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Abstract Building materials are very complex samples of worldwide importance, 

hence quantitative knowledge of their mineralogical composition is necessary to predict 

performances. Rietveld quantitative phase analysis (RQPA) allows a direct 

measurement of the crystalline phase contents of cements. We highlight in this paper 

the use of laboratory x-ray powder diffraction (LXRPD) employing high energy 

radiation, Mo, for attaining the RQPA of cements. Firstly, we evaluate the accuracy of 

RQPA employing a commercial calcium sulfoaluminate clinker with gypsum. In 

addition to Mo Kα1 and Mo Kα1,2 radiations, Cu and synchrotron patterns are also 

analyzed for the sake of comparison. Secondly, the assessment of the accuracy of 

RQPA results obtained using different radiations (synchrotron, Mo and Cu) and 

geometries (reflection and transmission) is performed by analyzing two well known 

commercial samples. As expected, for LXRPD data, accuracy in the RQPA results 

improves as the irradiated volume increases. Finally, three very complex aged hydrated 

cements have been analyzed using MoKα1-LXRPD and Synchrotron-XRPD. The main 

overall outcome of this work is the benefit for RQPA of using strictly monochromatic 

Mo Kα1 radiation. Best laboratory results arise from Mo Kα1 data as the effective tested 

volume is much increased but peak overlapping is not swelled. 
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I. INTRODUCTION 

In a standard laboratory instrument, the X-rays are produced in a sealed-tube source, in 

the same way as they were produced in the original tube discovered by W. C. Rontgen 

in 1895, where electrons accelerated by a potential difference of up to 60 kV bombard a 

metal anode inside a vacuum tube. Such sources differ only in the intensity of the 

radiation produced. The most common target elements are Cu for powder diffraction 

and Mo for single crystal studies. Alternative radiations, both with lower (Cr, Fe and 

Co) and higher (Ag and W) energies, are employed for very special applications. For 

routine powder diffraction work, a Cu tube is the most common choice, giving the 

wavelength 1.5406 Å. Heavier elements are believed to give too short wavelengths for 

most practical use in the laboratory, as they exacerbate the peak overlapping, though 

they become important for total scattering, pair distribution function (PDF) studies and 

in order to avoid fluorescence from samples containing elements excited by Cu 

radiation (Dinnebier and Billinge, 2008). On the other hand, the advantages of high-

energy penetrating laboratory X-ray sources are i) larger irradiated volumes, ii) lower 

absorption effects, and iii) more accessible Bragg reflections. However, to keep the 

angular resolution in powder diffraction is a key point since high-energy patterns are 

squeezed and therefore, if the appropriate optic elements are not present, peak overlap 

may become an important drawback. 

For powder diffraction-based quantitative phase analysis procedures, it is generally 

accepted that the peak intensities need to be measured to an accuracy of about ± 1-2% 

relative (Dinnebier and Billinge, 2008). The ability to achieve this goal is strongly 

influenced by the size of the crystallites in the sample and their number contributing to 

the Debye-Scherrer cone (Smith, 2001). Reproducible diffraction intensities in 0D or 

1D detectors require smooth cones which are obtained from samples containing small 
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crystallite size(s) and high-enough number of crystallites per phase. Elton and Salt 

(1996) estimated the number of crystallites diffracting in a sample. Fluctuations in peak 

intensity between replicate samples arise largely from statistical variation in the number 

of particles contributing to the diffraction process. It was shown that small changes to 

the instrumental and sample configurations can significantly improve the sample 

particle statistics. For a given sample, several methods can be used to increase the 

number of crystallites contributing to the diffraction pattern, including: i) rotate the 

sample about the normal to the sample surface for a flat plate sample or the sample axis 

for a capillary sample; ii) oscillate the sample about the incident angle axis, this motion 

removes the exact Bragg-Brentano theta/2theta relationship between sample and 

receiving slit and may lead to aberrations in the peak intensities; iii) repack the sample, 

recollect and reanalyze the diffraction data, averaging the results from each analysis will 

produce more meaningful parameter values, iv) reduce the average crystallite size(s) by 

milling (Buhrke et al., 1998), however, caution must be exercised in the choice of mill 

since many grinding techniques introduce peak broadening and some phases can 

undergo solid-solid phase transitions or dehydration during grinding (Hill and Madsen, 

2002); and v) enhancing particle statistic by the increasing the diffracting volume. X-ray 

powder diffraction only concerns a ‘small’ volume of the material, called the irradiated 

volume, which is determined by the product of the irradiated surface and effective 

depth. Swapping Cu by Mo radiation, it is possible to deeply penetrate the sample 

enhancing the irradiated volume which has been employed in gem characterization 

where the sample cannot be altered (León-Reina et al., 2011). This approach also allows 

its combination with others listed above in order to maximize the number of crystallites 

diffracting in a sample.  
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On the other hand, there is no doubt that Rietveld quantitative phase analysis (RQPA) is 

one of the most important uses of powder diffraction for analyzing materials, in general 

(Madsen et al., 2001; Scarlett et al., 2002), and in cements in particular (De la Torre and 

Aranda, 2003). There are several interlaboratory comparisons that gave some key 

recommendations for carrying out accurate RQPA and included results relating to the 

influence of sample related effects such as preferred orientation and microabsorption 

(Madsen et al., 2001; Scarlett et al., 2002; Stutzman, 2005). Cements are an archetype 

in RQPA due to is complex phase assemblage with always more than four crystalline 

phases and usually more than seven/eight crystalline phases for hydrating cements. 

