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Resumen:

Actualmente, el aprendizaje profundo (deep learning) constituye una de las tecnoloǵıas

del campo de la Inteligencia Artificial (IA) que goza de mayor éxito y popularidad. En

campos como el procesamiento de imágenes y el análisis de datos secuenciales, su uso

se encuentra bastante extendido, formando parte del núcleo de sistemas de vanguardia

como los veh́ıculos de conducción automática o los sistemas de reconocimiento facial. Sin

embargo, y a pesar de sus grandes capacidades representacionales y predictivas, su apli-

cación a problemas, como el análisis de datos de expresión para su empleo en tareas de

clasificación de cáncer, en los que el número de variables (N) supera con creces el número

de muestras (M) o patrones del conjunto de datos (N � M), constituye un verdadero

reto todav́ıa sin resolver. Con el objetivo de resolver este problema entre el número de

variables y de muestras, diferentes ténicas de aprendizaje automático de reducción de la

dimensionalidad de los datos han sido aplicadas. Aunque esta técnicas consiguen reducir

el número de variables, el rendimiento en predicción de los modelos de aprendizaje au-

toemático tradicionales es moderado, ya que el número reducido de muestras empleado

para el entrenamiento de los métodos de reducción de la dimensionalidad no les per-

mite extraer las caracteŕısticas adecuadas para mejorar el rendimiento en predicción de

forma significativa. Para resolver estos problemas y mejorar la habilidad predictiva de los

métodos clásicos de aprendizaje automático, proponemos un enfoque basado en el apren-

dizaje profundo para reducir la dimensionalidad de los datos de expresión, que emplea

aprendizaje supervisado y no supervisado para hacer uso de todas las muestras de tumores

presentes en una base de datos para resolver una tarea de clasificación en cáncer conc-

reta. Empleando la predicción del subtipo intŕınseco de cáncer de mama como ejemplo

de tarea de clasificación en cáncer, los resultados obtenidos muestran que el rendimiento

de los enfoques basados en aprendizaje profundo y en técnicas tradicionales de apren-

dizaje automático son muy similares a la hora de reducir la dimensionalidad de los datos

de expresión génica para su empleo en tareas de clasificación en cáncer. Sin embargo,

aunque algunos enfoques tradicionales parecen superar el rendimeinto del enfoque basado

en aprendizaje profundo, para concluir cuál es el enfoque más efectivo más trabajo es

necesario. Por otro lado, comparando el rendimiento de los diferentes modelos de apren-

dizaje profundo implementados, aunque con mucha prudencia, podemos decir que cuanto

mas profundo el modelo mejor rendimiento obtuvo, mostrando el poder representacional
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de estos modelos para la extracción de una jerarqúıa de representaciones abstractas utiles

para la resolucion de tareas de clasificación.

Palabras claves: aprendizaje profundo, aprendizaje automático, inteligencia artificial,

datos de expresión génica, reducción de la dimensionalidad, cáncer de mama, calsificación

Abstract:

Deep learning has become one of the most promising Artificial Intelligence (AI) technolo-

gies nowadays. It has been very successfully applied to areas such as computer vision or

natural language processing. However, although the great representational and predictive

capabilities exhibited by these models, their feasibility to be applied to problems such

as gene expression data analysis for cancer classification, in which the number of input

variables (N) far exceeds the number (M) of samples (N � M), remains a challenge

yet to be solved. In order to solve this balancing problem, several traditional machine

learning dimensioanlity reduction techniques have been applied. Although these tech-

niques scale down the input feature space, the prediction performance of the traditional

machine-learning models is moderate, as the reduced number of samples used to train both

the dimensionality reduction methods and the classifiers does not allow them to extract

the hidden patterns in the gene expression data in a way that improves the prediction

performance significantly. In order to solve these problems and improve the prediction

ability of the traditional machine-learning models, we propose a deep learning approach

for reducing the dimensionality of gene expression data, which uses both unsupervised

and supervised learning to make the most of the entire tumor data available in a database

to solve a concrete cancer classification task. Using breast cancer intrinsic subtype pre-

diction as an example of a cancer clasification task, the obtained results showed that the

performances of both deep learning and traditional machine-learning approaches are very

similar when reducing the dimensionality of gene expression data for the purpose of cancer

classification. However, though some traditional approaches seem to outperform the deep
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learning strategy, to conclude which is the most effective approach more work needs to

be done. On the other hand, comparing the performance of the different autoencoders,

although very cautiously, we could say that the deeper the model the better perfomance

was obtained, showing the representational power of deep learning to extract a hierarchy

of abstract representations useful for solving classification tasks.

Keywords: deep learning, machine-learning, artificial intelligence, gene expression data,

dimensionality reduction, breast cancer, classification
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1 Introduction

1.1 Motivation

Artificial Intelligence (AI) is changing our society in an unprecedented way, a fact no one

can deny. Shopping, driving, web searching, cooking, nearly all human activities can be

computationally automated, and that has made AI one of the most successful areas in

Computer Science. This is evidenced by the great amount of resources the technology

giants, such as Google, Facebook or Amazon, are investing in this field, with some experts

claiming that we are now at the Fourth Industrial Revolution [1].

Driving all this progress, a state-of-the-art Machine Learning technique stands out

from the others, and that is deep learning. This technology has reached astonishing

performance in domains where data has spatial or sequential information, such as com-

puter vision or natural language processing [2]. This way, the image processing area has

been revolutionized by a deep learning architecture called Convolutional Neural Network

(CNN) [3]. Since 2012, all winning models of the ImageNet contest, a competition where

the cutting-edge algorithms in visual recognition tasks meet annually, have been based

on CNN architecture. By 2015, human-level performance was reported to be exceeded

in several object recognition tasks from the contest [4]. This has allowed deep learning

models to be at the core of some of the most advanced artificial visual perception systems,

such as the ones used in self-driving cars [5].

Another area to which deep learning has contributed the most is natural language

processing. Recurrent Neural Networks (RNNs) are specially suited for tasks where data

is presented as a sequence of elements, as they are able to integrate the context where an

element is presented to the network in its internal representation. Thus, RNNs have been

widely applied to language translation and speech recognition tasks [6, 7]. When combined

with CNN models, they can be used for image captioning, the process of generating a

natural language description of an image, in the way we see in Figure 1.

Up to now, we have described deep learning models that solve predictive tasks. How-

ever, in recent years, new deep generative models have been created, which are able to

learn the true data distribution from a training set in order to generate new data. In 2014,
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Figure 1: Natural language description produced by an RNN model taking as input the
representations extracted by a CNN, taken from [2].

