
An empirical study of power consumption of
Web-based communications in mobile phones

Inmaculada Ayala, Mercedes Amor, Lidia Fuentes and Daniel Muñoz
Dpto. de Lenguajes y Ciencias de la Computación

Universidad de Málaga, Andalucı́a Tech

Málaga, Spain

Email:{ayala,pinilla,lff,danimg}@lcc.uma.es

Abstract—Currently, mobile devices are the most popular
pervasive computing device, and they are becoming the primer
way for Web access. Energy is a critical resource in such pervasive
computing devices, being network communication one of the
primary energy consuming operations in mobile apps. Indeed,
web-based communication is the most used, but also energy
demanding. So, mobile web developers should be aware of how
much energy consumes the different web-based communication
alternatives. The goal of this paper is to measure and compare the
energy consumption of three asynchronous Web-based methods
in mobile devices. Our experiments consider three different Web
applications models that allow a web server to push data to a
browser: Polling, Long Polling and WebSockets. The obtained
results are analyzed to get more accurate understanding of the
impact in energy consumption of a mobile browser for each
of these three methods. The utility of these experiments is to
show developers what are the factors that influence the energy
consumption when different web-based asynchronous commu-
nication is used. With this information mobile web developers
could reduce the power consumption of web applications on
mobile devices, by selecting the most appropriate method for
asynchronous server communication.

I. INTRODUCTION

Currently, mobile devices are the most popular pervasive

computing devices, which are becoming an essential element

of our daily activities. Recently, mobile web usage has over-

taken access from desktop for first time [1]. However, network

communication is one of the primary energy consuming opera-

tions in mobile devices. On average, network communications

can consume over 40% or more of the total non-idle state

energy of an app [2][3]. Considering that handheld devices

accounted for 51.3% of Internet usage worldwide by the

end of 2016, a reduction of power consumption by mobile

applications is of great importance.

According to Statcounter, most of the traffic of mobile

devices is based on Hyper Text Transfer Protocol (HTTP)

[4].Among all kinds of network operations, those related with

HTTP are the most energy consuming, representing almost

80% of the global network related energy consumption [5].

Therefore, reducing the power expenditure of browser data

transfer can have a significant impact on the overall energy

consumption of the device. In addition, many of the HTTP

interactions generated by the browser are derived from asyn-

chronous HTTP-based interactions. There are many web appli-

cations that require the server to send (push) data to the client

asynchronously as the state of a dynamic system changes, but

making this not as a response to a user interaction. Since HTTP

is a synchronous request/response protocol and the client (i.e.

the browser) always has to initiate a request, there are several

approaches that emulate asynchronous communication over

HTTP, using a continuous client-originated polling. Recently,

WebSockets provide Web developers with a real asynchronous

method to manage server push with better performance than

simply web-based Polling and Long Polling. But, each of these

alternatives consume a different amount of energy, contributing

in greater or lesser extent to the battery power draining. So,

mobile web developers should be aware of how much energy

consumes the different alternatives, for different scenarios.

Our goal is to measure, compare and analyze the energy

consumption of three asynchronous Web-based methods in

mobile devices using a the goal-question-metrics methodology

[6]. The study has focused on Android devices, the most

popular operating system for mobile devices in recent years.

The experiments have been performed in two different devices

(Galaxy Nexus and Nexus 5) and with two energy profiling

tools (Green Oracle and Trepn Profiler). We have performed

our experiments for three different Web applications models

that allow a web server to push data to a browser: Polling

and Long Polling, based on HTTP requests and responses,

and WebSockets, based on server events. The target audience

of our findings are web developers interested in optimizing

the energy consumption of their web-based applications, for a

concrete usage scenario. By knowing the power impact of each

of the asynchronous communication methods, and also the

concrete factors that most influence the battery consumption,

mobile web developers will take more informed decisions, and

select the greenest asynchronous mechanism to push data.

This paper is structured as follows: Section II describes our

experimental setup, describing the three web-based methods

considered. Section III presents the energy profiling tools

used to perform our experiments. The experimental results

are presented and analyzed in Section IV, and the threats to

validity in Section V. Finally, Section VI presents the related

work and Section VII the conclusions.