Laboratory and synchrotron X-ray powder diffraction (LXRPD, SXRPD) (De la Torre 

and Aranda, 2003) have been thoroughly used for clinker and cements characterization. 

Rietveld quantitative phase analysis of cement related materials is complex for a 

number of reasons: (a) high number of phases and the resulting strong peak 

overlapping; (b) some phases, for instance, alite and gypsum, crystallize as flat plates 

which may show preferred orientation effects (De la Torre and Aranda, 2003; De la 

Torre et al., 2004); (c) phases can crystallize as several polymorphs (Dunstetter, 2006; 

De la Torre et al., 2002, 2008); (d) the number of illuminated crystallites may be not 

high enough to ensure a random orientation for all diffraction planes; (e) the atomic 

impurities inside each phase are not known. The mineralogical quantification of selected 

clinkers and cements was carried out by LXRPD and the Rietveld method employing 

the data from different laboratories (León-Reina et al., 2009) and allowing the 

determination of the precision ranges and the general uncertainties for the accuracies for 

anhydrous cements. Recently, two review articles have been devoted to RQPA of 

Portland cements (Le Saout et al., 2011) and Portland cements, blended Portland 

cements and their hydration products (Aranda et al., 2012). 
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RQPA has been employed for a number of applications related to the hydration 

reactions of OPC materials (Scrivener and Nonat, 2011). The uses have been expanded 

from the hydration of model systems (Bellman et al., 2010) to blended cements and the 

role of admixtures and superplasticizers. RQPA has been used to study the hydration 

reactions of commercial OPC in reflection geometry with laboratory data (Scrivener et 

al., 2004). The results were satisfactorily compared to those obtained from thermal 

analysis and electron microscopy. RQPA, in transmission geometry, was employed for 

studying OPC hydration products (Mitchell et al., 2006). The data obtained from 

capillary measurements showed little preferential orientation. This study highlighted the 

benefits of the transmission geometry as more particles were measured which yields 

more reliable quantitative results. All these previous studies employed Cu-radiation. To 

the best of our knowledge, there are not reports dealing with RQPA with Molybdenum 

radiation for cements or complex samples. Complex samples are defined as those 

containing more than three crystalline phases. 

In this article, we highlight the use of LXRPD employing Mo radiation for attaining 

the RQPA of cements (with selected examples: clinkers, cements and hydrating cement 

pastes). Firstly, we focus our attention on evaluating the accuracy of RQPA obtained 

from LXRPD data employing a commercial calcium sulfoaluminate ‘CSA’ clinker 

mixed with a well known quantity of crystalline gypsum. In addition to Mo Kα1 and Mo 

Kα1,2 radiations, copper and synchrotron patterns are also analyzed for the sake of 

comparison. Secondly, the assessment of the accuracy of RQPA results obtained using 

different radiations (synchrotron, Mo and Cu) and geometries (reflection and 

transmission) is performed by analyzing two commercial samples, previously used in a 

Round Robin of building materials (León-Reina et al., 2009). Finally, and for 

evaluating the case for very complex materials, three aged hydrated cements have been 
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analyzed using Mo Kα1-LXRPD and SXRPD. The main overall outcome of this work is 

the benefit for RQPA of using strictly monochromatic Mo Kα1 radiation. 

 

II. EXPERIMENTAL 

 A. Sample Preparation 

To ascertain the accuracy of the methodologies a commercial calcium sulfoaluminate, 

CSA, cement was mixed with a well known amount, 25 wt%, of commercial 

micronized natural gypsum, both materials marketed in Europe by BELITH S.P.R.L. 

(Belgium) (García-Maté et al., 2012), hereafter labeled as 25G_CSA. 

Two commercial building related materials (León-Reina et al., 2009) were used to 

establish the accuracy of the methodologies: i) an ordinary grey Portland clinker, 

labeled as GP_Clin and ii) an ordinary Portland cement type I, labeled as GP_Cem. 

Three laboratory belite calcium sulfoaluminate (BCSA) (Aranda and De la Torre, 2013) 

cements were hydrated according to Alvarez-Pinazo et al. (2013), and after 28 days 

hydration was stopped and samples analyzed. Following the same nomenclature as in 

Alvarez-Pinazo et al. (2013), G10B0 which is a non-active BCSA with 10 wt% of 

gypsum and G5B2 and G10B2 which are active BCSAs with 5 and 10 wt% of gypsum, 

respectively, have been used. These samples have been selected as they are very 

complex mixtures. 

 B. Transmission Cu Kα and Mo Kα LXRPD data acquisition. 

Table I gives experimental set up details for the three diffractometers used for this type 

of data collection. 