Ian Goodfellow et al. presented Generative Adversarial Networks (GANs) [8], a model

composed of two deep neural networks, a discriminator and a generator, which compete

with each other through a process called adversarial training. One of the most relevant

applications of GANs is the production of photorealistic high-resolution images, such as

the ones showed in Figure 2. Once trained, the generator network is able to create these

realistic images receiving just noise as input data. This has strong implications in many

other fields like Philosophy, Psychology or Art, as the ability to be creative may no longer

be attributed only to humans.

Figure 2: High-resolution images generated by GANs, taken from [9].
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There are three main reasons why deep learning models have achieved all the success

mentioned above. Firstly, the theoretical model behind this technology: Representation

learning, a set of methods that allow a machine to be fed with raw data and to auto-

matically discover the representations needed for detection or classification tasks [2]. The

key is that they do it in a data-driven way: The transformations needed to solve a cer-

tain task are learnt from the raw data itself, using a general-purpose learning algorithm,

avoiding the manual feature extraction performed by humans. Deep learning is a group of

representation-learning models, and the biologically inspired neural architecture of these

models allows them to stack many layers forming what is called a deep architecture. Using

this architecture, the model processes the data transforming its raw representation into

a hierarchy of progressively more abstract representations, which makes the model very

good at discovering intricate structure in high-dimensional data [10]. However, the main

drawback is having a very complex model with so many parameters to be learnt, which

can in turn cause problems such as overfitting and vanishing gradient problem. In recent

years, several technical improvements, such as dropout, batch-normalization or rectified

linear units [11, 12, 13], have contributed to overcome these difficulties.

As we have just said, as a model gets deeper, the number of parameters to be learnt

increases enormously, needing huge amount of data to train the model in an effective

way. Nevertheless, when having enough data, in contrast to traditional machine-learning

algorithms, deep learning models show scalable properties that allow them to make the

most of the data in terms of performance, i.e. they increase their performance as the

amount of training data increases. Hence, the second engine driving deep learning to

success is Big Data [14]. In the digital era we live in, nearly all human and non-human

activities are monitored by sensors that collect vast amounts of data. The combination

of huge datasets and methods such as deep learning able to handle them, promises to

extract all the information hidden in the data [15], turning two things that separately are

almost useless into a useful symbiosis.

Finally, the last reason why deep learning is such a great success is the development of

modern and more capable hardware, specially GPUs. The theory behind deep learning

is not new, actually the first experiments with artificial neural networks were conducted

in the 1940s [16]. Even so, the field remained unpopular until faster CPUs and general
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purpose GPUs were made available. Graphical Processing Units (GPUs) are specially

suited for the optimization of the matrix operations needed to train deep models, which

is the reason why they have become so popular in the field, performing the training 20

times faster than CPUs [17].

In what follows, we shall proceed to enumerate the main contributions of these models

to the field of bioinformatics, paying special attention to gene expression analysis, the

area to which we aim to apply deep learning in this work.

1.2 Deep learning in bioinformatics

The contributions of deep learning to the bioinformatics domain can be seen in two main

areas: biological image analysis, and omics data processing.

Because of the great success deep learning models have obtained in the image processing

domain, one of the most straightforward applications of deep learning in bioinformatics

is the analysis of biological images. In 2012, Ciresan et al used a deep convolutional

model to segment neuronal membranes in electron microscopy images, classifying each

pixel as membrane or non-membrane [18, 19]. These authors used the same model in

2013 to detect mitosis in breast histology images [20]. An interesting work by Zhang et

al was pusblished in 2015, in which they showed that a convolutional model pre-trained

on natural images from ImageNet could be further fine-tuned using in situ hybridization

images to improve the prediction of Drosophila melanogaster developmental stages [19,

21]. This is an example of what is called Transfer Learning (TL), a machine-learning

technique in which a model pre-trained on a base dataset and task is further adjusted

using a target dataset to be used to solve a target task (notice that base and target refer

to different datasets and tasks). This strategy has been widely and successfully applied

to solve image processing tasks using deep learning models [22].

The second area where deep learning has been applied in the bioinformatics domain is

omics data analysis, one of the most promising areas in bioinformatics nowadays. The

Next Generation Sequencing (NGS) methods are revolutionizing biology, generating an

unprecedented vast amount of genomic data that, jointly with other molecular data,
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is analyzed by the omics disciplines, such as genomics, transcriptomics, proteomics or

epigenomics. The integration of all this data from a single organism can be very valuable in

fields such as medicine, where this data is used to get a holistic view of the molecular state

of a patient, driving the progress of what is called P4 medicine (predictive, preventive,

personalized and participatory), considered by the experts to be the medicine of the future

[23].

The contributions of deep learning to this domain are mainly found in genomics (a

key area in P4 medicine), due to the adaptation of the convolutional models applied in

computer vision to DNA sequence data. Instead of processing 2-D images with three color

channels, a DNA sequence is considered as a 1-D sequence with four channels, one for

each type of nucleotide (A, C, T, G) [24]. In 2015, this approach was used by Alipanahi

et al to find useful motifs in DNA sequences to predict sequence specificities of DNA-

and RNA-binding proteins [25]. One year later, the same convolutional strategy was used

by Zhou and Troyanskaya to find effective motifs for predicting the effects of non-coding

variants in DNA sequences [26].

Apart from genomics, gene-expression data analysis (transcriptomics) is becoming one of

the most important omics disciplines in P4 medicine, due to the advent of high-throughput

sequencing technologies such as RNA-Seq [27]. In areas such as oncology, gene expression

data offers a completely new way of describing the molecular state of a patient. As

cancer is considered a genetic disease, a gene expression sample from a patient (which

describes the genetic changes responsible for the progression of the disease, such as the

over-activity or the repression of genes) contains information of paramount importance

for the prevention, diagnosis and treatment of this malignant disease. For example, in

breast cancer (one of the most heterogeneous cancers with many intrinsic subtypes) the

information hidden in the gene expression data, when properly extracted, can be used to

diagnose the concrete subtype in a precise and effective way [28]. An accurate diagnosis

is extremely important for the development of a personalized treatment, as the molecular

and specific therapies as well as the predicted prognosis strongly depend on the intrinsic

breast cancer subtype of the patient [29].

The contributions of deep learning to gene expression analysis for cancer prediction are

extremely scarce. The reason being that, although deep learning models have demon-
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strated to be able to extract the hidden patterns in extremely complex data, gene ex-

pression data present some problems that make the application of deep learning models

a difficult challenge yet to be solved. Up to now, in all the successful deep learning ap-

plications we have mentioned, the data had spatial or local information (text sequences,

images, biological sequences, etc.); however, this is not the case with gene expression data.

