or HDD in combination with RAM memory works well and with only a
small delay (between 2.5 and 3.7 times slower respectively), but that all
solutions (memory, HDD, SSD) scale equally.

3.3.6 Threats to Validity

In this subsection, we elaborate on several factors that may hinder the validity
of our results.

Internal validity—are there factors which might affect the results in the
context the case study? Concerning the measurement approach we used in
our case study, we have to note that Eclipse is a multi-threaded application.
Thus, other ongoing threads within Eclipse could affect our performance
measurements. To address this issue, we stopped all additional tasks that
might be automatically started, e.g., build processes.

Another threat to validity is the internal representation of the models.
For instance, while ATL uses standard EMF, jLinTra uses their own internal
format. Thus, there may be differences on how the specifics of EMF are
supported and represented.

Finally, we refrained from performing example-specific low-level optimiza-
tions that would be possible on the Java code level, in order to compete with
ATL and QVT-O in similar conditions.

Ezxternal validity—to what extent is it possible to generalize the findings for
out-place transformations in general? So far, we cannot claim any performance
results outside the context of the presented case study. Nevertheless, the
evaluation method used in the case study can indeed be applied on other
out-place transformation examples as well. Thus, replaying the presented
experiments for those transformation cases should enable the possibility
of reasoning about the performance of those cases as well by using the
provided infrastructure available on our website. However, for transformations

going beyond out-place transformations, dedicated evaluation methods and

62



3.4 Related Work

infrastructures may be needed. Finally, the case study may be repeated on
other hardware platforms to see, e.g., the impact of the number of cores on

the performance.

3.4 Related Work

With respect to the contribution of this chapter, we first elaborate on related
approaches which are dedicated to storing and retrieving very large mod-
els. Second we discuss closely related work considering the performance of
model transformations in general and concerning their parallel execution in
particular. Third we discuss different categories of coordination languages
and their relation to model transformations. Finally, we relate to other model

transformation types going beyond unidirectional out-place transformations.

3.4.1 Persisting Very Large Models

The scalability problems of loading large models represented by XMI docu-
ments into memory has been already recognized several years ago. One of the
first solutions for EMF models is the Connected Data Objects (CDO)!3 model
repository which enables to store models in all kinds of database back-ends
such as traditional relational databases or emerging NoSQL databases. CDO
supports the ability to store and access large-sized models due to the trans-
parent loading single objects on demand and caching them. If objects are no
longer referenced, they are automatically garbage collected. There are also
several projects for storing very large EMF models, like MongoEMF'* and
Morsa [45, 46]. Both approaches are built on top of MongoDB. Furthermore,
graph-based databases as well as map-based databases are also exploited for
model storage such as done in NeodEMF [9, 59] where also different unloading
strategies for partial models are explored [40]. In [35], Clasen et al. elabo-
rate on strategies for storing models in a distributed manner by horizontal

and vertical partitioning in Cloud environments. A similar idea is explored

http://projects.eclipse.org/projects/modeling.emf.cdo
“http://code.google.com/a/eclipselabs.org/p/mongo-emf

63


http://projects.eclipse.org/projects/modeling.emf.cdo
http://code.google.com/a/eclipselabs.org/p/mongo-emf

Chapter 3. Parallel Out-place Model Transformations

in [41] where different automatic partitioning algorithms are discussed for
graph-based models.

Compared to these existing approaches, we use standard data management
solutions for storing unstructured information and a Linda-based approach

for organizing and accessing the data as we have discussed in Section 3.3.

3.4.2 Transforming Very Large Models

Several lines of research consider the transformation of large models. In this
paper, we focus on out-place model transformations running in batch mode or
streaming mode. However, to deal with large models, orthogonal techniques
may be applied as well. Especially, two scenarios have been discussed in the
past in the context of speeding-up model transformation executions, which
benefit from alternative execution strategies. First, if an output model already
exists from a previous transformation run for a given input model, only the
changes in the input model are propagated to the output model. Second,
if only a part of the output model is needed by a consumer, only this part
is produced while other elements are produced just-in-time. For the former
scenario, incremental transformations [77, 114, 134] have been introduced,
while for the latter lazy transformations [138] have been proposed.

Another interesting line of research for executing transformations in parallel
is the work on critical pair analysis [66] from the field of graph transformations.
This work has been originally targeted to transformation formalisms that do
have some freedom for choosing in which order to apply the rules. Rules that
are not in an explicit ordering are considered to be executed in parallel if
no conflict, e.g., add/forbid conflict (one rule is producing an element which
blocks the execution of another rule) or delete/use conflict (one rule is deleting
an element which is required to exists for the execution of another rule), is
statically computed. However, execution engines follow a pseudo-parallel
execution of the rules. But the general notion of critical pairs may be also a
valid input for distributing transformation rules. In particular, having non-
conflicting transformation rules allows for distributing them without having

negative side-effects.

64



3.4 Related Work

The performance of model transformations is now considered as an integral
research challenge in MDE [83]. For instance, Amstel et al. [144] considered the
runtime performance of transformations written in ATL and in QVT. In [151],
several implementation variants using ATL, e.g., using either imperative
constructs or declarative constructs, of the same transformation scenario have
been considered and their different runtime performance has been compared.
However, these works only consider the traditional execution engines following
a sequential rule application approach. One line of work we are aware of dealing
with the parallel execution of ATL transformations is [35] where Clasen et al.
outlined several research challenges when transforming models in the cloud.
In particular, they discussed how to distribute transformations and elaborated
on the possibility to use the Map/Reduce paradigm for implementing and
distributing model transformations which has been realized in a follow-up
work [10]. In addition, Tisi et al. [137] present a parallel transformation engine
for ATL. This implementation is used as reference in the evaluation section

(cf. Section 3.3) for parallel model transformation engines.

3.4.3 Coordination Models and Languages

A wide variety of models, formalisms and mechanisms were defined in the 90’s
for describing concurrent and distributed computations based on the concept
of coordination [52]. The purpose of such models and their corresponding
languages was to explicitly deal with the concurrency of cooperation among
very large numbers of possibly heterogeneous active entities that comprise a
single application, and that can live in distributed settings. There are different
approaches to coordination, which can be broadly classified in data-driven
and process-driven [109].

From the range of coordination languages available, we realized that the
execution of transformation rules mainly depends on the available data in
the trace and output models. Thus, rule executions seem to be mostly data
dependent. Therefore, we decided to use a data-driven coordination approach
instead of a process-driven one (such as the one used for p-ATL, in which

each process takes care of a rule [137]). From the data-driven proposals, we

65



Chapter 3. Parallel Out-place Model Transformations

decided to use Linda because of its particular features, which make it more
suitable for our case. In particular, it has a well-defined set of primitives
which are independent of the host language; it naturally implements data
parallelism; and it abstracts away all distribution aspects, hence enabling
the required separation of concerns requited to tackle the difficult problem
of having to deal with concurrency, parallelism and distribution at the same
time. Linda (and its many variants) have been successfully used to implement
many kinds of parallel applications [109] and there is a wide variety of mature
implementations in different languages (cf. Section 3.1.1). However, we are
not aware of any other approach using Linda for the parallelization and

distribution of model transformations.

3.4.4 Other Model Transformation Types

In this paper we have focused on out-place unidirectional model transforma-
tions only. However, there are other kinds of model transformations as well,
such as in-place or bidirectional model transformations [38, 98].

In-place transformations are those in which the source and target meta-
models coincide. They are normally used when we need to evolve models. For
instance, when improving models, e.g., with model refactorings, or executing
models, in-place transformations are very appropriate [16]. Although similar
in practice, the different semantics of in-place transformations [141] introduce
interesting challenges to their concurrent execution, which deserve a separate
study. In particular, there are two kinds of in-place model transformation
strategies, non-recursive and recursive, depending on whether recursive match-
ing takes place or not. In recursive matching, the matches of rules are not
solely computed based on the initial input model but on the current model
state—which may have been modified by previous application of rules. This
is the typical strategy followed in graph or rewriting systems, where a set of
rules modifies the state of a configuration of objects (representing the model)
one by one [117]. In the non-recursive matching strategy, there is one input
model which is used to directly compute the output model without considering

intermediate steps.

66



3.5 Summary

In the case of parallel implementation of recursive in-place transformations
there is some work in the field of graph transformations where multi-core
platforms are used for the parallel execution of graph transformation rules [11,
72, 84] especially for speeding up the matching phase of the left-hand side of
graph transformation rules.

Examples of non-recursive in-place transformations include, e.g., the
JavaRefactoring and the Graph-to-ReducedGraph transformations already
described in this paper. Of course, this kind of transformation can be imple-
mented in terms of out-place ones, as we have seen above. However, there
are some model transformation languages that offer in-place modes too, in-
cluding ATL, which implements what they call refining mode [75, 147]. In a
separate paper [22], we also explored this option for LinTra, implementing a
non-recursive approach for executing in-place transformations, similar to the
ATL refining mode. Our initial results have shown that the LinTra in-place
mode significantly outperforms ATL, and that the jLinTra in-place model
transformation is on average 1.81 times faster than its out-place version.

Bidirectional model transformations constitute another special kind of
model transformations, that can be executed in both directions [131]. They
are normally used to keep two (or more) models consistent, since changes in
any of them are automatically propagated to the others, resolving potential
differences and restoring the overall consistency. Improving the performance of
bidirectional transformations, e.g., by their distributed and parallel execution,

is considered to be an open challenge [68].

3.5 Summary

In this chapter we have demonstrated the use of the Linda concepts and
mechanisms for the parallel execution of out-place model transformations.
Based on the results, the jLinTra platform seems quite promising as a base
infrastructure for running efficient model transformations when combined
with a data parallelism approach to achieve parallelization. We implemented
a layer on top of existing Java-based data grids that allows to specify model

transformations in Java transparent to the underlying technologies and paral-

67



Chapter 3. Parallel Out-place Model Transformations

lelization strategies. In particular, we showed how to represent metamodels
and models for running transformations in parallel as well as how to provide
intrinsic traceability for out-place transformations.

The evaluation also shows that current in-memory data grids perform
well, i.e., they do not necessarily introduce significant penalties. However,
there is a relevant difference in the performance when accessing data. The
comparison against other well-known sequential transformation engines also
showed a significant speedup and the comparison against a parallel engine
using task parallelism showed that data parallelism, as used by jLinTra, seems
to work better than process parallelism for the model transformations used in
the presented case study.

All in all, the jLinTra solution presented here seems to be able to deal
and scale with larger models, and significant outperform current model trans-

formation engines, both sequential and parallel.

68



3.5 Summary

Java-to-Graph-to-ReducedGraph
No. elements | Chain in sequence | Chain in parallel
0.1x10° 0,069 0,070
0.2x10° 0,182 0,153
0.5x10° 0, 366 0, 387
1.0x10° 0,754 0,779
1.5x10° 1,195 1,179
2.0x10° 1,865 1,907
2.5x10° 2,161 2,296
3.0x10° 2,521 2,653
3.5x10° 2,956 2,827
4.0x10° 3,331 3,430
Complete 3,557 3,688

Table 3.9 Results for the Java-to-Graph-to-ReducedGraph transformation

chain.

No. elements | Time (seconds) | Gb. of disk
1x10° 5,035 0,0
2x10° 17,558 0,0
4x10° 33,859 0,0
8 10° 87,836 0,0
10x10° 397,283 5,3
20x10° 796, 720 10,8
30x%10° 1268, 161 16,4
40x10° 1774, 581 21,9
50x10° 2161, 152 27,4
60x10° 92733, 539 33,0

Table 3.10 Results for IMDb-Identity using RAM memory and HDD.

69



YOV YW 30
avaISY3AINN




Parallel In-place
Model
Transformations

As presented in Chapter 3, LinTra only permitted out-place model transforma-
tions. In this kind of transformations, input and output models often conform
to different metamodels and output models are created from scratch. How-
ever, there are many situations in which we need to evolve models, instead of
creating them anew. For instance, the Java Refactoring case study presented
in 3.3 is a concrete case where the input and the output metamodels are the

same, and only a few of modifications are needed in the models.

Also, in-place model transformations are the best choice when migrating
and modernizing software using Model-Driven Engineering approaches [12, 19],
(i) software is reverse-engineered to obtain a model representation of the
system, (7i) modernization patterns are applied on the model level, and
(#ii) the modernized model is translated back into code. Modernization at
model level is typically achieved using in-place model transformations, where
the initial model is evolved until the final target model is obtained. Models
which are reverse-engineered from large systems may be huge, thus high-
performing in-place transformation engines are needed. For this reason, we

extend our LinTra language with an in-place semantics.

71



Chapter 4. Parallel In-place Model Transformations

This chapter is structured as follows. Section 4.1 shortly introduces our
reference non-recursive in-place semantics. Section 4.2 shows how LinTra
realizes its in-place semantics, while Section 4.3 illustrates the benefits of
parallel in-place transformations. Finally, Section 4.4 discusses related work

before we summarize the work in Section 4.5.

72



4.1 Background

4.1 Background

In-place transformations specify how the input model evolves to obtain the
output one, i.e., how the input model has to change. There are two kinds of in-
place model transformation strategies, non-recursive and recursive, depending

on whether recursive matching takes place or not.

By recursive matching we understand that the matches of rules are not
solely computed based on the initial input model but on the current model
state which probably has been modified by previous application of rules. This
is the typical strategy followed in graph or rewriting systems, where a set of
rules modifies the state of a configuration of objects (representing the model)
one-by-one. Thus, after the application of each rule, the state of the system
is changed, and subsequent rules will be applied on the system on this new
state. Therefore, the transformation navigates the target model, which is

continuously updated by every executed rule.

Regarding non-recursive matching, it shares some characteristics with
out-place transformations. In this strategy, there is one input model which is
used to directly compute the output model without considering intermediate

steps.

We chose to follow a non-recursive approach for the LinTra in-place mode.
Our decision was also inspired by the ATL refining mode [136, 147], used
to implement in-place transformations. ATL supports both out-place and
in-place modes. In both execution modes, source models are read-only and
target models are write-only. This is an important detail that significantly
affects the way in which ATL works in refining mode. Indeed, ATL in-place
mode does not execute transformations as these are executed in graph or
rewriting systems, as explained in detail in [141]. Thus, we follow as well non-
recursive matching in LinTra where rules always read (i.e., navigate) the state
of the source model, which remains unchanged during all the transformation

execution.

73



Chapter 4. Parallel In-place Model Transformations

4.2 Approach and Semantic Issues

LinTra follows a non-recursive approach for executing in-place transformations,
as the ATL refining mode does. In this section we discuss some semantic
issues that might occur in rule-based in-place model transformations in gen-
eral as they are indeed highly relevant for the parallel execution of in-place

transformations.

4.2.1 Atomic Transformation Actions

When executing a non-recursive in-place transformation, the first decision
concerns the elements for which the transformation does not specify what
to do. We could either decide to exclude them from the target model or
to include them as they are. In jLinTra we decided for the second option,
which implies that if we want to exclude objects in the target model, the
transformation will have to explicitly remove them. Thus, after the input
model is loaded, and once the transformation phase starts, an initialization
phase is needed where the identity transformation is applied so that the target
area contains a copy of the input model.

After the model is copied, in the following we explain the three operations
that may be applied to it: deletion of elements, creation of new elements, and
modification of existing elements.

Elements Deletion. When an element is deleted, the outgoing relation-
ships from such element to others are deleted too, since such information
is stored as attributes in the deleted element. However, the situation is
different when the deleted element has incoming relationships. In such case,
the information about relationships to the deleted element is stored in the
attributes of other elements. In this case, we can distinguish two different
semantics. Either all the incoming relationships are deleted, for which the
engine needs to traverse the whole model searching for relationships pointing
to the deleted element, or they are not deleted, causing dangling references
and, consequently, an inconsistent model. In the former option, we need to

keep track of all the deleted elements, so that the traversal is realized only

74



4.2 Approach and Semantic Issues

once as the last step of the transformation. The latter option is useful in order
to make the user aware that he/she is removing an element by mistake. LinTra
permits both behaviors, since it is aimed at offering a flexible implementation.
When the deleted element is the parent of a containment relationships, all its
descendant are also deleted recursively.

Elements Creation. If the developer wants to create a new element,
he/she has to create the instance and set its attributes and relationships.
In case of bidirectional relationships, there are two alternatives: (i) the
opposite reference is created automatically, or (ii) the creation of the opposite
relationship must be explicitly specified by the developer. We permit both
behaviors.

Elements Updates. Updating an attribute or an ongoing unidirectional
relationship of an element is trivial, since the transformation only has to
change the corresponding attribute of the updated element. However, there
are again two choices when updating a relationship which is bidirectional, since
the previous target element of the relationship would still have a relationship
to the updated element unless something is done. Thus, (%) the relationship
from the previous target element should be automatically removed and a new
relationship from the new pointed element to the updated element should be
automatically created, or (i) the developer has to specify explicitly in the
transformation that the corresponding relationships are removed and created

respectively. Again, we permit both alternative behaviors.

4.2.2 Confluence Conflicts

Confluence conflicts typically occur when two rules are applied to the same
part of the model and they treat it differently [66]. Thus, the resulting
model may vary depending on the order in which those rules are applied.
The application of a rule can conflict with the application of another rule in
four different ways. Let us explain them for the ATL refining mode which
acts as blueprint for the LinTra in-place transformation strategy. For the
explanations, let us imagine a transformation for reverse engineering Java

code.

75



Chapter 4. Parallel In-place Model Transformations

Update/Update. Imagine that a rule sets the public variables to private
and capitalizes the name of the ones that are private. This case is not a
problem for the confluence of non-recursive in-place transformations since
only the source model provided by the user is read—the changes done by the
rule that changes the visibility are not visible to the rule that capitalizes the
names of the variables. On the contrary, if a rule sets the visibility of the
variables to private and another rule sets them to public, the transformation
may not be confluent. A possible way to prevent this situation is to force
the precondition of the rules to be exclusive, which leads to non-overlapping
matches. This was the solution adopted by ATL concerning the declarative
part. Nevertheless, it is easy to fool ATL by using the imperative part, which

is executed after the declarative part of the rule.

Delete/Update. Suppose that a rule sets the visibility of the variables
to private and another rule removes all the variables. The situation is similar
to the second case we presented for the conflict Update/Update. The two rules
are a conflicting pair, thus the language should prevent this situation from
happening or should establish the behavior of the transformation. Again, it is
possible to produce this case in ATL by using the imperative part to set the
visibility and writing a declarative rule that removes the variables. Both rules
are executed so that the visibility is changed and the variables are removed.
As a result, the variables are not present in the resulting model. Apparently,
the objects are removed in a later execution phase, after having done all the

updates and creations specified in the declarative and imperative parts.

Produce/Forbid. Imagine that a rule adds a variable to a class and
another rule removes all the empty classes (classes with no variables) from the
model. The first rule is producing an additional structure that is forbidden
by the precondition of the second rule. Once again, the order in which the
rules are executed influences the result. This time, if we try to implement
this transformation with ATL using the imperative part of a rule to add the
variables and a declarative rule to remove the empty classes, both rules are
applied but the transformation does not fulfil the purpose for which it was

written (since only the source model is read). As a result, the classes are

76



4.3 Evaluation

removed but the newly created variables remain in the model without any

container.

Delete/Use. This conflict appears when a rule deletes elements that
produce a match with another rule. Thus, it is the opposite case to Pro-
duce/Forbid. Depending on the order in which the rules are executed, the

transformation is able to execute a higher or lower number of rules.

We have illustrated the conflicts that may appear between rules and how
ATL tries to solve them using non-overlapping matches, how they can be
avoided or produced, and which is the final result of the execution. Enforcing
to have non-overlapping rules is not the only solution; another possibility
is to statically detect the conflicting rules using the critical pair analysis
approach [99], and subsequently, to deal with the conflicts making use of
layers which is also implicitly done in ATL by using different phases in the

transformation execution.

As jLinTra is realized as an internal transformation language embedded
in Java, we have opted for not imposing any restriction. Thus, our solution
is completely flexible with respect to rule executions. The idea is that high-
level model transformation languages (such as ATL [75], ETL [82], or QVT-
O [OMG]) are automatically compiled to jLinTra. In case that the critical pair
analysis is needed, it can be done statically during the compilation process

from the high-level model transformation language to LinTra.

4.3 FEvaluation

To evaluate our approach we performed an experimental study concerning
a transformation which, in reverse engineered Java applications, removes all
the comments, changes the attributes from public to private and creates the

getters and setters.

7



Chapter 4. Parallel In-place Model Transformations

4.3.1 Research Questions

The study was performed to quantitatively assess the quality of our approach
by measuring the runtime performance of the transformations. We aimed to

answer the following research questions (RQs):

1. RQ1—Parallel vs. sequential in-place transformations: Is the parallel
execution of in-place transformations faster in terms of execution times
compared to using the state-of-the-art sequential execution engines?
And if there is a positive impact, what is the speedup with respect to

the used number of cores for the parallel transformation executions?

2. RQ2—Parallel in-place vs. parallel out-place transformations: Is the
parallel execution of in-place transformations faster in terms of execution

time compared to using their equivalent out-place transformations?

4.3.2 Experiment Setup

To evaluate our approach, we have used the same Java models we used in
Section 3.3.2.

We apply an extended version of the Public2Private transformation—
the original one is available in the ATL Zoo [61]—that changes the visibility
of every public variable to private and creates the corresponding getter
and setter methods. In addition, the transformation also removes all the
comments contained in the code. All artifacts can be downloaded from our
website [27].

Let us show the effects of this transformation with an example. Listing 4.1
shows the Java code that declares a class called MyClass, a public attribute
name and the class’s constructor. The code contains some comments too.
After applying the transformation, the Java code that the model represents
should look like the fragment presented in Listing 4.2.

An excerpt of the code corresponding to the rules in jLinTra is shown in
Listing 4.3. As stated in Section 3.1, every slave is in charge of transforming
a chunk of the model. For efficiency reasons the changes are made permanent

once the whole chunk has been transformed. In order to keep the temporary

78



00 N O WN -

OO WN -

4.3 Evaluation

Listing 4.1 Code to be refactored

public class MyClass {
//Declaration of variable called name
public String name; /* This variable contains the name */
public MyClass () {
/* Description @param ... */
}
}
Listing 4.2 Refactored code
public class MyClass {
private String name;
public String getName () { return name; }
public void setName(String name) { this.name = name; }
public MyClass () {
}

changes the structures deletedElems, modifiedElems and createdElems (lines
2, 8 and 9) are needed.

We have run all our experiments on a machine whose operating system
is Ubuntu 12.04 64 bits with 11.7 Gb of RAM and 2 processors with 4
hyperthreaded cores (8 threads) of 2.67GHz each. We discuss the results
obtained for the different transformations after executing each one 10 times
for every input model and having discarded the first 5 executions as the VM
has a warm-up phase where the results might not be optimal. The Eclipse
version is Luna. The Java version is 8, where the JVM memory has been
increased with the parameter -Xma11000m in order to be able to allocate

larger models in memory.

4.3.3 Performance Experiments

The in-place transformation described before has been implemented and
executed in jLinTra and in ATL, for which we have used the EMFTVM [147].
We have also developed an out-place transformation version in jLinTra in
order to compare its performance with the proposed in-place version. Table 4.1

shows in its left-most column the number of entities of the source models of

79



00 N O WwN -

Chapter 4. Parallel In-place Model Transformations

Listing 4.3 jLinTra transformation

if (ie instanceof Comment){
//Delete Comment
deletedElems.add(ie);
} else if (ie instanceof FieldDeclaration){
String modId = ((FieldDeclaration) ie).getModifier ();
Modifier mod = (Modifier) srcArea.read(modId);
String visibility = mod.getVisibility();
if (visibility.equals(PUBLIC)){
// Modify visibility
mod.setVisibility (PRIVATE); modifiedElems.add(mod);

// Create getters and setters
createdElems.add (...) ;

the transformation. The second, third, and fourth columns correspond to
the execution times (in seconds) obtained for ATL and jLinTra (using the
in-place and out-place modes), respectively. Note that we have only taken
into account the time of the execution of the transformation, meaning that
we do not consider the time used for loading the models into memory, nor the
time used to serialize them to the disk. The fifth column presents the speedup
of jLinTra with respect to ATL. We can see that the speedup is not constant:
it grows with the size of the model, reaching a value of 955.23 for the complete
model, meaning that value that jLinTra is 955.23 times faster than ATL for
this concrete case. Finally, column six shows the speedup of the in-place
and out-place modes of LinTra, where we can see that the in-place model

transformation is on average 1.81 times faster than its out-place version.

We already mentioned in Section 4.2 that an initialization phase where the
input model is copied to the target area is needed. However, if we moved that
process to the loading phase so that both the source and target areas were
loaded at the same time, we would only pay a minimum price (an overhead of
5% in the loading phase) and the performance in the transformation phase
would be improved reaching a speedup of 3.89 w.r.t. the out-place mode and
speedup of 1,195 w.r.t. ATL.

80



4.3 Evaluation

ATL LinTra Speedups

No. elements | EMFTVM | In-place (LI) | Out-place (LO) LI-EMFTVM | LI-LO
0.1x10° 2.40 0.11 0.19 21.23 1.72
0.2x10° 12.04 0.29 0.36 41.88 1.25
0.5x10° 65.06 0.73 0.98 89.06 1.34
1.0x10° 371.41 1.29 2.38 287.34 1.84
1.5x10° 1042.41 2.06 2.61 506.71 1.27
2.0x10° 2030.82 2.99 5.63 678.16 1.88
2.5x10° 2952.46 3.92 9.64 754.14 2.46
3.0x10° 4156.69 5.13 8.82 809.92 1.72
3.5x10° 5527.96 6.26 13.77 883.37 2.20
4.0x10° 6737.97 7.57 15.20 890.70 2.01
Complete 7238.70 7.58 17.18 955.23 2.27

Table 4.1 Execution results and speedups.

Regarding the gain of in-place MTs in LinTra w.r.t. the number of cores
involved in the transformation, the speedups of using only one core w.r.t.

using four, eight, twelve and sixteen are 1.19, 1.62, 1.97, 3.24, respectively.

We also planned to execute and compare this transformation with the
original ATL virtual machine. However, although it supports the refining mode
it does not support the imperative block, which is applied in the particular

transformation used in this study.

Regarding the out-place transformation developed in LinTra, it explicitly
specifies that all elements that are not modified must be copied, together with
their properties. The out-place transformation counts on 3,302 lines of Java
code (we generated the code for the identity transformation using Xtend!
and adapted the corresponding code to fit the needs of the Public2Private

transformation), while the in-place transformation has only 194 lines.

For answering the two research questions stated above, we can first conclude
that the parallel execution of in-place transformations reduces the execution
time compared to using sequential execution and that the execution time
can be further improved by adding more cores. Second, for typical in-place
transformation problems, parallel in-place transformation executions are more

efficient than executing their equivalent out-place transformations.

'https://eclipse.org/xtend/

81


https://eclipse.org/xtend/

Chapter 4. Parallel In-place Model Transformations

4.3.4 Threats to Validity

In this section, we elaborate on several factors that may jeopardize the validity
of our results.

Internal validity—Are there factors which might affect the results of this
experiment? The performance measures we have obtained directly relate to
the experiment we have used for the evaluation. Therefore, if we had used
different experiments other than the Public2Private transformation then
the speedups between the executions of the different implementations would
have probably been different. Besides, we have generated 11 smaller sample
source models. Should we have generated different models, the results in
Table 4.1 would have also been different. As another threat, we have decided
to use the executions after the 5th one in order to avoid the possible influence
of the VM warming-up phase. However, if after the 5th execution the VM
has not finished warming up, our results are then influenced. Finally, we are
quite confident that we have correctly written the equivalent transformation
in ATL due to our expertise with such language. Nevertheless, there may
exist tiny differences which may have an influence on the execution times.