1) D8 ADVANCE DaVinci (Bruker AXS) diffractometer (250 mm of diameter) with 

Mo radiation equipped with a primary Johansson monochromator Ge (220), which gives 
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a strictly monochromatic radiation (λ=0.7093 Å), Mo Kα1. The energy dispersive linear 

detector LYNXEYE XE 500μm, specific for high energetic radiation, was used. 

2) EMPYREAN diffractometer (PANalytical B.V.) with a θ/θ goniometer (240 mm of 

diameter) with Mo radiation equipped with focusing mirror component used in the 

incident beam path which is capable of converting the divergent beam into a convergent 

radiation focused on the goniometer circle. The focusing mirror is able to eliminate Mo 

Kβ, yielding Mo Kα1,2 radiations. Raw patterns were mathematically treated to strip Mo 

Kα2, see below. Data were collected preserving constant volume assumption (2theta 

scan mode). The detector used was the silicon-based position-sensitive detector, 

X´Celerator, it measures up to 100 times faster than with a traditional point detector, 

without compromising data quality. 

3) EMPYREAN diffractometer (PANalytical B.V.) with a θ/θ goniometer (240 mm of 

diameter) with Cu radiation equipped with focusing mirror, operating as described just 

above, yielding Cu Kα1,2 radiations. The geometrical configuration of this 

diffractometer gives a maximum angle of measurement of 40º, which is low for Cu 

radiation. Consequently, constant volume assumption was not preserved during data 

collection (gonio scan mode). The photon counting x-ray detector, PIXCEL 3D, was 

used. This detector can operate in 1D mode offering a very small strip size and 

extremely high dynamic range and low noise. 

The powder samples were placed (for the three diffractometers) in the holders between 

two Kapton foils. Table II gives details about data acquisition. Moreover, the absorption 

factors of each sample were experimentally measured by comparison of the direct beam 

with and without sample. The amount of sample loaded in the sample holders were 

controlled to obtain a total absorption (µt~1) which corresponds to an absorption factor 

of ~2.7 or 63% of direct attenuation (Cromer and Liberman, 1981). Table III gives 
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linear absorption coefficients, fractional attenuation factor of the beam due to absorption 

(experimentally measured) as well as the calculated thickness (t) by using Lambert-Beer 

law and a supposed packing fraction of 75%. 

 C. Reflection Cu Kα1 LXRPD data acquisition. 

Patterns were also recorded in Bragg-Brentano reflection geometry (θ/2θ) on an X'Pert 

MPD PRO (PANalytical B.V.) diffractometer (240 mm of diameter) using strictly 

monochromatic Cu Kα1 radiation (λ=1.54059 Å) [Ge (111) primary monochromator]. 

The X-ray tube worked at 45 kV and 40 mA. The optics configuration was a fixed 

divergence slit (1/2°), a fixed incident antiscatter slit (1°), a fixed diffracted anti-scatter 

slit (1/2°) and X'Celerator RTMS (Real Time Multiple Strip) detector, working in 

scanning mode with maximum active length. 

 D. Transmission synchrotron X-ray powder diffraction (SXRPD). 

SXRPD patters were collected in Debye-Scherrer (transmission) mode using the X-ray 

powder diffraction station of ALBA, the Spanish Synchrotron Radiation Facility 

(Barcelona, Spain) (Knapp et al., 2011). The wavelength, 0.62015(2) Å, was selected 

with a double-crystal Si (111) monochromator and determined from a Si640d NIST 

standard (a=5.43123 Å). The diffractometer is equipped with a MYTHEN detector 

system especially suited for time-resolved experiments. This detector system is not 

optimized for high-resolution experiments, nevertheless its suitability to perform RQPA 

has been previously checked (Alvarez-Pinazo et al., 2014). The capillaries of 0.7 mm of 

diameter were rotated during data collection to improve diffracting particle statistics. 

The data acquisition time was ∼25 min per pattern to attain very good signal-to-noise 

ratio over the angular range 1-35º (2θ). The temperature inside the experimental hutch 

was 299(1) K. 
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 E. XRPD data analysis. 

The focusing mirror used in EMPYREAN diffractometers causes a wavelength shift of 

Kα2 radiation. The effect is very small for copper wavelength, but it becomes noticeable 

for short wavelengths like molybdenum radiation. Consequently, Mo Kα2 data were 

stripped by using the modified wide Rachinger (1948) algorithm of Delhez and 

Mittemeijer (1975) as implemented in HighScore+ (v. 3.0e) PANalytical software, by 

using Kα2 shift value of 0.005, Kα2/ Kα1 intensity ratio of 0.6 and a wavelength ratio 

correction of 0 ppm. 

In order to obtain RQPA, all patterns were analyzed by using the Rietveld methodology 

as implemented in the GSAS software package (Larson and Von Dreele, 1994). Crystal 

structure descriptions used for all the phases were those reported in Aranda et al. 

(2012). Final global optimized parameters were: background coefficients, zero-shift 

error, cell parameters, peak shape parameters and March-Dollase (Dollase, 1986) 

preferred orientation parameter, when appropriated. Peak shapes were fitted by using 

the pseudo-Voigt function (Thompson et al., 1987) with the asymmetry correction of 

Finger et al. (1994) included. 