To make matters worse, the dimensionality of the input feature space, i.e. the number of

input features (N), is extremely high (10K-60K) in gene expression datasets. However,

in clinical tasks such as cancer detection, the number of available samples (M) is very

low (300-1K). This enormous imbalance between the number of input features and the

number of available samples (N � M) makes the learning process extremely difficult,

and it is known as the curse of dimensionality [30], a common problem not only for deep

learning models, but for traditional machine-learning algorithms as well.

In fact, in order to solve different cancer classification tasks using gene expression data,

various traditional machine-learning models have been applied, such as logistic regression,

decision trees, support vector machines, swallow artificial neural networks, etc. [31, 32].

But again, the main problem faced by these algorithms is the high dimensionality of the

gene expression data compared to the lack of available samples (N �M). To reduce the

number of input features, distinct classic dimensionality reduction techniques have been

used, such as feature selection and extraction methods [33]. Although these techniques

scale down the input feature space, the prediction performance of the traditional machine-

learning models is moderate, as the reduced number of samples used to train both the

dimensionality reduction methods and the classifiers does not allow them to extract the

hidden patterns in the gene expression data in a way that improves the prediction per-

formance significantly. This is mainly due to a scalability problem, as, for example, when

using traditional machine-learning methods to predict the intrinsic breast cancer subtype

from gene expression data, these supervised models cannot take advantage of any other

tumor data but breast cancer, using only a few hundred samples to train the models.

In order to solve these problems and improve the prediction ability of the traditional

machine-learning models, we propose a deep learning approach for reducing the dimen-

sionality of gene expression data, which uses both unsupervised and supervised learning to

make the most of the entire tumor data available in a database to solve a concrete cancer
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classification task, such as predicting the intrinsic breast cancer subtype of a patient.

Now, we shall proceed to review the state of the art in deep learning for cancer detection

using gene expression data.

1.2.1 Deep learning for gene expression data analysis

Although, as it was said before, the contributions of deep learning to cancer prediction

using gene expression data are just starting to emerge and there are not yet numerous

examples, several works are worth mentioning, as they clarify how unsupervised deep

learning models (essentially autoencoders) can be adapted to reduce the dimensionality of

gene expression data for the purpose of cancer classification. One of the most inspiring and

cited ones was done in 2013 by Fakoor et al [34]. In this work, they used a combination of

PCA and simple autoencoder architectures (sparse and two-layers stacked autoencoders)

to perform dimensionality reduction, and a softmax output layer on top of the autoencoder

architecture during the classification stage. Although the autoencoders are constrained

by the features extracted by PCA, they use a very simple linear classifier and only 2K

samples for training the deep models, this is the first work using deep autoencoders and

gene expression data from different tumors during the feature learning step. In 2016,

Danaee et al used stacked denoising autoencoders for feature extraction, and evaluated

the extracted representations performing supervised breast cancer detection [35]. Even

though such a deep model was trained using only 1K breast cancer samples, this was the

first time stacked denoising autoencoders were applied to gene expression data. Finally,

in 2018, Way and Greene employed variational autoencoders (VAEs) to extract a latent

feature space using 10K gene expression samples [36]. Though they did not use the

extracted features to perform any cancer detection task, they showed that the extracted

features represented biological signals.

In this final project, basing on these previous works, we will try to use deep autoencoders

to reduce the dimensionality of the gene expression data, as well as a transfer learning

approach that allows us to train the deep learning models using a whole database of tumor

samples, and use the extracted features to perform cancer classification tasks such as the

prediction of breast cancer intrinsic subtypes.
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1.3 Objectives

Thus, the main objective of this project is to use a deep learning approach to reduce the

dimensionality of gene expression data, as well as analyzing its effectiveness when applied

to cancer classification tasks.

This principal objective can be divided into two more specific objectives:

1. Adapting deep learning models to gene expression data particular difficulties. In

order to solve the great imbalance between the dimensionality of the data (N) and

the number of samples (N � M), we will try different autoencoders architectures

(sparse, stacked sparse and denoising stacked) to reduce the number of input fea-

tures. In addition, we will use a transfer learning approach to increase the number

of samples used during the feature extraction stage.

2. Comparing the obtained results using a deep learning approach with the ones ob-

tained using traditional machine-learning dimensionality reduction techniques. In

order to compare both approaches, we will use the extracted features to solve a

cancer classification task, such as the prediction of the breast cancer intrinsic sub-

types. To do that, we will use three classic supervised machine-learning algorithms:

Logistic regression, support vector machines and swallow artificial neural networks.

1.4 Document structure

In this section, we give a brief description of the structure of the document:

• Methods: This section describes each of the phases of a traditional data-mining

metodology followed to carry out this project, such as data extraction, data pre-

processing, dimesnionality reduction, etc. In addition, it contains a description of

the algorithms used to perform all these stages.

• Results: Here, the project final results are presented and discussed. Special atten-

tion will be paid to the comparison of the results obtained using the deep learning

approach and the traditional machine-learning strategy to reduce the dimensionality

of the data.

8



• Conclusion: Finally, the last section contains a conclusion of the work both in

English and Spanish, with a final subsection dedicated to describe future works and

research lines.
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2 Methods

In this project, we compare two different strategies of solving a cancer classification task

using gene expression data, in our case the prediction of breast cancer intrinsic tumor

subtypes. The two approaches reduce the high dimensionality of the data in a different

way, one using deep learning algorithms and the other using traditional machine-learning

techniques.

2.1 Deep learning strategy

The first strategy uses deep unsupervised learning models (autoencoders) to perform fea-

ture extraction. Using a transfer-learning approach, the models are pre-trained on a large

compendium of gene expression samples, and then fine-tuned using a small dataset for

classification purpose. Hence, we distinguish two phases: feature learning and classifica-

tion learning.

2.1.1 Feature learning

Data extraction

To pre-train the deep models that reduce the dimensionality of the gene expression data,

any of these public data sources can be used:

• The Cancer Genome Atlas (TCGA) platform is a collaboration between the Na-

tional Cancer Institute (NCI) and the National Human Genome Research Institute

(NHGRI), that has generated one of the most complete genomic studies up to now,

known as PanCancer Atlas [37]. This data contains muti-dimensional omics data

(DNA methylation, gene and protein expression data, etc.) of 33 different tumor

types from 11K patient samples.