External validity—To what extent is it possible to generalize our findings?
As a proof of concept, we have compared the execution times of our approach
with the ATL implementation executed with the EMFTVM engine. We
have chosen ATL for the comparison study because we have enriched LinTra
with the same in-place semantics that ATL has. Therefore, since our study
only compares LinTra and ATL, our results cannot be generalized for all

non-recursive engines.

4.4 Related Work

In this chapter, we have focused on in-place model transformations running
in batch mode.

An important line of research for executing transformations in parallel is
based on critical pair analysis [66] from the field of graph transformations as

discussed in Section 4.2 and as we mentioned in the previous chapter. This

82



4.5 Summary

work has been originally targeted to transformation formalisms that do have
some freedom for choosing the order in which to apply the rules. Rules that
are not in an explicit ordering are considered to be executed in parallel if no
conflict is statically computed. Although, most existing execution engines
follow a pseudo-parallel execution of the rules, but there are already some
emerging approaches which consider the execution of graph transformations in
a recursive way on top of multi-core platforms [11, 72, 84]. A closer comparison
concerning the commonalities and differences of recursive and non-recursive
in-place semantics concerning parallelism is considered as a subject for future
work.

As we also mentioned in the Related Work of the previous chapter, Clasen
et al. and Tisi et al. are working on model transformations on the cloud [35]
and a parallel transformation engine for ATL [137] respectively. However,
they only consider out-place transformations while we tackled the parallel

execution of in-place transformations.

4.5 Summary

We have presented an extension for LinTra that allows the parallel execution
of in-place model transformations. We have shown with experiments that the
performance is improved w.r.t. other in-place M'T engines and that in cases
where in-place transformations can be achieved also by means of out-place
transformations, the in-place transformations provide better performance and

usability.

83



YOV YW 30
avaISY3AINN




Testing

Model-to-Model
Transformations

In the previous chapters, we have already seen the importance of model
transformations in the context of MDE and we have worked on improving
their performance. Once we count on a software artifact given by a model
transformation, another important property to check is their correctness as the
quality of the resulting systems is highly influenced by the quality of the model
transformations employed to produce them. However, users of transformations
have to deal with the problem that transformations are difficult to debug
and test for correctness [8]. In fact, as the size and complexity of model
transformations grow, in many cases manual debugging is no longer possible,
and there is an increasing need to count on methods, mechanisms and tools
for testing their correctness [64, 8].

In general, debugging is readily classified into three parts: the identification
of the existence of a problem, the localization of the fault, and the actual
correction of the problem [126].

In this chapter, the existence of a problem is detected by the misalignment
between the model transformation specification and its implementation. The
former specifies the contract that determines the expected behavior of the

transformation and the context in which such a behavior needs to be guaran-

85



Chapter 5. Testing Model-to-Model Transformations

teed, while the latter provides the actual behavior of the transformation. If
the transformation does not behave as expected, a violation of the contract
occurs.

Here we use Tracts [56] for the specification of model transformations,
which are a particular kind of model transformation contracts [7, 33] especially
suitable for specifying model transformations in a modular and tractable
manner. Tracts count on tool support for checking, in a black-box manner,
that a given implementation behaves as expected—i.e., it respects the Tracts
constraints [26].

Once a problem has been found (i.e., a constraint has been violated),
we need to locate the fault [67]. One of the major shortcomings of model
transformation specification approaches based on contracts is the lack of
traceability links between specifications and implementations. In the case a
constraint is not fulfilled, the elements involved in the constraint evaluation
could provide valuable information to the transformation engineer, but the
links to the transformation implementation are not available.

This chapter presents a solution to this problem. It uses a white-box
and static analysis to find the location of the model transformation rules
that may have caused the faulty behavior. It provides the first step of an
iterative approach to model transformation testing, which aims at locating
faults as early as possible in the development process. Although this step
cannot fully prove correctness, it can be useful for identifying many bugs
in a very early stage and in a quick and cost-effective manner [153]. It can
also deal with industrial-size transformations without having to reduce them
or to abstract away any of their structural or behavioral properties, and it
can represent a very valuable first step before diving into more expensive
and complex tests (such as model checking, formal validation, dynamic tests,
ete. [6, 43, 44, 87, 30, 2]) which represent numerous challenges, mainly because
of their inherent computational complexity [8, 7].

An evaluation discussing the accuracy and the limitations of the approach
is also provided. The evaluation has been conducted on a number of trans-
formations with the goal of quantitatively assessing the correctness (Are the

alignments correct?), completeness (Are there any missed alignments?) and

86



usefulness (How useful is the resulting information to the developer for locat-
ing the faults?) of the techniques. Furthermore, we also identify the kinds
of transformations which are most suitable for validation with the proposed
approach, and provide a test to automatically check this a-priori. Finally, we
use mutation techniques to evaluate its effectiveness.

This chapter is organized as follows. Section 5.1 introduces the proposed
approach and Section 5.2 discusses how we have implemented it. Section 5.3
is devoted to the evaluation of our proposal, and to analyze its advantages
and limitations. Finally, Section 5.4 presents related work before Section 5.5

summarizes the chapter.

87



Chapter 5. Testing Model-to-Model Transformations

5.1 Matching Tables

5.1.1 Motivation and Challenges

As discussed in Section 2.3, Tracts allow us to define constraints for specifying
model transformations. Regarding the model transformation implementation,
our approach could be applied to any MT language that uses the metamodel
footprints, independently if it is a high-level model transformation language
(such as ATL [75], ETL [82], QVT-O [OMG], etc.), or an intermediate language
that will be compiled to a high-level language (such as QVT Core [OMG] or
LinTra). For readability reasons and because it is one of the most popular
languages in which model transformations are written, we have chosen ATL.

Having independent artifacts for the specification and implementation of
model transformations permits choosing which formalism to use for each level.
However, the following questions cannot be answered without a thorough

analysis of both artifact types:

o Which transformation rule(s) implement(s) which constraint(s)?
e Are all constraints covered by the transformation rules?

e Are all transformation rules covered by the constraints?

In order to establish the relation between the constraints and the rules
that might make them fail, two approaches can be followed: dynamic or static.

Dynamic approaches are based on a concrete model transformation execu-
tion over a model or set of models. The procedure consists of tracking the
transformation process and storing information about each executed step and
the specific instances. Once the transformation has finished and the failures
and the objects that caused them are known, it is necessary to go backwards
over the trace information stored during the transformation execution to find
the errors. In these approaches, an input model needs to be available to
execute the transformation, and the environment where the transformation is

to be executed must be provided too.

88



5.1 Matching Tables

Static approaches, on the other hand, do not make use of executions.
They obtain the relation between the constraints and the rules by means
of an algorithm. The only inputs for this process are the transformation
implementation and the specification constraints.

Dynamic approaches normally give more precise results, although, as
mentioned before, they are dependent on the particular input model and trans-
formation execution, while static ones can compute more general alignments.
In this chapter, we target the challenge of finding “guilty” transformation
rules following a static approach. Since there is no direct relation between
the rules and the constraints (constraints are created independently of any
transformation implementation), our work computes for each pair (constraint,
rule) the probability that the constraint failure comes from the rule making
use of the common denominator that both have: the structural elements
belonging to the metamodels.

It can also be considered a white-box approach, because it takes into
account the internal structure and details of the tract constraints and of the

transformation implementation.

5.1.2 Methodological Approach

Given a set of OCL constraints (from the Tracts) and a set of ATL rules, Fig. 5.1
summarizes the commonalities between them (in the figure, relationships
< 2> and <u> stand, respectively, for “conforms to” and “uses”). There
is also a direct relation between the ATL and the OCL metamodels, because
the former embeds the latter. This may simplify the alignments between ATL
and OCL, although it is also true that the OCL constraints and the ATL rules
are written differently. First, the former impose conditions on the relationship
between the source and target models, while the latter describe how the
target model should be built from the elements of the source model. Second,
specifications and implementations are normally written by different people,
at different times, with different goals in mind, and using different styles
(e.g., they may use different navigation paths to refer to the same elements,

because the starting contexts are not the same, or use different OCL operators

89



Chapter 5. Testing Model-to-Model Transformations

Source Target
Metamodel(s) Metamodel(s)
QUR""  TTTmmmeanmmTTTT S LU»
R T €U =m0
OCL | | ATL Metamodel ) ATL
Constraints  [™], L Rules
] ocL
«c2» Metamodel «Cc2»

Fig. 5.1 Heterogeneities and Commonalities between Constraints and Rules.

for querying elements). Finally, there are slight differences between OCL
and ATL, e.g., ATL introduces additional operations which are of particular
interest for transformations and which are not available in OCL. In any case,
the OCL constraints and the ATL rules make use of the same source and
target metamodels. As we have seen for the Families2Persons example in
Chapter 2, the same types and features are used in the specification and in
the implementation of the transformation. Thus, we use these commonalities
to indirectly match the constraints and the rules by matching their footprints
concerning the source and target metamodels used.

Our approach focuses on the construction and interpretation of the so-
called matching tables with the alignments we have discussed before. Thus,

our approach builds on the following steps:

1. Footprint Extraction. The structural elements (henceforth referred
to as footprints or types and features) of both model transformation and

constraints are extracted, as explained later in Section 5.1.3.

2. Footprint Matching. The footprints extracted in the previous step

are compared for each rule and constraint.

3. Matching Tables Calculation. The percentage of footprints overlap-
ping, so-called alignment, for each transformation rule and constraint is
calculated. This information is used to produce the matching tables (cf.
Section 5.1.4).

90



5.1 Matching Tables

4. Matching Tables Interpretation. The resulting tables are analyzed
for identifying the guilty rules for each constraint. Guidelines for this

analysis, exemplified with a case study, are described in Section 5.1.5.

5.1.3 Footprint Extraction

Now we present how we extract footprints from OCL constraints and ATL

rules.

Constraints

There are several possibilities for the footprints extraction of OCL constraints.
For example, we could take into consideration all types and features that
appear in the OCL expressions, just because they are mentioned. We could
even assign weights to these types and features according to their number
of occurrences in the constraints, giving less importance (a lower value) to
those that appear less often. However, due to the nature of OCL, nesting is
necessary to implement correct restrictions in order to isolate the information
which is really relevant for our purposes thus, it is important to distinguish
between two different kinds of elements that appear in the OCL expressions:
those that we want the constraint to refer to, and those which are used for
navigation purposes only.

Since metamodels are graphs, OCL expressions are heavily dependent
on their contexts (i.e., the starting class) [31] and also on the path used to
navigate to the final type, which is precisely the one we want the constraint to
refer to, i.e., starting from a specific class several navigation paths can lead to
the same target class, which is the one that really matters from the constraint
perspective, whereas all other classes in the navigation can be considered as
mere implementation details. Thus we need to isolate the target features of
the constraint from the ones used to reach it. This is why we only consider as
relevant the last elements of the OCL expressions. For example, if we have
Family.mother.firstName, then we will only consider mother.firstName

whose footprints are Member and Member.firstName.

91



Chapter 5. Testing Model-to-Model Transformations

When an OCL expression contains operations on collections, we take into
account only the types inside the body of the deepest (in the sense of nesting)
iterators (forAll, exists, etc.) to extract just the relevant footprints and not
those used for navigation purposes only. After doing some experiments, we
realized that this decision helps introduce less noise, i.e., it does not extract
types which are not representative for the constraint (since they are used for
navigation purposes, and not for model element transformation), what in turn
contributes to the modularization and independence of the types extracted in

the constraints.

Similarly, primitive types and constants are not considered. Types like
Integer or Boolean, or constants like true or false can appear frequently,
but this does not mean that each appearance provides relevant information
for locating a fault. On the contrary, taking them into consideration only
introduces more confusion, when precisely our goal is to isolate those elements

that are more relevant for locating the faults.

Rules

In this chapter we deal with ATL as proof of concept, although any transforma-
tion language based on rules and that uses OCL could be used. For each rule,
we obtain the footprints in the left-hand side, right-hand side and imperative
part, and build all navigation paths. Then, as in the OCL constraints, we
only consider the last part of these paths. Regarding helpers, they can appear
in any part of a navigation path. For this reason, when there is a helper in a
path, we simply obtain the type it returns. If it is a collection type, we obtain

the type of the collection.

We apply the same approach for calls of ATL (unique) lazy rules and
called rules. In these cases, we return the type of the first element created by

these rules (since this is what ATL actually returns).

With all this, the footprints extracted for the Families2Persons example

presented in Section 2.3.2 are shown in Table 5.1, for each rule and constraint.

92



5.1 Matching Tables

Constraint | Considered Types and Features
C1 Member, Family, Family.daughters, Family.sons
C2 Member, Family, Female, Member.firstName, Family.lastName
Female.fullName
C3 Member, Family, Female, Family.lastName, Member.firstName
Female.fullName
C4 Member, Family, Male, Member.firstName, Family.lastName
Male.fullName
Ch Member, Family, Female, Family.lastName, Female.fullName
Member.firstName
C6 Member, Family, Male, Family.lastName, Male.fullName
Member.firstName
C7 Member, Person
C8 Person, Person.fullName
Rule Considered Types and Features
R1 Member, Male, Member.firstName, Male.fullName
R2 Member, Female, Member.firstName, Female.fullName

Table 5.1 Footprints for the Families2Persons example.

5.1.4 Footprint Matching and Matching Tables

A tabular representation (called matching tables) is used to depict the align-
ment between constraints and rules. We apply three different matching
functions to automatically obtain the values for filling the tabular represen-
tations. Each function provides a certain viewpoint on the alignment. This
allows us to interpret the results and provides an answer to the questions
presented in Section 5.1.1.

In these tables, rows represent constraints and columns represent rules.
Each cell links a constraint and a rule with a specific value between 0 and 1.
Let C; be the set of types and features extracted from constraint i and R;

from rule j. Let | - | represent the size of a set.

Matching Tables: Three Different Viewpoints

The constraint coverage (CC) metric focuses on constraints. This metric
measures the coverage for constraint i by a given rule j. For this metric, the

value for the cell [7, j] is given by the following formula.

93



Chapter 5. Testing Model-to-Model Transformations

_|Cin Ry

€= T

(5.1)

Since the denominator is the number of types and features in Cj, the result
is relative to constraint ¢ and we interpret this value for rule traceability, i.e.,
to find the rules related to the given constraint. This is, if a constraint fails,
the CC table tells us which rule or rules are more likely to have caused the
faulty behavior (i.e., be “guilty"). Thus, the CC table is to be consulted by

Trows.

The rule coverage (RC) metric focuses on rules. This metric calculates the
coverage for rule j by a given constraint ¢. We use the RC table to express
constraint traceability, i.e., to find the constraints more closely related to a
given rule, and therefore it is to be read by columns. The metric is calculated

as follows.

’CZ N Rj‘
RC;,; = \Zi 1
! |1

(5.2)

The last metric is relative to both constraints and rules, so the RC'R table
can be consulted by rows and by columns. Thus, it provides information about
the relatedness of both rules and constraints, without defining a direction
for interpreting the values. The relatedness of constraints and rules (RCR)

metric is computed as follows.

_|Cin Ry

RCR;; = 11041
7 ‘CiURj|

(5.3)
The overlap between the elements extracted from the constraints and
the rules gives rise to five different cases which are reflected by the previous
metrics. They are depicted in Fig. 5.2 using Venn diagrams.
In case (a), each element present in the constraint is contained in the set

of elements in the rule: C; C R;. Consequently, the value for the CC metric is

94



5.1 Matching Tables

() (d) (e)

Fig. 5.2 Possible overlaps for C; and R;.

R

j G

(b)

(a)

1, meaning that the constraint is fully covered by the rule. The other metrics

have a value lower than 1.

In case (b), all the elements in the rule are contained in the elements of
the constraint, R; C C;. RC metric is 1.

In case (c), C; and R; are disjoint sets. Thus, the three metrics are 0,
which means that the given constraint and the given rule are completely
independent.

In case (d), each metric will have a value between 0 and 1. The specific
value depends on the size of the sets and on the number of common elements.
Thus, the bigger the common part for C; is, the closer to 1 the value for metric
CC will be. Similarly for R; and metric RC. Regarding the RCR metric, its
value only depends on the size of the common part (for a specific size of the

footprints); the bigger it is, the closer to 1 the value will be.

In case (e), both constraints and rules have the same elements set, so all

metrics are 1.

Considering subtyping. In the three formulas presented above, we consider
the intersection C; N R; as the common elements present in constraint C; and
rule R;. But we should also take subtyping into account. Its consideration is
important because some OCL operators used in the Tract constraints and in
the ATL rules (such as allInstances) retrieve all instances of a certain class,
as well as the instances of all its subclasses, and therefore we can have types in
a constraint and in a rule that are not directly related (since they are not the
same type), but are related via subtyping (when one type is a sub/super-type
of the other). Thus, the fault may be due to a problem not only in a class

but also in any of its superclasses. To take this into consideration, we assign

95



Chapter 5. Testing Model-to-Model Transformations

a weight to the parent classes, given by the number of its structural features
(attributes and references) divided by the number of features of the child
class—both sets comprise the class’s own features as well as the inherited
features from all its superclasses. Thus, the more similar the parent and the
child are, the closer to 1 the weight is. Similarly, if the child class incorporates
many new features w.r.t. the parent class, the weight assigned to the parent
will be closer to 0.

Setting a threshold value. Before going any further, let us explain the
need for setting a threshold for cell values in the matching tables. Such a
threshold is meant to establish a boundary under which alignments are ignored.
It is needed to be able to disregard those situations where a constraint and
a rule are minimally related, and thus should not be considered as relevant
for locating the fault. Moreover, if a value in a cell is below the threshold
in table RCR, then the value in the equivalent cells in the other two tables
must be disregarded too, even if their value is above the threshold, to avoid
considering irrelevant information.

Fig. 5.3 helps explain this situation. Assume that the elements extracted
from constraint C; are a subset of the elements extracted from rule R;, as
shown in Fig. 5.3(a). In this case, the CC metric for this pair is 1. However,
since the set of common elements is very small in comparison with the size of
the set of rule elements, the RCR, metric is also very small. Despite there being
some common elements in the rule and in the constraint, it does not mean
that, in this case, the rule is covering the constraint. In most cases where
the set of common elements is much smaller than the set of rule elements
(even if the CC metric is 1), it is normally because our metamodels are small
and the same element may be present in several rules and constraints, and
not because there is a relevant relationship. In such cases, when a value is
lower than the threshold, we consider that it is not relevant and therefore we
do not take it into account. In Fig. 5.3(b), all the elements in the set C; are
also a subset of the elements in rule Rj. The difference lies in the fact that
the ratio |Ci|/|Rg| is higher and thus, a relevant value. This means that it
is more likely that the rule Ry is implementing the use case that constraint

C; is specifying and, therefore, we should consider the alignment between

96



5.1 Matching Tables
R G ‘
©
(a) (b) (©) (d)

Fig. 5.3 Situations with differently sized rule/constraint footprints.

them as being relevant for our purposes. In fact, in order for the constraint
to be properly covered, there should exist a rule that covers the constraint
with a large portion. In such a case, the RCR metric would be higher than
the threshold and the CC metric shall be considered. Similarly for metric
RC, let us suppose that rule R; is completely covered by constraint Cj, as in
Fig. 5.3(c). In this case, the RC metric is 1, since all the elements of R; are
included in C;. However, as very few elements of C; are present in R;, the
RCR metric is very small, so the RC metric should not be taken into account.
There should exist, consequently, a constraint that has a larger portion of its
elements in common with R;. Fig. 5.3(d) shows an example where the value
of RCR is above the threshold and, thus, metric RC is considered.

In summary, this threshold is needed to eliminate the consideration of
matches with very low probability, which only cause interferences when looking
for the rules that cause the fault. The need for this threshold is based on
our experiments with the tables. The current value for the threshold is 0.1.
This means that, at least, 10% of the elements that appear in a rule must
be present in a constraint in order to consider the CC metric between both.
Similarly, at least 10% of the elements in a constraint must be covered by a
rule in order to take their RC metric into account. This value has proved to
be the most effective threshold for obtaining the highest recall and precision
in all the case studies we have analyzed. Research is currently in progress to
provide a theoretical justification for such a value. In any case, this value is
currently a configuration parameter in our toolkit to allow easy tuning.

Example. Table 5.2 shows the metrics computed for the Families2Persons
example, presented in Section 2.3. Note that, for a small example like this,

the metrics provide information that can be easily interpreted by just looking

97



D O W N

Chapter 5. Testing Model-to-Model Transformations

CcC RC RCR
R1 R2 R1 | R2 R1 | R2
C1 | 033 0.33 1 025 0.25 || 0.17 | 0.17
C2 | 0.33 0.67 || 0.50 | 1.00 || 0.25 | 0.67
C3 | 0.33 0.67 || 0.50 | 1.00 || 0.25 | 0.67
C4 | 0.67 0.33 || 1.00 | 0.50 || 0.67 | 0.25
C5 | 0.33 0.67 || 0.50 | 1.00 || 0.25 | 0.67
C6 | 0.67 0.33 || 1.00 | 0.50 || 0.67 | 0.25
C7 | 1.00 1.00 || 0.50 | 0.50 || 0.4 | 0.4
C8 | 1.00 1.00 || 0.50 | 0.50 || 0.33 | 0.33

Table 5.2 Families2Persons matching tables.

at the constraints and the rules. The second and third columns express the
constraint coverage, the fourth and fifth ones the rule coverage, and the sixth

and seventh ones the relatedness.

Matching Tables for UML2ER

The Families2Persons case study presented so far is a rather small example,
although sufficient for demonstrating the basic process of computing the
different metrics. Let us analyze here a bigger transformation, namely the
UMLZ2ER project, from the structural modeling domain. It generates Entity
Relationship (ER) Diagrams from UML Class Diagrams.

We have extended the metamodels for the UML2ER case study presented
in [151]. They are illustrated in Fig. 5.4, and the Tracts we have defined for
it are shown in Listing 5.1. Please note the black triangle symbol used in the
Listing for the sake of brevity. It is used for marking the place in a constraint
(triangle down) that may be extended by another constraint (triangle up).

For instance, constraint C2 is extending constraint C1.

Listing 5.1 Tracts for the UML2ER case study.

-- C1: SRC_TRG_Package2ERModel
Package.allInstances—>forAll (p|ERModel.allInstances
—>one(e|p.name=e.name [V]))

-- C2: C1 + Class2EntityType + Nesting
Ci[A] and p.ownedElements—> forAll(class|e.entities

98



5.1 Matching Tables

Element
NamedElement name : String
name : String 4}
z} I ]
[ ' | Feature | ’ ERModel
Property | Package | A featureslo. *
primitiveType: String
isContainment : Boolean Attribute
owned - Stri -
Property 0. owned type : String 0..%) entities

0..*| Elements

Reference EntityType

complexType

1
Cl
super-asses | WeakReference | |StrongReference

Fig. 5.4 The UML and ER metamodels.

7 —>one(entity|entity.name=class.name [V¥]))

8

9 -- C3: C2 + Property2Feature + Nesting

10 C2[A] and class.ownedProperty—>forAll(p|entity.

11 features—>forAll(f|f.name=p.name))

12

13 -- C4: SRC_TRG_NamedElement2Element

14 NamedElement .allInstances—>size—Element.allInstances—>
15 size

16

17 -- C5: SRC_TRG_Package2ERModel

18 Package.alllnstances—>size=ERModel.allInstances—>size
19

20 -- C6: SRC_TRG_Class2EntityType

21 Class.alllnstances—>size=EntityType.alllnstances—>size
22

23 -- C7: SRC_TRG_Property2Feature

24 Property.alllnstances—>size—Feature.alllnstances—>size
25

26 -- C8: C2 + Property2Attribute + Nesting

27
28
29
30
31
32
33
34
35
36

C2[A] and class.ownedProperty—>forAll(p|p.primitiveType
<> null implies entity.features—>select (f|
f.oclIsTypeOf (Attribute))—>one(f|f.name=p.name))

-- C9: C2 + Property2WeakReference + Nesting

C2[A] and class.ownedProperty—>forAll(p|p.complexType

<> null implies entity.features—>select(f|f.oclIsTypeOf (
Reference))—>one(f|f.name=p.name and p.isContainment
implies f.oclIsTypeOf (WeakReference)))

99



37
38
39
40
41

Chapter 5. Testing Model-to-Model Transformations

-- C10: C2 + Property2StrongReference + Nesting

C2[A] and class.ownedProperty—>forAll(p|p.complexType
<> null implies entity.features—>select(f|f.oclIsTypeOf (
Reference))—>one(f|f.name=p.name and not p.isContainment

implies f.oclIsTypeOf (StrongReference)))

The transformation (shown in Listing 5.2) contains eight rules, where three
of them are abstract. There is a large number of inheritance relationships
between the rules: R8, R7 < R6; R6, Rb < R4; R4, R3, R2 < R1.

Listing 5.2 UML2ER ATL Transformation.

© 00 N O O W N

W W W W W AN DNDNDDDDNDDNDDNDDNDDNDNERLRLRRRER R B PR B B B
B W NP, O O 00 N O O b W NP O © 00N O 0 b W N = O

module UML2ER;
create 0UT : ER from IN : SimpleUML;

abstract rule NamedElement{ --R1
from s : SimpleUML!NamedElement

to t : ER!Element (name <— s.name)
}
rule Package extends NamedElement{ --R2
from s: SimpleUML!Package
to t: ER!ERModel (entities<—s.ownedElements)
}
rule Class extends NamedElement{ --R3
from s: SimpleUML!Class
to t: ER!EntityType(features<—s.ownedProperties)
}

abstract rule Property extends NamedElement{ --R4
from s: SimpleUML!Property
to t: ER!Feature ()

rule Attributes extends Property{ --R5
from s: SimpleUML!Property(
not s.primitiveType.oclIsUndefined())
to t: ER!Attribute (type <— s.primitiveType)

}
abstract rule References extends Property{ --R6
from s: SimpleUML!Property(
not s.complexType.oclIsUndefined())
to t: ER!Reference (type <— s.complexType)
}

100



35
36
37
38
39
40
41
42
43

5.1 Matching Tables

rule WeakReferences extends References{ --R7
from s: SimpleUML!Property (not s.isContainment)
to t: ER!WeakReference

}

rule StrongReferences extends References{ --R8
from s: SimpleUML!Property (s.isContainment)
to t: ER!StrongReference }

Tables 5.3 to 5.5 illustrate the corresponding matching tables for the
transformation and the given Tracts (the reader should ignore for the moment
the square brackets enclosing some numbers). Those cells without a number
indicate there is no alignment between the constraint and the rule. The
following subsection explains how the information in these matching tables is

to be interpreted.

Rl R2 R3 R4 R5 R6 R7 RS
Cl | 025 05
C2 | 02 06 04 [0.4]
C3 | 0.25 025 05 038 038 038 0.38
C4 | 10 10 075 05 05 1 05 05
C5 | 05 1.0
C6 | 05 05 1.0 [1.0]
C7 | 05 05 1.0 075 075 075 0.75
C8 | 0.25 017 033 05 [0.25] [0.25] [0.25]
C9 | 0.28 022 022 [0.17] 044 033 [0.22]
C10 | 0.28 022 022 [0.17] 044 [0.35] 0.22

Table 5.3 Matching table using CC metric.

5.1.5 UML2ER Case Study: Pragmatics

Recall that the purpose of the matching tables is to help find the rule(s) that
caused the fault when a constraint is not satisfied. To show how these rules are
located, let us suppose that we have executed the UML2ER transformation
for a certain input model and checked the satisfaction of the constraints,
something that can be done with our TractsTool [25] quite straightforwardly.

Let us assume the outcome given by the tool is that constraint C'7 is not

101



Chapter 5. Testing Model-to-Model Transformations

Rl | R2 | R3 |[R4| R5 | R6 | R7 | RS
Cl | 0.25 | 0.33
Cc2 | 025 05 | 05 [0.33]
Cc3 | 0.25 025| 1.0 | 038 | 025 | 05 | 0.75
C4 | 05 [033]038] 05| 025 | 033 | 033 | 05
C5 | 0.25 | 0.33

C6 | 025|033 ] 05 [0.33]

C7 | 0.25 025 | 1.0 | 038 | 025 | 0.5 | 0.75
C8 | 0.38 025 | 1.0 | 0.75 | [0.25] | [0.5] | [0.75]
Cc9 | 0.63 05 | 1.0 | [0.38] | 0.67 | 1.0 | [1.0]
C10 | 0.63 05 | 1.0 | [0.38] | 0.67 | [1.0] | 1.0

Table 5.4 Matching table using RC metric.