 

III. RESULTS AND DISCUSSIONS 

 A. Characterization of peak widths. 

The instrumental contribution to peak broadening for LXRPD and SXRPD was 

determined with Standard Reference Material (SRM) LaB6 and Na2Ca3Al2F14 (NAC) 

standards, respectively. Figure 1 shows measured full width at the half maximum, 

FWHM, as a function of angle for all the diffractometers and configurations used in this 

study. 

mk:@MSITStore:C:%5CProgram%20Files%5CPANalytical%5CX'Pert%20HighScore%20Plus%5CXHP.chm::/literature.htm%23lit13
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The SXRPD pattern yielded the narrowest diffraction peaks. FWHM values were ≈0.02º 

(2θ), and not the smallest possible values ≈0.006º, as the configuration used was the 

MITHEN detector and not the crystal analyzer detector system. On the other hand, the 

broadest diffraction peaks arisen from the Cu Kα1,2 transmission geometry with the 

focusing mirror although the values ranged 0.08-0.10º (2θ) are small enough to be 

considered medium-resolution data. 

The most important outcome from this analysis is the observation of quite low FWHM 

values for strictly monochromatic Mo Kα1 radiation. As depictured in Figure 1, FWHM 

values ranged 0.03-0.05º (2θ). These low values implies that peak overlapping is not 

much important than in Cu Kα1 powder diffraction data. 

 B. Comparison of irradiated volumes. 

Any analytical technique requires a representative sample or sampling. Irradiated 

volume in diffraction is a key issue since higher volume yields enhanced particle 

statistics. Therefore, the use of a high energy radiation is beneficial as the irradiated 

volume of sample can be increased, and absorption effects reduced. Figure 2 shows a 

graphical representation of the volumes that are bathed by X-ray radiations for the 

laboratory diffraction geometries (transmission and reflection, also included in Figure 2) 

used in this study. 

Figures 2a and 2b give the irradiated volumes bathed by X-rays when using flat samples 

which are spun about the normal to the sample surface during data acquisition 

(shadowed zone) for Mo and Cu radiations, respectively. The total irradiated volume is 

calculated as V=π(Bw/2)2t, were Bw stands for beam width, see Table I and it is defined 

by optical components on the incident beam. On the other hand, t value is the thickness 

of the sample. These values are calculated by using Lambert-Beer law: t= -
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[ln(1/a.f.)]/µρc, being a.f. the experimentally determined absorption factor, µ the mass 

absorption coefficient in cm2/g, ρ the density in g/cm3 and c the packing fraction, 

assumed to be 75% in these calculations, see Table III. Taking into account these data, 

irradiated volume for Mo-radiation is close to 100 mm3 while for Cu-radiation the value 

is not larger than 5 mm3. Unfortunately, the latter cannot be enlarged without decreasing 

the resolution and having strong absorption effects. 

Finally, Figure 2c gives the irradiated volume for reflection geometry with Cu-radiation. 

In this case, the beam and slit widths are also defined by the incident beam optic 

components (Table I) and penetration depth (PD) has been calculated assuming an 

attenuation factor of 63% (equivalent to an absorption factor of 2.7) at an incident angle 

of 40º. Sample holder is also spun about the normal to the sample surface during data 

collection (shadowed zone in Figure 2c), consequently the irradiated volume is close to 

2 mm3 calculated as a truncated cone, V=1/3πPD[(D/2)2+(BW/2)2+(D/2) (BW/2)] and 

D=(BW
2 + SW

2)1/2. Furthermore, the enlargement of this value is not possible as it only 

depends on the absorption factor of the sample. 

 C. Constant volume assumption. 

As detailed in the experimental section, patterns obtained in transmission geometry with 

Cu radiation did not preserved the constant volume assumption. The intensity of the 

pattern was increased by a factor of 1/cosθ as a consequence of an increase in the 

irradiated volume during data collection (Klug and Alexander, 1974). On the other 

hand, the intensity was reduced as a consequence of higher absorption by a factor of 

𝑒𝜇𝑡(1− 1
𝑐𝑜𝑠𝜃), where µ stands for the mass absorption coefficient and t for the calculated 

thickness of the sample, both parameters given in Table III (Klug and Alexander, 1974). 
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Consequently, the collected intensity should be corrected by a factor of  

1
𝑐𝑜𝑠𝜃

∗ 𝑒𝜇𝑡(1− 1
𝑐𝑜𝑠𝜃) . 

This correction was applied to 25G_CSA and GP_Clin patterns in order to check the 

effect of not preserving the constant volume assumption on RQPA. Figure 3 shows raw 

pattern of 25G_CSA (in red) and corrected data using the correction factors given in the 

inset of Figure 3. An enlarged range of the high angle region of the patterns has been 

included as an inset to show that both patterns are almost coincident. Moreover, RQPA 

obtained by analyzing both raw and corrected data are included in Tables IV and V, in 

the Cu Kα1,2 column. It can be observed that results are almost the same. Consequently, 

in the collected angle range of this study the effect of not preserving the constant 

volume assumption is not significantly affecting RPQA and this correction was not 

applied to remaining patterns collected in transmission geometry with Cu radiation. 