• The UCSC Xena portal allows to access 1521 multi-omics datasets from 135 dif-

ferent cohorts. The largest dataset to which they provide access to is the TCGA-

TARGET-GTEx dataset, a data integration from three different platforms into a

10



unique dataset free of computational batch effects [38]. It comprises 20K gene ex-

pression samples, from which almost the 50% of them come from cancer patients,

and the other 50% from healthy (control) patients. This makes TCGA-TARGET-

GTEx one of the largest and most balanced gene expression datasets, something

specially useful when performing cancer detection tasks such as predicting whether

a sample comes from a cancer or healthy patient.

• The Gene Expression Omnibus (GEO) is a public functional genomics data repos-

itory that stores and freely distributes microarray, next generation sequencing and

many other high-throughput functional genomics data provided by the scientific

community. Platforms such as ARCSh4 [39], provide access to all the RNA-Seq

gene expression data available in GEO, processing the data from different plat-

forms uniformly. Concretely, 187,946 samples are accessible through ARCSh4 with

103,083 mouse and 84,863 human.

Due to performance reasons, the dataset used in this work to pre-train the models is

the Pan-Cancer gene expression dataset. Although our initial intention was to use the

TCGA-TARGET-GTEx dataset, it contains almost twice (20K) the number of samples

of the Pan-Cancer (11K), which makes it too large considering our hardware resources

(see section ).

Data preparation

The original Pan-Cancer dataset contains 11K samples and 60K variables (gene tran-

scripts). However, our hardware resources cannot process so many input variables (see sec-

tion ). Hence, instead of using the original dataset, we used the data from [36] (henceforth

called pan-cancer dataset), accessed through https://github.com/greenelab/tybalt.

This dataset contains all the 11K samples from 33 tumor types but only includes the 5K

most variably expressed genes, defined by median absolute deviation (MAD). In addition,

the unit of the gene expression data is log2(FPKM + 1) transformed RSEM values.

Actually, rather than using the whole pan-cancer dataset for pre-training the models,

we split the data into two distinct sub-datasets: one containing only the breast cancer

tumor samples (BRCA pan-cancer dataset, 1K samples) and the other containing the re-
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maining samples from the rest of the 32 tumor types (non-BRCA pan-cancer dataset, 10K

samples). As in our transfer-learning approach the cancer classification task we want to

solve is the prediction of the intrinsic breast cancer subtype, the BRCA pan-cancer data is

only used during the classification learning phase, as it contains the subtypes information,

whereas the non-BRCA pan-cancer dataset is used during the feature learning phase to

pre-train the deep models in an unsupervised way. The rationale behind this is that we do

want to use totally different data to perform the pre-training and the fine-tuning during

classification learning phase.

On the other hand, regarding normalization, the non-BRCA pan-cancer data is nor-

malised using the standard centering and scaling method (zero mean and unit variance).

Dimensionality reduction

To reduce the high dimensionality of the gene expression data we use autoencoders, an

unsupervised feature extraction method.

- Theoretical model

An autoencoder, in its simplest form, is a feedforward neural network with three layers:

an input, a hidden and an output layer. It is an unsupervised learning method in which

the main goal is, given an input, to reconstruct an output layer representation as closely

as possible to the initial input layer representation. This is done by training the net-

work using backpropagation method to minimize the reconstruction error, a function that

computes the difference between the input and the output.

For example, as it is shown in Figure 3, given a set of k unlabeled training samples

{x(1), x(2), . . . , x(k)}, where x(i) ∈ <6, an autoencoder tries to learn a function x̂ ≈ x [40].

The non-linear function that transforms the input into a hidden representation is called

encoder, and can be expressed as h(x) = f(Wx + b), where f is the hidden activation

function, such as sigmoid or tanh, W is the hidden weight matrix and b is the bias vector

of the hidden layer. The matrix W is of dimensions n×d, where n is the dimension of the

input data (number of units in the input layer), and d is the dimension of the encoded

representations (number of hidden units). On the other hand, the non-linear function
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that takes the hidden representations and transforms them into the reconstructed input

representations is called decoder, and can be expressed as x̂(h) = g(W ′h+ b′), where g is

the output activation function, W ′ is the output weight matrix and b′ is the bias vector

of the output layer. As opposed to W , the matrix W ′ is of dimensions d× n.

Figure 3: Example of a simple autoencoder architecture, taken from [40].

Having a hidden layer with fewer units than the input and the output layers (d <n),

forces the autoencoder to compress the input representation into a lower dimensional

representation, which can be reconstructed to its initial representation. That is why it is

used as a dimensionality reduction method.

Constraining the network, such as using a small number of hidden units, has demon-

strated to force the network to extract more abstract and meaningful features in the

hidden representations. In addition to reduce the number of hidden units, another pop-

ular way of constraining the network is using what is called a sparsity penalty [40]. This

penalty creates sparse representations, in which hidden units tend to be inactive most

of the time, i.e. close to zero if the hidden activation function is the sigmoid or ReLU
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function and close to -1 if it is the tanh activation function. Hence, the main effect of

the sparse penalty is to favour the distributed hidden (encoded) representations and the

units specialization, as each input pattern is encoded by the activation of a relatively

small set of hidden neurons and each neuron responds (activates) to a small set of inputs.

This penalty is generally implemented using L1-regularization in the hidden layer, which

is added to the reconstruction error function. Hence, if the mean squared reconstruction

error is used, the overall loss function minimized during the learning procedure can be

expressed as:

[
1

m

m∑
i

||xi − x̂i||2
]

+ λ
n∑
j

d∑
l

|wjl| (1)

where m is the batch size, n is the number of input and output units, d is the number of

hidden units, wjl is the weight connecting the input unit j to the hidden unit l and λ is

the L1-regularizer penalty. The first term corresponds to the input reconstruction error,

whereas the second term represents the L1-regularization, which tends to decrease the

magnitude of the weights, acting as a sparsity constraint. The sparsity penalty is widely

used in image processing domain, where it has shown to produce very good results [41].

Another widely used approach for constraining the network is known as denoising au-

toencoders [42]. During training, noise is added to the input data, and the difference

between the input reconstruction and the original noiseless data is minimized using back-

propagation. Hence, the goal of the network is to obtain a hidden representation robust

to the introduction of noise in the input layer. In order to be able to reconstruct the input

correctly, the corruption of the input data forces the network to extract more abstract

and meaningful features in the hidden layer. A simple denoising autoencoder architecture

can be seen in Figure 4.