R1 | R2 | R3 | R4 | R5 | R6 | R7 | RS
C1 | 0.13 | 0.25
C2 | 0.11 ] 038 [ 0.29 [0.22]
C3 | 0.13 014 05 | 021 | 017 | 025 | 03
C4 | 05 | 025[025]025] 017 | 025 | 02 | 025
C5 | 0.17 | 0.33

C6 | 0.17 | 033 | 05 [0.33]

C7 | 0.17 02 | 10 | 03 | 021 | 038 | 05
C8 | 0.15 0.11 | 0.33 | 0.43 | [0.14] | [0-19] | [0.21]
C9 | 0.19 0.18 | 022 | [0.13] | 036 | 0.33 | [0.2]
C10 | 0.19 0.18 | 0.22 | [0.13] | 0.36 | [0.5] | 0.22

Table 5.5 Matching table using RCR metric.

satisfied. In Table 5.3 we can see that there is a complete coverage of C7 by
rule R4 (as mentioned in Section 5.1.4, this table is to be consulted by rows).
Consequently, it is very likely that the constraint fails due to this rule, so we
should start by checking R4. Nevertheless, it does not always mean that R4
is the guilty rule. In fact, there are other candidate rules (all of them except
R2, since the value in cell C'7/R2 is 0) that could be the cause of the fault.
Among them, R5, R6, R7 and R8 have the same CC value for constraint C'7.
In order to establish a priority order among these rules, we need to have a
look at the RCR metric in Table 5.5. The higher the number in a cell in
this table, the higher the priority for the rule to be guilty. The same thing

occurs with R1 and R3, so we need to check their RCR metric for constraint

102



5.1 Matching Tables

C7. After checking both tables, the error tracking process for constraint C7
should follow the sequence of rules: R4, R8, R7, R5, R6, R3, R1.

Metric RC can be used to check whether the constraints may offer a full
coverage for the complete transformation or not. RC tables (e.g., Table 5.4)
are to be consulted by columns: if all the values in a column are 0 or close to
0, it is very likely that the rule represented by such a column is not covered
by any constraint. The RC metric is also useful for identifying the constraint
that is more probably aligned with a certain rule. As with the CC metric,
the higher the value in a cell is, the more likely the constraint represented by
such a cell will cover the rule. When there is a draw in this table within a

column, the corresponding cell in the RCR table should then be consulted.

5.1.6 Putting the Approach into Context

Once we have an approach to automatically locate the rules of a model
transformation that may be the cause of a faulty behavior, it is very important
to clarify how and where this approach fits in the overall process of a model
transformation development [64]. As in the construction of any other software
artifact, we should start with its specification. We believe that specifications
should be defined in a modular and iterative manner: it is impossible to build
the specifications of any complex system or artifact, and assume they will
be complete, accurate and correct without testing them too. This is why in
our context we use Tracts, because they allow the software engineer to focus
on particular scenarios of special interest, and then build the specifications

modularly and progressively.

In turn, the implementation of the model transformation can be built at
the same time as the Tracts, or once they have been developed, depending
on whether we want the specifications to guide the implementation or just
to document its expected behavior. Although in theory the former approach
is better, in practice implementations are developed at the same time as
specifications (or even before), by different teams, and with different usages

in mind (mostly analysis in the case of specifications, and execution in the

103



Chapter 5. Testing Model-to-Model Transformations

case of implementations). This is particularly true in the case of specification

methods that use precise and formal notations, and require specialized skills.

Once the specifications and the implementation are in place, the debugging
process starts [67]. In our view, formal specifications and implementation
should be debugged at the same time, assuming that both are complex
artifacts and therefore potential subject to errors. The first step would be to
discard as soon as possible all small mistakes (in one or the other) in a quick
and cost-effective manner, something that can be done with the aid of the
appropriate tools [153], before diving into more expensive and complex tests
(such as model checking, formal validation, dynamic tests, etc.). And this is

precisely where our approach represents a valuable asset.

The first step is to check, using the a-priori applicability test (Section 5.3.4),
if our approach will work with the transformation. In the case it is amenable
to be analyzed with it, it is a matter of building the matching tables with our
toolkit.

The next step is to execute the transformation with the input models
provided by the Tract test suites, using the TractsTool environment. In case
a constraint is not fulfilled, our tool will provide the list of ATL rules that
may have caused the faulty behavior, ordered according to the chances they
have of being blamed. The developer can then look for errors on these rules,
until one that can explain the constraint violation is found. But it may also
be the case that the specifications are wrong, as it is often the case when they
have not been tested before (cf. [143]). In any case, what we have now is a
tool that is able to uncover, in a quick and easy manner, many of the errors
that happen during the early stage of the testing process, and to help locate

the rules that cause the faults.

This process will continue until the transformation works, respecting all
the Tracts defined for it, which means that the implementation works for
(at least) all the constraints and conditions that specify (at this level) its
behavior. Then it will be the moment to start going through a more detailed
and thorough testing phase, that will help uncover more subtle errors in the

transformation—but at a most expensive cost, both time and resource-wise.

104



5.2 Implementation

5.2 Implementation

In order to extract the footprints of constraints and rules, as well as to build
the matching tables, having automation support is essential because this is
a rather complex and error-prone task, especially in the case of large model
transformations. Fig. 5.5 shows a UML activity diagram that depicts each

step of the matching process until the matching tables are obtained.

%

OCL Constraints ATL Rules
(as text) {as text)
Parser 1 Parser 1
| (T2M) | (T211)
AS i N, i
OCL Constraints ATL Rules
(as model) (as model)
[ Constraints | #
T &&=
Extraction \, y
Types of OCL Types of
Constraints ATL Rules
|'F Matching |
Functions

y

Matching Tables

Fig. 5.5 Matching process.

105



Chapter 5. Testing Model-to-Model Transformations

5.2.1 Footprint Extraction from OCL Constraints

The first step is to extract the footprints for each OCL constraint. This is
achieved by using the APT of the USE (UML based Specification Environment)
tool [115].

Firstly, we translate the input and output metamodels to the USE rep-
resentation by means of a model-to-text transformation. As both the Ecore
and the USE meta-metamodels are similar, the translation is quite straight-
forward. The relevant differences between both languages are the requirement
that all relationships must be bidirectional in USE, and its lack of packages.
Furthermore, USE only accepts one metamodel and one model, so we have to
merge the input and output metamodels. This limitation implies the need to
modify the name of each class and association in order to guarantee unique
names. We have done so by adding a prefix to the name of the element: src_
if it belongs to the source metamodel, and trg_ if it belongs to the target
metamodel.

Once both metamodels have been merged into a single file, we add to
it the OCL expressions that compose the constraints and load the file into
USE. For every OCL expression, USE builds a parse tree representing each
subexpression with an explicit node which also provides the return type for
each subexpression. To take advantage of this, we have built a small program
that uses the aforementioned API. This API allows navigation through the
parse tree and extracts the relevant information about the footprints, as

explained in Section 5.1.3.

5.2.2 Footprint Extraction from ATL Rules

The first step in the footprints extraction is to inject the textual ATL trans-
formation into a model-based representation. It is done automatically by
means of a text-to-model transformation. The obtained model conforms to
the ATL metamodel, which is in turn made up of three packages: ATL,
OCL and PrimitiveTypes. Then, an ATL transformation (in fact, a so-called
Higher-Order Transformation) takes the obtained model, as well as the input

and target metamodels of the original transformation, and generates a model

106



5.2 Implementation

with information of the footprints used in each and every rule. We decided to
implement a Higher-Order Transformation [135, 145] for extracting the foot-
prints from the ATL rules, because the cost of building and maintaining two
individual tools (one for ATL and one for OCL) was less than for developing

one common tool.

Focusing on a rule, it is quite straightforward to obtain the footprints of
the elements in the left-hand side (LHS, the input part) of the rules as well
as those created in the righ-hand side (RHS, the output part). To do so, we
need to navigate those objects of type InPattern, OutPattern and Binding of
the ATL package!.

The most challenging part is to extract the types from the OCL expressions.
Contrarily to the OCL constraints in USE, ATL does not offer any support
nor API to do the extraction. Furthermore, there are slight variations between
the versions of OCL used by USE and by ATL concerning predefined types
and operations and due to the fact that in ATL the OCL expressions allow
references to variables which are bound by the rules. Although those variations
do not affect the footprints, they make impossible to apply the same procedure
for extracting the footprints from the OCL expressions in USE and the OCL
expressions present in ATL. OCL expressions in ATL can be present in the
filter part (of the LHS), local variables, the RHS and the imperative part.
These textual expressions are built conforming to the OCL package? of the
ATL metamodel. The extraction of the types in the OCL expressions is a
three-step process. In the first step, we only need information of the ATL
transformation (expressed as a model, as explained before), while in the second
and third steps we need information of the source and target metamodels of the
transformation in order to be able to navigate them. An OCL expression can
be made up of iterators (in a model level, they are objects of type IteratorExp),
such us collect and select. The first step of the footprints extraction consists of

taking every OCL expression and removing the iterators. When doing so, from

LA snapshot of the ATL package is available from http://atenea.lcc.uma.es/
Descargas/ATL.png (the references to the OCL package are not displayed)

2A snapshot of the OCL package is available from http://atenea.lcc.uma.es/
Descargas/OCL.png (the references to the ATL package are not displayed)

107


http://atenea.lcc.uma.es/Descargas/ATL.png
http://atenea.lcc.uma.es/Descargas/ATL.png
http://atenea.lcc.uma.es/Descargas/OCL.png
http://atenea.lcc.uma.es/Descargas/OCL.png

Chapter 5. Testing Model-to-Model Transformations

each OCL expression (that may contain iterators), one or more navigation

paths are obtained.

5.2.3 Matching Function

Once we have the types and features used in the constraints (C) and the rules
(R), we apply the matching functions to obtain the measures explained in
Section 5.1.4. Algorithm 1 shows the function intersectionSubtypes that
computes C; N R; considering subtyping. Given it, Algorithms 2, 3 and 4
present the computation of the values CC; ;, RC;;, RCR;; corresponding
to the three metrics. These functions have been implemented in Java. The
output of the computation for every pair [C;, R;] is represented in a csv
(comma-separated value) format, so that it can be read by spreadsheet-based

applications.

Input: C, R
Output: v
v =0// Find full matches
for c € Cdo
if R.contains(c) then
v=v+1
R.remove (c)
end

I = T <) SNV R VI )

end

// Find sub-/supertype matches

for c € Cdo

9 subSuperType = R.containsAny (subSuperType(c))
10 if subSuperType <> null then

o0

11 v = v + weight (c, subSuperType)
12 R.remove (subSuperType)

13 end

14 end

15 return v

Algorithm 1: Function that computes C; N R;

108



5.3 Evaluation

Input: C, R
Output: vCC

vCC = intersectionSubtypes(C, R) / size(C)
VRCR = intersectionSubtypes(C, R) / union(C, R)
if vCC > threshold and vRCR > threshold then

‘ return vCC
end
else

‘ return 0
end

Algorithm 2: Function that computes the CC metric for C; and R;

®» N O oA W N

Input: C, R
Output: vRC

vRC = intersectionSubtypes(C, R) / size(R)
VRCR = intersectionSubtypes(C, R) / union(C, R)
if vRC > threshold and vRCR > threshold then

‘ return vRC
end
else

‘ return 0
end

Algorithm 3: Function that computes the RC metric for C; and R;

®» N O 0~ W N

5.3 Evaluation

In this section, we discuss the accuracy and limitations of our approach, and
introduce a method for checking if a transformation is amenable to be used
with it, based on the concept of footprint similarity matriz. To evaluate the
accuracy of our approach we performed a case study [90] by following the
guidelines for conducting empirical explanatory case studies by Roneson and
Horst [119]. In particular, we report on applying our approach to detect
the alignments between Tracts and ATL transformations for four different
transformation projects. In addition, we also present the results of a controlled
experiment for locating faults in faulty transformations by applying mutations

to the four different transformation projects.

109



Chapter 5. Testing Model-to-Model Transformations

Input: C, R
Output: vRCR

VRCR = intersectionSubtypes(C, R) / size(union(C, R))
if VRCR > threshold then
‘ return vRCR
end
else
‘ return 0
end

Algorithm 4: Function that computes the RCR metric for C; and R;

N O G W N =

5.3.1 Research Questions

The study was performed to quantitatively assess the completeness, correctness,
and usefulness of our approach when applied to a real-world scenario. More

specifically, we aimed to answer the following research questions (RQs):

1. RQ1—Correctness: Are the detected alignments between constraints and
rules correct in the sense that all reported alignments are representing
real alignments? If our approach reports incorrect alignments, what is

the reason for this?

2. RQ2—Completeness: Are the detected alignments complete in the sense
that all expected alignments are correctly detected? If the set of detected

alignments is incomplete, what is the reason for missed alignments?

3. RQ3—Usefulness: In those cases where more than one alignment is
reported for a constraint or a rule, are the correctly identified alignments
outperforming the falsely identified alignments in terms of the calculated
similarity value? We provide this additional question, because the first
two questions only consider the evaluation of alignments as true/false,

but they do not take the weights of the alignments into account.

5.3.2 Case Study Design

Before we present the results of our case study, let us elaborate on its design.

110



5.3 Evaluation

Requirements

As appropriate inputs we require transformation projects that consist of a
set of constraints and a set of rules. We also need the source and target
metamodels in order to extract the footprints of constraints and rules. Apart
from these artifacts, we further require the alignments between the constraints
and the rules given by transformation engineers; otherwise, we would not
be able to compare the results obtained by our approach with the expected
correct set of alignments. To accomplish an appropriate coverage of different
scenarios, the transformations should comprise different intrinsic properties,

e.g., having different design complexity measures.

Setup

We analyzed the alignments between transformation requirements and imple-
mentations in four different real-world transformation projects.

First, and as already presented in Section 5.1.4, we selected the trans-
formation project dealing with the generation of Entity Relationship (ER)
Diagrams from UML Class Diagram Models (UML2ER for short).

Second, we selected a transformation project that deals with behavioral
models. Models conforming to CPL (Call Processing Language) [92] are
transformed into models conforming to SPL (Session Processing Language) [28].
The CPL2SPL transformation [76] is a relatively complex example available
from the ATL zoo [61].

Third, we considered a model transformation project that does not operate
on modeling languages but rather on markup languages. More specifically, we
considered the BT2DB transformation of BibTeX documents into DocBook
documents, also available from the ATL zoo. BibTeXML is an XML-based
format for the BibTeX bibliographic tool. DocBook, in turn, is an XML-based
format for document composition.

Finally, we experimented with a very large transformation called Ecore2Maude
(or E2M for short) which is used by a tool called e-Motions [116]. It converts

models conforming to the Ecore metamodel into models that conform to the

111



Chapter 5. Testing Model-to-Model Transformations

Metric ‘ UML2ER ‘ CPL2SPL ‘ BT2DB ‘ Ecore2Maude

ATL LoC | 77 | 348 | 286 | 1397
#Elements 86 497 449 2403
#Links 201 1114 1052 5270
#Rules 8 15 9 40
#Helpers 0 6 4 40
#Bindings 5 73 25 329

Table 5.6 Transformation Metrics Overview.

Metric ‘ UML ‘ ER ‘ CPL ‘ SPL ‘ BT ‘ DB ‘ Ecore | Maude

#Class 4 8 31 T 21 8 18 45
#Atts 3 1 42 33 10 1 31 17
#Refs 4 2 16 62 2 5 34 46
#Inhs 3 6 32 76 31 4 16 38

Table 5.7 Metamodel Metrics Overview.

Maude [36] metamodel, in order to apply some formal reasoning on them
afterwards.

Tables 5.6 and 5.7 summarize the main size metrics for the ATL transfor-
mations and the corresponding metamodels.

We developed the Tracts for the given transformations. Constraints were
written by a member of our team who was familiar with OCL but was unaware
of the ATL implementations. They have been written based on the natural
language specification of the transformations. For example, the UML2ER
case study comprises 10 constraints (previously shown in Listing 5.1) of
two different kinds: one for comparing the number of instances of certain
source and target classes, and one for checking equivalent elements based on
containment relationships and value correspondences. There are 16 constraints
in the CPL2SPL case study, checking that the proper object types in SPL
are created from specific object types in CPL. Furthermore, they check that
the number of objects in the target model is correct, and that the URIs are
correctly created. The 16 constraints in the BT2DB case study make sure
that the proper book is created for the different possible entries in BibTeX,

112



5.3 Evaluation

and that all entries are properly transformed. Finally, for the E2M case study,
three kinds of constraints have been developed to check that the number of
elements in the output model is correct, that the Operation entities in the
output model have been created from the appropriate input elements, and
that from each Class entity, the corresponding Sort has been created in the
target model.

The input data including the Tracts constraints, the ATL transformations,
the alignments between them, the results and the accuracy of these four

projects (and several others) are available on our project’s website [23].

Measures

To assess the accuracy of our approach, we compute the precision and recall
measures originally defined in the area of information retrieval [97]. In the
context of our study, precision denotes the fraction of correctly detected
alignments among the set of all detected alignments (i.e., how many detected
alignments are in fact correct). Recall indicates the fraction of correctly
detected alignments among the set of all actually occurring alignments (i.e.,
how many alignments have not been missed). These two measures may also
be thought of as probabilities: the precision denotes the probability that a
detected alignment is correct and the recall is the probability that an actually
occurring alignment is detected. Thus, both values range from 0 to 1.

Precision is used to answer RQ1 and recall to answer RQ2. There is a
natural trade-off between precision and recall. Thus, these two metrics may be
further combined inside the so-called f-measure to avoid having only isolated
views on both aspects [97]. To answer RQ3, we use the utility-average metric,
which serves to reason about the relative difference between false positives
and true positives for one row (in the CC and RCR tables) or for one column
(in the RC and RCR tables).

To check whether or not our approach is accurate for a given model
transformation and a given set of constraints, we have manually obtained
the alignments between rules and constraints, reflected in a table called
expected alignment table. An example is shown in Table 5.8 for the UML2ER

113



Chapter 5. Testing Model-to-Model Transformations

Rl1 | R2 | R3| R4 | R5 | R6 | R7T | RS
Cl | (x)| x
C2 | (x)| x X
C3 X X X | (x) | (x)] (%) ] (x)
Ca | x | ()| ] 00| ()| ()] )] ()
C5 | (x) | x
C6 | (x)| x X
cT | (x) < [ x L) 0] 0] ()
C8 | (x) x | (x)| x
C9 | (x) x| (%) (x) | x
C10 | (x) x | (x) (x) X

Table 5.8 Expected alignments for the UML2ER transformation.

transformation where “x” means that there is a direct relation and “(x)”

means that there is a relation via inheritance. There is a cross mark, X,
in the cells where there is a direct alignment between constraints and rules,
and a cross mark in brackets, (x), when the alignment is due to inheritance
relationships between meta-classes or transformation rules (cf. Section 5.1.4).

The value of empty cells is 0.

For computing precision and recall, we extract the true-positive values
(TPs), false-positive values (FPs) and false-negative values (FNs), with the
help of the expected alignment table. A cell contains a TP when (7) its value
is above the threshold, (i) there is an alignment in the expected alignment
table, and (77) the alignment is also identified in the RCR table for the same
cell (in the case of CC and RC tables, see Section 5.1.4). There is an FP
when our approach identifies that there is an alignment (CC/RC and RCR
cell values above the threshold), but the expected alignment table does not
indicate so. Finally, there is an FIN between a constraint and a rule when our
approach identifies that there is no alignment between them and there is a

mark in the equivalent cell in the expected alignment table.

From the TP, FP and FN values we compute the precision, recall and

f-measure metrics as follows:

. TP (5.4)
TecCtSion == ———— .
p TP+ FP

114



5.3 Evaluation

TP
recall = m (55)

precision X recall

f-measure = 2 x (5.6)

preciston + recall

The utility-average metric permits reasoning about the relative value
difference between FPs and TPs. For example, if there are five alignments in
a row in the CC table and four of them are falsely created (which means that
there is only one TP and four FPs), but the TP has the highest value, then
the four FPs are disregarded because the TP is the first one checked. We have
calculated this metric by rows for the CC metric and by columns for the RC
metric. The result is the mean of the values obtained in each row/column. As
for the RCR metric, since it can be consulted by columns or by rows, we have
considered both situations. The utility-average metric, UAM, is computed as

follows.

UAM = = (5.7)

n

where u; = 1 if there are neither FNs nor FPs in the row/column, or there

are no FNs and the value of all FPs is less than the value of the TPs;
|F|

 [FI+[TP]

or equal to at least one of the TPs in the row/column (in the formula, TP is

the set of all true positives in the row/column, and F = {x € FP | 3y € TP

u; =1 if there are no FNs but there are FPs which are bigger than

with  >= y}); finally, u; = 0 if there are FNs in the row/column.

5.3.3 Results

We now present the results of applying our approach to the four different
model transformation projects. A summary of these results is shown in
Table 5.9. Detailed results can be found on our project’s website. In the
matching tables (e.g., Tables 5.3 to 5.5), TPs are shown in normal font, FPs
within square brackets, and FNs within curly brackets. These values are
obtained by comparing the expected alignment tables for the four projects,

with the matching tables obtained by our approach.

115



Chapter 5. Testing Model-to-Model Transformations

‘ Metric ‘ UML2ER ‘ CPL2SPL ‘ BT2DB ‘ Ecore2Maude

TPs 46 37 29 11

FPs 9 9 85 3

TNs - 1 3 -
Precision 0.84 0.80 0.25 0.79
Recall 1.00 0.97 0.91 1.00
F-measure 0.91 0.88 0.40 0.88
Utility average 0.80 0.81 0.60 0.94

Table 5.9 Accuracy of case studies.

As shown in Table 5.9, the values obtained for the precision, recall and
f-measure metrics are acceptable in three of the projects: UML2ER, CPL2SPL
and Fcore2Maude. With these accuracy results, we can conclude that our
approach works well with these projects, since the alignments found statically
are quite reliable. Recall is acceptable in all projects, because the number of
FNs is low. However, the number of FPs is very high in the BT2DB project,
resulting in poor precision (0.25). The reasons for this low performance are

discussed in next section.

5.3.4 A-priori Applicability Test

After carefully studying the model transformation that scored a low precision
of our approach, we discovered that the footprints of its rules were very
similar, i.e., they shared many types and features. This led us to introduce a
new measure, based on the concept of footprint similarity matriz for model
transformation rules. A similarity matrix gives us an indication of how rules
are related with each other, i.e., the factor of common types/features they

share.

Similarity Matrixes

Similarity matrixes have rules in both columns and rows and are consequently
symmetric. Thus, we are only interested in half the matrix (excluding the

main diagonal, of course). To calculate the fitness for the transformation, we

116



5.3 Evaluation

R8 | R7T | R6 | R5 | R4 | R3 | R2 | R1
R1 0 0 0 0

R2 0 0 0.2 0 0 | 0.25 1
R3 0 0 025] 0 0.2 1

R4 033025014 | 0.2 1
R5 | 0.2 | 0.17 | 0.11 1
R6 | 0.14 | 0.13 1
R7 | 0.25 1
RS 1

Table 5.10 Similarity Matrix for the Rules in UML2ER.

extract the average and standard deviation of half the table. The lower both
values are, the fewer footprints rules have in common, and thus, the higher
the chance for a successful application of our approach is. We recommend to
apply our approach on model transformations where the mean and standard
deviation of the similarity matrix for rules are below 0.15. Otherwise, the
accuracy of the results is not good enough (precision would be normally below
0.7).

Table 5.10 presents the similarity matrix for the UML2ER case study. Both
metrics, the mean and standard deviation, have a value of 0.1 which means
that rules are separated enough, and thus our approach works well because
there is no confusion possible when establishing the alignments between the

constraints and the rules.

If we compute the similarity matrixes for our other case studies we obtain
that, for instance, for the CPL2SPL case study, the mean of the similarity
matrix is 0.08, and the standard deviation is 0.1. In this case, the precision of
the results is 0.8. However, the BT2DB transformation shows quite different
values. The mean is 0.41 and the standard deviation is 0.24. Consequently, it
is difficult to distinguish among them when looking for the “guilty rule”, and
this results in the occurrence of many false positives in the matching tables.
If we look at the ATL transformation, we find the explanation for such a high
value. Since the target metamodel is rather small, many rules create objects

of the same target types. For example, 8 rules out of 9 create Paragraph

117



Chapter 5. Testing Model-to-Model Transformations

elements, and 33% of the rules contain a TitleEntry element in their input
part.

We have automated the process for obtaining the footprints of any ATL
transformation, as well as the computation of the similarity matrixes. With
this, we have obtained the similarity matrixes for the transformations in
the ATL zoo, in order to investigate the applicability of our approach. A
summary of these results is available in Table 5.11 where every row represents
a case study. Apart from the mean and deviation, for each case study, we
show whether our approach is advisable to be applied (v') or not (x). All
similarity matrixes obtained, as well as the software that computes them, are
available in Appendix A and on our project’s website. Out of the 41 model
transformations studied, the mean and standard deviation turned out to be
below 0.15 in 21 of them, which means that our approach is perfectly fit for
use with around half of the transformations. The threshold that we used
for the mean and the standard deviation of the similarity matrix, 0.15, is to
ensure that precision is above 0.8.

It is important to note that this fitness test ensures good results (since
the transformation rules are separated enough to be distinguishable by our
proposed approach), but it may be that the fitness test scores low and still our
approach works well because of the way in which the constraints are written.
In any case, there is no guarantee that our approach is fit for use when the
applicability test provides results below 0.15.

We also discovered that the number of rules in the transformations has
no impact in the applicability of our approach. In fact, the number of rules
used in the set of transformations studied ranged from 3 up to 40. As an
example, the similarity matrix of a small transformation (PetriNet2PathEzp, 3
rules) gave bad results, while the one obtained from the largest transformation
(Ecore2Maude, 40 rules) gave good results. Contrarily, we obtained adverse
results for another large transformation (R2ML2XML, 55 rules), while we
got good results for small transformations (such as PetriNet2Grafcet, 5 rules).
We have applied the Pearson correlation coefficient, a measure of the linear
correlation between two variables, on the results, when the first variable is the

number of rules in the transformations and the second is the mean obtained

118



5.3 Evaluation

Transformation No. of Rules | Mean | Deviation | Advisable
ATL2Problem 18 0.35 0.13 X
ATOM2RSS 3 0.05 0.05 v
ATOM2XML 8 0.33 0.08 X
BibTeX2DocBook 9 0.41 0.24 X
CPL2SPL 16 0.07 0.13 v
Ecore2USE 14 0.1 0.17 v
Grafcet2PetriNet 5 0.14 0.07 v
HTML2XML 30 0.21 0.11 X
IEEE14712MoDAF 13 0.03 0.05 v
KM320WL 16 0.13 0.14 v
KM32Problem 16 0.44 0.15 X
Measure2Table 6 0.31 0.37 X
Measure2XHTML 22 0.07 0.11 v
MySQL2KM3 11 0.2 0.29 x
OCL2R2ML 37 0.09 0.12 v
OWL2XML 24 0.51 0.16 X
PathExp2PetriNet 3 0.15 0.04 v
PathExp2TextualPath 5 0.37 0.44 X
PetriNet2Grafcet 5 0.14 0.07 v
PetriNet2PathExp 3 0.28 0.11 X
PetriNet2PNML 4 0.17 0.05 X
PetriNet2XML 5 0.54 0.11 X
PNML2PetriNet 5 0.28 0.12 X
PNML2XML 4 0.72 0.17 X
R2ML2RDM 69 0.11 0.14 v
R2ML2XML 55 0.26 0.13 X
R2ML2WSDL 14 0.07 0.14 v
RDM2R2ML 56 0.1 0.13 v
RDM2XML 39 0.32 0.14 X
RSS2ATOM 3 0.05 0.05 v
RSS2XML 4 0.37 0.15 X
UML2ER 8 0.09 0.11 v
WSDL2R2ML 17 0.06 0.11 v
WSDL2XML 20 0.36 0.15 X
XML2ATOM 10 0.15 0.06 v
XML2MySQL 6 0.12 0.1 v
XML2PetriNet 5 0.29 0.06 X
XML2PNML 5 0.25 0.19 X
XML2RSS 9 0.14 0.07 v
XML2WSDL 19 0.14 0.08 v
XSLT2XQuery 7 0.07 0.14 v

Table 5.11 Summary of Similarity Matrixes.

from the similarity matrixes. The obtained value was —0.13, meaning that

this dependence is minimal.