 D. Accuracy study. 

One of the main objectives of this work is to evaluate the accuracy of RQPA obtained 

from Mo Kα LXRPD data. A comparison of the technical performances of the detectors 

used here are out of the scope of the present study. As discussed in the introduction, 

cement samples are used as a benchmark due to their complexity. So, a CSA clinker 

was mixed with 25 wt% of crystalline gypsum [CaSO4·2H2O or CSH2, in cement 

nomenclature1], labeled as 25G_CSA. The accuracy of the quantitative analysis of 

gypsum in this sample was confirmed by comparison to the weighed value and also to 

the value obtained from an alternative technique DTA (Differential Thermal Analysis) 

and TGA (Thermo-Gravimetric Analysis) (Rajczyk and Nocun-Wczelik, 1992). Hence, 

the sample was heated from RT to 1273 K at a rate of 10 degree per minute, and its 

mass variation was accurately monitored. Gypsum has its own characteristic 

1 Cement nomenclature: C=CaO, S=SiO2, A=Al2O3, F=Fe2O3, S=SO3, M=MgO and T=TiO2 
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temperature range of dehydration. By the specific mass loss at ~360 K, which 

corresponds to the release of two water molecules, it could be inferred the gypsum 

amount which was 24.96 wt%, see Table IV. 

Table IV also gives RQPA for 25G_CSA obtained by analyzing data collected by using 

different diffraction geometries and radiations. Strictly monochromatic Cu radiation has 

been used in reflection geometry (Cu Kα1) while Cu Kα1,2 radiations were used in 

transmission with flat sample (Cu Kα1,2 data in Table IV). Molybdenum radiation has 

only been used in transmission mode with flat sample with two different optic 

components: (i) a primary monochromator, labeled as Mo Kα1 in Table IV and (ii) a 

focusing mirror, labeled as Mo Kα2-strip in Table IV. Moreover, SXRPD data (labeled as 

synchr. λ=0.62 Å in Table IV) have been collected in transmission mode with the 

samples loaded in a capillary as described in the experimental section. 

It is worth to underline than the well known weighed sample used, gypsum, is a layered 

compound and therefore, it usually displays preferred orientation effect. In any case, we 

have used this phase as it is ubiquitously used in cement field as set regulator. 

Furthermore, if the analyses yield good values for this extreme case, in more favorable 

situations the outcome could be even better. As shown in table IV, the March-Dollase 

preferred orientation coefficient, along [0 1 0] axis, behaved as expected. The refined 

value for a flat sample in reflection geometry was smaller than one, 0.73. The refined 

values for flat samples in transmission geometry were larger than one ranging between 

1.09 and 1.30. Finally, the SXRPD pattern collected in transmission but in a capillary 

did not showed preferred orientation for gypsum and so this effect was not corrected in 

this analysis. 

High resolution SXRPD minimizes most of the experimental artifacts that may cause 

errors in the patterns. The value for gypsum content obtained by SXRPD was 26.1 wt%, 
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which compares very well with the added value 25.0 wt%, see Table IV. The error is 1.1 

wt% (absolute value) or 4.6% (relative value). Furthermore, this small discrepancy can 

be explained by the presence of a small amount of amorphous phase in the CSA clinker 

which would result in a small overestimation of the RQPA result for the added gypsum. 

The values obtained from Mo Kα radiation are close to 27 wt% (see Table IV), about 2 

wt% (absolute error) or 10.5% and 7.4% relative errors for Mo Kα1 and Mo Kα2-strip 

analyses, respectively. Finally, the larger error (lower accuracy) is obtained for Cu-

radiation patterns. The RQPA-derived gypsum contents were 28.7 and 31.0 wt% for Cu 

Kα1,2 and Cu Kα1 patterns, respectively. In this case, the relative errors were as large as 

14.8 and 24% (relative values). As expected, for laboratory X-ray powder diffraction 

data, accuracy in the RQPA results improves as the irradiated volume increases. 

 E. Accuracy study from an inter-laboratory comparison. 

The assessment of the accuracy of RQPA results from Mo-radiation was also performed 

by analyzing two commercial samples, previously used in a Round Robin of building 

materials (León-Reina et al., 2009). Tables V and VI give RQPA of GP_Clin and 

GP_Cem, respectively. The first column in these tables gives the mean values and 

standard deviations obtained in that study (in bold) and they are considered as “true 

values” and they were derived from the reported values by the fourteen experienced 

participants. The RQPA results obtained by the radiations and geometries described in 

the experimental section are also given in these tables. The standard deviation reported 

in Tables V and VI, for the RQPA obtained in this study, are mathematically derived 

errors. For the sake of comparison Figure 4 gives Rietveld plots for GP_Cem collected 

with LXRPD with Mo and Cu radiations in transmission. 