II. EXPERIMENTAL SETUP

In this section we describe the three Web based communi-

cation methods used by mobile browsers that are taken into

2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence

and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress

978-1-5386-1956-8/17 $31.00 © 2017 IEEE

DOI 10.1109/DASC-PICom-DataCom-CyberSciTec.2017.144

861

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/214840012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1: Asynchronous Web Interaction scheme using (a)

Polling and (b) Long polling

consideration in our experimental study. As stated in the in-

troduction, we consider polling, long polling and WebSockets.

A. Asynchronous Web-based Communication

Polling and Long polling are based on HTTP, a proto-

col in which a browser establishes TCP-based connections

to a Web server for sending HTTP requests and receiving

HTTP responses. Persistent TCP connections are the default

behavior of any HTTP/1.1 connection. That is the browser

keeps alive the connection for interchanguing one or more

request/response, even after HTTP error responses.Persistent

HTTP/1.1 connections have several advantages, which can

influence positively to energy consumption in mobile devices.

Since the standard HTTP model is synchronous, and a server

can not initiate an interaction, it is necessary to implement an

asynchronous mechanism between them in order to receive

pushed data from the server, .

1) Polling: The polling mechanism is the simplest way

to receive asynchronous data. The client polls the server

periodically (polling interval) for new content by sending

HTTP requests, allowing the server to respond with an HTTP

response if new data is available. Each request attempts to

pull any available data. If no data is available, the server

returns an empty response and the client waits for some time

(polling interval) before sending another (poll) HTTP request.

The polling frequency depends on the latency that the client

can tolerate in retrieving updated information from the server.

Polling implementation on the client-side relies on features

included by default in browsers, such as JavaScript. The basic

communication cycle of an application using “HTTP polling”

is depicted in the interaction diagram (a) in Fig. 1. However,

continuous or short polling can consume significant energy

by forcing an HTTP request/response even when no data is

available.

2) Long polling: In order to alleviate client continuous

polling, there exist different web models in which a long-

held HTTP request allows a web server to push data to a

browser only when new data is available. One of the most

common server push mechanisms is HTTP “Long Polling”,

in which the server “holds open” (not immediately reply to)

each HTTP request, responding only when there is new data

to deliver. Then, there is always a pending request to which

the server can reply for the purpose of sending data as it is

available, thereby minimizing the latency in message delivery,

and the use of processing/network resources.

After receiving an HTTP response, the client sends a new

request. The basic communication cycle of “HTTP Long

Polling” is shown in Fig. 1 (b).

B. Websocket protocol

WebSocket is a protocol that allows to use the TCP con-

nection between a browser and a Web server as a full-duplex

and persistent socket-like channel for interchanging non HTTP

messages. It is created on top of TCP and introduces a

small overload in comparison to HTTP/1.1 [7]. Based on this

connection, the Web server is able to actively send data to the

client whenever it is available. Prior to data/message exchange,

the WebSocket protocol requires an initial handshake and the

message exchange. The initial handshake uses the HTTP-

Upgrade-request, which allows to switch from the HTTP to

the WebSocket protocol. The message exchange is executed

in form of frames, which contain either text or binary data

[8]. In WebSockets, TCP connections are persistent. When an

update is available, the server sends the new data to the client

through the WebSocket. Incoming data is made available to

the browser through an event.

III. ENERGY PROFILING TOOL

To measure energy consumption on mobile phones, there are

multiple tools based on both hardware and software models

[9][10]. Although hardware measurement offers higher pre-

cision, selecting and configuring a hardware equipment may

represent a complex task, which can introduce additional bias

[11]. Some solutions require special equipment, preventing

the reproduction of the experiment by third parties with

the documentation at disposal [12][9]. Other solutions offer

applications that can be easily installed in devices [13] but

they are restricted to specific architectures. Other important

factor is the validation related to the energy profiling tool. In

our case, we found two solutions that suit our requirements:

the GreenOracle [14] and the Trepn Profiler [13].

With regard to the equipment, tests have been executed on

a Galaxy Nexus, which is the device used to develop the

GreenMiner and Nexus 5. The web application is deployed in

a Glassfish web server running in a Windows 10 PC connected

to a Gigabit ethernet network. On the other hand, mobile

phones use WLAN to access the web server.