119



Chapter 5. Testing Model-to-Model Transformations

‘ Concept ‘ Mutation Operators H Concept ‘ Mutation Operators

Addition Addition
Nl[;ffehed Deletion Filter Deletion
Name Change Condition Change
In/Out Addition Addition
Pat- Deletion Binding Deletion
tern Type Change Feature Change
Element Name Change Value Change

Table 5.12 Possible Mutations for ATL Transformations (from [13]).

5.3.5 Experimenting with Faulty Transformations

So far, we have illustrated our approach with correct model transformations.
However, given that it has been devised to detect errors in faulty transfor-
mations, it is essential to test its effectiveness when the transformations are
indeed faulty.

Setup. For this reason we have used mutation analysis [74] to system-
atically inject faults into model transformations [101], and then used our
approach to locate the bugs. The purpose of a mutated transformation is to
emulate a transformation that contains bugs, and then see if our approach
detects them.

To define the possible mutations of ATL transformations, we use the list
of transformation change types presented in [13], which are summarized in
Table 5.12. For more information on the precise mutations and the results
obtained for the case studies presented in this paper we kindly refer to [140].

Example. As an example, we have applied the following mutations for
the CPL2SPL transformation mentioned above:

1. Addition of an OQutPatternElement in R1, which results in the creation

of unexpected additional elements in the target model.

2. Modification of the feature of a binding in R3, resulting in incorrectly

initialized features in the target model.

120



5.3 Evaluation

‘ Mutation ‘ Constraints Violated ‘ Guilty Rule Located? ‘ Number of Steps ‘
C1 v 1
C2 v 1
CPL2SPL_ 1 C3 X _
C11 v 1
| CPL2SPL_2 | C4 v 1
C5 v 1
CPL2SPL_ 3 C6 v 1
C14 v 1
| CPL2SPL_4 | C12 | v | 1 |
| CPL2SPL_5 | C15 | v | 2 |
C5 v 3
CPL2SPL_ 6 13 v 3
| CPL2SPL_7 | C10 | v | 1 |

Table 5.13 Summary of mutations and fault localization results (CPL2SPL

project).

. Modification of the condition of the filter in R5, changing the amount

of produced target model elements.

. Modification of a binding and addition of OutPatternElement in R6,

thus producing more target model elements.

. Deletion of a binding and an OutPatternElement, along with its binding,

in R8; emulating the circumstance in which a transformation produces

not enough target elements.

. Addition of a filter in R9, making the application of the rule more

restricted, thus creating less elements in the target model.

. Feature modification in a binding and deletion of a binding in R11,

resulting in wrongly assigned values and missing values in the target

model.

Measures For each mutation, we collect: (7) the constraints violated

when the mutation is applied; (i) if the user was able to find the guilty rule

using our approach; and (%) the number of steps needed for finding the guilty

121



Chapter 5. Testing Model-to-Model Transformations

rule. By number of steps we mean the number of rules that the user needs to

check in order to find the one that was mutated (including that one).

Results. The results in Table 5.13 show that all mutations were detected
by our approach for the given example. Each mutation caused one or more
constraints to fail, and the guilty rule was correctly identified for all constraints
but one (C3). This happened because of false negatives, given that the relation
between rule CPL2SPL_ 1 and constraint C'3 was quite loose. However, the
mutation caused several constraints to fail and our approach was able to
identify the mutated rule in the rest of the cases, so the guilty rule was

eventually identified.

The overall results obtained for all four projects, described in our technical
report [140], show similar effectiveness. We injected a total of 21 mutations,
causing 48 constraints to fail. All mutants were killed, i.e., all guilty rules
were correctly identified by our approach. Only for three constraints that
failed we could not identify the rule causing it but, in all cases, these rules
caused the violation of several constraints, and the guilty rule was already
identified as the one responsible for the violation of a different constraint that
failed with the same mutation, such is the case with C3 in CPL2SPL_ 1, so
the guilty rule was eventually identified. Regarding how many rules need to
be checked before identifying the guilty one, our proposed approach needed

an average of 1.78 rules to be checked.

5.3.6 Threats to Validity

In this subsection, we elaborate on several factors that may jeopardize the

validity of our results.

Internal validity—Are there factors which might affect the results of this
case study? The quality of the data appearing in the matching tables, as well
as the usefulness and accuracy of these, are crucial for the internal validity
due to three main factors. First, the Tracts need to be manually defined. If
they do not contain valuable restrictions, then the matching tables are not

useful. Defining constraints is not a trivial task, and the person responsible

122



5.3 Evaluation

for doing so needs to have knowledge of OCL, of the transformation to check,
and of what should be checked.

Second, the way in which footprints are extracted is crucial for building
the tables. As explained in Section 5.1.3, there may be very long navigation
paths expressed in OCL both in the Tracts and in the rules. From them, we
extract the types and features discarding some elements because they are not
considered as relevant by giving a higher priority to the results than to the

paths used in the computations.

Third, in order to study the accuracy of our tables, we have manually
defined the expected alignment tables. Should we have failed to properly
identify these alignments, the value of precision and recall would have been
incorrectly calculated. In any case, they were written by a member of the
team and double-checked by another, in order to minimize this risk. We have
also made some assumptions in the implementation of our approach. For
instance, we have chosen 0.1 as the threshold value for considering alignments
relevant, as mentioned in Section 5.1.4. We also decided not to take constants
and primitive types into account (Section 5.1.3). Although our experiences
have shown that these decisions seem to be correct, they need to be further

validated with more experiments and case studies.

Fourth, different styles of Tracts definition may have an effect on the
outcomes. As mentioned in Section 5.3.2, the Tracts constraints were written
by a member of our team. Of course, should they had been written by
other people, or by the developers of the transformations themselves, the
results presented here may have been slightly different. Here we assumed the
underlying hypothesis that the constraints and rules are more heterogenous
if they are developed by different persons, thus resulting in a more difficult

matching problem.

Finally, concerning the experiment with faulty transformations, we relied
on the state-of-the-art of mutation operators for model transformations, but
further operators may be required in the future to deal with more fine-grained
OCL expression mutations. Thus, these additional operators may have an

impact on the results gained in our experiments.

123



Chapter 5. Testing Model-to-Model Transformations

External validity—To what extent is it possible to generalize the findings?
As a proof of concept of our approach, we have extracted the matching tables
for model transformations written in the ATL language. The metamodel of
ATL comprises, amongst others, a package for OCL. Currently, the footprint
extraction operates on this representation, and thus, it works only for ATL
transformations. Nevertheless, it would be possible to reuse parts of the ATL
footprint extraction for other rule-based transformation languages that also
integrate OCL as a sublanguage. Another threat to external validity would be
considering further features of model transformations, such as reflection [85].
Finally, our studies are focussing for out-place transformation scenarios, and
thus, additional studies are needed for in-place transformation scenarios. As
part of our future work we plan to investigate these issues, and also try to
define a minimal set of requirements on the kinds of specification notations
and implementation languages which are amenable to be directly addressed

by our approach.

5.4 Related Work

The need for systematic verification of model transformations has been doc-
umented by the research community by several publications outlining the
challenges to be tackled [7, 8, 47, 132]. As a response, a plethora of approaches
ranging from lightweight certification to full verification have been proposed

to reason about different kinds of properties of M2M transformations [1, 143].

With respect to the contribution of this chapter, three threads of related
work are discussed: (i) general traceability approaches in software engineering
as well as specific approaches for tracking “guilty” transformation rules, i.e.,
those whose behavior violates the transformation specifications, (i) approaches
for generating test cases for model transformations, and (iii) approaches that

build on model footprints as does our approach.

124



5.4 Related Work

5.4.1 Tracing Faults in Model Transformations

IEEE [71] defines traceability as the degree to which a relationship between two
or more artifacts can be established. Most tracing approaches are dedicated
to establishing traceability links between artifacts that are in a predeces-
sor/successor relationship with respect to their creation time in the software
development process, e.g., between requirements, features, design, architecture,
and code. Our approach for automatically finding the alignments between
constraints and transformation rules is in the spirit of traceability rules as
presented in [112, 111]. A survey dedicated to traceability in the field of
MDE is presented in [49], where the possibilities of using trace links estab-
lished by model transformations are discussed. However, this survey does
not report on tracing approaches between transformation specifications and

implementations.

Tracking guilty transformation rules using a dynamic approach, i.e., by
executing the model transformation under testing, has been subject to in-
vestigations. Hibberd et al. [67] present forensic debugging techniques for
model transformations based on the trace information of model transformation
executions for determining the relationship between source elements, target
elements, and the transformation logic involved. With the help of such trace
information, it is possible to answer debugging questions implemented as
queries. In [150], we used OCL-based queries for the backwards debugging of
model transformations using an explicit runtime model based on the trace
model between the source and target models. Aranega et al. [3] present an
approach for locating transformations errors by also exploiting the traces
between the source and target models. The dynamic approach is also used
in [142] to build slices of model transformations and in [60] following a white-
box testing approach. A complementary approach to model transformation
testing has been proposed by Kessentini et al. [78], using a generic oracle
function. The idea of this approach is that the traces between the source and
target models of a transformation should be similar to existing example traces.
Specifically, the oracle function checks how large a derivation there is of the

generated traces of a model transformation from existing traces in the example

125



Chapter 5. Testing Model-to-Model Transformations

base. While all these approaches track transformation rules using specific
test input models, our aim is to statically build more general traceability
models between transformations’ specifications and their implementations for
enabling static analysis (the pros and cons of dynamic vs. static approaches

have already been discussed in Section 5.1.1).

In addition to Tracts, other approaches have been proposed that build
on the notion of transformation contracts to specify transformation speci-
fications [143]. While other OCL-based specification approaches, e.g., [32],
are obviously supported by the approach presented in this paper, for non
OCL-based approaches, e.g., [65], additional transformations for comput-
ing the metamodel footprints may be developed or these specifications may
be internally translated to OCL to reuse the existing footprint computa-
tion. Analogously, if other transformation implementation languages such as
RubyTL [122], ETL [82], or QVT [OMG] need to be supported, additional
higher-order transformations like those for ATL need to be developed.

There are some other transformation testing approaches that directly an-
notate assertions inside transformation implementations [53, 34]. Thus, these
approaches have no need to compute the alignments between the specification
and the implementation, as they are already provided by the transformation
engineer. However, the specification and implementation of the transformation
is intermingled, and thus, specifications are specific to a certain transformation

implementation.

There are several approaches that define contracts for model transforma-
tions by defining a set of input/output model pairs and employing model
comparison techniques to look for differences between the expected output
models (provided by the engineer) and the actual outputs of the transforma-
tion [94, 50]. In this context, basic support for a failure trace is provided,
since the different elements (added, updated, and deleted elements) between
an actual target model and an expected target model may be calculated,
but the tracing to the corresponding source model elements as well as to the

transformation rules is left open.

126



5.4 Related Work

5.4.2 Test Generation for Model Transformations

For tracking guilty rules, the availability of appropriate test input models
is assumed in our approach. In [57] we proposed a technique for test case
generation. Nevertheless, we give an overview of the research efforts that have
been investigated in this area so far. They include black-box, gray-box and
white-box approaches.

Kister et al. [88], Gonzalez and Cabot [60], and Sanchez Cuadrado et
al. [123] focus on white-box methods. In the former, the existence of a
high-level design of model transformations, consisting of conceptual trans-
formation rules, is assumed. In [60], a white-box based testing approach for
ATL transformations is provided by extracting OCL constraints and using a
model finder to compute test input models fulfilling certain path conditions.
Finally, Sdnchez Cuadrado et al. discuss the generation of test input models
for confirming and explaining errors reported by a static checker for ATL
transformations.

Many approaches have been proposed for black-box testing, whereby test
source models are generated either on the basis of the source metamodel
(e.g. [18, 44, 128]) or on the basis of specified requirements [53, 62]. For
the actual test source model generation, most of these approaches rely on
constraint satisfaction, e.g., by means of SAT solvers. Furthermore, an
approach has been proposed, which allows automatically completing test
input models, i.e., the transformation engineer has to specify an intention by
defining a model fragment only, and an algorithm complements this fragment

for a valid test input model [129].

5.4.3 Model Transformation Footprinting

Recently, some approaches for computing and utilizing model footprints have
been presented. In [73], the footprints of model operations are statically
computed by introducing the idea of metamodel footprints. We pursue this
idea of computing metamodel footprints from transformation specifications
and implementations for establishing traceability links instead of reasoning

solely on model footprints. Mottu et al. [103] compute the input metamodel

127



Chapter 5. Testing Model-to-Model Transformations

footprints for ATL transformations in order to slice the input metamodels as
a prerequisite step for computing test input models for the transformations
being studied with Alloy. Compared to our work, the work of Mottu et al. is
orthogonal in the sense that their approach could complement ours. While
we focus on fault localization, Mottu et al. are concerned with test model

generation.

5.5 Summary

In this chapter we have presented a static approach to trace errors in model
transformations. Taking as input elements an ATL model transformation and
a set of constraints that specify its expected behavior, our approach automat-
ically extracts the footprints of both artifacts and compares transformation
rules and constraints one by one, obtaining the overlap of common footprints.
Subsequently, it returns three matching tables where the alignments between
rules and constraints are recorded. By using these tables, the transformation
engineer is able to trace the rules that can be the cause of broken constraints
due to faulty behavior.

Our evaluation shows that the presented approach is expected to be
accurate for a large set of model transformations. By using the similarity
matrixes, an automated and instant fitness test is available to check a-priori
whether the approach will be helpful for a given transformation. Several

executables of our approach are available on our website [23].

128



Extending Tracts for
Model-to-Text and
Text-to-Model
Transformations

Much effort has been put into the establishment of model-to-model (M2M)
transformation testing techniques in the past years [1, 143]. As we have
mentioned in the previous chapter, several approaches have been developed
for defining contracts for M2M transformations that act as specifications for
model transformation implementations [32, 56|, as oracle functions to validate
the output of transformations [56, 63|, and as drivers for generating test cases
[63]. In particular, constraints for input models, output models and for the
relationship between both may be specified.

Besides M2M transformations, model-to-text (M2T) and text-to-model
(T2M) transformations are of major importance in Model-Driven Engineering
[39]. M2T transformations are typically used to bridge the gap between
modeling languages and programming languages by defining code generators
but may be employed in a generic manner to produce text from models such
as documentation or textual representations of a model’s content. T2M trans-
formations are typically used for reverse engineering [20], e.g., transforming

legacy applications to models in the case of model-driven software moderniza-

129



Chapter 6. Extending Tracts for M2T and T2M Transformations

tion. However, these kinds of transformations have not gained much attention
when it comes to testing.

In this chapter we adopt current techniques for testing M2M transfor-
mations to the problem of testing T2M and M2T transformations. The
prerequisite of using existing M2M transformation techniques is to have meta-
models for the input and output of the transformations. However, for the
side that is dealing with “just” text, no metamodels are usually available.
Even more problematic, when considering T2M and M2T transformations, a
set of metamodels and T2M parsers may be required as a prerequisite. For
instance, consider Web applications where in addition to a general purpose
programming language several other languages may be employed where some
of the languages are even embeddable in other languages. Thus, developing
metamodels and T2M parser support for such complex settings may introduce
a huge overhead.

To alleviate the burden from T2M and M2T transformation developers,
we introduce a generic approach that may be used for any transformation
task where text is involved as input or output of the transformations. The
main mechanism we employ is to represent text within a generic metamodel
in order to transform M2T and T2M transformation specification problems
into equivalent M2M transformation specification problems. The proposal is
combinable with any contract-based M2M transformation approach, but in
this chapter we demonstrate its application with Tracts [56].

The structure of this chapter is as follows. Section 6.1 shows how to
represent text-based artifacts as models to allow for reusing the M2M trans-
formation testing approaches, demonstrates how Tracts are defined for M2T
and T2M transformations and gives details about the implementation of the
approach. Section 6.2 presents an evaluation of the approach, in particular to
explore its capabilities to find shortcomings in code generations delivered by
current UML tools. In Section 6.3 we present related work and Section 6.4

summarizes this chapter.

130



6.1 Generic Metamodel for Representing Text Repositories

6.1 Generic Metamodel for Representing Text Repos-

itories

In order to reuse M2M transformation specification and testing approaches,
we have to transform the M2T or T2M transformation specification problem
into a M2M transformation specification problem. For this, the text artifacts
residing in the input or output domain of the transformations under study

have to be injected to the model engineering technical space [86].

For realizing this goal, there are several options. We may either decide to
opt for a specific format conforming to a specific grammar or to use a generic
format that is able to represent any text-based artifact. In case there is already
a metamodel available for the specific grammar, then this metamodel may be
a good choice anyway. However, for most transformation scenarios involving
text at one side there are no metamodels available, because metamodels are
often not required at all. Just consider the case of generating documentation
from models. Although there is no generalized and fixed structure, it may be
necessary to check certain requirements of the transformation. This is why
we have decided to use the second option, which allows us to save upfront
the effort required when developing M2T or T2M transformations in general.
Furthermore, using a generic metamodel to represent the text artifacts also
reflects best practices in the development of M2T transformations, where no
metamodel is used for the text artifacts. For example, consider template-based
M2T transformation languages [106]. Usually, template-based approaches are
used to generate that text. Finally, even if there is a T2M parser, this is again
a transformation that may have to be specified and tested. Thus, our generic

approach may be used to test the specific approach.

Apart from this, there is a second aspect that needs to be considered
when dealing with text-based artifacts. The artifacts are normally organized
in a hierarchical folder structure, which should be taken into account. For
instance, the output of a M2T transformation may not be just a single file

but several, which should be also arranged in a certain folder structure. Thus,

131



Chapter 6. Extending Tracts for M2T and T2M Transformations

H Repository root B Entity
ng T /absoluteName : EString
1 T name : EString content
0.*
0..1 Acontainer
B Line  [0.F B File B Folder
T text: EString [ T extension : EString
Ineés T /content : EString
T
1
= Derived attribute content
self.lines -> iterate(line, String ¢ = " | c.concat(line.text))

Fig. 6.1 Metamodel for representing text artifacts and repositories.

our approach has to cover concepts for describing the structure of a repository

that contains the input or output artifacts of a transformation.

Fig. 6.1 shows the metamodel for representing text artifacts stored in
repositories using certain folder structures. Meta-class Repository represents
the entry point to the root folder containing folders and files or to a file if only
one single artifact is used. While folders just contain a name, files have in
addition an extension as well as a content. The content of files is represented
by lines that are sequentially ordered. A derived attribute content is used to

allow easy access to the complete content of a file.

Figures 6.2 and 6.3 present an instance of the text metamodel coming from
a Java code repository. On the left hand side of the figures, the repository’s
folder structure as well as the content of a Java file are shown, while on the
right hand side an excerpt of the corresponding text model (shown in the
EMF tree browser) is illustrated.

6.1.1 M2T Example: UML to Java

Once we presented the approach and the metamodel to represent text ar-
tifacts in the previous section, we introduce some particular examples for

demonstrating how to use Tracts for T2M and M2T transformation testing.

132



6.1 Generic Metamodel for Representing Text Repositories

a L platform:/resource/testl/src/textAsModel_hotelami

= Hotel
o ____?E . 4 4 Project
4 [= managemen
i 4 4 Folder Hotel
I = orders

4 < Folder management
4 Folder orders
4 4 Folder payment

4 [= payment
[d] Cash.java
[@] Check.java

=y i 1> 4 File Cash

] Credit.java :

. ; 4 File Check
P t.

b} Poyment jova . 4 File Credit

- = |
R 4 File Payment

» 4 Folder people

Fig. 6.2 Exemplary folder structure and corresponding text model.

package management.payment; 4 < File Credit
4 Line package management.payment;
public class Credit extends Payment{ & Line

private int number;
private String type;
private String expDate;

4 Line public class Credit extends Payment{
< Line private int number;
< Line private String type
public boolean authorized(){ 4 Line private String expDate;
return false; & Line

¥ 4+ Line public boolean authorized(){

et

< Line return false;
< Line}
4 Line}
4 Line

Fig. 6.3 Exemplary file content and corresponding text model.

For illustration purposes, let us apply our approach to a given case: the
transformation that converts UML class models into the corresponding Java
classes—which are text files that should be stored in folders inside a code
repository. Figure 6.4 shows the subset of the UML metamodel that we
will consider in this scenario. It is assumed that all meta-classes directly
or indirectly inherit from NamedElement. The target metamodel is the one
that we described above for specifying text artifacts, and that was shown in
Fig. 6.1.

The specification of such a transformation is composed of a set of tracts,
each one focusing on a particular property that we want to ensure. As

illustrative examples we have chosen 10 tracts, which are described below.

133



Chapter 6. Extending Tracts for M2T and T2M Transformations

subPackages
0.
H Model E package _
- L H Assodiation
0.4 - associations fesc
packages ¢ o

H Redefinabletlement| | H MultiplicityElement
S isLeaf : EBoolean || = upperBound : Elnt H VisbileElement E DerivedElement

= |owerBound : Elnt | 2 visibility : VisibilityKind || = isDerived : EBoolean

0.* | classes 4 A ?1 5

H class
subClasses [ isAbstract : EBoolean i}

b ]
E target H attribute
superclasses 1 = type : EString
H TemplateClass 0.:*
attributes H Role 1."roles
0.~ |paramters
H TemplateParameter] 3 “eumesiB
operations | _H Operation parameters B Parametgr £ visibilityKind
p— = type ¢ :
P = type : EString o type L ESUING | " private
= protected
= package
= public

Fig. 6.4 A simplified metamodel for UML class diagrams.

Listing 6.1 Constraint C1

-- Cl1: Nested packages are transformed into nested folders
Package.allIlnstances () —> forAll(p| Folder.alllnstances()—>
exists(f| f.name = p.name and p.subPackages—>
forAll (subp | f.folders()—>exists(subf | subf.name = subp.name))))

S W N -

Notice that in some of them we have used auxiliary operations such as
toFirstUpper and toString to clarify the code. We have also introduced
the operation matchesRE to deal with regular expressions in OCL. How these
auxiliary operations are defined as a user-defined library in OCL is explained

in Subsection 6.1.3.

The first tract states in its constraint, which is specified in Listing 6.1,
that nested UML packages should be transformed into nested folders. This is

specified by the following constraint:

134



OO WN

N

1
2

6.1 Generic Metamodel for Representing Text Repositories

Listing 6.2 Constraint C2

-- C2: Package imports when associations are crossing package borders
Association.alllnstances —> select(a |
a.roles—>at(l).target.package <> a.roles—>at(2).target.package )
—> forAll(a| File.alllnstances—>exists(f |

f.name = a.roles—>at(1l).target.name and f.extension = ’java’ and
f.content ().matchesRE(’import.*’+ a.roles—>at(2).target.name))))

Listing 6.3 Constraint C3

-- C3: No leaf class as superclass
Class.allInstances () —> forAll(c| c.isLeaf implies
c.subClasses—>isEmpty ())

The second tract states in Listing 6.2 that Java packages should be
imported when associations occur between elements contained in different
UML packages.

We should also ask in Listing 6.3 for a precondition in order not to allow
that any class inherits from a leaf class.

Another precondition should check that there is no multiple inheritance
in use in the UML model (multiple inheritance is not allowed in Java). It is
specified in Listing 6.4.

We also include in Listing 6.5 some tracts to specify how particular
elements in the UML model should be transformed. For example, derived
attributes can not be modified in Java, and therefore only getter methods are
generated for them.

Similarly to the tract above, the tract in Listing 6.6 specifies how the
visibility of attributes should be handled by the transformation.

And the same for association ends in Listing 6.3.

Finally, three further constraints specify in Listing 6.8 that there are no

Java keywords in the UML models, that the names of the elements and folders

Listing 6.4 Constraint C4

-- C4: Only one superclass allowed in Java
Class.allInstances ()—>forAll(c | c.superClasses—>size()<=1)

135



W N O WN - o O WN -

g wWwN -

Chapter 6. Extending Tracts for M2T and T2M Transformations

Listing 6.5 Constraint C5

-- C5: Derived attributes only have a getter method
Class.alllnstances—>forAll(c| File.alllnstances
—>exists(f | f.name = c.name and f.extension = ’java’ and
c.attributes—>select(a | a.isDerived)—>forAll(a |
not f.content().matchesRE(a.type+’.*?’+a.name+’.*?7;’) and
f.content () .matchesRE(a.typet+’\\s+get’+ toFirstUpper(a.name)))))

Listing 6.6 Constraint C6

-- C6: Visibility of attributes is considered
Package.alllnstances—>forAll( p|
p.classes—>forAll(c | File.allInstances—>exists(f |
f.name = c.name and f.extension = ’java’ and
f.container .name = p.name and
c.attributes—>select(a | not a.isDerived)—>forAll(a |
f.content () .matchesRE(toString(a.visibility)
+7.%?’+a.typet’ .*?’+a.namet’.*7;°)))))

Listing 6.7 Constraint C7

-- C7: Visibility of roles is considered
Association.allInstances—>forAll(a | File.alllnstances—>exists(f |
f.name = a.roles—>at(1l).target.name and f.extension = ’java’ and
f.content () .matchesRE(toString(a.roles—>at(2).visibility)+’.*?°+
a.roles—>at (2).target.name+’ .*7’+a.roles—>at (2) .name+’.x?77))))

136



00 N O WN -

=R e e
W NN = O

N o o W N

6.1 Generic Metamodel for Representing Text Repositories

Listing 6.8 Constraints C8, C9 and C10

-- C8: No keywords as name in UML model

NamedElement .allInstances ()—>forAll(ne | not Set{’abstract’,
’extends’,’implements’,’class’,’public’,’private’,’protected’ ,...}
.includes (ne.name))

-- C9: Well-formed names
NamedElement .allInstances ()—>forAll (ne |
ne.name.matchesRE(’[a-zA-Z_][a-zA-Z0-9_1%"))

-- C10: Generic classes are supported
TemplateClass.allInstances—>forAll(c | File.alllnstances—>exists(f |
f.name=c.name and f.extension=’java’ and
f.content () .matchesRE(’class\\s+’+c.name+’\\s+<.x?>.%7{?))))

are well formed (e.g., no control characters) and that generic UML classes are
supported.

Of course, further constraints can be defined to deal with other require-
ments on the transformation. We have included here the tracts above in order
to show examples of the expressiveness of our approach in the case of an M2T
transformation. We do not try to claim completeness of full coverage of our

specifications for the UML to Java case.

6.1.2 T2M Example: USE to UML

To illustrate the applicability and usage of our proposal in the case of T2M
transformations, we have focused on a transformation between textual USE [55]
specifications of structural models, and its corresponding UML specifications.
USE features for representing models are similar to the ones defined in UML:
classes, attributes, associations and operations. For example, the USE code

in Listing 6.9 corresponds to a simple model of persons owning cars.