Finally, the last approach used to force the network to extract more abstract features is

stacked autoencoders. This strategy simply consists on ”stacking” several autoencoders

into a deep autoencoder model, as the one shown in Figure 5, which is the result of

stacking two simple autoencoders, having a deep model of one input layer, two hidden

encoder layers, and two decoder layers. The hidden abstract representation is always the
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Figure 4: Example of a simple denoising autoencoder architecture, taken from [43].

one encoded by the middle layer, the last encoder layer.

Figure 5: Example of stacked denoising autoencoder architecture, taken from [44].

Besides, different constraining approaches can be combined into one, such as sparse

denoising autoencoders, stacked sparse autoencoders, or stacked denoising autoencoders.

All these autoencoder models have been successfully applied in image processing domain,

where they are able to transform an image into an encoded lower dimensional represen-

tation. However, although the application of a deep learning approach to reduce the

dimensionality of the gene expression data has been explored in some previous works (see

section 1.2.1), much works is still needed to be done to really know the feasibility of these
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models when applied to gene expression data.

- Model implementation

In this work, we have implemented three different autoencoder architectures: sparse,

stacked-sparse and stacked-sparse-denoising autoencoders. To train these models we used

the non-BRCA pan-cancer dataset (see data preparation phase). Besides, for each archi-

tecture, we needed to tune several hyperparameters, such as L1 penalty term, number of

epochs, batch size, etc. Though the best practice for tuning the hyper-parameters is to

use a search method such as Grid-Search or Randomized-Search, this would have been

too computationally intensive considering our hardware resources. For that reason, in

order to tune the hyper-parameters of each model, we extracted the 10% of the samples

of the non-BRCA pan-cancer dataset to define a validation set, and we used the remaining

90% of the samples as the training set. In this way, we tried different hyper-parameters

configurations and examined both the training and the validation loss curves to select the

best values, the ones that minimize both errors and prevent overfitting.

For the sparse architecture with one hidden layer, the hyper-parameters used in that layer

and the values we tried are shown in Table 1. Batch Normalization is used in the hidden

layer as a regularizer and to help to prevent vanishing gradient problems. The number of

extracted features is 100 in all the implemented autoencoder models.

Hyper-parameter Possible values

L1 regularization {1× 10−5, 1× 10−4, 5× 10−4, 1× 10−3}

Activation function ReLU

Batch Normalization Yes

Number of hidden units 100

Learning algorithm Adam

Learning rate {0.001, 0.005, 0.01}

Number of epochs {40, 60, 80}

Batch size {80, 100, 120}

Table 1: Hyper-parameter space of the sparse one-hidden layer autoencoder model.
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Layer Hyper-parameter Possible values

Hidden one (encoder)

L1 regularization {1× 10−5, 1× 10−4, 5× 10−4, 1× 10−3}
Activation function ReLU
Batch Normalization Yes
Number of hidden units 2000

Hidden two (encoder)

L1 regularization {1× 10−5, 1× 10−4, 5× 10−4, 1× 10−3}
Activation function ReLU
Batch Normalization Yes
Number of hidden units 100

Hidden three (decoder)

L1 regularization No
Activation function ReLU
Batch Normalization No
Number of hidden units 2000

Whole model

Learning algorithm Adam
Learning rate {0.0001, 0.0005, 0.001}
Number of epochs {100, 125, 150}
Batch size {100, 150, 200}

Table 2: Hyper-parameter space of the stacked-sparse autoencoder model.

The deep stacked-sparse architecture we used is the same as the shown in Figure 4,

with one input layer, three hidden layers and one output layer. The hyper-parameters

and their configurations are shown in Table 2.

Finally, the deep stacked-sparse-denoising architecture we used has two more layers

than the previous model: one input layer, five hidden layers and one output layer, whose

hyper-parameters and their possible values can be seen in Table 3. For corrupting the

input data, we set the values of a random fixed proportion of genes (input variables) to

zero (we call it noise ratio). This was implemented using dropout in the input layer [11].

As the gene expression values are real numbers, this correponds to a regression problem,

so the three distinct models use the mean squared error (MSE) as the loss function, and

linear activation function in the output layer. Besides, the number of input and output

units in all models is 5000 (the number of input features).

2.1.2 Classification learning

Classification task

As we said at the beginning of the previous section, to performe classification, we used the
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Layer Hyper-parameter Possible values

Hidden one (encoder)

L1 regularization {1× 10−5, 1× 10−4, 5× 10−4, 1× 10−3}
Activation function ReLU
Batch Normalization Yes
Number of hidden units 2500

Hidden two (encoder)

L1 regularization {1× 10−5, 1× 10−4, 5× 10−4, 1× 10−3}
Activation function ReLU
Batch Normalization Yes
Number of hidden units 1000

Hidden three (encoder)

L1 regularization {1× 10−5, 1× 10−4, 5× 10−4, 1× 10−3}
Activation function ReLU
Batch Normalization Yes
Number of hidden units 100

Hidden four (decoder)

L1 regularization No
Activation function ReLU
Batch Normalization No
Number of hidden units 1000

Hidden five (decoder)

L1 regularization No
Activation function ReLU
Batch Normalization No
Number of hidden units 2500

Whole model

Noise ratio {0.1, 0.15, 0.2}
Learning algorithm Adam
Learning rate {0.00005, 0.0001, 0.0005}
Number of epochs {150, 175, 200}
Batch size {200, 225, 250}

Table 3: Hyper-parameter space of the stacked-sparse-denoising autoencoder model.
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BRCA pan-cancer dataset (1K samples). In particular, the variable to be predicted is the

PAM50 BRCA subtype. PAM50 is a widely used 50-gene breast cancer intrinsic subtype

predictor [45] that, applied to our RNA-Seq data, group the samples in four subtypes:

Luminal A, Luminal B, Basal-like and Her-2 enriched, which are the main breast cancer

subgroups from a clinical point of view. Hence, our classification problem consist on a

multi-class classification problem of 4 different classes.

Fine-tuning and classification

Once the autoencoders are pre-trained on the non-BRCA pan-cancer dataset, following

our transfer-learning approach, the encoders need to be fine-tuned. Hence, using a 5-

fold nested Cross-Validation (CV) procedure, and extracting the encoder layers of each

pre-trained autoencoder, the models are fine-tuned on the BRCA pan-cancer dataset

using a softmax layer on top of the last encoder layer. Once tuned, we use them to

encode the gene expression data, and use the reduced dimensional data as input of three

classification algorithms: Logistic Regression (LR), Support Vector Machines (SVM) and

swallow Artificial Neural Network (ANN). Actually, we use the outer CV for fine-tuning

the encoders and training the classification algorithms, and for evaluating the models using

the average accuracy measure (ACC). The inner CV procedure is used to tune some hyper-

parameters of both the encoders and the classification algorithms, using Randomized-

Search method. We also standard scaled the data (zero mean and unit variance) before

feeding it into the autoencoders and before applying the classifiers.