As expected, RQPA results for the SXRPD data showed the closest agreement with the 

reported values in the Round Robin study. In fact, the RQPA results agree within one 
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standard deviation for most of the phases. Then, the next closest agreement is the Mo-

radiation patterns with quite good agreement, see Tables V and VI. For GP_Clin sample 

RQPA results from Mo-Kα1 radiation are almost identical to those obtained from 

synchrotron radiation. As the sample complexity increases, GP_Cem (Table VI), the 

deviation are a bit larger but still the values are quite similar. 

Finally, the deviation dramatically increased in RQPA results obtained from 

transmission geometry with Cu Kα1,2 radiation. It is well known that C3S and C2S main 

peaks are severely overlapped and the use of polychromatic radiation has likely 

increased the correlations in data analysis. Transmission Cu Kα1,2 Rietveld results for 

both samples followed the general trend obtained in previous studies (De la Torre and 

Aranda, 2003; León-Reina et al., 2009), showing an underestimation of C3S and an 

overestimation of C2S respect to mean values, although total silicate content is almost 

constant. 

The obtained values by DTA-TGA are also included in Table VI, as an alternative way 

to evaluate the accuracy of the obtained results. The percentages of gypsum obtained by 

both methods (RQPA and thermal analysis) are very similar. However, the percentages 

of bassanite obtained with synchrotron and Mo radiations resulted in underestimated 

values when compared to the DTA-TGA value. These differences could be due to the 

poor crystallinity of this phase which may result in a smaller content for the crystalline 

fraction. On the other hand, the calcite amount obtained by RQPA is slightly 

overestimated in the patterns collected in this study, likely due to the strong overlapping 

between C3S and calcite main peaks, which makes problematic the calcite 

quantification at low contents. 

 F. RQPA of very complex systems. 
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Three hydrated cements have been analyzed using strictly monochromatic Mo Kα1 

radiation. RQPA results were crosschecked by comparison to the results from SXRPD 

data for the same samples. In addition to some remaining phases from the anhydrous 

cements, three hydrated crystalline phases are expected in these types of pastes: 

ettringite, stratlingite and katoite (Alvarez-Pinazo et al., 2013, 2014). Some amounts of 

calcium carbonate (calcite and vaterite) were also quantified. These carbonates likely 

arise from the carbonation of portlandite, Ca(OH)2, which is one of the hydration 

products of dicalcium silicate, a.k.a. belite. The complexity of these systems is clear 

from Table VII as eight crystalline phases are present. Figure 5 gives Rietveld plots for 

G10B0 sample (Mo Kα1 and synchrotron patterns) as a representative example. Figure 5 

highlights the complexity of the sample (with eight crystalline phases) but also the high-

resolution features the Mo Kα1 pattern, where the diffraction peak overlapping is very 

similar to that observed in the synchrotron pattern. 

Two main conclusions can be derived from the RQPA results reported in Table VII. 

Firstly, the carbonation effect are clearly observed in these patterns with the calcium 

carbonate (calcite and vaterite phases) slightly evolving with time. Secondly, and in 

spite of the carbonation effects and the complexity of the systems, the derived contents 

for the main crystalline phases agree relatively well in both studies. 

 

IV. CONCLUSION 

Irradiated volume in diffraction is a key issue since higher volume yields enhanced 

particle statistics. Therefore, the use of a high energy radiation is beneficial as the 

irradiated volume of sample can be increased. Moreover, quite low FWHM values for 

strictly monochromatic Mo Kα1 diffraction peaks have been measured. Low FWHM 
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values indicate that peak overlapping is not much more important than in Cu Kα1 

powder diffraction. So, the optimum results for strictly monochromatic Mo radiation 

arise from the large tested volumes meanwhile peak overlapping is not enlarged. 
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Tables 

 
Table I. Transmission laboratory X-ray powder diffraction experimental setups with flat samples. 

 Mo Kα1-D8 Mo Kα1,2-EMPYREAN Cu Kα1,2-EMPYREAN 
X-ray tube 

λ (Å) 
Ceramic Mo - long fine focus 

0.70932 
Ceramic Mo - long fine focus 

0.7107 
Ceramic Cu - long fine focus 

1.5418 
Applied power  50 kV, 45 mA 60 kV, 40 mA 45 kV, 40 mA 

Tube focus Long line Line Line 
Flat sample stage transmission spinner (10 rpm) transmission spinner (60 rpm) transmission spinner (15 rpm) 

Incident beam optics 
Optic device Johansson monochromator 

Ge (220)  
Focusing X-ray mirror for Mo 

radiation 
Focusing X-ray mirror for Cu 

radiation 
Beam width (Bw) 16 mm 20 mm 12.9 mm 

Soller slit 1.6º (0.028 rad) 0.02 rad 0.04 rad 
Divergence slit (Sw) 2 mm 0.7 mm 0.7 mm 

Anti-Scatter slit -- ¼º  ½º 

Diffracted beam optics 

Anti-Scatter slit -- 2 mm 5 mm 
Soller slit 1.6º (0.028 rad) 0.02 rad 0.04 rad 
Detector LYNXEYE XE 500μm  

(3.5˚ opening) 
X’CELERATOR (scanning 
mode 2.122

o 
 active length) 

PIXCEL 3D RTMS (scanning 
mode 3.347

o 
 active length) 
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Table II. Data acquisition details for LXRPD patterns collected using Mo and Cu 
radiations in transmission (t) and reflection geometries (r). 