Listing 6.9 Example of USE code

class Person
attributes
name : String
birthDate: Integer
operations
age() : Integer
end

137



1

10
11
12
13
14
15
16
17
18
19

W N -

Chapter 6. Extending Tracts for M2T and T2M Transformations

Listing 6.10 Constraint D1

-- D1: Only one file per transformation run allowed
File.allInstances ()—>size() = 1

Listing 6.11 Constraint D2

-- D2: Every USE class should result in UML class
Line.allInstances ()—>select(l | 1.text.matchesRE(’~\\s*class’))—>
forAll(1l|Class.allInstances—>exists(c|l.text.matchesRE(c.name)))

abstract class Vehicle
attributes
brand : String
end
class Car < Vehicle
attributes
licenceNumber : String
end
association Person_Car between
Person [0..1] role owns
Car [#] role owner

end

The set of constraints in Listings 6.10-6.13 are examples to show how
different requirements on the transformation from USE to UML can be stated.

The constraint in Listing 6.10 specifies that the USE model should reside
in only one file.

The second constraint, in Listing 6.11 states that every USE class will
correspond to one UML class with the same name.

The third one, in Listing 6.12 specifies how USE inheritance relationships
(cf. ’<’ symbol in the USE example) are transformed into UML inheritance

relationships.

Listing 6.12 Constraint D3

-- D3: less-than sign has to open an inheritance relationship

Line.allInstances ()—>select(l | 1.text.matchesRE(’\\s*class.*<’))—>
forAll(1l|Class.alllnstances—>exists(c | 1.text.matchesRE(c.name) and
c.superClasses—>exists(superClass|l.text.matchesRE(superClass.name))))

138



00 N O WN -

©

10
11
12
13
14
15
16
17
18

6.1 Generic Metamodel for Representing Text Repositories

Listing 6.13 Constraints D4, D5 and D6

-- D4: USE abstract classes to UML abstract classes

Line.allInstances ()—>select(1l|1l.text.matchesRE(’abstract\\s+class’))—>
forAll(1|Class.alllnstances—>
exists(c|l.text.matchesRE(c.name) and c.isAbstract))

-- D5: USE attributes to UML attributes
Class.allInstances ()—>forAll(c|c.attributes—>
forAll(a|File.allInstances—>any(f | f.content().
matchesRE (’class\\s*’+c.name+
>’\\s*(<\\s*[A-Za-z0-9]+) ?\\s*xattributes.*?’+
a.name+’\\s*:\\s*’4a.typet’.*?(end|operations)’))))

-- D6: USE associations to UML associations
Association.allInstances—>forAll(a |
File.allInstances—>any(f | f.content ().matchesRE(
a.roles—>iterate(r; s : String =
’(association| composition)\\s+[A-Za-2z0-9_J]+\\s+between.*?’
s.concat (r.target.name+’.*?role’+r.name+’.*7°)))))

Similarly, the last three constraints are shown in Listing 6.13 and allow
us to specify that USE abstract classes are transformed into UML abstract
classes, USE attributes into UML attributes, and USE associations into UML

associations.

6.1.3 Tool Support

In order to provide tool support for our proposal, we have developed a injector
(parser) that converts the content of a repository, i.e., files, folders, and their
structure, into a model that conforms the Text metamodel shown in Fig. 6.1,
and an extractor that takes models conforming to the Text metamodel and
produces text organized in folders.

In order to check that a given M2T transformation fulfils a set of constraints
(such as the ones shown in Section 6.1.1), we run the transformation with
the set of models defined by the tract test suite (these input models have not
been shown before for the sake of simplicity) and then use the injector with
the output text (organized in folders) resulting from the transformation to
generate the corresponding output models conforming to the Text metamodel.

Then we are in a position to check the validity of the constraints as in the

139



Chapter 6. Extending Tracts for M2T and T2M Transformations

case of tracts defined for M2M transformations with our TractsTool [143].
The TractsTool evaluates the defined constraints on the source and target
models by a transparent translation to the USE tool [55].

The case of testing T2M transformations is similar. Here the test suite is
defined by the tract as a set of repositories, which need to be transformed
first into a model-based representation by our injector component to check
the source constraints. When the source constraints are fulfilled, the content
of the repository is transformed by the T2M transformation under test to
produce the output models. The models produced from the repository and
their corresponding output models can then be validated by the TractsTool
against the tracts.

For easing the formulation of the OCL constraints, we have also enriched
USE with a set of libraries and operations to deal with Strings. For instance,
to deal with regular expressions in OCL we have introduced the matchesRE
operation shown above that checks whether a given sequence matches a regular
expression or not. Furthermore, we have also introduced some auxiliary
functions that are currently provided by M2T transformation languages such
as toFirstUpper to end up with more concise OCL constraints than just
using the standard OCL String operation library.

The TractsTool for testing M2T/T2M transformations is available at our

project website [25] with several examples.

6.2 Evaluation

Most UML tools provide code generation facilities to produce source code
from UML models. In order to evaluate the usefulness of using contract-based
specifications for code generators, we tested a selected set of currently available
UML tools by checking a set of tracts.

6.2.1 Selected Tracts and Test Models

For the evaluation, we used the constraints defined by the tracts presented in

Section 6.1.1, which represent some of the most essential requirements that

140



6.2 Evaluation

any UML to Java code generator has to fulfil. These constraints are described

below, together with their type (“Scr” for source constaints and “ScrTrg” for

source-target constaints), as well as one example of the test suite models that

was used to check the tracts.

Cq

Cy

C3

Cy

Cs

Cy

Cy

Cio

SrcTrg: Nested packages are transformed into nested folders. Minimal

test model: two nested packages in a UML model.

SrcTrg: Import of packages supported. Minimal test model: two pack-

ages, each one having one class and both connected by an association.

Src: Inheritance of a leaf class is not allowed. Minimal test model: a

class inheriting from a leaf class.

Src: Only single inheritance is used in UML. Minimal test model: one

class having two superclasses.

SrcTrg: Derived attributes only result in getter method. Minimal test

model: one class having one derived attribute.

SrcTrg: Visibility of attributes mapped to Java. Minimal test model:
one class having one public, one private, one package, and one protected
attribute.

SrcTrg: Visibility of roles mapped to Java. Minimal test model: two
classes related by three associations, whose association ends have differ-

ent visibilities (public, private, package, and protected).

Src: No Java keywords are allowed as names in UML models. Minimal
test model: one class with name “class”, one attribute with name

“public”, and one operation with name “implements”.

Src: Names in UML model have to be valid Java identifiers. Minimal

W

test model: one class with name , attribute with name “4”, and

operation with name “7”.

SrcTrg: Generic classes mapped to Java. Minimal test model: one

generic class with two parameters.

141



Chapter 6. Extending Tracts for M2T and T2M Transformations

6.2.2 Selected Tools

We selected six UML tools from industry that claimed to support code

generation from UML class diagrams into Java code. The selected sample

covers both commercial tools and open-source projects.

Altova UModel' is a UML 2.0 tool for software modeling. We evalu-
ated Altova UModel Enterprise Edition 2013.

ArgoUML? is a modeling tool supporting UML 1.4 diagrams. It is an
open source project and distributed under the Eclipse Public License
(EPL). Currently there is only one edition of ArgoUML available. We

evaluated version 0.34.

BOUML? is a UML 2.0 diagram designer which also allows for code

generation. We evaluated version 4.22.2.

EnterpriseArchitect? is a commercial modeling tool supporting UML
2.4.1 and is distributed by SparxSystems. We evaluated the professional
edition, version 10.

% is a commercial modeling tool supporting UML 2.0 and

MagicDraw
is distributed by NoMagic. We evaluated the enterprise edition, version

16.8.

Poseidon for UMLS is a modeling tool supporting UML 2.0, dis-
tributed by Gentleware. We evaluated the community edition of Posei-
don for UML, version 6.0.2.

thttp://www.altova.com /umodel.html
2http://argouml.tigris.org
*http://www.bouml.fr
*http://www.sparxsystems.com
*http://www.nomagic.com
Shttp://www.gentleware.com

142


http://www.altova.com/umodel.html
http://argouml.tigris.org
http://www.bouml.fr
http://www.sparxsystems.com
http://www.nomagic.com
http://www.gentleware.com

6.2 Evaluation

6.2.3 Evaluation Procedure

We defined reference test models based on the UML metamodel shown in
Fig. 6.4. Subsequently, we re-modelled the reference test models in all of the
selected tools. Having the models within the specific tools allowed us to run
the validation support and code generators of the specific tools. The validation
support is related to the evaluation of support for the Src constraints that
should act as filter for the code generator, i.e., only valid models should be
transformed to code. Thus, we validated all test models in case validation
support is available in a specific tool and checked if validation errors or at
least warnings are reported for the negative test models associated to the Src
constraints. For checking the SrcTrg constraints, we translated the output
of the code generators to Text models and evaluated the resulting output in
combination with the input models, i.e., the reference models, using the testing
approach described in this paper. The reference models as well as examples
of generated Java code and its corresponding text models are available at our
project website.

It has to be mentioned that the UML tools are delivered with standard
configurations for the code generators. Some tools also allow the users to
tweak the code generation capabilities by configuring certain options using
specific wizards before running the code generation. Others also allow the
edition of code generation scripts, enabling further possibilities to customize
the code generation facilities beyond the possibilities offered by the wizards.
In this sense, we evaluated first the standard code generation features the tools
offer, and after that we tried to tweak the tools by using the wizards to fulfil
additional constraints that were not fulfilled in the standard configuration.
However, the customization possibilities based on the wizards could not

enhance further the evaluation results for the given constraints.

6.2.4 Results

Table 6.1 shows the results of the evaluation. In the table, a tick symbol (v')
means that the test passed for that tract and a cross symbol (x) means that

the tract test failed. Some of the tests were not available for a given tool,

143



Chapter 6. Extending Tracts for M2T and T2M Transformations

‘ Tool/Constraint ‘ ‘ Cy ‘ Cs ‘ Cy ‘ Cs ‘ Cs ‘ Cr ‘ Cy ‘ Cy ‘ C1o ‘
‘ Altova UModel ‘ X ‘ v ‘ v ‘ v ‘ X ‘ v ‘ v ‘ v ‘ v ‘ v ‘
| ArgoUML | v | v | x | x| - |V | vV | x| x| v |
| BOUML | x | v | - |V | x|V |V | x|V ]| Vv |
‘ EnterpriseArchitect ‘ v ‘ v ‘ v ‘ X ‘ X ‘ v ‘ v ‘ X ‘ X ‘ v ‘
‘ MagicDraw ‘ v ‘ v ‘ v ‘ v ‘ X ‘ v ‘ v ‘ X ‘ v ‘ v ‘
‘ Poseidon ‘ v ‘ X ‘ X ‘ v ‘ X ‘ v ‘ v ‘ X ‘ v ‘ - ‘

Table 6.1 Evaluation results

e.g., a particular modeling feature is missing, and were not performed. This
is indicated by a dash (-).

In the first place, constraint Cy did not hold for some tools. In the case
of BOUML and Altova UModel, the code generation requires that UML
elements are manually associated to certain artifacts for which a path must be
specified. Thus, the user has to specify the folders and Java files that should

be generated. All other tools work well with packages in an automated way.

Concerning associations that cross package borders (C3), Poseidon is the
only tool that does not take this feature into account in the code generation

process.

Precondition Cs checks that no class inherits by another class marked as
leaf. BOUML does not include the option to set a class as leaf. Poseidon fails
because it allows that a class inherits from a leaf class. ArgoUML passes the
test and gives a warning during the model validation only when the superclass

is marked as leaf before the creation of the generalization relationship.

Cy checks that the UML model does not use multiple inheritance, because
it cannot be used in Java. ArgoUML and MagicDraw fail because they do
not check this constraint, and they both create a Java class which does not

even compile.

Concerning Cy, ArgoUML does not allow the definition of derived features.

The rest of the tools do, but derived features are ignored in the code generation

144



6.3 Related Work

process. An expected solution would create derived attributes into their
corresponding getter methods.

All tools work well with the transformation of the visibility of attributes
and roles (constraints Cg and Cr).

Most tools fail with constraints Cg and Cy (use of Java keywords and
invalid names in Java). Tools do not seem to conduct any validation check
before the code generation starts. Although many tools allow several kinds of
validation checks on the UML models, most of these tests only deal with UML
constraints. A few tools also allow the development of user-defined validation
checks, but they do not seem to have been defined for the code generation
facilities they support. The best results in this respect are achieved by Altova
UModel, which raises a warning if non-valid Java identifiers or Java keywords
are used as names for UML elements.

Finally, generic classes are supported and correct Java code is generated
by all UML tools (constraint C1g) except Poseidon, which does not allow the
definition of generic classes.

In summary, the results show that code generators have to fulfil several
properties that should be specified at a higher level for allowing their validation.
In particular, we found that no tool performs well even with respect to the
basic UML to Java code generation requirements. Furthermore, we discovered
that several tools produced incorrect Java code, even not compilable in some
situations. In this sense, the tracts representing the basic requirements could
be used as the initial components of a benchmark for future improvements

and developments of UML-to-Java code generators.

6.3 Related Work

Several kinds of works apply contracts for M2M transformation testing using
different notations for defining the contracts. In the following, we divide them
into two main categories. First, contracts may be defined on the model level
by either giving (i) complete examples of source and target model pairs, or
(ii) giving only model fragments which should be included in the produced

target models for given source models. Second, contracts may be defined

145



Chapter 6. Extending Tracts for M2T and T2M Transformations

on the metamodel level either by using (i) graph constraint languages or
(iv) textual constraint languages such as OCL.

A straight-forward approach is to define the expected target model for a
given source model which acts as a reference model for analyzing the actual
produced target model of a transformation as proposed in [50, 81, 93, 94].
Model comparison frameworks are employed for computing a difference model
between the expected and the actual target models. If there are differences
then it is assumed that there exists an error either in the transformation or in
the source/target model pair. Analogously, one could employ text comparison
frameworks to reason about an expected text artifact and an computed text
artifact. However, reasoning about the cause for the mismatch between the
expected and actual text artifact solely based on the difference model is
challenging. Several elements in the difference model may be effected by the
same error, however, the transformation engineer has the burden to cluster
the differences by herself.

A special form of verification by contract was presented in [102]. The
authors propose to use model fragments (introduced in [113]) which are
expected to be included in a target model which is produced from a specific
source model. Using fragments as contracts is different from using examples
as contracts. Examples require an equivalence relationship between the
expected model and actual target model, while fragments require an inclusion
relationship between the expected fragments and the actual target model.
Using our text metamodel, one is able to define such fragments even for
M2T/T2M transformations, but they still only define the oracle for one
particular input model.

Guerra et al. [65] proposed a declarative language for the specification
of visual contracts for defining pre- and post-conditions as well as invariants
for model transformations. For evaluating the contracts on test models,
the specifications are translated to QVT Relations which are executed in
check-only mode. In particular, QVT Relations are executed before the
transformation under test is executed to check the preconditions on the source
models and afterwards to check relationships between the source and target

models as well as postconditions on the target models. This approach may be

146



6.3 Related Work

used as an alternative syntax for our presented approach. Further alternative
text-based approaches for defining oracles are presented in [32, 33, 50, 53, 80],

however, they do not discuss how to apply their approaches for text artifacts.

The most closely related work is presented in Tiso et al. [139] where the
problem of testing model-to-code transformations is explicitly mentioned. The
authors enumerate two possibilities for such tests. First, they briefly mention
a static approach which evaluates if certain properties are fulfilled by the
transformation target code. However, they do not describe the details of this
possibility. Second, they discuss a dynamic approach based on checking the
execution of the transformation target, which is subsequently elaborated in
their paper. In particular, they model, in addition to the domain classes, test
classes that execute certain operations and check for given post-conditions
after the operations have been executed. While we propose a generic and static
approach to test M2T/T2M transformations in general, Tiso et al. propose
an approach for testing a specific model-to-code transformation, namely from
UML class diagrams to specific Java code and using JUnit tests that are
also derived from a model representation. Furthermore, in our approach we
have the possibility to directly test M2T/T2M transformations. However, in
Tiso et al. [139] the execution output of the generated application has to be

analyzed to trace eventual errors back to the M2T transformation.

Finally, an approach for testing code generators for executable languages
is presented in [133]. The authors present a two-folded approach. On the one
hand, first-order test cases that represents the models which are transformed
into code are distinguished. On the other hand, second-order test cases
are introduced representing tests that are executed on models as well as
on the derived implementation, i.e., on the generated code. The output of
the code execution is compared with the output of the model execution. If
these outputs are equivalent, it is assumed that the code generator works as
expected. Compared to our proposal, we provide an orthogonal approach for
testing the syntactic equivalence by checking certain constraints, i.e., how to
define oracles for the first-order test cases. Combining a syntactical with a

semantical approach seems to be an interesting subject for future work.

147



Chapter 6. Extending Tracts for M2T and T2M Transformations

6.4 Summary

This chapter presented a language-agnostic approach for testing M2T/T2M
transformations. Agnostic means independent from the languages used for
the source and target artifacts of the transformations, as well as to the
transformation language used for implementing the transformations. By
extending OCL with additional String operations, we have been able to
specify contracts for practical examples and evaluated the correctness of
current UML-to-Java code generators offered by well-known UML tools. This
evaluation showed a great potential for further improving code generators and
documents the real need for an engineering discipline to develop M2T /T2M

transformations.

148



Chapter ¢

Conclusions and
Future Work

This chapter summarizes the proposal that has been explained throughout
this dissertation, highlighting the conclusions of our work in Section 7.1 and
the main publications obtained from these contributions and some others in

Section 7.2. Finally, future work is described in Section 7.3.

149



Chapter 7. Conclusions and Future Work

7.1 Summary and Conclusions

In the first stages of this thesis, we studied the state of the art and observed
that model transformations lacked appropriate concurrency mechanisms and
tool support to be executed in parallel—like most software artifacts developed
nowadays. This is why the first contribution of this thesis is the approach pre-
sented in Chapters 3 and 4 for the parallel execution of model transformations

using the concepts and mechanisms of Linda.

We implemented a layer on top of existing Java-based data grids that
specify model transformations in Java, transparent to the underlying tech-
nologies and parallelization strategies. In particular, we have shown how to
represent metamodels and models for running transformations in parallel as
well as how to provide intrinsic traceability for out-place transformations.
Based on these results, the jLinTra platform seems quite promising as a base
infrastructure for running efficient model transformations when combined
with a data parallelism approach to achieve parallelization. The comparison
against other well-known sequential transformation engines has also shown a
significant speedup and the comparison against a parallel engine using task
parallelism has demonstrated that data parallelism, as used by jLinTra, seems
to work better than process parallelism for the model transformations used
in the case study. Furthermore, we have shown with experiments that the
performance of its in-place mode improves w.r.t. other in-place MT engines
and that in those cases where in-place transformations can be achieved also
by means of out-place transformations, the in-place transformations provide

better performance and usability.

As in-memory data grids have a significant influence on our approach,
the evaluation also shows that current data grids perform well, i.e., they do
not necessarily introduce significant penalties. However, there is a relevant

difference in the performance when accessing data.

All in all, the jLinTra solution presented here seems to be able to han-
dle and scale larger models, and significantly outperforms current model

transformation engines, both sequential and parallel.

150



7.2 Publications

The second main contribution of this thesis addresses the need that arises
after the execution of a model transformation, namely to prove that execution
was correct and the expected output was obtained. In Chapter 5 we presented
a static approach to trace errors in model transformations. Taking a model
transformation and a set of constraints that specify its expected behavior
as input elements, our approach automatically extracts the footprints of
both artifacts and compares transformation rules and constraints one by
one, obtaining the overlap of common footprints. Subsequently, it returns
three matching tables where the alignments between rules and constraints are
recorded. By using these tables, the transformation engineer is able to trace
the rules that can be the cause of broken constraints due to faulty behavior.
Our evaluation shows that the presented approach is expected to be accurate
for a large set of model transformations. By using the similarity matrixes, an
automated and instant fitness test is available to check a-priori whether the
approach is likely to be helpful for a given transformation.

The last contribution of this thesis is presented in Chapter 6. We broadened
the scope of our testing approach for M2T and T2M transformations. We
created a generic metamodel so that text repositories can be represented as
models conforming to this metamodel. Once text has been represented as a
model, the problem of testing M2T /T2M transformations is reduced to a M2M
transformation testing problem. As in the text part of the transformation
there are String attributes whose values need to be analyzed in many cases,
so we extended OCL with additional String operations.

The evaluation that we carried out by means of evaluating the correctness
of current UML-to-Java code generators showed great potential for further
improving code generators. It further documents the very real need for an
engineering discipline to develop M2T and T2M transformations and the

importance of testing these kinds of transformations.

7.2 Publications

This section shows how the work that supports this dissertation has been

published in journals, conferences and workshops with peer-review. It also

151



Chapter 7. Conclusions and Future Work

enumerates the rest of the research contributions that the author of this

dissertation has made over the course of her Ph.D. although they are not

related to the lines of research presented here.

7.2.1 Publications Supporting this Dissertation

International Journals

o Loli Burgueno, Javier Troya, Manuel Wimmer, Antonio Vallecillo. Static

Fault Localization in Model Transformations. IEEE Transactions on
Software Engineering 41(5):490-506, 2015. This paper supports the

content presented in Chapter 5.

International Journals under Review

e Loli Burgueno, Manuel Wimmer, Antonio Vallecillo. A Linda-based

Platform for the Parallel Execution of Out-place Model Transformations.
Information and Software Technology. Submitted. This paper presents
the approach shown in Chapter 3.

International Conferences

o Loli Burgueno, Manuel Wimmer. Testing M2T/T2M Transformations.

In Proc. of the ACM/IEEE 16th International Conference on Model
Driven Engineering Languages and Systems 2013 (MoDELS 2013). Mi-
ami, FL., USA, September-October 2013. This paper presents the content
of Chapter 6.

International Workshops

o Loli Burgueno, Javier Troya, Manuel Wimmer, Antonio Vallecillo. Par-

allel In-Place Model Transformations with LinTra. In Proc. of the 3rd
International Workshop on Big MDE (BigMDE 2015) at STAF 2015.
L’Aquila, Italy, July 2014. This paper presents the content of Chapter 4.

152



7.2 Publications

e Loli Burgueno, Javier Troya, Manuel Wimmer, Antonio Vallecillo. On
the Concurrent Execution of Model Transformations with Linda. In
Proc. of the 1st International Workshop on Big MDE (BigMDE 2013)
at STAF 2013. Budapest, Hungary, June 2013. Part of the content of
this paper is presented in Chapter 3.

¢ Loli Burguefio, Manuel Wimmer, Antonio Vallecillo. Towards Tracking
Guilty Transformation Rules. In Proc. of the 1st Workshop on the
Analysis of Model Transformation 2012 (AMT 2012) at MODELS 2012.
Innsbruck, Austria, October 2012. This paper comprises a preliminary

version of the work presented in Chapter 5.

National (Spanish) Conferences

e Loli Burgueno, Javier Troya, Antonio Vallecillo. Concurrent Model
Transformations with Linda. In Proc. of the XVIII Jornadas en In-
genieria del Software y Bases de Datos (JISBD 2013) at CEDI 2013.
Madrid, Spain, September 2013. Part of the work presented in this

paper is contained in Chapter 3.

e Manuel Wimmer, Loli Burguenio, Antonio Vallecillo. Prueba de Trans-
formaciones de Modelos con TractsTool. In Proc. of the XVII Jornadas
en Ingenieria del Software y Bases de Datos (JISBD 2012). Almeria,
Spain, September 2012. This paper presents the first version of the tool
that supports the work presented in Chapters 5 and 6.

Others

¢ ACM Student Research Competition: Loli Burguefio. Testing
M2M/M2T/T2M Transformations. In Proc. of the ACM Student
Research Competition (ACM SRC 2015) at MODELS 2015. Ottawa,
Canada, September 2015. (Winner of the Bronze medal). This

contribution summarizes the content of Chapters 5 and 6.

« Book chapter: Antonio Vallecillo, Martin Gogolla, Loli Burgueno,

Manuel Wimmer, Lars Hamann. Formal Specification and Testing of

153



Chapter 7. Conclusions and Future Work

Model Transformation. Formal Methods for Model-Driven Engineering,
Springer LNCS 7320, pp. 399-437, June 2012. Part of the content of

Section 2.3 is introduced in this book chapter.

7.2.2 Further Publications

International Conferences

e Martin Gogolla, Antonio Vallecillo, Loli Burgueno, Frank Hilken. Em-

ploying Classifying Terms for Testing Model Transformations. In Proc.
of the ACM/IEEE 18th International Conference on Model Driven Engi-
neering Languages and Systems 2015 (MoDELS 2015). Ottawa, Canada,
September-October 2015. (Best Paper Award).

David Ameller, Xavier Frank, Cristina Gémez, Antonio Vallecillo, Loli
Burguetio, et al. Handling Non-functional Requirements in Model-
Driven Development: An Ongoing Industrial Survey. In Proc. of the
28rd IEEE International Requirements Engineering Conference 2015
(RE 2015). Ottawa, Canada, August 2015.

International Workshops

o Frank Hilken, Loli Burguenio, Martin Gogolla, Antonio Vallecillo. Itera-

tive Development of Transformation Models by Using Classifying Terms.
In Proc. of the 4th Workshop on the Analysis of Model Transformation
2015 (AMT 2015) at MODELS 2015. Ottawa, Canada, September 28,
2015.

Javier Troya, Alexander Bergmayr, Loli Burgueno, Manuel Wimmer.
Towards Systematic Mutations for and with ATL Model Transformations.
In Proc. of the 10th International Workshop on Mutation Analysis
(Mutation 2015) at ICST 2015. Graz, Austria, April 13, 2015.

Javier Troya, Manuel Wimmer, Loli Burgueno, Antonio Vallecillo. To-

wards Approximate Model Transformations. In Proc. of the 3rd Work-

154



7.3 Future Work

shop on the Analysis of Model Transformation 2014 (AMT 2014) at
MODELS 2014. Valencia, Spain, September 29, 2014.

e Loli Burguefio, Eugene Syriani, Manuel Wimmer, Jeff Gray, Antonio Val-
lecillo. LinTraP: Primitive Operators for the Execution of Model Trans-
formations with LinTra. In Proc. of the 2nd International Workshop on
Big MDE (BigMDE 2014) at STAF 2014. York, United Kingdom, July
2014.

National (Spanish) Conferences

e Loli Burguefio, Antonio Moreno-Delgado, Antonio Vallecillo. Analy-
sis of the Scientific Production of the Spanish Software Engineering
Community. In Proc. of the XX Jornadas en Ingenieria del Software y
Bases de Datos (JISBD 2015) at SISTEDES 2015. Santander, Spain,
September 2015.

e Loli Burguefio, Fugene Syriani, Manuel Wimmer, Jeff Gray, Antonio
Vallecillo. Primitive Operators for the Concurrent Execution of Model
Transformations Based on LinTra. In Proc. of the XIX Jornadas en
Ingenieria del Software y Bases de Datos (JISBD 2014) at SISTEDES
2014. Cadiz, Spain, September 2014.

7.3 Future Work

We consider that the work presented in this dissertation is mature and solves
a specific problem. Nevertheless, all research can be improved in several
directions. The different lines of work that we would like to explore next are
explained in the following paragraphs.

We have already mentioned that one of the weaknesses of LinTra appears
when a transformation needs to access the data layer many times in order to
resolve a long navigation path and compute its final value. In order to solve
this problem, when an element has a reference to another element, we plan to

keep not only the identifier of the referenced element but the element itself.

155



Chapter 7. Conclusions and Future Work

We already know this will have a negative impact on the amount of memory
needed to store the model. We plan to quantitatively analyze the penalty
and the benefits of this solution and try to find the balance between time and
space. We will also identify those situations where we can benefit from one of
them and apply the most adequate alternative in each case. We also plan to

investigate the integration of advanced query engines such as EMF Inc-Query.

Although model transformations can be written in jLinTra, a more ambi-
tious and long-term goal is to explore how high-level transformation languages
(either existing ones or newly developed, supporting parallel constructs) can be
compiled to jLinTra so that model transformations written in those languages

can be provided for our engine.

