

Procedimiento para medir las características de fricción en una carretera mediante una modificación de la Fórmula Mágica

Cabrera, J.A.; Castillo, J.J.; Pérez, J.; Velasco, J.; Guerra, A.J.

UNIVERSIDAD DE MÁLAGA

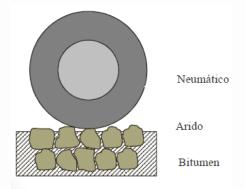
Hernández, P.

DEMARCACIÓN DE CARRETERA DEL ESTADO (MURCIA)

19-21 SEP 2018 **madrid**

INDICE:

- INTRODUCCIÓN
- MODELO NEUMÁTICO
- VEHÍCULO DE ENSAYO
- ENSAYOS Y RESULTADOS
- CONCLUSIONES


INTRODUCCIÓN

FACTORES QUE INFLUYEN EN LA DETERMINCACIÓN DE LA ADHERENCIA EN UNA CARRETERA:

NEUMÁTICO

COMPOSICIÓN Y TIPO CARRETERA

OTROS FACTORES

INTRODUCCIÓN

PROCEDIMIENTOS PARA LA MEDICIÓN ADHERENCIA:

MÉTODOS DIRECTOS:

- PÉNDULO BRITÁNICO (ASTM E303)→CRD
- SCRIM (ASTM E274)-> CRT
- MU-METER (ASTM E670)
- LOCKED-WHEEL SKID TRAILER (ASTM E274)

MÉTODOS INDIRECTOS:

- CÍRCULO DE ARENA (ASTM E965)→MTD
- CIRCULAR TRACK METER (ASTM E2157)-> MPD
- MEDIDA MICROTEXTURA MEDIANTE MICROSCOPIO

PROBLEMÁTICA ARMONIZACIÓN MEDIDAS:

• ÍNDICE INTERNACIONAL DE FRICCIÓN (IFI)

NEUMÁTICO

MÉTODOS MEDIDA ADHERENCIA NO INCLUYEN EL NEMÁTICO

MODELOS DE NEUMÁTICOS

MODELO DE LA FÓRMULA MÁGICA (PACEJKA)

$$F_{x} = \left[D_{x} \cdot sin\left[C_{x} \cdot atan\left\{B_{x} \cdot (s + S_{hx}) - E_{x} \cdot \left(B_{x} \cdot (s + S_{hx}) - atan\left(B_{x} \cdot (s + S_{hx})\right)\right)\right\}\right] \cdot \lambda_{\mu x} + S_{\nu x}\right]$$

$$F_{y} = \left[D_{y} \cdot sin\left[C_{y} \cdot atan\left\{B_{y} \cdot \left(\alpha + S_{hy}\right) - E_{y} \cdot \left(B_{y} \cdot \left(\alpha + S_{hy}\right) - atan\left(B_{y} \cdot \left(\alpha + S_{hy}\right)\right)\right)\right\}\right] + S_{vy}\right]$$