For sparse, stacked-sparse and stacked-sparse-denoising autoencoders, their fine-tuning

hyper-parameters and their configurations can be seen in tables 4, 5 and 6 respectively.

The number of freezed layers corresponds to the last encoder layer to be freezed, i.e. set

as non-trainable during fine-tuning. The Dropout2 refers to the dropout used in the last

encoder layer, and corresponds to the proportion of units set to zero during training. As

the deep stacked-sparse and stacked-sparse-denoising models may suffer from overfitting

because of their complexity, an additional Dropout1 parameter indicates the dropout ra-

tio used in the hidden encoder layer specified by DropoutPos.
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Hyper-parameter Possible values

Learning algorithm Stochastic Gradient Descent

Learning rate {0.0001, 0.0005, 0.001}

Momentum [0.5, 0.9]

Dropout2 {0, 0.3, 0.5}

Number of epochs [10, 30]

Batch size [20, 60]

Table 4: Fine-tuning hyper-parameter space of the sparse one-hidden layer encoder.

Hyper-parameter Possible values

Number of freezed layers {0, 1}

Learning algorithm Stochastic Gradient Descent

Learning rate {0.0001, 0.0005, 0.001}

Momentum [0.5, 0.9]

Dropout2 {0, 0.3, 0.5}

DropoutPos 1

Dropout1 {0, 0.3, 0.5}

Number of epochs [30, 60]

Batch size [30, 80]

Table 5: Fine-tuning hyper-parameter space of the stacked-sparse encoder.
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Hyper-parameter Possible values

Number of freezed layers {1, 2}

Learning algorithm Stochastic Gradient Descent

Learning rate {0.0001, 0.0005, 0.001}

Momentum [0.5, 0.9]

Dropout2 {0, 0.3, 0.5}

DropoutPos {1, 2}

Dropout1 {0, 0.3, 0.5}

Number of epochs [40, 70]

Batch size [50, 100]

Table 6: Fine-tuning hyper-parameter space of the stacked-sparse-denoising encoder.

For the Logistic Regression, Support Vector Machine and swallow Artificial Neural Net-

work classification algorithms, their hyper-parameters are their possible values are shown

in tables 7, 8 and 9.

Hyper-parameter Possible values

Norm penalization {L1, L2}

Multiclass {One-Versus-Rest, Multinomial}

Table 7: Hyper-parameter space of the Logistic Regression model.

Hyper-parameter Possible values

Kernel {Radial Basis Function, Polynomial}

C penalty {0.1, 1, 10, 100, 1000}

Gamma [1× 10−4, 1× 10−1]

Polynomial kernel degree [2, 5]

Table 8: Hyper-parameter space of the Support Vector Machine model.
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Hyper-parameter Possible values

Number of units in the hidden layer {20, 40, 60}

Hidden layer activation function {sigmoid, tanh, ReLU}

Learning algorithm Stochastic Gradient Descent

Learning rate [0.001, 2]

Momentum [0.2, 0.75]

Maximum number of iterations {100, 200}

Table 9: Hyper-parameter space of the swallow Artificial Neural Network (one-hidden

layer) model.

2.2 Traditional Machine-Learning approach

In order to evaluate the performance of the deep learning approach, we compared this

strategy with a traditional machine-learning approach for reducing the dimensionality of

the gene expression data, with the purpose of performing a cancer classification task.

Data preparation

The same dataset used during the classification learning stage of the previous section

is used here, the BRCA pan-cancer dataset (1K samples) with the 5K most variably

expressed genes as input variables. Also, the same multi-class classification task is per-

formed, the prediction of the PAM50 breast cancer intrinsic subtypes.

Dimensionality reduction and classification

For reducing the dimensionality of the gene expression data, we used different classical

techniques: two feature selection methods, and a feature extraction technique. The fea-

ture selection methods correspond to filter methods, one using ANOVA F-values and the

other using mutual information values [33, 46]. The feature extraction method is Prin-

cipal Components Analysis (PCA), a widely used dimensionality reduction technique in
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many different domains [47]. Just like when using the deep learning approach, the gene

expression data was reduced to 100 features.

To be consistent with what we did when using the deep learning strategy, we again used

5-fold nested CV to evaluate the performance of the models, using the average accuracy

measure. This time no fine-tuning is needed, and the features extracted by the traditional

dimensionality reduction methods are used by the same classification algorithms as in

the previous section: LR, SVM and swallow ANN. In this way, the inner CV is again

used to tune some hyper-parameters of the classifiers (see previous section for details)

using Grid-Search (LR) and Randomized-Search (SVM and ANN), and the outer CV is

used to train the best selected models and evaluate their performance, by first reducing

the dimensionality of the data. We also standard scaled the data (zero mean and unit

variance) before feeding it into the classifiers.
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3 Results

3.1 Deep models pre-training

As we stated before, the three autoencoders models were pre-trained using the non-BRCA

pan-cancer dataset. For tuning several hyper-parameters of each architecture, we simply

split the data into a training (90% of the samples) and a validation set (10%), and then

examine the loss curves trying different values configurations.

In this way, when using the sparse architecture, we selected the values showed in Table

10. Using these values, the training and validation loss curves are the ones showed in

Figure 6. The training process seems to be quite stable, though some oscillations are

observed. However, overfitting clearly exists, as we can see from the distance between the

training and validation loss curves.

Hyper-parameter Possible values

L1 regularization 1× 10−5

Learning rate 0.001

Number of epochs 40

Batch size 100

Table 10: Hyper-parameters selected values of the sparse one-hidden layer autoencoder

model.

For the stacked-sparse model, the selected hyper-parameters values configuration is

described in Table 11. As we can see from Figure 7, the training process seems to be

quite stable too, and overfitting is again observed.

Finally, when using the stacked-sparse-denoising autoencoder, the selected values of the

hyper-parameters are shown in Table 12. The loss curves in Figure 8 show an incredibly

stable learning process, with no observable fluctuation, as well as the almost overfitting

inexistence, something really difficult to obtain in such a deep model like this one (five

hidden layers). This overfitting reduction in comparison with the other two models is due
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Figure 6: Training and validation loss curves of the sparse architecture.