The experiments conducted so far with respect to the distribution of
models and their transformation over several machines are positive and we can
naturally deal with models spread over networked computers using jLinTra.
However, the impact of the network latency on the performance is not negligi-
ble, and may require the introduction of optimization mechanisms when very

large models need to be transformed using networked machines.

We also plan to apply the LinTra mechanisms presented to execute lin-
ear model transformation chains to execute generic model transformation

networks.

Regarding the execution of in-place model transformations, we plan to
provide a new in-place execution mode that supports recursive matchings

such as those present in graph transformations.

There are always trade-offs between using embedded transformation frame-
works like LinTra and dedicated model transformation languages such as ATL.
For instance, model transformation languages own specific forms of providing
modularity and reusability. On the other hand, frameworks are supposed
to perform better as they do not spend time compiling or interpreting code.
We leave for future work a complete comparative study between LinTra and
different model transformation languages considering characteristics such as
performance, analysability, coupling with particular modelling frameworks,

modularity, reusability and testability.

156



7.3 Future Work

As the last line of future work on the LinTra side, we plan to explore
the benefits of hybrid parallelism combining the advantages of task and data
parallelism, and to conduct further experiments and benchmarking exercises.

As stated in Chapter 5, our static approach to test the correctness of
model transformations requires in its first step the extraction of the metamodel
footprints. So far, the footprint extraction for transformation contracts in OCL
is currently supported, but other contract languages such as PaMoMo [65]
may be employed as well. Similarly, the application of the ideas presented here
to other transformation languages which do not use OCL, like graph-based
languages (e.g., AGG) or other kinds of languages (e.g., Tefkat), opens up
further lines of research.

We have also introduced similarity matrixes as an a-priori applicability
test. We aim to explore the use of similarity matrixes for other purposes,
such as reasoning about the maintainability of transformations in the case of
evolving metamodels or about the completeness of transformations.

As we offer support to test M2T and T2M transformations, we plan to
investigate how current Architecture Driven Modernization (ADM)! modeling
standards such as the Knowledge Discovery Metamodel (KDM) [110] may
be used to define contracts that are programming language independent
and reusable for a family of code generators. For example, the presented
contracts may be expressed in a platform-independent way and reused for
testing UML-to-C# code generators.

As our testing approach is static, it would be interesting to explore how
dynamic approaches could complement our static approach and trace guilty
transformation rules.

There is also room for improvement in our tool TractsTool. It is a
prototype whose limits need to be explored and improved. The models defined
in the Tracts’ test suites are normally of reasonable size (less than one or
two thousand elements) because this is usually enough to check the Tract
constraints. However, we have discovered that large models (with several

thousands of model elements) are hard to manage with the tools that we are

'http://adm.omg.org

157


http://adm.omg.org

Chapter 7. Conclusions and Future Work

currently using. For this reason we plan to look for internal optimizations of
the tool.

158



References

[1] Amrani, M., Lucio, L., Selim, G., Combemale, B., Dingel, J., Vangheluwe,
H., Traon, Y. L., and Cordy, J. R. (2012). A tridimensional approach for
studying the formal verification of model transformations. In Proc. of the
VOLT’12 Workshop.

[2] Anastasakis, K., Bordbar, B., and Kiister, J. M. (2007). Analysis of model
transformations via Alloy. In Proc. of MODEVVA’07.

[3] Aranega, V., Mottu, J.-M., Etien, A., and Dekeyser, J.-L. (2009). Trace-
ability mechanism for error localization in model transformation. In Proc.

of ICSOFT’09, pages 66-73. INSTICC Press.

[4] Associates, S. C. (2000). Linda. user’s guide and reference manual. https:
//www .lcre.anl.gov/jazz/Documentation/ApplicationDocumentation/
£98 /lindamanual.pdf.

[5] Atkinson, C. and Kiihne, T. (2001). The essence of multilevel metamodel-
ing. In Proc. of UML’01, pages 19-33, London, UK, UK. Springer-Verlag.

[6] Baresi, L., Ehrig, K., and Heckel, R. (2007). Verification of model trans-
formations: A case study with BPEL. In Proc. of TGC"06, volume 4661 of
LNCS, pages 183-199. Springer.

[7] Baudry, B., Dinh-Trong, T., Mottu, J.-M., Simmonds, D., France, R.,
Ghosh, S., Fleurey, F., and Traon, Y. L. (2006). Model transformation
testing challenges. In Proc. of IMDD-MDT’06.

[8] Baudry, B., Ghosh, S., Fleurey, F., France, R., Traon, Y. L., and Mottu,
J.-M. (2010). Barriers to systematic model transformation testing. Com-
munications of the ACM, 53(6):139-143.

[9] Benelallam, A., Gémez, A., Sunyé, G., Tisi, M., and Launay, D. (2014).
NeodEMEF, a scalable persistence layer for EMF models. In Proc. of
ECMFA’14, volume 8569 of LNCS, pages 230-241. Springer.

[10] Benelallam, A., Gémez, A., Tisi, M., and Cabot, J. (2015). Distributed
model-to-model transformation with ATL on MapReduce. In Proc. of SLE
2015, pages 37-48. ACM.

159


https://www.lcrc.anl.gov/jazz/Documentation/ApplicationDocumentation/g98/lindamanual.pdf
https://www.lcrc.anl.gov/jazz/Documentation/ApplicationDocumentation/g98/lindamanual.pdf
https://www.lcrc.anl.gov/jazz/Documentation/ApplicationDocumentation/g98/lindamanual.pdf

References

[11] Bergmann, G., Réath, I., and Varré, D. (2009). Parallelization of graph
transformation based on incremental pattern matching. FCEASST, 18:1-15.

[12] Bergmayr, A., Bruneliere, H., Canovas Izquierdo, J., Gorronogoitia, J.,
Kousiouris, G., Kyriazis, D., Langer, P., Menychtas, A., Orue-Echevarria,
L., Pezuela, C., and Wimmer, M. (2013). Migrating Legacy Software to
the Cloud with ARTIST. In Proc. of CSMR, pages 465—468.

[13] Bergmayr, A., Troya, J., and Wimmer, M. (2014). From out-place
transformation evolution to in-place model patching. In Proc. of ASE’1},
pages 647-652. ACM.

[14] Bézivin, J. (2005). On the unification power of models. Software and
System Modeling, 4(2):171-188.

[15] Bézivin, J., Biittner, F., Gogolla, M., Jouault, F., Kurtev, I., and Lindow,
A. (2006). Model transformations? transformation models! In Proc. of
MODELS’06, pages 440-453.

[16] Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-Driven Soft-
ware Engineering in Practice. Synthesis Lectures on Software Engineering.
Morgan & Claypool Publishers.

[17] Brooks, F. P. (1986). No Silver Bullet — Essence and Accident in Software
Engineering. In Proc. of the IFIP Tenth World Computing Conference,
pages 1069-1076.

[18] Brottier, E., Fleurey, F., Steel, J., Baudry, B., and Traon, Y. L. (2006).
Metamodel-based test generation for model transformations: an algorithm
and a tool. In Proc. of ISSRE’06, pages 85-94. IEEE.

[19] Bruneliére, H., Cabot, J., Dup’e, G., and Madiot, F. (2014). MoDisco:
A model driven reverse engineering framework. Information and Software
Technology, 56(8):1012-1032.

[20] Bruneliere, H., Cabot, J., Jouault, F., and Madiot, F. (2010). MoDisco:
a generic and extensible framework for model driven reverse engineering.
In Proc. of ASE’10, pages 173-174. ACM.

[21] Burgueno, L. (2013). Concurrent and distributed model transformations
based on linda. In Proc. of the MODELS 2013 Doctoral Symposium, volume
1071 of CEUR Workshop Proceedings, pages 9-16. CEUR-WS.org.

[22] Burgueno, L., Troya, J., Wimmer, M., and Vallecillo, A. (2015). Parallel
in-place model transformations with lintra. In Proc. of BigMDE’15 @
STAF’15, volume 1406 of CEUR Workshop Proceedings, pages 52—62. CEUR-
WS.org.

160



References

[23] Burgueno, L., Wimmer, M., Troya, J., and Vallecillo, A. (2014a). Fault
localization in model transformations. http://atenea.lcc.uma.es/index.php/
Main Page/Resources/FaultLocMT.

[24] Burgueno, L., Wimmer, M., Troya, J., and Vallecillo, A. (2014b). Similar-
ity matrixes. http://atenea.lcc.uma.es/index.php/Main_ Page/Resources/
MTB/SimilarityMatrix.

[25] Burguertio, L., Wimmer, M., Troya, J., and Vallecillo, A. (2014c¢). Tract-
sTool. http://atenea.lcc.uma.es/index.php/Main Page/Resources/Tracts.

[26] Burgueno, L., Wimmer, M., Troya, J., and Vallecillo, A. (2015). Static
Fault Localization in Model Transformations. IEEE Transactions on Soft-
ware Engineering, 41(5):490-506.

[27] Burgueno, L., Wimmer, M., and Vallecillo, A. (2014d). Lintra. http:
//atenea.lcc.uma.es/index.php/Main_ Page/Resources/LinTra.

[28] Burgy, L., Consel, C., Latry, F., Lawall, J., Palix, N., and Reveillere, L.
(2006). Language technology for internet-telephony service creation. In
Proc. of ICC’06, pages 1795-1800. IEEE.

[29] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal,
M. (1996). Pattern-Oriented Software Architecture: A System of Patterns.
Wiley, Chichester, UK.

[30] Cabot, J., Clarisé, R., Guerra, E., and de Lara, J. (2010). Verification and
validation of declarative model-to-model transformations through invariants.
Journal of Systems and Software, 83(2):283-302.

[31] Cabot, J. and Teniente, E. (2006). Transforming OCL constraints: a
context change approach. In Proc. of SAC’06, pages 1196-1201. ACM.

[32] Cariou, E., Belloir, N., Barbier, F., and Djemam, N. (2009). OCL
contracts for the verification of model transformations. ECEASST, 24.

[33] Cariou, E., Marvie, R., Seinturier, L., and Duchien, L. (2004). OCL for
the specification of model transformation contracts. In Proc. of the OCL
and Model Driven Engineering Workshop.

[34] Ciancone, A., Filieri, A., and Mirandola, R. (2010). MANTra: Towards
model transformation testing. In Proc. of QUATIC’10, pages 97-105. IEEE.

[35] Clasen, C., Didonet Del Fabro, M., and Tisi, M. (2012). Transforming
Very Large Models in the Cloud: a Research Roadmap. In Proc. of
CloudMDE 2012, pages 1-10.

161


http://atenea.lcc.uma.es/index.php/Main_Page/Resources/FaultLocMT
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/FaultLocMT
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/SimilarityMatrix
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/SimilarityMatrix
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Tracts
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/LinTra
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/LinTra

References

[36] Clavel, M., Durdn, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer,
J., and Talcott, C. (2007). All About Maude — A High-Performance Logical
Framework, volume 4350 of LNCS. Springer.

[37] Cuadrado, J. S. and de Lara, J. (2013). Streaming model transformations:
Scenarios, challenges and initial solutions. In Proc. of ICMT 2013, volume
7909 of LNCS, pages 1-16. Springer.

[38] Czarnecki, K. and Helsen, S. (2006a). Feature-based survey of model
transformation approaches. IBM Syst. J., 45(3):621-645.

[39] Czarnecki, K. and Helsen, S. (2006b). Feature-based survey of model
transformation approaches. IBM Syst. J., 45(3):621-645.

[40] Daniel, G., Sunyé, G., Benelallam, A., and Tisi, M. (2014). Improving
memory efficiency for processing large-scale models. In Proc. of BigMDE’1,
@ STAF’14, volume 1206 of CEUR Workshop Proceedings, pages 31-39.
CEUR-WS.org.

[41] Deak, L., Mezei, G., Vajk, T., and Fekete, K. (2013). Graph partitioning
algorithm for model transformation frameworks. In Proc. of EUROCON
2013, pages 475-481. IEEE.

[42] Dijkstra, E. W. (1974). On the role of scientific thought. published as
EWD:EWD447pub.

[43] Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varré, D., and Varré-
Gyapay, S. (2005). Termination criteria for model transformation. In Proc.
of FASE’05, volume 3442 of LNCS, pages 49-63. Springer.

[44] Ehrig, K., Kiister, J. M., and Taentzer, G. (2009). Generating instance
models from meta models. Software and Systems Modeling, 8(4):479-500.

[45] Espinazo-Pagén, J., Cuadrado, J. S., and Molina, J. G. (2015). A
repository for scalable model management. Software and Systems Modeling,
14(1):219-239.

[46] Espinazo Pagén, J. and Garcia Molina, J. (2014). Querying large models
efficiently. Information and Software Technology, 56(6):586—622.

[47] France, R. B. and Rumpe, B. (2007). Model-driven development of
complex software: A research roadmap. In Proc. of ISCE’07, pages 37-54.

[48] Fritzsche, M., Gilani, W., Lammel, R., and Jouault, F. (2010). Model
transformation chains in model-driven performance engineering: Experi-
ences and future research needs. In Proc. of Modellierung 2010, pages
213-220.

162



References

[49] Galvao, I. and Goknil, A. (2007). Survey of traceability approaches in
model-driven engineering. In Proc. of EDOC’07, pages 313-326. IEEE.

[50] Garcia-Dominguez, A., Kolovos, D. S., Rose, L. M., Paige, R. F., and
Medina-Bulo, I. (2011). EUnit: A unit testing framework for model man-
agement tasks. In Proc. of MODELS’11, volume 6981 of LNCS, pages
395-409. Springer.

[51] Gelernter, D. (1985). Generative communication in Linda. ACM Trans.
Program. Lang. Syst., 7(1):80-112.

[52] Gelernter, D. and Carriero, N. (1992). Coordination languages and their
significance. Commun. ACM, 35(2):96-107.

[53] Giner, P. and Pelechano, V. (2009). Test-driven development of model
transformations. In Proc. of MODELS’09, volume 5795 of LNCS, pages
748-752. Springer.

[54] Gogolla, M., Bohling, J., and Richters, M. (2005). Validating UML and
OCL Models in USE by Automatic Snapshot Generation. Software and
Systems Modeling, 4(4):386-398.

[55] Gogolla, M., Biittner, F., and Richters, M. (2007). USE: A UML-
based specification environment for validating UML and OCL. Science of
Computer Programming, 69:27-34.

[56] Gogolla, M. and Vallecillo, A. (2011). Tractable model transformation
testing. In Proc. of ECMFA’11, volume 6698 of LNCS, pages 221-236.
Springer.

[57] Gogolla, M., Vallecillo, A., Burgueno, L., and Hilken, F. (2015). Em-
ploying classifying terms for testing model transformations. In Proc. of
MODELS’15, pages 312-321.

[58] Goldschmidt, T. and Wachsmuth, G. (2008). Refinement Transformation
Support for QVT Relational Transformations. In Proc. of the MDSE’08
Workshop.

[59] Gémez, A., Tisi, M., Sunyé, G., and Cabot, J. (2015). Map-based
transparent persistence for very large models. In Proc. of FASE 2015,
volume 9033 of LNCS, pages 19-34. Springer.

[60] Gonzélez, C. A. and Cabot, J. (2012). ATLTest: A white-box test
generation approach for atl transformations. In Proc. of MODELS’12,
volume 7590 of LNCS, pages 449-464. Springer.

163



References

[61] Group, A. (2016). Atl  zoo. http://www.eclipse.org/atl/
atlTransformations//.

[62] Guerra, E. (2012a). Specification-driven test generation for model trans-
formations. In Proc. of ICMT’12, volume 7307 of LNCS, pages 40-55.
Springer.

[63] Guerra, E. (2012b). Specification-driven test generation for model trans-
formations. In Proceedings of the 5th International Conference on Theory
and Practice of Model Transformations (ICMT 2012), volume 7307 of LNCS,

pages 40-55. Springer.

[64] Guerra, E., de Lara, J., Kolovos, D. S., Paige, R. F., and Santos, O.
(2012). Engineering model transformations with transML. Software and
Systems Modeling, 12(3):555-577.

[65] Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzeg-
ger, W., Schénbock, J., and Schwinger, W. (2013). Automated verification
of model transformations based on visual contracts. Autom. Softw. Eng.,
20(1):5-46.

[66] Heckel, R., Kiister, J. M., and Taentzer, G. (2002). Confluence of typed
attributed graph transformation systems. In Proc. of ICGT 2002, volume
2505 of LNCS, pages 161-176. Springer.

[67] Hibberd, M., Lawley, M., and Raymond, K. (2007). Forensic debugging
of model transformations. In Proc. of MODELS’07, volume 4735 of LNCS,
pages 589-604. Springer.

[68] Hidaka, S., Tisi, M., Cabot, J., and Hu, Z. (2015). Feature-based
classification of bidirectional transformation approaches. Software and
Systems Modeling, pages 1-22.

[69] Hilken, F., Burguetio, L., Gogolla, M., and Vallecillo, A. (2015). Iterative
development of transformation models by using classifying terms. In Proc.
of the AMT’15 Workshop @ MODELS’15, pages 1-6.

[70] Horn, T., Krause, C., and Tichy, M. (2014). The TTC 2014 Movie
Database Case. In Proc. of the 7th Transformation Tool Contest (TTC
2014 ), volume 1035, pages 93-97. CEUR Workshop Proceedings.

[71] IEEE (1990). Standard glossary of software engineering terminology.
IEEE Std. 610.12.

[72] Imre, G. and Mezei, G. (2012). Parallel graph transformations on mul-
ticore systems. In Proc. of MSEPT 2012, volume 7303 of LNCS, pages
86-89. Springer.

164


http://www.eclipse.org/atl/atlTransformations/
http://www.eclipse.org/atl/atlTransformations/

References

[73] Jeanneret, C., Glinz, M., and Baudry, B. (2011). Estimating footprints
of model operations. In Proc. of ICSE’11, pages 601-610. ACM.

[74] Jia, Y. and Harman, M. (2011). An analysis and survey of the development
of mutation testing. IEEE Transactions on Software Engineering, 37(5):649—
678.

[75] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008). ATL: A model
transformation tool. Science of Computer Programming, 72(1-2):31-39.

[76] Jouault, F., Bézivin, J., Consel, C., Kurtev, L., and Latry, F. (2006).
Building DSLs with AMMA /ATL, a case study on SPL and CPL telephony
languages. In Proc. of ECOOP Workshop on Domain-Specific Program
Development.

[77] Jouault, F. and Tisi, M. (2010). Towards incremental execution of ATL
transformations. In Proc. of ICMT 2010, volume 6142 of LNCS, pages
123-137. Springer.

[78] Kessentini, M., Sahraoui, H. A., and Boukadoum, M. (2011). Example-
based model-transformation testing. Automated Software Engineering,

18(2):199-224.

[79] Kleppe, A., Warmer, J., and Bast, W. (2003). MDA ezplained - the
Model Driven Architecture: practice and promise. Addison Wesley object
technology series. Addison-Wesley.

[80] Kolovos, D., Paige, R., Rose, L., and Polack, F. (2008a). Unit testing
model management operations. In Proc. of ICSTW’08, pages 97-104. IEEE.

[81] Kolovos, D. S., Paige, R. F., and Polack, F. A. (2006). Model comparison:
a foundation for model composition and model transformation testing. In
GaMMa’ 06, pages 13—20. ACM.

[82] Kolovos, D. S., Paige, R. F., and Polack, F. A. (2008b). The Epsilon
Transformation Language. In Proc. of ICMT’08, volume 5063 of LNCS,
pages 46-60. Springer.

[83] Kolovos, D. S., Rose, L. M., Matragkas, N., Paige, R. F., Guerra, E.,
Sanchez Cuadrado, J., De Lara, J., Rath, 1., Varré, D., Tisi, M., and Cabot,
J. (2013). A research roadmap towards achieving scalability in model driven
engineering. In Proc. of BigMDE’13 @ STAF’13, pages 2:1-2:10. ACM.

[84] Krause, C., Tichy, M., and Giese, H. (2014). Implementing graph trans-
formations in the bulk synchronous parallel model. In Proc. of FASE 2014,
volume 8411 of LNCS, pages 325-339. Springer.

165



References

[85] Kurtev, I. (2008). Application of Reflection in Model Transformation
Languages. In Proc. of ICMT’08, volume 5063 of LNCS, pages 199-213.
Springer.

[86] Kurtev, I., Bézivin, J., and Aksit, M. (2002). Technological spaces:
An initial appraisal. In Proceedings of the Confederated International
Conferences (CooplS, DOA, and ODBASE), Industrial track.

[87] Kiister, J. M. (2006). Definition and validation of model transformations.
Software and Systems Modeling, 5(3):233-259.

[88] Kister, J. M. and Abd-El-Razik, M. (2006). Validation of model trans-
formations: First experiences using a white box approach. In Proc. of
MODELS’06 Workshops, volume 4364 of LNCS, pages 193-204. Springer.

[89] Lara, J. D., Guerra, E., and Cuadrado, J. S. (2014). When and how to use
multilevel modelling. ACM Trans. Softw. Eng. Methodol., 24(2):12:1-12:46.

[90] Lee, A. S. (1989). A scientific methodology for MIS case studies. MIS
Quarterly, 13(1):33-50.

[91] Lehman, T. J., McLaughry, S. W., and Wycko, P. (1999). T Spaces:
The next wave. In Proc. of HICSS’99, pages 8037-8045. IEEE Computer
Society.

[92] Lennox, J., Wu, X., and Schulzrinne, H. (2004). Call processing language
(CPL): A language for user control of internet telephony services. http:
//www.ietf.org/rfc/rfc3880.txt.

[93] Lin, Y., Zhang, J., and Gray, J. (2004). Model comparison: A key
challenge for transformation testing and version control in model driven
software development. In Control in Model Driven Software Development.
OOPSLA/GPCE: Best Practices for Model-Driven Software Development,
pages 219-236. Springer.

[94] Lin, Y., Zhang, J., and Gray, J. (2005). A testing framework for model
transformations. In Model-Driven Software Development — Research and
Practice in Software Engineering, pages 219-236. Springer.

[95] Ludewig, J. (2004). Models in software engineering - An introduction.
Inform., Forsch. Entwickl., 18(3-4):105-112.

[96) Mamoud, Q. H. (2005). Getting started with javaspaces technology:
Beyond conventional distributed programming paradigms. http://www.
oracle.com/technetwork /articles/javase/javaspaces-140665.html.

166


http://www.ietf.org/rfc/rfc3880.txt
http://www.ietf.org/rfc/rfc3880.txt
http://www.oracle.com/technetwork/articles/javase/javaspaces-140665.html
http://www.oracle.com/technetwork/articles/javase/javaspaces-140665.html

References

[97] Manning, C. D., Raghavan, P., and Schiitze, H. (2008). Introduction to
Information Retrieval. Cambridge University Press.

[98] Mens, T. and Gorp, P. V. (2006). A taxonomy of model transformation.
Electr. Notes Theor. Comput. Sci., 152:125-142.

[99] Mens, T., Taentzer, G., and Runge, O. (2005). Detecting Structural
Refactoring Conflicts Using Critical Pair Analysis. FElectr. Notes Theor.
Comput. Sci., 127(3):113-128.

[100] Meyer, B. (1992). Applying design by contract. IEEE Computer,
25(10):40-51.

[101] Mottu, J.-M., Baudry, B., and Traon, Y. L. (2006). Mutation analysis
testing for model transformations. In Proc. of ECMDA-FA, volume 4066 of
LNCS, pages 376-390. Springer.

[102] Mottu, J.-M., Baudry, B., and Traon, Y. L. (2008). Model transforma-
tion testing: oracle issue. In ICSTW’08, pages 105-112. IEEE.

[103] Mottu, J.-M., Sen, S., Tisi, M., and Cabot, J. (2012). Static analysis of
model transformations for effective test generation. In Proc. of ISSRE’12,
pages 291-300. IEEE.

[104] Object Management Group (OMG) (2001). OMG. Model Driven Archi-
tecture - A Technical Perspective. http://www.omg.org/cgi-bin/doc?ormsc/
2001-07-01.

[105] Object Management Group (OMG) (2003). OMG. MDA Guide Version
1.0.1. http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01.

[106] Object Management Group (OMG) (2008). OMG. MOF Model To
Text Transformation Language. Version 1.0. http://www.omg.org/spec/
MOFM2T).

[107] Object Management Group (OMG) (2010). OMG. UML
2.3.1 Superstructure specification. http://www.omg.org/spec/UML/2.3/
Superstructure/PDF/.

[OMG] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation.
Version 1.1. Object Management Group. http://www.omg.org/spec/QVT/
1.1/.

[109] Papadopoulos, G. A. and Arbab, F. (1998). Coordination models and
languages. Advances in Computers, 46:329-400.

167


http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
http://www.omg.org/spec/MOFM2T/
http://www.omg.org/spec/MOFM2T/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/QVT/1.1/

References

[110] Pérez-Castillo, R., de Guzman, I. G. R., and Piattini, M. (2011). Knowl-
edge Discovery Metamodel-ISO/IEC 19506: A standard to modernize legacy
systems. Computer Standards € Interfaces, 33(6):519-532.

[111] Pinheiro, F. A. C. and Goguen, J. A. (1996). An object-oriented tool
for tracing requirements. IEEE Software, 13(2):52-64.

[112] Ramesh, B. and Dhar, V. (1992). Supporting systems development by
capturing deliberations during requirements engineering. IEFEFE Transactions
on Software Engineering, 18(6):498-510.

[113] Ramos, R., Barais, O., and Jézéquel, J.-M. (2007). Matching model-
snippets. In Proc. of MODELS’07, volume 4735 of LNCS, pages 121-135.
Springer.

[114] Razavi, A. and Kontogiannis, K. (2012). Partial evaluation of model
transformations. In Proc. of ICSE’12, pages 562-572. IEEE.

[115] Richters, M. and Gogolla, M. (2002). OCL: Syntax, semantics, and
tools. In Object Modeling with the OCL, volume 2263 of LNCS, pages 42—68.
Springer.

[116] Rivera, J. E., Durdn, F., and Vallecillo, A. (2009a). A Graphical
Approach for Modeling Time-Dependent Behavior of DSLs. In Proc. of
VL/HCC 09, pages 51-55. IEEE.

[117] Rivera, J. E., Duran, F., and Vallecillo, A. (2009b). Formal specification
and analysis of domain specific models using maude. Simulation, 85(11-
12):778-792.

[118] Rivera, J. E., Ruiz-Gonzalez, D., Lopez, F., Bautista, J., and Vallecillo,
A. (2009c). Orchestrating ATL Model Transformations. In Proc. of the
MtATL 2009 Workshop, pages 34—46.

[119] Runeson, P. and Hést, M. (2009). Guidelines for conducting and re-
porting case study research in software engineering. Empirical Software
Engineering, 14(2):131-164.

[120] Sadalage, P. J. and Fowler, M. (2012). NoSQL Distilled. Addison-Wesley
Professional.

[121] Sénchez Cuadrado, J. (2012). Towards a family of model transformation
languages. In Proc. of ICMT 2012, volume 7307 of LNCS, pages 176-191.
Springer.

[122] Sénchez Cuadrado, J., Garcia Molina, J., and Menarguez Tortosa, M.
(2006). RubyTL: A practical, extensible transformation language. In Proc.
of ECMDA-FA’06, volume 4066 of LNCS, pages 158-172. Springer.

168



References

[123] Sénchez Cuadrado, J., Guerra, E., and de Lara, J. (2014). Uncovering
errors in atl model transformations using static analysis and constraint
solving. In Proc. of ISSRE’14. IEEE.

[124] Santiago, I., Jiménez, A., Bollati, V. A., Vara, J. M., de Castro, V.,
and Marcos, E. (2012). Model-driven engineering as a new landscape for
traceability management: A systematic literature review. Information and
Software Technology, 54(12):1340-1356.

[125] Schmidt, D. C. (2006). Guest editor’s introduction: Model-driven
engineering. IEEE Computer, 39(2):25-31.

[126] Sedlmeyer, R. L., Thompson, W. B., and Johnson, P. E. (1983).
Knowledge-based fault localization in debugging. Journal of Systems and
Software, 3(4):301-307.