A. The Green Oracle

GreenOracle is an accurate energy model generated using a

big-data approach and hundreds of energy measurements ob-

tained by the GreenMiner [9]. According to authors, GreenO-

racle has an upper error-bound close to 10% which is similar

to other methods like [12]. Additionally, it is easy to apply

862

Fig. 2: Framework to apply the GreenOracle Energy Model

as it is based on information that can be extracted from the

operating system of the device (i.e. Android).

We have developed several scripts for Android ADB that

gather the information of the operating system and interact in

an automated way with the mobile phone screen avoiding to in-

troduce additional bias (see Fig. 2). The energy model requires

information that is extracted from the operative system files

“/proc/stat” and “/proc/pid/stat”. Other necessary information

is the system calls performed as a result of the execution of the

application, which is extracted using the “strace” command,

and average RGB values of colour in the screen during the exe-

cution. This information is generated periodically by capturing

the screen during application execution and by processing

captures using the program Image Color Summarizer [15].

All this information is processed by a Java Application, which

contains the GreenOracle model, and generates csv files with

the energy lectures.

B. Trepn Profiler

Trepn Profiler is a commercial tool able to profile the work

of most of Android devices but specially intended to profile

Qualcomm’s Snapdrago devices. This tool can be directly

installed from Google Play and offers a great variety of

information like CPU or energy consumption.

In order to profile the energy consumption, Trepn Profiler

requires hardware instrumentation which is only at disposal

in some devices. Mainly, the Mobile Development Platform,

which collects current readings from different hardware com-

ponents.According to Qualcomm [16], the accuracy of Trepn

Profiler is between 2.1% and 5.5% compared with the Moon-

soon Power Monitor [10].

Trepn Profiler supports the automation of tests using exter-

nal ADB scripts. This functionality allows us to work with

Trepn Profiler in a similar way as we work with the Green

Oracle (see Fig. 2). So, we have developed an ADB script that

setups the tool, launches the application, starts the monitoring

process and downloads the csv files that contains the energy

consumption information.

IV. EXPERIMENTAL RESULTS

In this section we present the experimental planning and

the energy profile results. The measurement unit in our exper-

iments along this work is joules (J).

A. Objectives and research questions

The methodology of this study is defined according to

the goal-question-metrics approach [6] as follows: ”Analyze

asynchronous HTTP-based communications in Android, from

the point of view of web software developers. To achieve this

goal we set the following research questions (RQs):

RQ1. What is the factor (polling/pushing interval or
data size) that most influences energy consumption in
asynchronous communication? This question explores the

influence of data size and polling/pushing interval in the en-

ergy consumption of the three considered methods. In addition,

the data availability in relation with polling interval is also

considered, because in polling and Long Polling mechanisms

it can cause the reception of empty HTTP responses.

RQ2. Which asynchronous communication method is
the most efficient in terms of energy consumption? This

question overviews whether the energy expenditure of each

asynchronous method is significantly different. Also, we ex-

plore if a method is better than others for different scenarios.

This information is crucial to advice web developers to make

a better decision when selecting the asynchronous method.

B. Data collection

In order to compare the consumption of the three commu-

nication mechanisms, we have developed a web application

composed of a simple set of JavaScript components. Each

JavaScript has a counterpart in the server side for each

communication mechanism. The client side allows to configure

the experiment with different polling/pushing periods and

data size, and has a button to start the experiment. Our

experiments focus on data reception, so we have measured

the energy consumption of the mobile browser during 1 minute

receiving data using the three methods in different scenarios

with different data sizes and periods. We have selected 1

minute because according to different works [17] the usual

user interaction with mobile phones is for short periods of time

of around 1 minute. Regarding the data size, we consider five

message sizes (80 bytes, 160 bytes, 512 bytes, 1024 bytes

and 3000 bytes) that comes from a usual text message (i.e.

80 bytes) to messages that requires fragmentation at the IP

level (i.e. 3000 bytes). The update periods selected for the

experiments are (in milliseconds) 1000ms, 2000ms, 5000ms,

15000ms and 30000ms. These update periods represent the

polling frequency for the Polling mechanism, and the fre-

quency at which there is new data available for Long Polling

and WebSockets. Each test has been repeated 20 times and

results have an standard deviation lower than 5J.