 Angular range 
(º) 

step size 
(º) 

Average total 
time (min) 

D8 (Mo Kα1) (t) 3-30 0.009 150 
EMPYREAN (Mo Kα2-strip) (t) 3-31 0.017 100 

EMPYREAN (Cu Kα1,2) (t) 5-70 0.013 170 

X’PERT (Cu Kα1) (r) 5-70 0.013 120 
 

 
 
Table III. Density (ρ), linear absorption coefficient (µ), fractional attenuation factor of 
the beam due to absorption (a.f.) and thickness (t) of flat samples for transmission 
LXRPD measurements. 
 

Sample ρ 
(g/cm3) 

 Mo Kα1 Mo Kα2-strip Cu Kα1,2 

  µ (cm-1) 24 24 205 
25G_CSA 2.7 a.f. 2.5 2.7 3.0 

  t (mm)* 0.5 0.5 0.07 
  µ (cm-1) 36 36 320 

GP_Clin 3.3 a.f. 2.2 2.1 2.9 
  t (mm)* 0.3 0.3 0.04 
  µ (cm-1) 35 35 307 

GP_Cem 3.2 a.f. 2.2 2.5 2.7 
  t (mm)* 0.3 0.3 0.04 

*75% packing factor is assumed 
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Table IV. Comparative of the RQPAs for sample 25G_CSA measured with different radiations (Mo, Cu and Synchrotron) and geometries 
(reflection (r) and transmission (t)). 

Phase (wt%) 
Comments 
DTA-TG 

wt% 

Synchr 
λ=0.62 Å 
t-capillary 

Mo Kα1 
 

t-flat 

Mo Kα2-strip 
 

t-flat 

Cu Kα1 
 

r-flat 

Cu Kα1,2 
 

t-flat 

µ 
[Cu Kα] 
(cm-1) 

µ 
[Mo Kα] 

(cm-1) 

µ 
[λ=0.62 Å] 

(cm-1) 
C4A3S  51.7(1) 47.5(2) 51.5(2) 47.9(1) 50.6(1)/51.1(1)* 171 19 13 
β-C2S  12.7(3) 17.1(5) 11.5(7) 11.0(3) 11.0(5)/10.5(5)* 299 34 23 
C4AF  1.2(1) - - 0.7(1) - 388 58 39 
CT  6.4(1) 6.4(2) 7.1(3) 6.8(2) 7.6(2)/7.5(2)* 485 57 38 
MgO  1.9(1) 1.5(1) 1.8(2) 1.4(1) 1.0(1)/0.9(1)* 100 10 7 
Ca2MgSi2O7  - - 1.3(2) 1.4(1) 1.1(2)/1.1(2)* 204 23 15 
CaSO4

.2H2O 
(CSH2) 

24.96 26.1(2) 27.6(3) 26.8(3) 31.0(1) 28.7(2)/28.9(2)* 140 16 11 

P.O.C. CSH2 [0 1 
0] 

 1.00 1.180(7) 1.085(8) 0.732(2) 1.300(7)/1.290(7)*    

* Rietveld quantitative phase analysis obtained after the application of the correction factor due to not preserving constant volume assumption. 
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Table V. Comparative of the RQPAs for sample GP_Clin measured with synchrotron, Mo and Cu radiations, as in Table IV. 
 

Phase (wt%) $R.R. 
 
 

Synchr 
λ=0.62 Å 
t-capillary 

Mo Kα1 
 

t-flat 

Mo Kα2-strip 
 

t-flat 

Cu Kα1,2 
 

t-flat 

µ 
[Cu Kα] 
(cm-1) 

µ 
[Mo Kα] 

(cm-1) 

µ 
[λ=0.62 Å] 

(cm-1) 
C3S  66.6(2.

8) 
63.1(1) 62.7(3) 62.1(1) 56.5(2)/ 56.2(2)* 313 36 24 

C2S 19.2(2.
5) 

20.0(3) 21.9(4) 21.7(4) 26.3(5)/ 26.7(5)* 299 34 23 

C3A 2.4(0.5) 3.1(2) 2.3(2) 2.7(2) 2.4(2)( 2.3(2)* 260 30 20 
C4AF 9.9(1.2) 12.1(3) 11.7(2) 11.9(2) 13.6(2)/13.7(3)* 388 33 22 
NaK3(SO4)2 0.8(0.2) 0.6(1) 0.7(1) 0.7(1) 0.6(1)/0.5(1)* 195 22 15 
MgO 1.0(0.2) 1.0(1) 0.9(1) 0.9(1) 0.6(1)/0.5(1)* 100 10 7 

P.O.C. C3S [1 0 -1]  1.0(-) 1.020(3) 1.034(4) 1.040(4)/1.040(4)*    
$ Mean and standard deviation values from the Round Robin study (León-Reina et al., 2009). In this case, the average values and the standard 
deviations were derived from the results of the fourteen participants. 
* Rietveld quantitative phase analysis obtained after the application of the correction factor due to not preserving constant volume 
assumption. 
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Table VI. Comparative of the RQPAs for sample GP_Cem measured with Cu, Mo and synchrotron radiations, as in Table IV. 