[127] Seki, M. (2009). dRuby and Rinda: Implementation and Application of
Distributed Ruby and its Parallel Coordination Mechanism. International
Journal of Parallel Programming, 37(1):37-57.

[128] Sen, S., Baudry, B., and Mottu, J.-M. (2009). Automatic model gen-
eration strategies for model transformation testing. In Proc. of ICMT’09,
volume 5563 of LNCS, pages 148-164. Springer.

[129] Sen, S., Mottu, J.-M., Tisi, M., and Cabot, J. (2012). Using models
of partial knowledge to test model transformations. In Proc. of ICMT’12,
volume 7307 of LNCS, pages 24-39. Springer.

[130] Stachowiak, H. (1973). Allgemeine Modelltheorie. Springer-Verlag.

[131] Stevens, P. (2007). A Landscape of Bidirectional Model Transformations.
In Proc. of GTTSE 2007, volume 5235 of LNCS, pages 408-424. Springer.

[132] Straeten, R. V. D., Mens, T., and Baelen, S. V. (2008). Challenges
in model-driven software engineering. In Models in Software Engineering,
volume 5421 of LNCS, pages 35-47. Springer.

[133] Stiirmer, I., Conrad, M., Dérr, H., and Pepper, P. (2007). Systematic
testing of model-based code generators. IEEE Transactions on Software
Engineering, 33(9):622-634.

[134] Szarnyas, G., Izsé, B., Réth, I., Harmath, D., Bergmann, G., and Varro,
D. (2014). IncQuery-D: A distributed incremental model query framework
in the cloud. In Proc. of MODFELS’14, volume 8767 of LNCS, pages 653—669.
Springer.

169



References

[135] Tisi, M., Jouault, F., Fraternali, P., Ceri, S., and Bézivin, J. (2009). On
the Use of Higher-Order Model Transformations. In Proc. of ECMDA-FA’09,
volume 5562 of LNCS, pages 18-33. Springer.

[136] Tisi, M., Martinez, S., Jouault, F., and Cabot, J. (2011a). Refining
models with rule-based model transformations. Research Report RR-7582.
https://hal.inria.fr/inria-00580033v1/document.

[137] Tisi, M., Perez, S. M., and Choura, H. (2013). Parallel execution of
ATL transformation rules. In Proc. of MODELS’13, volume 8107 of LNCS,
pages 656-672. Springer.

[138] Tisi, M., Perez, S. M., Jouault, F., and Cabot, J. (2011b). Lazy execution
of model-to-model transformations. In Proc. of MoDELS 2011, volume
6981 of LNCS, pages 32—46. Springer.

[139] Tiso, A., Reggio, G., and Leotta, M. (2012). Early Experiences on Model
Transformation Testing. In Proc. of the AMT’12 Workshop @ MODELS’12,
pages 15—20. ACM.

[140] Troya, J., Burgueno, L., Wimmer, M., and Vallecillo, A. (2014). Muta-
tions in ATL transformations and their identification with matching tables.
Technical report. http://atenea.lcc.uma.es/Descargas/MTB/Mutations/
TechReport.pdf.

[141] Troya, J. and Vallecillo, A. (2011). A Rewriting Logic Semantics for
ATL. Journal of Object Technology, 10:5:1-29.

[142] Ujhelyi, Z., Horvéath, A., and Varré, D. (2012). Dynamic backward
slicing of model transformations. In Proc. of ICST’12, pages 1-10. IEEE.

[143] Vallecillo, A., Gogolla, M., Burgueno, L., Wimmer, M., and Hamann,
L. (2012). Formal specification and testing of model transformations. In
Formal Methods for Model-Driven Engineering (SFM), volume 7320 of
LNCS, pages 399—-437. Springer.

[144] van Amstel, M., Bosems, S., Kurtev, I., and Pires, L. F. (2011). Per-
formance in model transformations: Experiments with ATL and QVT. In
Proc. of ICMT 2011, volume 6707 of LNCS, pages 198-212. Springer.

[145] Varrd, D. and Pataricza, A. (2004). Generic and meta-transformations
for model transformation engineering. In Proc. of UML’04, volume 3273 of
LNCS, pages 290-304. Springer.

[146] von Pilgrim, J., Vanhooff, B., Schulz-Gerlach, I., and Berbers, Y. (2008).
Constructing and visualizing transformation chains. In Proc. of ECMDA-FA
2008, volume 5095 of LNCS, pages 17-32. Springer.

170


https://hal.inria.fr/inria-00580033v1/document
http://atenea.lcc.uma.es/Descargas/MTB/Mutations/TechReport.pdf
http://atenea.lcc.uma.es/Descargas/MTB/Mutations/TechReport.pdf

References

[147] Wagelaar, D., Tisi, M., Cabot, J., and Jouault, F. (2011). Towards
a general composition semantics for rule-based model transformation. In

Proc. of MODELS 2011, volume 6981 of LNCS, pages 623-637. Springer.

[148] Wells, G. (2006). New and improved: Linda in java. Science of Computer
Programming, 59(1-2):82-96.

[149] Wells, G., Chalmers, A., and Clayton, P. G. (2004). Linda implementa-
tions in java for concurrent systems. Concurrency — Practice and Experience,

16(10):1005-1022.

[150] Wimmer, M., Kappel, G., Schonbock, J., Kusel, A., Retschitzegger, W.,
and Schwinger, W. (2009). A Petri Net based debugging environment for
QVT Relations. In Proc. of ASE’09, pages 3-14. IEEE.

[151] Wimmer, M., Martinez, S., Jouault, F., and Cabot, J. (2012). A
catalogue of refactorings for model-to-model transformations. Journal of
Object Technology, 11(2):1-40.

[152] Wischenbart, M., Mitsch, S., Kapsammer, E., Kusel, A., Proll, B.,
Retschitzegger, W., Schwinger, W., Schonbock, J., Wimmer, M., and
Lechner, S. (2012). User profile integration made easy: model-driven
extraction and transformation of social network schemas. In Companion
Proceedings of the 21st World Wide Web Conference (WWW 2012), pages
939-948. ACM.

[153] Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J. P.,
and Vouk, M. A. (2006). On the value of static analysis for fault detection
in software. IEEE Transactions on Software Engineering, 32(4):240-253.

171



YOV YW 30
avaISY3AINN




Appendix
Similarity
Matrixes

This appendix shows some examples of similarity matrixes for transformations
in the ATL Zoo [61] and some more. Due to the number of rules and thus,
the size of the table, the similarity matrix of some transformations cannot be
displayed here. Nevertheless, all of them are available in our website [24].
The similarity matrixes—which have been obtained with our tool—are
shown in Figures A.2—-A.32. The documentation, which also includes the
transformation and the metamodels involved, can be found at the ATL Zoo

website.

173



Chapter A. Similarity Matrixes

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18

R1

Fig. A.1 Similarity Matrix for the ATOM2XML example.

R2

R3

RL R2 R} RI R R6 RI RS
R1 1| 0,242 0,242| 0,242| 0,222| 0,268| 0,206| 0,236
R2 | 0,242 1| 0,467\ 0,467| 0,383] 0,32| 0,467 0,296
R3 | 0,242] 0,467 1| 0,457 0,339] 0,269| 0,467| 0,295
Ra | 0,242] 0,467| 0,467 1| o0,383| 0,32 0,467] 0,296
Rs | 0,222] 0,283| 0,389| 0,389 1| 0,286 0,329] 0,267
R6 | 0,268] 0,22] 0,269] 0,32] 0,226 1| 0,32] 0,278
R7 | 0,206] 0,467] 0,467] 0,467 0,389] 0,32 1| o525
R8 | 0,286] 0,296| 0,296] 0,296| 0,267 0,278] 0,25 1

# Rules 8

Mean " 0,331

Deviation | 0,087

R4

RS

R6

R7

R8 RO

R10

R11

R12

R13

R14

R15

R16

R17

R18

1

0,313

0,313

0,185

0,357

0,357

0,357

0,25 | 0,727

0,6

0,364

0,4

0,313

0,313

0,357

0,412

0,533

0,727

0,313

0,333

0,192

0,385

0,385

0,385

0,263 | 0,385

0,278

0,208

0,227

0,333

0,333

0,385

0,278

0,294

0,385

0,313

0,333

1

0,192

0,385

0,385

0,385

0,263 | 0,385

0,278

0,318

0,227

0,333

0,333

0,385

0,278

0,294

0,385

0,185

0,192

0,192

0,208

0,208

0,208

0,591 | 0,208

0,172

0,143

0,152

0,192

0,192

0,208

0,172

0,179

0,208

0,357

0,385

0,385

0,208

0,455

0,455

0,294 | 0,455

04

0,227

0,25

0,385

0,385

0,455

0,313

0,333

0,455

0,357

0,385

0,385

0,208

0,455

0,455

0,294 | 0,455

0,313

0,227

0,25

0,385

0,385

0,455

0,313

0,333

0,455

0,357

0,385

0,385

0,208

0,455

0,455

1

0,294 | 0,455

0,313

0,227

0,25

0,385

0,385

0,455

0,313

0,333

0,455

0,25

0,263

0,263

0,591

0,294

0,294

0,294

1 |o29a

0,227

0,179

0,192

0,263

0,263

0,294

0,227

0,238

0,294

0,727

0,385

0,385

0,208

0,455

0,455

0,455

0,29a] 1

0,5

0,35

0,389

0,385

0,385

0,455

0,5

0,667

0,6

0,278

0,278

0,172

0,4

0,313

0,313

0,227 | 0,5

1

0,455

0,429

0,278

0,278

0,313

0,368

0,389

0,5

0,364

0,208

0,318

0,143

0,227

0,227

0,227

0,179| 0,35

0,455

1

0,714

0,208

0,208

0,227

0,28

0,292

0,35

0,4

0,227

0,227

0,152

0,25

0,25

0,25

0,192 | 0,389

0,429

0,714

0,227

0,227

0,25

0,304

0,318

0,389

0,313

0,333

0,333

0,192

0,385

0,385

0,385

0,263 | 0,385

0,278

0,208

0,227

1

0,385

0,353

0,375

0,385

0,313

0,333

0,333

0,192

0,385

0,385

0,385

0,263 | 0,385

0,278

0,208

0,227

1

0,385

0,353

0,375

0,385

0,357

0,385

0,385

0,208

0,455

0,455

0,455

0,294 | 0,455

0,313

0,227

0,25

0,385

0,385

0,313

0,333

0,455

0,412

0,278

0,278

0,172

0,313

0,313

0,313

0,227| 0,5

0,368

0,28

0,304

0,353

0,353

0,313

0,667

0,5

0,533

0,294

0,294

0,179

0,333

0,333

0,333

0,238 | 0,667

0,389

0,292

0,318

0,375

0,375

0,333

0,667

0,667

0,727

0,385

0,385

0,208

0,455

0,455

0,455

029a| 1

0,5

0,35

0,389

0,385

0,385

0,455

0,5

0,667

# Rules

13

Average

Ld
0,352

Deviation

-
0,138

Fig. A.2 Similarity Matrix for the ATL2Problem

R1
R2
R3

RL R2 R3
1 |o0,102]0,049

o102 1 | o

o043 o | 1

# Rules 3

Mean 0,05

Deviation 0,051

example.

Fig. A.3 Similarity Matrix for the ATOM2RSS example.

174




R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16

R1
R2
R3
R4
RS
R6
R7
R&
R9

Fig. A.4 Similarity Matrix for the BibTex2DocBook example.

R1 R2 R3 R4 RS RE R7 R8 RO
1 0,059 | 0,125 | 0,056 | 0,059 | 0,056 | 0,059 | 0,059 | 0,063
0,059] 1 |o0,333|0,286|0,333| 0,286 | 0,333 (0,333 0,4
0,125 | 0,333 1 0,5 0,6 |0285|0,333|0,333| 04
0,056 | 0,286 | 0,5 1 0,8 (0429 05 | 0,5 | 0,6
0,059 |0,333| 0,6 | 0,8 1 05 | 06 | 0,6 | 0,75
0,056 | 0,286 | 0,286 | 0,429 | 0,5 1 0,8 0.8 0,6
0,059 | 0,333 |0,333| 05 | 0,6 | 0,8 1 0,6 | 0,75
0,059 (0,333 |1 0,333 | 0,3 0,6 0,8 0,6 1 0,75
0,063| 0,4 | 04 | 06 | 0,75 | 06 | 0,75 | 0,75 1

# Rules 9

Mean " 0,413

Deviation " 0,244

R1 R2 R3 R4 R5 RG6 R7 R& RO R10 R11 R12 R13 R14 R15 R16
1 0 ] ] ] ] ] ] ] ] ] ] ] ] ] ]
] 1 0,034 0,059 ] 0,017 0O ] ] ] 0,034 0 ] ] ] ]
] 0,034 1 0,25 ] 0,102 |0,083| 0,083 |0,083)|0,125|0,091| O ] 0,1 |0,133 ]
] 0,059| 0,25 1 0 0,091|0,067| 0,067 | 0,067 0,091 O ] ] 0,077 0,095 ]
] ] ] ] 1 0,227| 0,04 | 0,04 | 0,04 ] 0,143 0,226| 0,034 | 0,048 ] 0,067
] 0,017|0,102 | 0,091 (0,227 1 0,077|0,077|0,077| 0,067| 0,019 0,079 (0,132 0,061 | 0,044 | 0,022
] ] 0,083 | 0,067 0,04 (0,077] 1 0,867|0,556|0,111| 0O 0,111|0,032|0,333| 0,118 ]
] ] 0,083 |0,067| 0,04 (0,077(0,867] 1 0,556|0,111| 0O 0,111|0,032|0,333| 0,118 ]
] ] 0,083 |0,067| 0,04 |(0,077(0,556|0,556] 1 0,111 0 0,212|0,032|0,333| 0,118 ]
] ] 0,125|0,091| 0O 0,067|0,111| 0,111 0,111 1 0 ] 0,043 | 0,143 | 0,571 ]
] 0,034|0,091| 0O 0,143 0,019 ] ] ] ] 1 0,086|0,034| 0 ] ]
] ] ] ] 0,226|0,079|0,111|0,111|0,212| O 0,086 1 0,023 | 0,091 ] 0,034
] ] ] ] 0,034)|0,132| 0,032 | 0,032 | 0,032 | 0,043 | 0,034 0,023 1 0,077 0,095 ]
] ] 0,1 |0,077|0,048|0,061)|0,333|0,333|0,333| 0,143 ] 0,091 0,077] 1 0,154 ]
] ] 0,133 0,095 ] 0,044|0,118| 0,118 | 0,118|0,571| O ] 0,095| 0,154 1 0
0 0 0 0 0,067|0,022| 0 0 0 0 0 0,034 0 0 0 1

# Rules 16

Mean 70,073

Deviation 0,13

Fig. A.5 Similarity Matrix for the CPL2SPL example.

175



Chapter A. Similarity Matrixes

R1 R2 R3 R4 R5 RG R7 R8 R9 R10 R11 R12 R13 R14
R1 1 0,06 o o ] o o ] o o ] o o ]
R2 | 0,06 1 0,08 i} ] o 0,09| 0,04 | 0,08 | 004| 0,1 o 0,15 | 0,13
R3 o 0,08 1 gi4|008|01 (01|01 |01]01 ] o 0,09| 0,1
R4 o 0 0,14 1 0,2 |017|0,17| 0,17 | 0,15| 0,15 0 o o 0
R5 o 1] 0,08 | 0,2 1 0,2 | 0,09 | 0,09 | 0,08 | 0,08 1] o o 1]
R | 0 0o [o1|017|02] 1 |025|025|024|0,24| 0 (] 0 0
R7 o 009 01 | 0,17 | 0,09] 0,25 1 054(075| 04 | 0,13 o 0 ]
R8 o 004| 01 |017| 009|025 | 054 1 04 | 0,75 | 0,06 o o ]
R9 o g08| 01 |015(008|0,24|075| 04 1 0,57 | 0,12 o o 0
R10 o 004 01 |015| 008|024 0,4 | 0,75 0,57 1 0,06 o o 1]
R11| o (o1 | O 0 0 0 |013|006|012|006] 1 |02 0 0
R12 o ] o i} ] o i} ] o 0 0,2 1 0 ]
R13 o 0,15 | 0,09 o ] o o ] o o ] 1 0,91
R14 ] 0,13 0,1 0 0 0 0 0 o 0 0 o 0,91 1
# Rules 14
Mean " 0,1
Deviation 0,17]

Fig. A.6 Similarity Matrix for the ECORE2USE example.

R1 R2 R3 R4 R5 R6 R7 R8 RS9 R10 R11 R12 R13

R1 1| 0,14| 0,071 0,051| 0,143| 0,042 0,051| 0,039 0 0 o| 0,073| 0,093
R2 0,14 1] 0,143| 0,111 0,08 o o o ] ] ] o 0j
R3 | 0,071 0,143 1 0 0,045 o o o ] ] ] o 0|
R4 | 0,051 0,111 0 1] ] o o o ] ] ] o 0j
RS | 0,143| 0,08| 0,045 0| 1| 0,077 o o ] ] ] o 0|
RE6 | 0,042 1] ] of 0,077 1] 0| 0,065| 0,133 1] 0| 0,091 0
R7 | 0,051 ] ] o o 0| 1] o ] ] ] 0| 0,125
R& | 0,039 1] ] o 0| 0,065 0| 1] 0,156 0| 0,091| 0,227| 0,071
RO o ] ] o 0| 0,133 0| 0,156 1| 0,087| 0,087 0,077| 0,069
R10 o 1] ] o o o o 0| 0,087 1 ] o 0
R11 o ] ] o o o 0| 0,091| 0,087 0 1 0| 0,125
R12 | 0,073 1] ] o 0| 0,091 0| 0,227| 0,077 1] 0 1] 0|
R13 | 0,093 ] ] o o 0| 0,125| 0,071 0,069 0| 0,125 0| 1]

i Rules 13

Average '0,033

Deviation ' 0,052

Fig. A.7 Similarity Matrix for the IEEE14712MoDAF example.

176



R1
R2
R3
R4
R5
R6
R7
R8
RO
R10
R11
R12
R13
R14
R15
R16

R1
R2
R3
R4
R5
R6&
R7
R&
R9
R10
R11
R12
R13
R14
R15
R16

RL R2 R R4 Rs R6 RI R8 RO RI0O RI1 RI2 RI3 RI4 RIS RI6
1 Jo3248]0267] 019 [0,154] o0 o Joi21] o 0 0 |0174]0,174]0,174 0,167 0,222
0348 1 [o0167]0,133[0,219] o o |o173| o 0 o |0,125]|0,125 | 0,125 0,233 | 0,292
0,267]0,167] 1 |o222]|017 {0056 o [o0133| o 0 o | 02|02 ] 020190267
0,19 |0133]0222] 1 Jo269] o 0o |o212] o 0 o | 025|025 025] 024 0,19
0,154 0,219 | 0,174 [ 0,269 [ 1 o |o0029|0286] o 0 0 |0,296| 0,296 | 0,296 | 0,241 | 0,304
0 o |o0s6| o 0 1 |o0174|0321|0071] 0 o |o038]0,038|0038] o 0
0 0 0 0 |0029|017a] 1 |o0,135|0,111]0,111] 0,111 | 0,067 |0,067| 0,067] 0 0
0,121] 0,179 | 0,133 [ 0,212 | 0,285 | 0,321 [ 0,135 1 [o0,024 o o | 02| 02 | 02 |0229]0,233
0 0 0 0 o |o0071|0,111]|002a] 1 [o0,222]03222 0 0 0 0
0 0 0 0 0 o |o11| o [0333] 1 ]o333 0 0 0 0
0 0 0 0 0 o |o111| o [o333f0333] 1 0 0 0 0
0,174]0,125| 02 | 0,25 [0,296 | 0,038 [ 0,067| 02 | o 0 0 0,684| 0,6 |0,138 (0,174
0,174]0,125| 02 | 0,25 [0,296 | 0,038 [ 0,067| 02 | o 0 o losea] 1 | o6 [0138017a
0,174 | 0,125 | 0,2 | 0,25 | 0,296 | 0,038 | 0,067 | 0,2 0 0 0 06 | 06 1 |o01380,178
0,167 0,233 | 0,19 | 0,24 [0241] o 0o |o229] o 0 o |o138]|0138[0138] 1 | 04
0,222 0,292 [ 0,267 | 0,19 [0,302] o 0o |o0233] o 0 0 |o174]017a|017a| 0a | 1

# Rules 16|

Mean " 0,128

Deviation ' 0,138

Fig. A.8 Similarity Matrix for the KM320WLF example.

RL R2 R3 R4 RS R6 R7 RS RO RIO RI1 RI2Z R13 R4 RI5 RI6
1 | o5 | 05| 05 |0357]0,357|0,294 0,538 | 0,455 | 0,357 | 0,333 | 0,333 | 0,333 | 0,233 | 0,417 | 0,455
05| 1 |o0429|0429|0,313]|0,313|0,333| 0,692 0,385 (0,313 | 0,294 | 0,294 | 0,375 | 0,294 | 0,357 | 0,8
0,5 [0429] 1 |o0,429|0,313|0,313| 0,263 (0,375 | 0,385 | 0,313 | 0,294 | 0,294 | 0,294 | 0,294 | 0,357 | 0,385
0,5 |0429|0,429] 1 |o,313]0,313]0,263] 0,375 (0,385 | 0,615 | 0,571 | 0,571 | 0,294 | 0,294 | 0,357 | 0,385
0,357 0,313 | 0,313 | 0,313] 1 1 |0,786|0,278 | 0,583 | 0,467 | 0,438 | 0,438 | 0,769 | 0,438 | 0,538 | 0,357
0,357 | 0,313 | 0,313 | 0,313 1 1 | 0,786 | 0,273 | 0,583 | 0,467 | 0,438 | 0,438 | 0,769 | 0,438 | 0,538 | 0,357
0,294 [ 0,333 | 0,262 | 0,263 [ 0,785 | 0,786] 1 | 0,3 |0,467|0,389 | 0,368 | 0,368 | 0,857 | 0,368 | 0,438 | 0,375
0,538 [ 0,692 | 0,375 | 0,375 | 0,278 | 0,278 | 0,3 | 1 |o0,333|0.278|0,263 | 0,263 | 0,333 | 0,263 | 0,313 | 0,667
0,455 | 0,385 | 0,385 | 0,385 | 0,583 | 0,583 | 0,467 | 0,333 1 [0,583 | 0,538 | 0,538 | 0,538 | 0,538 | 0,889 | 0,455
0,357 | 0,313 | 0,312 | 0,615 | 0,467 | 0,467 | 0,389 | 0,278 | 0,583 1 | 0,769 | 0,769 | 0,438 | 0,438 | 0,538 | 0,357
0,333 | 0,294 | 0,294 | 0,571 | 0,438 | 0,438 | 0,368 | 0,263 | 0,538 | 0,769| 1 |0,846|0,412 0,412 0,5 0,333
0,333 [ 0,294 | 0,294 | 0,571 | 0,438 | 0,438 | 0,368 | 0,263 | 0,538 | 0,769 | 0,826 1 |o0,412|0,412] 0,5 0,333
0,333 | 0,375 | 0,294 | 0,294 | 0,769 | 0,769 | 0,857 | 0,333 | 0,538 | 0,438 | 0,412 | 0,412 1 [o0412| 0,5 |0429
0,333 | 0,294 | 0,294 | 0,294 | 0,438 | 0,438 | 0,368 | 0,263 | 0,538 | 0,438 | 0,412 | 0,412 |0,412] 1 | 0,5 0,333
0,417 0,357 | 0,357 | 0,357 | 0,538 | 0,538 | 0,438 ] 0,212 | 0,889 [ 0,538 | 0,5 | 05 | 05 | 05 | 1 [o417
0,455 | 0,8 |0,385|0,385|0,357| 0,357 | 0,375 | 0,667 | 0,455 | 0,357 | 0,333 | 0,333 | 0,429 | 0,333 | 0,417] 1

#Rules 16

Mean " 0,439

Deviation 0,155

Fig. A.9 Similarity Matrix for the KM32Problem example.

177




Chapter A. Similarity Matrixes

RlL R2 R3 R4 R5 R6

R1 1 |0,33 0 0 0 0
R2 | 0,33 1 0,2 | 02|02 0
R3] 0o |02 1 1 1 |025
ra| 0 |02 1 1 1 |025
Rs | 0 |02 1 1 1 |025
R6 0 0 0,25| 0,25 | 0,25 1

# Rules 6|

Mean " 0,31

Deviation 0,37

Fig. A.10 Similarity Matrix for the Measure2Table example.

Rl R2 R3 R4 R5 R6

R1 1 0,33 o o o o
R2 |033] 1 |o2|02|02] 0
3| o [o2] 1 1 1 [o025
R4 ] 0,2 1 1 1 0,25
RS 0 0,2 1 1 1 0,25
RO 0 0 [0,25|0,25] 0,25 1

# Rules 6

Mean " 0,31

Deviation " 0,37]

Fig. A.11 Similarity Matrix for the Measure2XHTML example.

RL R2 R3 RI RS R6 R/ RS R9 RI0 RIL
Rt | 1 |o,038|0,038|0,038|0,029|0,028| 0,03 | 0,03 |0,029|0,048| 0,05
Rz |o038 1 1 1 |0,152{0,143 | 0,156| 0,194 | 0,219 | 0,042 | 0,043
R [o038) 1 1 1 |0,152{0,143|0,156| 0,194 | 0,219 | 0,042 0,043
rRa |o038) 1 1 1 |o0,152| 0,143 | 0,156| 0,194 | 0,219 | 0,042 0,043
rs |o0,029]|0,152] 0,152 |0,152] 1 |o0,778|0,184] 0,154| 0,275 | 0,065 | 0,067
R6 |0,028|0,143| 0,143 |0,143] 0,778] 1 |0,175|0,146|0,167 | 0,029| 0,03
rR7 | 0,03 |0,156| 0,156 | 0,156| 0,184 0,275 1 [0,913|0,917|0,032| 0,033
r8 | 0,03 |0,194|0,194|0,194| 0,154( 0,246 | 0,913 1 |0,917|0,032| 0,033
rRo |0,029]0,219]0,219|0,219]| 0,175{ 0,267 | 0,917| 0,917 1 | 0,03 | 0,021
R10 | 0,048 | 0,042 0,042 | 0,042 | 0,065 | 0,029 | 0,032| 0,032| 0,03 | 1 [o0,267
R11 | 0,05 | 0,043 | 0,043 | 0,043 | 0,067| 0,03 | 0,033| 0,033 |0,031| 0,267 1

#Rules 11]
Mean 70,207
Deviation ' 0,289

Fig. A.12 Similarity Matrix for the MySQL2KM3 example.

178



RL R2 R3
R1 1 |o0,105| 0,148
R2 |o0105) 1 0,2
R3 |o148] 02 | 1

# Rules 3
Mean " 0,151]
Deviation 4 0,047

Fig. A.13 Similarity Matrix for the PathExp2PetriNet example.

RL R2Z R3 R4 RS
R1 | 1 0 0 0 |0,273
R2 | o 1 1 1 |0,154
R3I | o 1 1 1 |0,154
Ra | o 1 1 1 0,154
Rs |0,273|0,154|0,154 0,154 1

#Rules 5
Mean "0,373
Deviation '0,441

Fig. A.14 Similarity Matrix for the PathExp2TextualPath example.

RL R2 RX R4 RS
R1 1 | 0,063 | 0,067 | 0,067 [ 0,067
rR2 [0,063] 1 |o0,88]0,188 (0,188
R3 |0.067|0,188] 1 | 02 | 02
R4 [0,067|0,188| 02 | 1 | 02
Rs [o0.067|0,188| 02 | 02 ] 1

#Rules 5
Mean 0,143
Deviation ' 0,066

Fig. A.15 Similarity Matrix for the PetriNet2Grafcet example.