According to our experiments (see Fig. 3), results for

WebSockets and Long Polling are quite similar. Additionally,

it is evident that for larger periods of time (columns 15000

and 30000 milliseconds), the power consumption of the three

communication mechanisms seems remarkably similar.

One of the advantages of Long Polling and WebSocket

compared to polling is that they are asynchronous in practice,

so the exchange of information mainly occurs when there are

new information at disposal. This is not the case of polling that

requests and receives information continuously with a fixed

frequency. In order to measure the added value of Long Polling

and WebSocket, we have designed experiments with random

863

(a) (b) (c)

(d) (e) (f)

Fig. 3: Energy consumption (in Joules) for different polling periods (in milliseconds) in Galaxy Nexus (top row) and Nexus

5 (bottom row) for messages of 80 bytes ((a) and (d)), 512 bytes ((b) and (e)) and 3000 bytes ((c) and (f)).

traffic. In these experiments, there is new information available

of random size (from 80 bytes to 3000 bytes) and in random

time (from 500ms to 15000ms). For these experiments, we

have measured the energy consumption of the mobile browser

during 1 minute and repeated the test 20 times. For Galaxy

Nexus, the mean of the results is 119J for Long Polling and

124J for WebSockets. For Nexus 5, means of the energy

consumption are 70J for Long Polling and 78J for WebSockets.

C. Answers to research questions

RQ1. What is the factor (polling/pushing interval or
data size) that most influences energy consumption in asyn-
chronous communication? In order to answer this question,

we apply a classical statistical method, the multiple linear

regression. The multiple linear regression tries to model the

relationship between two or more explanatory variables and a

response variable by fitting a linear equation to the observed

data. In our case, having two explanatory variables, we must

fit the equation y = β0+β1x1+β2x2, where y represents the

energy consumption, x1 the polling period, x2 the data size

and β0, β1 and β2 are constants that will be determined by

the multiple regression method. The relative importance of the

explanatory variables will be given by the values of β1 and β2,

the one with a higher absolute value determines the stronger

explanatory variable. In order to perform this analysis, input

and output data must be standardized. This standardization

consists in subtracting the mean and dividing by the standard

deviation the collected data.

Results of the multiple linear regression analysis are de-

picted in Table I. The validity of the analysis is supported by

the coefficient of determination R2, which is higher than 0, 4.

The absolute value of β2 is higher than β1 in all experiments.

Therefore, according to our experiments, the polling interval is

the factor that has more influence on energy consumption. We

can confirm this fact in charts of Fig. 3. On the one hand, for

TABLE I: Results of multiple linear regression analysis for

Galaxy Nexus and Nexus 5.

β1 β2 R2

Galaxy Nexus
Polling 0.0593 -0.703 0.4978
Long Polling 0.0983 -0.76139 0.5893
WebSocket 0.1856 -0.6639 0.4752

Nexus 5
Polling 0.3227 -0.577 0.4378
Long Polling 0.2648 -0.7006 0.561
WebSocket 0.4376 -0.5861 0.5351

longer polling periods, the energy consumption is around 110-

130J for Galaxy Nexus and 70-80J for Nexus 5, regardless of

the size of the message. The same situation arises for shorter

polling periods, with a consumption which is between 190-

240J for Galaxy Nexus and 85-135J for Nexus 5.

RQ2. Which asynchronous communication method is the
most efficient in terms of energy consumption? According

to our results (see Fig. 3), there is no single asynchronous

mechanism clearly better in all the situations. In general,

Polling is the communication mechanism with the highest en-

ergy consumption but for longer polling periods (i.e. 15000ms

and 30000ms) its consumption is very similar to the other two

and lower than WebSocket.

This result is coherent with the active processing that the

browser has to perform for small periods. For instance, if 80

bytes of data is available every 2000ms, the Polling client, set-

ting a polling interval of 1500ms, sends: 40 HTTP requests of

462 bytes (an overload of 7760 bytes). For the same scenario,

the client using Long Polling sends 30 HTTP requests of 462

bytes. The WebSocket client does not send any request nor

data to the server. The number of messages sent explains the

higher energy consumption. Significant differences in energy

consumption between the three communication mechanisms

just happen in shorter polling periods (i.e. 1000ms, 2000ms

and 5000ms). For these periods, WebSocket is the greenest

864

for 80 bytes, but when the message size increases Long

Polling consumes less energy. Random tests have confirmed

the similarities between Long Polling and WebSockets (see

Subsection IV-B). The energy consumption of Long Polling is

just slightly lower than the energy consumption of WebSocket

(119 vs. 124 for Galaxy Nexus and 70 vs. 78 for Nexus 5).