Phase (wt%) *R.R. 
 

Comments 
DTA-TG 

wt% 

Synchr 
λ=0.62 Å Mo Kα1 Mo Kα2-strip Cu Kα1,2 

µ 
[Cu Kα] 
(cm-1) 

µ 
[Mo Kα] 

(cm-1) 

µ 
[λ=0.62 Å] 

(cm-1) 
C3S  62.0(3.2)  61.6(1) 64.8(1) 64.6(1) 55.8(2) 313 36 24 
C2S 9.9(2.8)  7.7(4) 7.1(4) 8.1(5) 13.9(9) 299 34 23 
C3A 4.8(1.2)  5.2(2) 5.0(2) 4.9(2) 4.9(2) 260 30 20 
C4AF 10.0(1.0)  12.5(2) 9.9(2) 10.8(2) 10.5(3) 388 33 22 
NaK3(SO4)2 1.4(0.4)  0.7(1) 0.7(1) 0.8(1) 0.8(1) 195 22 15 
CaSO4

.2H2O (CSH2) 1.5(0.5) 1.45 1.3(2) 1.6(1) 1.3(1) 2.0(1) 140 16 11 
CaSO4

.1/2H2O 2.4(0.7) 2.67 1.4(1) 1.6(1) 1.7(1) 2.7(1) 191 22 14 
CaCO3 5.6(1.9) 7.03 8.7(1) 8.1(1) 6.7(1) 8.5(2) 193 22 15 
MgO 1.8(0.5)  0.8(1) 1.1(1) 1.2(1) 0.9(1) 100 10 7 
          
P.O.C. C3S [1 0 -1]   1.050(4) 1.020(4) 1.027(4) 1.020(5)    
P.O.C. CSH2 [0 1 0]   1.00(-) 1.00(-) 1.00(-) 1.00(-)    
P.O.C. CaCO3 [1 0 
4]   1.00(-) 1.00(-) 1.00(-) 0.71(1)    

Mean and standard deviation values from the Round Robin study (León-Reina et al., 2009). In this case, the average values and 
the standard deviations were derived from the results of the fourteen participants. 
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Table VII. Comparative of the RQPA results (wt%) for hydrated samples measured with 
Mo Kα1 and synchrotron radiations. 

 
 G10B0 G5B2 G10B2 

Phase (wt%) Mo Kα1 
 

Synchr 
λ=0.62 Å 

Mo Kα1 
 

Synchr 
λ=0.62 Å 

Mo Kα1 
 

Synchr 
λ=0.62 Å 

α´H-C2S* - - 36.4(3) 30.2(2) 33.3(4) 30.7(2) 
β-C2S* 20.9(4) 22.8(2)   - - 
γ-C2S* 2.4(1) 2.3(1)   - - 
C2AS* 4.0(1) 2.9(1) 1.9(1) 1.6(2) 1.6(1) 1.8(2) 
CT* - - 1.3(1) 1.1(1) 1.3(1) 1.0(1) 

Ettringite# 12.4(2) 16.6(2) 10.1(3) 7.8(2) 19.5(2) 20.3(3) 
Stratlingite# 38.7(5) 35.7(3) 21.8(4) 22.0(3) 13.1(5) 10.2(4) 
Katoite# 12.7(3) 13.0(2) 21.5(3) 24.1(2) 19.5(1) 20.5(3) 
Vaterite# 6.4(2) 4.2(2) 6.5(2) 13.2(3) 9.7(2) 13.7(3) 
Calcite# 2.5(1) 2.4(1) 0.5(1) - 2.0(2) 1.8(1) 
* Phase from the anhydrous cement. 
# Phase resulting from the hydration reactions. 
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Figure 1. Full width at the half maximum evolution with diffracting angle for all 

diffractometers and configurations used in this study. 

Figure 2. Irradiated volume for flat sample holder in transmission mode using (a) 

molybdenum radiation and (b) copper radiation; and (c) reflection mode using copper 

radiation. Diffraction geometry sketches (d) transmission geometry with primary 

monochromator, (e) transmission geometry with focusing mirror and (f) reflection geometry 

with primary monochromator. 

Figure 3. Raw (red) and corrected (black) data for 25G_CSA. Inset shows the applied 

correction factors considering the improvement of irradiated volume and absorption. 

Figure 4. Rietveld plots for GP_Cem collected in transmission mode with flat sample with (a) 

strictly monochromatic Mo Kα1 radiation, (b) Mo Kα2-striped radiation and (c) Cu Kα1,2 

radiations. 

Figure 5. Rietveld plots for G10B0 hydrated sample patterns (a) strictly monochromatic Mo 

Kα1 radiation in transmission with flat sample, (b) synchrotron radiation in transmission with 

sample in a capillary. 

28 
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