179



Chapter A. Similarity Matrixes

RL R2 R3
Rt | 1 Jo222|0211
rR2 [0222] 1 | 0a
R 00211 04 | 1
# Rules 3
Mean 0,278
Deviation 0,106

Fig. A.16 Similarity Matrix for the PetriNet2PathExp example.

R1 R2 R3 R4
R1 1 |0,129|0,129| 0,135
R2 | 0,129 1 0,222 | 0,208
R3 |0,129|0,222] 1 |o0,208
R4 | 0,135( 0,208 | 0,208 1
# Rules 4
Mean 0,172
Deviation " 0,045

Fig. A.17 Similarity Matrix for the PetriNet2PNML example.

RL R2 R2 R4 RS
Rt | 1 |o,563|0,467|0,368] 0,362
rR2 |o0,563| 1 |0,583|0,533|0,533
R3 |0467|0,583] 1 |o0,667|0,667
Ra |0,368/0,533|0,667] 1 | 0.6
rs |0,362|0,533|0,667| 06 | 1
#Rules 5
Mean "0,535
Deviation 0,107

Fig. A.18 Similarity Matrix for the PetriNet2XML example.

180




R1 R2 R3 R4 R5

R1 1 0,28 | 0,28 | 0,2 0,2
R2 0,28 1 04 |0,231(0,231
R3 | 0,28 | 04 1 |o0,231|0,231
R4 0,2 |0,231|0,231 1 0,565
RS 0,2 |0,231|0,231 | 0,565 1
#Rules 5
Mean " 0,285
Deviation " 0,115

Fig. A.19 Similarity Matrix for the PNML2PetriNet example.

R1 R2 R3 R4

Rt | 1 |o0567] 0,567 0,548
Rz [0567] 1 [o905] 0,864
R3 [0,567|0905| 1 |o864
Ra [o0,548 ] 0,854 | 0,864 1
#Rules 4|
Mean " 0,719
Deviation ' 0,174]

Fig. A.20 Similarity Matrix for the PNML2XML example.

RL R2 R R4 RS R6 R/ RS RO RID RI1 R12Z RI13 R4
Rt | 1 |o1ws| o 0 0 0 0 0 |o0097] o 0 0 0 0
rR2 [o0,105] 1 Jo0z4] 0032 0034|005 [00ae] o o |oos2] o |oo0ss|oosa]| o
Rz | o [o03| 1 |o0657]0667|0192]0231] 0 0o |o0a| o |o0037|0037] o
Ra | o [o0a|oes7| 1 |o667|0148]0231] 0 0 |o00| o |o077|0077] o
Rs | o [o003a|o0667]0667] 1 |o248|0231| o [o022] 007100270037 0027] 0
Ré | o | 005 o0192]0148]0248] 1 [0353] o 0o |o00s| o |oo0s6|00s6]| 0
R7 | o [oo04e|o0231]0231]0221|0353] 1 [o0067] o [o0ae| o [o0053]|00s2] o
R& | o 0 0 ) 0 o [o0e7| 1 0 0 ) 0 0 0
Ra [0097] o 0 0 [o02] o 0 0 1 |0222]0129] 0,020,023 0,077
R0 | 0o |0053]0024|003a|0071] 005 [0022] o [o22] 1 ] o012 [0,125]0125] 0,154
Ri1 | o 0 0 0o [o027] o 0 o [o129]012] 1 | 004 ] 004 0095
Ri2 | o |0059]0037|0,077| 0037 0056|0053 o |0033]0125| 008 1 [0ass| o
Riz | 0 |0,059]0037|0,077] 0,037 0,056 | 0053] o [o0033]0125] 0,08 [0455] 1 )
Ria | o 0 0 0 0 0 0 0 |0,077]0154]|0095| o0 0 1

# Rules 14

Mean " 0,073

Deviation 0,136

Fig. A.21 Similarity Matrix for the R2ML2WSDL example.

181



Chapter A. Similarity Matrixes

R1 R2 R3

R1 1 0,091 | 0,057
R2 0,091 1 o
R3 0,057 o 1
# Rules 3
Mean " 0,049
Deviation d 0,046

Fig. A.22 Similarity Matrix for the RSS2ATOM example.

R1T RZ R3 R4
r1 | 1 |o0,257|0,267|0,241
rR2 |0,257] 1 |0,444]|0,412
R3 |0,267|0,444) 1 |o.636
rRa |o0,241|0,412|0,636] 1

# Rules

Deviation

Fig. A.23 Similarity Matrix for the RSS2XML example.

RL R2 R} R4 R5 R6 R7 RS
Rl 1] el ol ool ol]o]o
Re| o] 1 ]os] oo o] o] o
Rz | o |o2s] 1 [o2] o [o2s] 0 | o
Re | o | o [o2] 1 |oz2]01al025]033
Rs | o | o | o |o2| 1 |o1a|o017] 02
Re | o | o [o2s]01a]ona] 1 [o013]014
Rz | o | o | o [o2s]|o17]013] 1 |02
Re | o | o | o [o33]o02]01alo2s] 1

#Rules 8|

Mean "0,094

Deviation 0,111

Fig. A.24 Similarity Matrix for the UML2ER example.

182



R1
R2
R3
R4
R5
R6
R7
R&
RS9
R10
R11
R12
R13
R14
R15
R16
R17

Fig. A.25 Similarity Matrix for the XML2MySQL example.

R1
R2
R3
R4
R5
R6

RL R2Z R3 R4 RS RG
1 |o0364]0,118] 0,15| o [o,188
0364] 1 |oa111l0,143] o |05
o,118|0,111] 1 [o12] o o143
0,15 |0,143| 0,12] 1 | 0.1 |0,167
o | o o fort|] 1] o
0,188] 0,25 |0,143|0,167] 0 | 1
#Rules 6|
Mean "0,123
Deviation ' 0,101

RL R2 R} RI Rs R6 R7 RS RO RIO RI1 RI2 RI3 RM RIS RI6 RIT
1 Jous] o [ o [ o [ o] o ] o[ o Joms] o J o] o] o]o[]o]fo
018 1 |o063]o0048]006a| o | o |o125(0083] 0 | 0 | o |0067|0077] 005|008 o
0 |o0063] 1 |o0,389]0,538 0111|0067 |0091]0111] 0 | 0 | 0 |0056]0,133 0,043 |0,042] 0,08
0 |0048|0389] 1 0,389 0,19 | 0,05 |0063]| 025| 0 | 0 | 0 |0,043 0,048 0,036 | 0,034 | 0,103
0 00630538038 1 |0111]0,067|0091]0111] o | 0o | 0 |0056]0,063 0,043 0,042 0,08
o | 0o |outi] o019 |o111| 1 Jo143] o |oaze| o | o | o | o | o |0043|0,042]0,286
o | 0o |oo67| 005 |0067]0043] 1 | o | o | o | o | o | o | o | o | o |oe0ss
0 |0,125|0,0010063|0091] 0 | o | 1 |009] o | o | o | 01 |0125|0067|0063| 0
0 |0063|0111] 0,25 [0111]0176] o |0091] 1 | o | o | o |0056]0,063 0,091 0,087 0,08
o8| o | o | o | o | o | 0o | o | 0| 1]or]oe1] o | a] o] o] o
o | o ] o | o o o] o o] o ot] 1 JomaJoos| o [o0a] o |00
o | 0o | 0o | o | o] a] o | o] o] o1 a7mal 1 Joos| o | o |o038]00%
0 |0,067]|0,056|0043|0056] o | o | a1 |005] o | 005|005 1 |o0143]0,278|0,263| 0
0 007701330048 0063 0 | 0 |0125]/0083] 0 | o | o |o0143] 1 | 005 |o0a8| o
0 | 0,05 | 0,043 |0,036 0,043 [0,043] 0 [0067]0091] o |04 0 |0278| 005| 1 |0,706] 0,148
0 |o0048| 0,082 |0,02a]|0042|0082| 0 |0063]|0087] 0 0 |00%8|0,263|0,0a8 0,706 1 [o0,143
0o | o |o08 0103|008 [0286[0095] 0 [008] o0 |0036 003 0 | 0 |ou48|043] 1

#Rules 17

Mean " 0,065

Deviation 0,115

Fig. A.26 Similarity Matrix for the WSDL2R2ML example.

183



Chapter A. Similarity Matrixes

RL R2 R3 R4 RS R6 R7 RS RO RIO
R1| 1 |o0,069|0,067]|0,194 |0,033| 0,033 |0,061|0,069 | 0,069 | 0,065
Rz |o0,069] 1 |oas2|o091| 02 | 0,2 |0,43| 0,2 | 0,2 |0,167
R3 | 0,067 (0,182 1 |o0,087|0,182| 0,182 0,133 | 0,182 | 0,182 | 0,154
R4 | 0,194 (0,091 0,087| 1 |o0091|0,091| 0,12 |0,143 | 0,143 | 0,13
RS |0,033| 0,2 |0a82|0,091] 1 | 02 |0143| 0,2 | 0,2 |0,167
R6 |0,033| 0,2 |0,182|0,091| 0,2 1 |o0,143| 0,2 | 0,2 |0,167
R7 | 0,061 (0,143 0,133 | 0,12 |0,143|0,143| 1 |0,43|0,143| 04
R8 |0,069| 0,2 |0182|0,143| 0,2 | 0,2 |0,143] 1 | 0,2 |0,167
R9 |0,069| 0,2 |0,182|0,243| 0,2 | 0,2 |0,143| 0,2 1 |o0,167
r10| 0,065 | 0,167 | 0,154 | 0,13 |0,167|0,167 | 0,4 |0,167|0,167] 1

# Rules 10|
Mean " 0,149
Deviation " 0,064

Fig. A.27 Similarity Matrix for the XML2ATOM example.

R1 R2 R3 R4 R5
R1 1 0,2 | 0,2 |0,286|0,286
R2 0,2 1 |0,333(0,332|0,333
R3 0,2 |0,333] 1 |0,333|0,332
R4 |0,286|0,333(0,333] 1 0,333
R5 |0,286|0,333(0,333|0,333] 1

# Rules 5
Mean 70,297
Deviation ' 0,055

Fig. A.28 Similarity Matrix for the XML2PetriNet example.

184



Fig. A.29 Similarity Matrix for the XML2PNML example.

R1
R2
R3
R4
R5
RE
R7
R&
RO

Fig. A.30 Similarity Matrix for the XML2RSS example.

R1

R1
R2
R3
R4
RS

R2

RL R2 R3 R4 RS

0,188| o0 0 0

0,188 1 [o421]044a] 0,32

0421 1 [o471]0,333

0 |o44a]04a71| 1 [o348

0 |o032]|0333]|0348] 1
# Rules 5
Mean " 0,252
Deviation ' 0,191

R3

R4

R5

R6

R7

R8

R9

1

0,129

0,071

0,067

0,071

0,13

0,143

0,143

0,077

0,129

0,097

0,094

0,097

0,154

0,129

0,094

0,065

0,071

0,097

0,134

0,167

0,087

0,154

0,134

0,182

0,067

0,094

0,154

1

0,154

0,083

0,143

0,143

0,167

0,071

0,097

0,167

0,154

0,087

0,154

0,154

0,182

0,13

0,154

0,087

0,083

0,087

1

0,182

0,182

0,143

0,143

0,129

0,154

0,143

0,154

0,182

0,455

0,167

0,143

0,094

0,154

0,143

0,154

0,182

0,455

0,167

0,077

0,063

0,182

0,167

0,182

0,143

0,167

0,167

#Rules

9

Mean

L
0,139

Deviation

L
0,066

185



Chapter A. Similarity Matrixes

RL Rz R3 RI R5 R6 R7 RS R9 RI0O RIL RI2Z R13 R4 RIS RIG RI7 RI8 RI9
Rt | 1 |o2s1]o111|o0e| o |o0111|0,091]0,188 0,118 0,083 | 0,125 0,125 [ 0,125 0,125 | 0,182 | 0,111 | 0,111 ] 0,25 | 0,188
r2 [0,231] 1 [o273]0125] o 0167|0125 0,182] 0,182 0111] 02 | 02 [ 02 | 0,2 [0,111]0,1670,167] 0,267 [ 0,182
r3 (01110273 1 | 01 | o [o285|0222]0,133] 0,214 0,001 0,231 0,231 [ 0,143] 0,143 [ 0,091 [ 0,225 | 0,125 [ 0,125 | 0,133
ra [o001]0105] 01 | 1 0 | 01 [ 0313 ]o0105]0105]0077| 0112 0111 0111 0111 0077 01 | 01 | 01 [o105
Rs | o 0 0 0 1 [o1s2[0133] o 0 0 0 0 0 0 0 0 0 0 0
Re [0,111]0167]0,286| 0,1 [0182] 1 |o0,692] 0,133 ] 0,308 0,243 | 0,231 0,231 [ 0,143 0,243 [ 0,091 | 0.2 | 02 0125|0133
R7 [0,001] 0,125 0,222 0,13 [0,133 [0,692] 1 [o0,105]0,235| 0,22 [ 0,176 | 0,276 [ 0,111 0,111 [ 0,077 | 0,258 [ 0,158 | 0,1 [0,105
re [0,188]0,182[ 0133|0105 o [o0133|0105] 1 [0.231] 015 [0154 0152 0,25 | 0,25 | 0,15 [0,214 | 0,214] 0,214 | 0,143
re [o,118] 0182 0214|005 0 |o308|0235]|0231] 1 o015 025 ] 0,25 [ 0,25 | 0,25 [ 0,005 0,214 | 0,308] 0,133 | 0,143
R10 | 0,083 0,111 | 00010077 0 [0143] 012 035 015 1 [o0158]0,158]0,158] 0,158 [ 0,071 | 0,2 |0,143] 0,001 0,085
R11 [0125] 02 [o231]0111] o [o0231[0176]0154] 0,25 [0158] 1 [0273]0,167]0,167] 01 0,143 0,143] 0,123 0,154
R12 [0125] 0,2 [o231]0111] o [o231f0176]0154] 0,25 [o158| 0273 1 [o167]0,67] 01 0,143 0,143] 0,043 | 0,154
R13 [0,125] 0,2 [01430111| o [o0243[0111] 0,25 | 0,25 [0158 | 0,167 ] 0,67 1 [0,273] 01 [0,1430,231] 0,123 0,154
R1a [0,125] 0,2 |[o1a3]o111| o [oa43|0111] 025 | 0,25 0158 | 0,167] 0,67 0,273 1 | 01 0143 0,231] 0,45 | 0,154
R15 | 0,182 0,111 | 0,001 0,077 o [o0,001[0,077] 0,15 [0,005[0071| 01 | 01 [ 02 [ 01 | 1 [o143]0143]0,043] 0,15
R16 0,111 0167 0125 01 | o | 02 [o1s8]0214]0214] 02 [0143] 01430143 0,043 [0043] 1 | 02 Jo125| 0133
R17 0,111 0167 0125 01 | o | 02 [o158]0,214 ] 0,308 0,143 | 0,143 0,243 [ 0,231 [ 0,231 [ 0,143 0,2 | 1 [o195] 0133
Ri18 | 0,25 [0,167 0,125 01 | 0 [0125] 01 [0,214]0,133] 0,001 0,143] 0,143 [ 0,143] 0,143 [ 0,143 [ 0,125 [ 0,125 1 [0,214
R19 | 0,188 | 0,182 | 0,133 [ 0,005 | o [o0,133]0,105] 0,143 | 0,143 0,095 | 0,154 0,154 [ 0,154 [ 0,154 | 0,15 {0,133 | 0,133 [ 0,214] 1

# Rules 19

Mean " 0,144

Deviation ' 0,079

Fig. A.31 Similarity Matrix for the XML2WSDL example.

Fig. A.32 Similarity Matrix for the XSLT2XQuery example.

R1
R2
R3
R4
R5
R6
R7

RL R2 R3 R4 RS R6 R7
1 | o5 |0287|0087| 0 |op0a| 0
06| 1 [o0235|007a] o [o034] o
0,267]0,235| 1 [ooe| o [o037] o
0,087|0,074| 0,08 | 1 0 0 0
0 0 0 0 1 0 0
0,04 |0,032]0,027] 0 0 1 0
0 0 0 0 0 0 1

# Rules 7|

Mean " 0,069

Deviation ' 0,143

186




Appendix B

Resumen

La creciente complejidad del software originada por el progreso tecnoldgico ha
fomentado el uso de modelos a la hora de desarrollar software. En sus origenes,
los modelos eran muy basicos y se utilizan principalmente como esquemas
simplificados que ayudaban a los desarrolladores a entender sus programas.
Con el paso del tiempo su uso se fue extendiendo hasta que una nueva disciplina
llamada Ingenieria Dirigida por Modelos (cuyas siglas son MDE dado su
nombre en inglés Model-Driven Engineering) se establecié. En el &mbito de la
Ingenieria Dirigida por Modelos, junto con los modelos, las transformaciones de
modelos cobran especial interés ya que permiten el analisis y manipulaciéon de
los mismos. Por lo tanto, es necesario estudiar aspectos como el rendimiento, la
escalabilidad y la correccion de las transformaciones de modelos. Los motores
de transformaciones de modelos actuales usan principalmente estrategias de
ejecucién secuencial para las cuales los modelos deben residir en memoria, por
lo que su capacidad para transformar modelos grandes en entornos paralelos y
distribuidos es limitada. Es mas, las herramientas y lenguajes existentes en la
actualidad ni siquiera permiten el tratamiento de modelos de tamafo mediano
y obligan a los modelos que se encuentren ubicados en una sola maquina o
peor adn, la mayoria de ellos, obligan a que vengan dados en un tnico archivo.

Ademas, una vez que una transformaciéon de modelos se ejecuta (ya sea de

187



Chapter B. Resumen

forma secuencial o en paralelo) hay una creciente necesidad de contar con
métodos, mecanismos y herramientas para comprobar su correccion.

Nuestra contribucién en esta tesis distingue dos aspectos. En primer
lugar, presentamos una plataforma de ejecucién que permite la ejecucién
en paralelo de transformaciones de modelos tanto out-place como in-place
independientemente de que los modelos quepan en la memoria de una tnica
maquina o no. Las transformaciones de modelos escritas en cualquier lenguaje
de alto nivel pueden ser compiladas a dicha plataforma y ejecutadas en
paralelo y de forma distribuida. Las principales ventajas son que se permite
la reutilizacién de transformaciones de modelos existentes y que no obliga a
los desarrolladores a aprender un nuevo lenguaje sino que pueden usar aquel
o aquellos con los que se sientan cémodos.

Ya que los lenguajes de transformaciones de modelos méas populares se
basan en reglas, es decir, las transformaciones estan formadas por un conjunto
de reglas que especifican como los elementos deben ser transformados, la
segunda contribucién de esta tesis es un enfoque estatico para localizar las
reglas que puedan contener errores y que provocan asi que la transformacion
no se comporte de la forma esperada. Los enfoques actuales que hacen una
comprobacién exhaustiva (tales como técnicas de model checking) requieren
demasiado tiempo y memoria por lo que muchas veces son inviables. Nuestro
enfoque no es capaz de probar con total certeza que una transformacién sea
correcta pero es util para identificar errores en una fase muy temprana del

desarrollo y de forma répida.

188



Conclusiones y
Contribuciones

En este apéndice se exponen en espanol las conclusiones y contribuciones a
las que se ha llegado tras la realizaciéon de esta tesis doctoral.

En las primeras etapas de esta tesis doctoral, se estudi6 el estado del arte
de la Ingenieria Dirigida por Modelos (MDE, por sus siglas en inglés) y se
observé que las transformaciones de modelos no seguian la misma linea de
evolucion tecnoldgica que el resto de disciplinas y por lo tanto se estaban
quedando desactualizadas. Las transformaciones de modelos carecen de los
mecanismos de concurrencia adecuados y de las herramientas pertinentes
para poder ser ejecutadas en paralelo, al igual que la mayoria del software
que se desarrolla hoy en dia. Por ello, la primera contribucién de esta tesis
ha sido el enfoque que se presenta en los capitulos 3 y 4 para la ejecucién
paralela de transformaciones de modelos para la cual se utilizan los conceptos
y mecanismos del lenguaje de coordinacién Linda.

Se ha implementado una capa software sobre arquitecturas existentes para
el almacenamiento distribuido de datos (data-grids) que permiten la especifi-
cacion de transformaciones de modelos en Java y que abstrae al desarrollador
o ingeniero de las tecnologias y las estrategias de paralelizacién subyacentes.

Ademads, hemos mostrado cémo representar metamodelos y modelos para

189



Chapter C. Conclusiones y Contribuciones

ejecutar transformaciones de modelos en paralelo asi como cémo se mantiene
la trazabilidad en las transformaciones out-place. Basandonos en los resulta-
dos, la plataforma jLinTra parece bastante prometedora como la base de una
infraestructura sobre la cual ejecutar transformaciones de modelos de forma
eficiente que, combinada con un enfoque de paralelismo de datos, permite
lograr la paralelizacién. La comparacion de jLinTra con respecto otros motores
de transformacién secuencial conocidos reveld un decremento significativo del
tiempo de ejecucion, y la comparacion con respecto a una solucién paralela
que usa paralelizacion de tareas mostré que la paralelizacién de datos, la cual
jLinTra usa, parece funcionar mejor para las transformaciones de modelos
presentadas en nuestros casos de estudio. Los experimentos realizados han
mostrado que, ademés del buen rendimiento del modo out-place, el modo
in-place también ha mejorado con respecto a otros motores de transformacién
de modelos in-place. Ademds, otro experimento que también hicimos fue
implementar las transformaciones in-place como transformaciones out-place
donde los elementos que no se modifican se copian tal cual y observamos que
el modo in-place proporciona un mejor rendimiento y facilidad de uso.

Ya que nuestro enfoque depende de los data grids empleados, la evaluacion
también muestra que los data grids ofrecen un buen rendimiento y que no
introducen penalizaciones significativas. Sin embargo, hay una gran diferencia
en el tiempo que necesitan para acceder a los datos.

Para concluir podemos decir que jLinTra parece ser capaz de manejar y
escalar grandes modelos al mismo tiempo que mejora el rendimiento de los
motores de transformaciones de modelos actuales tanto secuenciales como
paralelos.

La segunda contribucién principal de esta tesis trata de resolver la necesi-
dad que aparece tras la ejecucién de una transformacién de modelos de probar
su correccién y de comprobar que el resultado obtenido es el esperado. En
el capitulo 5 presentamos un enfoque estatico para buscar el origen de los
errores en las implementaciones de las transformaciones de modelos. Dada
una transformacién de modelos basada en reglas y un conjunto de restricciones
OCL que especifican su comportamiento, nuestro enfoque extrae automatica-

mente los elementos de los metamodelos que ambos referencian y se obtiene el

190



solapamiento existente entre cada regla y cada restriccion. A continuacién, se
proporcionan tres tablas donde se refleja la relacién entre reglas y restricciones.
Dichas tablas son usadas para localizar qué reglas que pueden estar provocando
que ciertas restricciones sean violadas. Nuestra evaluacién muestra que el
enfoque que presentamos es preciso para un gran conjunto de transformaciones
de modelos. No obstante, como hay determinados casos en los que puede
no ser util, mediante el uso de matrices de similitud, un test automatizado
e instantaneo de aptitud, es posible comprobar a-priori si nuestro enfoque
proveera informacién fiable para una determinada transformacion de modelos
0 no.

La dltima contribucién de esta tesis se presenta en el capitulo 6 donde
ampliamos el alcance de nuestro enfoque a transformaciones de modelo-a-texto
y de texto-a-modelo. Para ello hemos creado un metamodelo genérico que
permite la representacion de repositorios de texto como modelos conforme
a dicho metamodelo. Una vez que el texto es representado como modelo, el
problema de probar la correccién de transformaciones de modelo-a-texto y de
texto-a-modelo queda reducido a un problema de correccién de transforma-
ciones modelo-a-modelo. Como en el modelo que representa el texto existen
atributos de tipo String cuyos valores deben ser analizados en muchos casos,
hemos extendido OCL con operaciones adicionales para el manejo de cadenas.

La evaluacion llevada a cabo consistié en evaluar el codigo Java generado
por varias herramientas de uso extendido a partir de modelos UML. Dicha
evaluacién muestra que los generadores que actualmente se usan tienen un gran
margen a mejora y documenta la necesidad de una disciplina para desarrollar
transformaciones de modelo-a-texto y de texto-a-modelo y la importancia de

la correccién de este tipo de transformaciones.

191



YOV YW 30
avaISY3AINN




	Table of contents
	List of figures
	List of tables
	Acronyms
	1 Introduction
	1.1 Motivation and Challenges
	1.2 Contribution
	1.3 Outline

	2 Background
	2.1 Model-Driven Engineering
	2.1.1 History
	2.1.2 Models and Metamodels
	2.1.3 Model Transformations

	2.2 Linda Coordination Language
	2.3 Model Transformation Contracts. Tracts
	2.3.1 Specifying Transformations with Tracts
	2.3.2 Implementing Transformations with ATL
	2.3.3 Testing Transformations with Tracts


	3 Parallel Out-place Model Transformations
	3.1 LinTra and its Java Implementation jLinTra
	3.1.1 Linda and Existing Implementations
	3.1.2 Building a Common Interface: The Blackboard Metaphor
	3.1.3 Models and Metamodels in LinTra
	3.1.4 Traceability
	3.1.5 Master-Slave Configuration
	3.1.6 jLinTra Transformation Definitions By-Example
	3.1.7 Distributed Models

	3.2 Model Transformation Chains
	3.3 Evaluation and Performance Analysis
	3.3.1 Research Questions
	3.3.2 Case Studies
	3.3.3 Setup
	3.3.4 Results
	3.3.5 Discussion
	3.3.6 Threats to Validity

	3.4 Related Work
	3.4.1 Persisting Very Large Models
	3.4.2 Transforming Very Large Models
	3.4.3 Coordination Models and Languages
	3.4.4 Other Model Transformation Types

	3.5 Summary

	4 Parallel In-place Model Transformations
	4.1 Background
	4.2 Approach and Semantic Issues
	4.2.1 Atomic Transformation Actions
	4.2.2 Confluence Conflicts

	4.3 Evaluation
	4.3.1 Research Questions
	4.3.2 Experiment Setup
	4.3.3 Performance Experiments
	4.3.4 Threats to Validity

	4.4 Related Work
	4.5 Summary

	5 Testing Model-to-Model Transformations
	5.1 Matching Tables
	5.1.1 Motivation and Challenges
	5.1.2 Methodological Approach
	5.1.3 Footprint Extraction
	5.1.4 Footprint Matching and Matching Tables
	5.1.5 UML2ER Case Study: Pragmatics
	5.1.6 Putting the Approach into Context

	5.2 Implementation
	5.2.1 Footprint Extraction from OCL Constraints
	5.2.2 Footprint Extraction from ATL Rules
	5.2.3 Matching Function

	5.3 Evaluation
	5.3.1 Research Questions
	5.3.2 Case Study Design
	5.3.3 Results
	5.3.4 A-priori Applicability Test
	5.3.5 Experimenting with Faulty Transformations
	5.3.6 Threats to Validity

	5.4 Related Work
	5.4.1 Tracing Faults in Model Transformations
	5.4.2 Test Generation for Model Transformations
	5.4.3 Model Transformation Footprinting

	5.5 Summary

	6 Extending Tracts for M2T and T2M Transformations
	6.1 Generic Metamodel for Representing Text Repositories
	6.1.1 M2T Example: UML to Java
	6.1.2 T2M Example: USE to UML
	6.1.3 Tool Support

	6.2 Evaluation
	6.2.1 Selected Tracts and Test Models
	6.2.2 Selected Tools
	6.2.3 Evaluation Procedure
	6.2.4 Results

	6.3 Related Work
	6.4 Summary

	7 Conclusions and Future Work
	7.1 Summary and Conclusions
	7.2 Publications
	7.2.1 Publications Supporting this Dissertation
	7.2.2 Further Publications

	7.3 Future Work

	References
	Appendix A Similarity Matrixes
	Appendix B Resumen
	Appendix C Conclusiones y Contribuciones