Taking into account the results, our answer is that the

energy consumption of Long Polling and WebSocket is very

similar for the experiments performed. However, for small

messages, WebSockets has lower energy consumption, while

for bigger messages Long Polling shows better results. When

the frequency of available data is high but the messages

sent are small, Long Polling introduces an overload derived

from the processing and sending of HTTP requests, which

consumes more energy. Surprisingly, this is not maintained for

longer periods. The reason is the WebSocket protocol sends

periodically signalling data to keep the connection opened if it

is not used, and the energy consumption of this interaction is

similar to the energy consumption caused by sending HTTP

requests of Long Polling. So, surely many developers may

think that WebSockets, being a more recent technology will

consume less than a older one, but we have found that the

beliefs of these web developers do not correspond to the

reality, showing the great utility of this kind of experiments.

V. THREATS TO VALIDITY

In this section, we briefly discuss the internal validity and

external validity of our study. The internal validity intends

to explore if the energy results are influenced or not by

other factors. While, the external validity analyses if the data

obtained in the experiments can be generalized or not.

With regard to the internal validity, we should analyse how

precise are the obtained results. We have chosen two different

software measuring tools, GreenOracle and Trepn Profiler,

instead of using hardware solutions, which usually have more

precision. As we stated in Section III, the difficulties of

reproducing experiments made by hardware solutions by third

parties and the precision demonstrated by these tools are the

main reasons to select software solutions. Additionally, we are

not interested in reporting absolute energy values, but to give

recommendations to developers based on comparative results.

We also have analysed if the energy consumption measure-

ments of the communication mechanisms could be influenced

by how we have implemented the web applications used in the

experiments. In order to mitigate this threat, we have based our

implementations in minimal examples provided by tutorials

from Netbeans and university courses. Moreover, we have

detected that the user interface can be an important source of

energy consumption, so we have used the same user interface

for the three mechanisms.

Another internal threat can be caused by the set of parame-

ters that we have considered in our experiments for answering

the questions is not exhaustive. According to the literature, the

main factors that affect energy consumption are the polling

period and the amount of information transmitted. The values

selected illustrate minimal interactions such as the exchange

of a text message in a chat (80 bytes) and more complex cases

that even require fragmentation at the IP level (3000 bytes).

So, we think we have covered a great variety of situations, but

developers must know that the conclusions raised in this paper

can be considered valid only for interactions with the mobile

phone of 1 minute of duration. Exploring the influence of this

parameter is part of our future work.

Regarding the external validity, we should have taken into

consideration the influence of using a concrete mobile browser

in the experiments. There are only two mobile browsers

supporting the three asynchronous mechanisms of this study,

Google Chrome and Mozilla Firefox. We are aware that the use

of one browser or other can affect to the energy consumption

of the device. So, we have opted to use in our experiments

the most used one, Google Chrome. In any case, we plan to

use Mozilla Firefox in future experiments.

Finally, we consider as an external threat the generalization

of the results to all mobile phones and Android versions. Here

the limitation is to have reliable energy measurement tools

available for enough devices. To mitigate this we have opted

for two measuring tools (GreenOracle and Trepn Profiler) for

two devices with different versions of Android (4.3 in Galaxy

Nexus and 6.0.1 in Nexus 5).

VI. RELATED WORK

As most of the mobile apps transfer data over the Internet,

the energy consumption in mobile devices can be studied at

different layers. At the network access layer, the work [18]

analyze the energy consumption of data of different communi-

cation components like Bluetooth, WLAN, 2G, and 3G. This

study (for a Nokia N95), concludes that using 3G is more

energy consuming than using GSM (2G), when using different

application and services requiring the data connection.