Layer Hyper-parameter Possible values
Hidden one (encoder) L1 regularization 1× 10−5

Hidden two (encoder) L1 regularization 1× 10−5

Whole model
Learning rate 0.0005
Number of epochs 150
Batch size 200

Table 11: Hyper-parameters selected values of the deep stacked-sparse three-hidden layers
autoencoder model.

to the noise used in the input layer of the denosing model, implemented using dropout,

one of the most effective techniques to reduce overfitting in complex deep networks [11].

3.2 Classification results

The performance of our deep learning approach in breast cancer subtype classification is

summarized in Table 13, whereas the Table 14 contains the performance of the classical

machine-learning approach. All the values contained in both tables represent the average

classification multi-class accuraccy obtained accros the 5 iterations of our 5-fold nested

Cross-Validation procedure, and the performance of the models is evaluated in terms of

the average test ACC.
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Layer Hyper-parameter Possible values
Hidden one (encoder) L1 regularization 1× 10−5

Hidden two (encoder) L1 regularization 1× 10−5

Hidden three (encoder) L1 regularization 1× 10−5

Whole model

Noise ratio 0.15
Learning rate 0.0001
Number of epochs 200
Batch size 225

Table 12: Hyper-parameters selected values of the deep stacked-sparse-denoising five-
hidden layers autoencoder.

Autoencoder Classifier Test ACC Train ACC

Sparse

Softmax 0.867± 0.013 0.997± 0.003
LR 0.864± 0.018 0.995± 0.005

SVM 0.879± 0.022 0.999± 0.001
ANN 0.849± 0.025 0.993± 0.014

Stacked-sparse

Softmax 0.887± 0.012 1± 0
LR 0.878± 0.012 1± 0

SVM 0.888± 0.021 1± 0
ANN 0.888± 0.015 1± 0

Stacked-sparse-denoising

Softmax 0.903 ±0.019 1± 0
LR 0.900 ±0.011 1± 0

SVM 0.893 ±0.010 1± 0
ANN 0.889 ±0.011 1± 0

Table 13: Performance of the classification algorithms using the deep learning approach
for dimensionality reduction. In addition to the four traditional ML classifiers, we also
include the softmax used to perform fine-tuning.

Dimensionality reduction Classifier Test ACC Train ACC

Anova

LR 0.897± 0.023 0.971± 0.006
SVM 0.894± 0.019 0.956± 0.028
ANN 0.899± 0.021 0.983± 0.014

Mutual-Information

LR 0.908± 0.018 0.972± 0.007
SVM 0.895± 0.021 0.987± 0.016
ANN 0.901± 0.010 0.981± 0.021

PCA

LR 0.902± 0.021 0.982± 0.011
SVM 0.906± 0.030 0.999± 0.001
ANN 0.905± 0.018 0.977± 0.014

Table 14: Performance of the classification algorithms using the traditional machine-
learning approach for dimensionality reduction.
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Figure 7: Training and validation loss curves of the stacked-sparse architecture.

Figure 8: Training and validation loss curves of the stacked-sparse-denoising architecture.

When comparing the different autoencoder arquitectures, the deep models outperform

the single hidden layer sparse autoencoder using any of the four classifiers. Besides, the

deep stacked-sparse-denoising model obtains the best results, showing that its deep archi-

tecture and the corrupted data used during training allows the model to extract the most
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useful features for classification purpose. However, caution is needed, as the differences

between the 5-fold CV average accuracies are not statistically significant enough to draw

categorical an definitive conclusions. On the other hand, comparing the classification al-

gorithms, although the best test ACC value is obtained when using softmax classifier and

stacked-sparse-denoising model, SVM seems to be most consistent when combined with

autoencoder models, being the classifier that obtains the best performance when using

sparse and stacked-sparse architectures.

Analyzing the traditional ML approach, though the maximum test ACC value is ob-

tained when using mutual-info (and LR), PCA seems to be the most consistent method.

Comparing Table 13 and Table 14, the traditional ML strategy seems to outperform

our DL approach. However, the deep stacked-sparse-denoising arquitecture outperforms

Anova using any classifier. Hence, from the obtained results, we can say that, though

some traditional approaches (mutual-info and PCA) seem to outperform the deep learning

strategy, to conclude which is the most effective approach more work needs to be done.

One of the main reasons why DL strategy does not seem to outperform the traditional

ML approach is overfitting. Comparing train and test ACC, there is a much bigger

difference between those values in Table 13 than in Table 14. Although dropout technique

was used, other regularization methods that prevent overfitting may be needed in order

to boost the performance of DL models in this particular cancer classification task.

It is worth mentioning that our hardware limitations may has something to do with the

fact that traditional machine-learning methods seems to outperform our deep learning

approach. For the stacked-sparse and stacked-sparse-denoising deep architectures, we

could only execute very few iterations of the Randomized-Search procedure to tune the

hyper-parameters of the models, which could have been tuned much more effective using

a greater number of iterations, possibly improving the prediction performance of those

models.
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4 Conclusion

In this project, we have tried to adapt deep learning, one of the most promising and

successful AI technologies nowadays, to bioinformatics domain, in particular to gene ex-

pression analaysis for cancer classification. Our main goal was to give a solution to the

enormous imbalance between the number of input features (N) and the number (M) of

tumor gene expression available samples (N � M) using deep learning models, for the

purpose of performing breast cancer intrinsic subtypes classification. In this way, we have

used three distint types of autoencoders, an unsupervised feature learning technique, to

reduce the dimenionality (N) of the gene expression data by a factor of 50. Besides, using

a transfer-learning approach, we were able to pre-train the models using a large com-

pendium of tumor data, different from the data used to perform the cancer classification

task, and hence increasing the potential number of samples (M) used to train the models

in an unsupervised way. This also allows deep learning models to extract generic features

from a large tumor dataset that may be useful for solving a concrete cancer classification

task such as breast cancer subtype prediction. Using a nested Cross-Validation strat-

egy, we also compared the perfromance of the deep learning approach with a traditional

machine learning strategy for reducing the dimenionality of the data.

The obtained results showed that the performances of both deep learning and traditional

machine-learning approaches are very similar when reducing the dimensionality of gene

expression data for the purpose of breast cancer subtype classification. However, though

some traditional approaches seem to outperform the deep learning strategy, to conclude

which is the most effective approach more work needs to be done. On the other hand,

comparing the performance of the different autoencoders, although very cautiously, we

could say that the deeper the model the better perfomance was obtained, showing the

representational power of deep learning to extract a hierarchy of abstract representations

useful for solving classification tasks.
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4.1 Future work

In order to solve the difficulties faced by gene expression analysis classification tasks,

different deep learning approaches are yet to be explored. Apart from transfer-learning,

generative models such as GANs or VAEs could be used to generate artificial gene ex-

pression samples, and hence balancing the enormous disproportion of input features and

available samples (N �M) mentioned above.