VEHÍCULO DE ENSAYO

Neumático Hankook 205/65R15

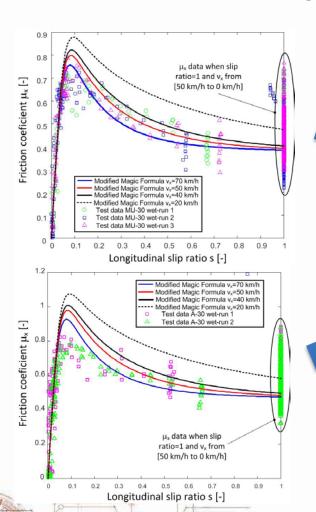
Longitudinal coefficients	Value [18]
PCX1: C _{Fx} shape factor for longitudinal force	1.39708965
PDX1: μ_x longitudinal friction at $F_{z_{nom}}$	1.10206790
PDX2: μ _x friction variation with load	-0.18524061
PEX1: E_{Fx} longitudinal curvature at F_{mom}	-0.45925516
PEX2: E _{Fx} curvature variation with load	-1.49950140
PEX3: E _{Ex} curvature variation with squared load	-2.46964541
PEX4: Factor in E_{Fx} curvature while driving	-0.90674124
PKX1: K_{Fx}/F_z longitudinal slip stiffness at F_{znom}	38.50310903
PKX2: K_{Fx}/F_z slip stiffness variation with load	2.03196267
PKX3: Exponent in K_{Fx}/F_z slip stiffness with load	-0.59108577
PHX1: S_{hx} horizontal shift at F_{mem}	-0.00227143
PHX2: S_{hx} shift variation with load	0.00193554
PVX1: S_{vx}/F_z vertical shift at F_{znom}	0.05759227
PVX2: S_{vx}/F_z shift variation with load	-0.02874956

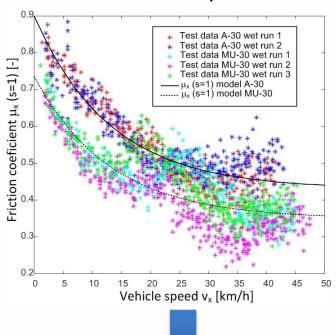
Lateral coefficients	Value [18]
PCY1: C _{FY} shape factor for lateral force	1.276760
PDY1: μ_{v} lateral friction	0.932775
PDY2: μ _v friction variation with load	-0.128085
PDY3: $\mu_{\rm v}$ friction variation with square camber	1.019803
PEY1: Lateral E _{FY} curvature at F _{znorm}	-1.399340
PEY2: E _{FY} curvature variation with load	-0.074863
PEY3: Zero order camber dependency of E _{FY} curvature	0.178860
PEY4: E _{FY} curvature variation with camber	-8.252847
PKY1: K _{FY} /F _{znom} stiffness maximum value	-17.36182
PKY2: Load at which K _{FY} /F _{znom} reaches maximum value	2.293896
PKY3: K _{FY} /F _{znom} variation with camber	-0.110362
PHY1: S _{hy} horizontal shift at F _{znom}	0.001696
PHY2: S _{hy} shift variation with load	0.003882
PVY1: S _{vv} /F _z vertical shift at F _{znom}	0.006931
PVY2: S/F., shift variation with load	0.018685

ENSAYOS Y RESULTADOS

CONDICIONES ENSAYO:

- Ensayos en línea recta en mojado y seco (distintas carreteras)
- Frenada desde una velocidad determinada > solo ruedas delanteras
- Ruedas traseras se utilizan para la obtención velocidad vehículo
- Medidas Fuerzas longitudinal y vertical. Velocidad angular ruedas





19-21 SEP 2018 madrid

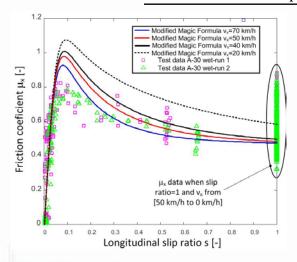
ENSAYOS Y RESULTADOS

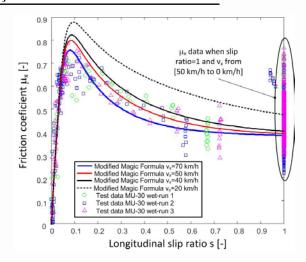
Carreteras A-30 y MU-30:

Modelo Propuesto:

$$\lambda_{\mu x} = PLX1 + PLX2 \cdot e^{-PLX3 \cdot S \cdot v_x}$$

19-21 SEP 2018 madrid

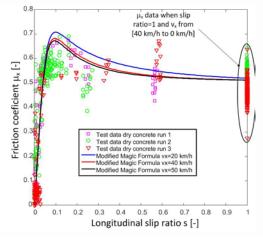

ENSAYOS Y RESULTADOS

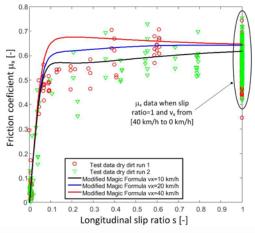

Carreteras A-30 y MU-30:

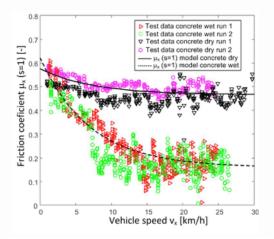
Modelo Propuesto:

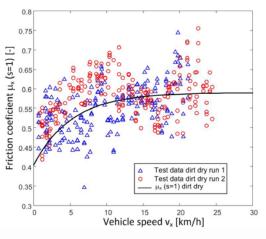
$$F_{x} = \left[D_{x} \cdot sin\left[C_{x} \cdot atan\left\{B_{x} \cdot (s + S_{hx}) - E_{x} \cdot \left(B_{x} \cdot (s + S_{hx}) - atan\left(B_{x} \cdot (s + S_{hx})\right)\right)\right\}\right] \cdot \lambda_{\mu x} + S_{vx}\right] + \lambda_{\mu x} = PLX1 + PLX2 \cdot e^{-PLX3 \cdot S \cdot v_{x}}$$

λμ _x coefficients		A-30	MU-30
PLX1: microtexture longitudinal friction	[-]	0.430688	0.349478
PLX2: macrotexture longitudinal friction	[-]	0.469080	0.386194
PLX3: macrotexture shape factor	[h/km]	0.076649	0.076649

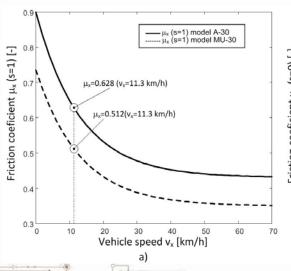


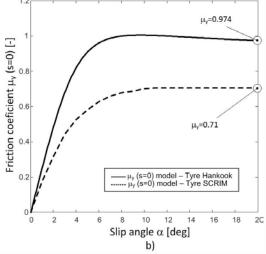

XXII CONGRESO NACIONAL INGENIERÍA MECÁNICA


19-21 SEP 2018 madrid


ENSAYOS Y RESULTADOS

Otras carreteras:


19-21 SEP 2018 madrid


ENSAYOS Y RESULTADOS

Comparación medidas adherencia:

Test requirements	British Pendulum	SCRIM
Test speed	11.3 km/h	50 km/h
Test slip angle	$\mathbf{0_0}$	20°
Test slip ratio	s=1	s=0
Road condition	wet	wet

Road	British Pendulum/Hankook	SCRIM/Hankook
OP14 A-30 84+600	57/62.8	42.71/58.51
OP4 MU-30 El Palmar 0+800	37/51.2	27.78/38.06

$$LHS = \frac{\mu_{y}(\alpha = 20^{0})_{HANKOOK}}{\mu_{y}(\alpha = 20^{0})_{SCRIM}} = 1.37$$

CONCLUSIONES

- Las medidas de adherencia realizadas por los dispositivos estándares no tienen en cuenta el tipo de neumático.
- El tipo de neumático influye en la obtención de la adherencia entre la calzada y la rueda.
- El modelo de la Fórmula Mágica no incluye el tipo de carretera y la condición de la misma.
- El modelo de fuerza longitudinal propuesto tiene en cuenta el tipo de carretera y la condición de la misma, además de la velocidad y el deslizamiento.
- El modelo propuesto evalúa de forma más realistas las características de fricción longitudinal (influencia en la seguridad activa y distancia frenado).
- Las medidas de resistencia de fricción obtenidas con los dispositivos estándares dan valores inferiores a los del modelos propuesto (diseño de carreteras).

GRACIAS POR SU ATENCIÓN