The work in [19] provides a comparison between WLAN

and 3G with regards to their energy consumption, showing

that using WiFi 3G is more energy efficient than 3G. This

study also shows how the network activities directly affect the

energy consumption and battery life. At the application level,

in [20] and [21], the energy consumption of using two data

interchange formats (JSON, XML) is compared. The compari-

son analyzes them considering the processing speed, overhead

and energy consumption. Results indicate that JSON format

shows better performance in battery management. The work

[21] also tests the use of binary protocol buffers, reporting that

is recommendable for big data volumes, because it shows a

better energy management than protocols for raw data.

Close to our study, different works analyse the energy

consumption of data transfer in mobile browsers. In [22], Web-

Socket and AJAX are measured with regards to their energy

consumption and performance for 3D graphic renderings in the

browser. In this context the analysis of energy measurements

shows that using WebSockets can reduce energy consumption

but significantly drop the QoE in devices with slow CPU.

A comparison between WebSockets and Ajax (which uses

Long Polling), both using a 3G connection, is done in [23]. In

this study it is concluded that battery life can be extended by

865

falling back to AJAX as long as the interval between AJAX

messages is sufficiently large to allow the use of UMTS.If the

interval between data messages is smaller, then the Websocket

method consumes less battery.

The work in [24] also compares WebSocket and HTTP

in the Internet of Things in a WLAN. This work studies

the influences of data size and the transfer frequency in

the energy consumption, reporting that with WebSocket we

can save around 5% energy for a high number of requests

per unit of time. Surprisingly, the observed energy savings

obtained with WebSocket comparing to HTTP is not so high.

The work in [25] analyses REST/HTTP and WebSocket with

regards to their energy consumption in a mobile phone using

different access network technologies (Edge, 3G and WLAN).

REST uses Long Polling with non-persistent connections. It

reports that the use of WebSockets consumes less energy

than the use of Long Polling/REST, arguing that the reason

is not the overhead of the HTTP-protocol, but the use of

non-persistent connections, which consumes more energy than

using a HTTP/1.1 persistent connection, most used nowadays.

VII. CONCLUSIONS

The goal of our study was to compare HTTP-based

asynchronous communication and WebSocket based on their

energy consumption. The research approach goal-question-

metrics was used to analyze the different influencing factors

and their effect on the energy consumption.

The answers to the research questions RQ1 and RQ2 in

section IV can be summarized as: RQ1. Based on the results

obtained, the effect of the amount of data transferred is low,

which brings us to the assumption that the data overload intro-

duced by HTTP headers size has no effect on the energy con-

sumption. However, in nearly all experiments, data frequency

influences negatively on the energy consumption, which shows

that, on the basis of using a persistent connection, the differ-

ence of energy consumption between the three mechanisms

is observable. This difference tends to dismiss as frequency

decrease (data is received less frequently). Regarding RQ2,

Long Polling is more efficient in terms of energy consumption.

However, for small messages, WebSockets is the greenest one,

while for large messages Long Polling shows better results.

While this difference is bigger when polling is made more

frequently, it tends to decrease when data is received less

frequently.

We have obtained similar results in our experiments using

different energy profiling tools (Green Oracle or Trepn pro-

filer), which is the first step to generalize our findings.

ACKNOWLEDGMENT

This work is supported by the projects Magic P12-TIC1814,

HADAS TIN2015-64841-R (co-financed by FEDER) and by

the post-doctoral plan of the University of Málaga.

REFERENCES

[1] StatCounter Global Stats. (2016) Mobile and tablet internet usage
exceeds desktop for first time worldwide. [Online]. Available:
http://gs.statcounter.com/press/2016

[2] D. Li, S. Hao, J. Gui, and W. G. J. Halfond, “An empirical study of
the energy consumption of android applications,” in IEEE ICSME, Sept
2014, pp. 121–130.

[3] M. Tawalbeh, A. Eardley, and L. Tawalbeh, “Studying the energy
consumption in mobile devices,” Procedia Computer Science, vol. 94,
pp. 183 – 189, 2016.

[4] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. J.
Leach, and T. Berners-Lee, “Hypertext transfer protocol – http/1.1,”
Internet Requests for Comments, RFC Editor, RFC 2616, June 1999.

[5] D. Li, Y. Lyu, J. Gui, and W. G. J. Halfond, “Automated energy
optimization of http requests for mobile applications,” in Proc. of the
38th ICSE. New York, NY, USA: ACM, 2016, pp. 249–260.