On the other hand, much more work needs to be done to exhaustively analyze the fea-

sibility of the transfer-learning approach used in this project. We have used the extracted

features by the pre-trained models to solve only one cancer classification task, but there

are many more cancer prediction tasks were generic features extracted by deep learning

models from a large compendium of tumor data could be very valuable.

Finally, another of the most unexplored areas of deep learning is model intrepretability.

Although many efforts have been made, most of deep learning models are still considered

as ”black-boxes”. In areas such as bioinformatics or medicine, if we want to apply these

models, interpretability must not be a lacking quality, but a characteristic.

Finally, to sum up, it should be noticed that the two global objectives of the project have

been greatly accomplished, and the project has served as my first experience in writing

and carrying out a scientific project, in which many of the concepts learnt throughout the

Bioinformatics degree have been successfully applied.
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5 Conclusión

En este proyecto, se ha tratado de adaptar el aprendizaje profundo, una de las tecnoloǵıas

más exitosas de la Inteligencia Artificial (IA) en la actualidad, al dominio de la bioin-

formática, concretamente al análisis de datos de expresión génica para su uso en tareas de

predicción de cáncer. Nuestro principal objetivo era el de emplear el aprendizaje profundo

para proporcionar una solución al problema del enorme desequilibrio entre el número de

variables de entrada (N) y el número (M) de muestras disponibles (N � M) que pre-

sentan los datos de expresión génica, cuando se emplean en tareas como la predicción

del tumor intŕınseco de cáncer de mama que presenta un determinado paciente. De esta

forma, se han empleado tres tipos diferentes de autoencoders (ténica de aprendizaje no

supervisada) para reducir la dimensionalidad (N) de los datos en un factor de 50 (respecto

al número de variables original). Además, empleando un enfoque basado en la técnica de

transferencia de aprendizaje, ha sido posible pre-entrenar los modelos usando un enorme

conjunto de datos de muestras tumorales, diferente al conjunto usado en la tarea de clasi-

ficación, consiguiendo de esta manera aumentar el número de potenciales muestras (M)

empleadas para entrenar los modelos. Todo ello también permite a los modelos de apren-

dizaje profundo extraer carácteŕısticas genéricas a partir de un gran conjunto de datos

de muestras tumorales, las cuales pueden ser de gran utilidad a la hora de resolver tareas

de clasificación en cáncer como la predicción del tumor intŕınseco de cáncer de mama.

Además, emplando una estrategia de validación cruzada anidada, se ha podido comparar

el rendimiento del enfoque basado en modelos de aprendizaje profundo con una estrate-

gia basada en técnicas tradicionales de aprendizaje automático para la reducción de la

dimensionalidad de los datos.

Los resultados obtenidos muestran que el rendimiento de los enfoques basados en apren-

dizaje profundo y en técnicas tradicionales de aprendizaje automático son muy similares

a la hora de reducir la dimensionalidad de los datos de expresión génica para su empleo

en la predicción del subtipo intŕınseco de cáncer de mama. Sin embargo, aunque al-

gunos enfoques tradicionales parecen superar el rendimeinto del enfoque basado en apren-

dizaje profundo, para concluir cuál es el enfoque más efectivo más trabajo es necesario.

Por otro lado, comparando el rendimiento de los diferentes autoencoders implementa-

dos, aunque con mucha prudencia, podemos decir que cuanto más profundo el modelo
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mejor rendimiento obtuvo, mostrando el poder representacional de estos modelos para

la extracción de una jerarqúıa de representaciones abstractas útiles para la resolución de

tareas de clasificación.

5.1 Trabajos futuros

Con el objetivo de resolver las dificultades que plantea el análisis de datos de expresión

génica, diferentes modelos de aprendizaje profundo permanecen todav́ıa por explorar.

Además de técnicas de transferencia de aprendizaje, modelos generativos como las GANs

o los VAEs pueden ser empleados para generar de forma artificial muestras de datos

de expresión, contribuyendo aśı a equilibrar el enorme desbalanceo entre el número de

variables de entrada y el de muestras disponibles (N �M) mencionado con anterioridad.

Por otro lado, mucho trabajo queda por hacer para analizar de froma exhaustiva la

viabilidad del enfoque basado en transferencia de aprendizaje empleado en este proyecto.

Se han utilizado las caracteŕısticas extráıdas por los modelos pre-entrenados para resolver

una única tarea de predicción de cáncer, pero existen muchas más tareas en las que las

caracteŕısticas genéricas extráıdas por los modelos de aprendizaje profundo pueden ser de

gran utilidad.

Finalmente, otra de las áreas más inexploradas del aprendizaje profundo se corresponde

con el estudio de la interpretabilidad de los modelos. Aunque se han realizado numerosos

esfuerzos, la gran mayoŕıa de modelos basados en el aprendizaje profundo son todav́ıa

considerados como ”cajas negras”. En áreas como la bioinformática o la medicina, si

pretendemos aplicar estos modelos, la interpretabilidad no ha de ser una carencia, sino

una de las caracteŕısticas indispensables de estos modelos.

Por último, cabe destacar que los dos objetivos globales de este proyecto han sido

cumplidos con enorme éxito, y el proyecto ha supuesto mi primera experiencia escribi-

endo y llevando a cabo un proyecto cient́ıfico, en el que he podido aplicar muchos de los

conceptos adquiridos durante estos cuatro últimos años en el grado de Ingenieŕıa de la

Salud.
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6 Resources

6.1 Software

All the software implemented for this project was coded in Python, using Jupyter note-

books. Tensorflow, keras, sklearn, numpy, pandas and scipy were the packages used to

implement the deep learning models, machine-learning methods, nested-CV strategy, etc.

Git was used as the version control system.

On the other hand, all the produced software (mainly Jupyter notebooks) are allocated

in the next public repository: https://github.com/guilopgar/DeepLearning-Bioinformatics

6.2 Hardware

As it has been mentioned throughout the previous section, the hardware conditions have

been a major limitation, specially for training the deep models and pre-processing the

data.

Actually, I used my own personal machine for carrying out the project, an Ubuntu 14.04

system with 8GB RAM, 1TB hard disk and an Intel R© CoreTM i7-4510U CPU @ 2.00GHz

4 processor.
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