[6] V. R. Basili, “Software modeling and measurement: The
goal/question/metric paradigm,” University of Maryland at College
Park, College Park, MD, USA, Tech. Rep., 1992.

[7] V. Pimentel and B. G. Nickerson, “Communicating and displaying real-
time data with websocket,” IEEE Internet Computing, vol. 16, no. 4, pp.
45–53, July 2012.

[8] I. Fette and A. Melnikov, “The websocket protocol,” Internet Requests
for Comments, RFC Editor, RFC 6455, December 2011.

[9] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,
and S. Romansky, “Greenminer: A hardware based mining software
repositories software energy consumption framework,” in Proc. of the
11th Working Conference on Mining Software Repositories. New York,
NY, USA: ACM, 2014, pp. 12–21.

[10] “Power Monitor,” Apr. 2017. [Online]. Available: https://www.msoon.
com/LabEquipment/PowerMonitor/

[11] A. Hindle, “Green software engineering: The curse of methodology,” in
IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), vol. 5, March 2016, pp. 46–55.

[12] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan, “Calculating source
line level energy information for android applications,” in Proc. of the
2013 International Symposium on Software Testing and Analysis. New
York, NY, USA: ACM, 2013, pp. 78–89.

[13] “Trepn Power Profiler A product of Qualcomm Technologies,
Inc.” Apr. 2017. [Online]. Available: https://developer.qualcomm.com/
software/trepn-power-profiler

[14] S. A. Chowdhury, S. Gil, S. Romansky, and A. Hindle, “Did i make a
mistake? finding the impact of code change on energy regression.” PeerJ
Preprints, Tech. Rep. 5:e2419v3, 2016.

[15] “Image color summarizer, RGB, HSV, LCH & Lab image color
statistics and clusteringsimple and easy,” Apr. 2017. [Online].
Available: http://mkweb.bcgsc.ca/color-summarizer/

[16] “Forum Qualcomm,” May 2017. [Online]. Available: https://developer.
qualcomm.com/forum/qdn-forums/software/trepn-power-profiler/32991

[17] N. van Berkel, C. Luo, T. Anagnostopoulos, D. Ferreira, J. Goncalves,
S. Hosio, and V. Kostakos, “A systematic assessment of smartphone
usage gaps,” in Proc. of the CHI Conference on Human Factors in
Computing Systems. NY, USA: ACM, 2016, pp. 4711–4721.

[18] G. P. Perrucci, F. H. P. Fitzek, and J. Widmer, “Survey on energy
consumption entities on the smartphone platform.” in VTC Spring.
IEEE, 2011, pp. 1–6.

[19] G. Metri, A. Agrawal, R. Peri, and W. Shi, “What is eating up battery
life on my smartphone: A case study.” in ICEAC. IEEE, 2012, pp. 1–6.

[20] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, “Comparison
of JSON and XML Data Interchange Formats: A Case Study,” in Proc.
of the 22nd ISCA, 2009, pp. 157–162.

[21] B. Gil and P. Trezentos, “Impacts of data interchange formats on energy
consumption and performance in smartphones,” in Proc. of the 2011
Workshop on Open Source and Design of Communication. New York,
NY, USA: ACM, 2011, pp. 1–6.

[22] K. Kapetanakis and S. Panagiotakis, “Evaluation of techniques for web
3d graphics animation on portable devices,” in International Confer-
ence on Telecommunications and Multimedia, 2012, Heraklion, Crete,
Greece, July 30 - August 1, 2012, 2012, pp. 152–157.

[23] B. D. Mandyam and N. Ehsan, “Mobile Systems IV,” World Wide Web
Consortium, Tech. Rep., 2012.

[24] G. Bovet and H. Jean, “Communicating With Things - An Energy
Consumption Analysis,” in Pervasive 2012, United Kingdom, Jun. 2012.

[25] V. Herwig, R. Fischer, and P. Braun, “Assessment of REST and web-
socket in regards to their energy consumption for mobile applications,”
in IEEE 8th International Conference on Intelligent Data Acquisition
and Advanced Computing Systems: Technology and Applications, 2015,
pp. 342–347.

866

