
An implementation of the Dijkstra algorithm for
fuzzy costs. (Technical Report 2018)

Lissette Valdés Valdés, Sira M. Allende, Alfonso Ariza, Gonzalo Joya

1 Dijkstra algorithm for type V fuzzy graph

In this section, we propose a modified Dijkstra algorithm applied to a type V fuzzy graph
(Definition 1.1).

Definition 1.1. (Type V fuzzy graph)
Also known as a crisp graph with fuzzy costs, a type V fuzzy graph has known vertices and edges,
but uncertainty is present in the costs on the edges, i.e.:

This algorithm finds the shortest path between the source vertex r and any other vertex
on G̃, but dealing with fuzzy weights defined on links. In order to introduce our fuzzy
version of Dijkstra algorithm, is important to define the arithmetic operations and a rank-
ing method for fuzzy numbers. The method that we use for the arithmetic operations of
triangular fuzzy numbers is introduced in section 1.1, we define the ranking method in
section 1.2, and in section 1.3 we give our proposal of a Fuzzy Dijkstra algorithm for a type
V fuzzy graph.

1.1 Method for the arithmetic operations of normalized triangular fuzzy
numbers

At first, we give the definition of the so-called fL-fR positive fuzzy number:

Definition 1.2. (fL − fR Positive fuzzy number)
Let C(u,v) = (a, b, c, d, ω) be the positive fuzzy number representing the cost of an edge e = 〈u, v〉
with u, v ∈ V . Its membership function can be expressed as:

µC(u,v)
(x) =


fL(x) a ≤ x ≤ b
ω b ≤ x ≤ c
fR(x) c ≤ x ≤ d
0 otherwise

(1)

where fL : [a, b] → [0, ω] and fR : [c, d] → [0, ω] are both strictly monotonic (increasing and
decreasing, respectively) and continuous functions with ω ∈ [0, 1].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/214839921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


We asume fL and fR to be linear functions. Thus, according to the values of ω the cost
of each edge is either normalized or generalized, and according to a, b, c and d a triangular
or trapezoidal fuzzy number.

• L(u,v) normalized triangular fuzzy number.(ω = 1, b = c)

• L(u,v) normalized trapezoidal fuzzy number.(ω = 1, a 6= b 6= c 6= d)

• L(u,v) generalized triangular fuzzy number.(ω 6= 1, b = c)

• L(u,v) generalized trapezoidal fuzzy number. (ω 6= 1, a 6= b 6= c 6= d)

For the arithmetic operations of fuzzy numbers, we use the α-cut method. This method
is quite simple (in comparison to the extension principle method) since the operation be-
tween fuzzy numbers is reduced to the operation between ordinary intervals in R.

First, we state two essential properties for the operations of triangular and trapezoidal
fuzzy numbers:

1. The results from addition and subtraction between triangular or trapezoidal fuzzy
numbers are also a triangular o trapezoidal fuzzy number, respectively.

2. The results from multiplication or division as in maximum or minimum operations
are not a triangular or trapezoidal fuzzy number.

The α-cut interval of a normalized triangular fuzzy number Ã, denoted by Ãα, is an or-
dinary crisp interval in R containing all the elements of Ã whose membership degree is
greater than or equal to the specified value α ∈ [0, 1]. Let Ã = (a, b, c) be a normalized
triangular fuzzy number with membership function with shape as in expression 1, where

fL(x) =
x− a
b− a

and fR(x) =
c− x
c− b

, Ãα is defined as in equation 2.

Ãα = [(b− a)α+ a,−(c− b)α+ c] α ∈ [0, 1] (2)

The following two properties of fuzzy numbers are based on the representation of a fuzzy
set and the definition of the α-cut of a fuzzy set,

(a) Each fuzzy set, and thus also each fuzzy number, can fully and univocally be repre-
sented by its α-cut.

(b) α-cuts of each fuzzy number are closed intervals of real numbers for all α ∈ [0, 1]

Definition 1.3 provides the necessary elements to define the α-cut of the fuzzy number
(Ã ∗ B̃) by the α-cuts of the fuzzy numbers Ã and B̃. Thus, we can use the operation of
standard crisp intervals to find (Ã ∗ B̃)α.

Definition 1.3.
Let Ã and B̃ denote fuzzy numbers and let ∗ denote any of the four basic arithmetic operations
“+,−, ·,÷”. Then for any α ∈ (0, 1], the fuzzy set on R, (Ã ∗ B̃), is defined through its α-cut
(Ã ∗ B̃)α:

(Ã ∗ B̃)α = Ãα ∗ B̃α

When ∗ = “÷′′, clearly, 0 /∈ B̃α ∀α ∈ (0, 1].

2



According to First Decomposition Theorem, the fuzzy number (Ã ∗ B̃) is interpreted as
the union of special fuzzy numbers α(Ã ∗ B̃), ∀α ∈ [0, 1], i.e.,

(Ã ∗ B̃) =
⋃

α∈(0,1]
α(Ã ∗ B̃)

where µ
α(Ã∗B̃) = α · χ(Ã∗B̃)α

The membership function of (Ã ∗ B̃) is computed using the union and decomposition of
fuzzy sets, i.e.,

µ(Ã∗B̃)(x) = max
α∈(0,1]

{
µ
α(Ã∗B̃)

}
= max
α∈(0,1]

{
α · χ(Ã∗B̃)α

(x)
}

where χ(Ã∗B̃)α
(x) is the charactaristic function of (Ã ∗ B̃)α.

As summary, based on the properties and arithmetic analysis stated above, we can perform
the addition and subtraction of normalized triangular fuzzy numbers by using their α-cuts.
We obtain in each case the expressions 3-4,

Addition: Ã+ B̃ = (a1, a2, a3)⊕ (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3) (3)

Subtraction: Ã− B̃ = (a1, a2, a3)	 (b1, b2, b3) = (a1 − b1, a2 − b2, a3 − b3) (4)

1.2 Ranking method of triangular fuzzy numbers

For the comparison of the fuzzy costs, we use a ranking criterion proposed by [1]. This
method compares the Total Integral of fuzzy numbers depending on a parameter α, also
called index of optimism. This index represents the degree of optimism of the decision
maker. Let Ã = (a, b, c, d) be a trapezoidal fuzzy number, for α taking values greater than
0.5 the comparison is made giving considering priority to numbers greater than the central
value. The opposite occurs when α is lower than 0.5.

Let C(u,v) = (a, b, c, d, ω) be a generalized trapezoidal fuzzy number representing the fuzzy
cost in a link joining the vertices u and v. For a fixed α, the Total Integral of C(u,v) is defined
as:

SαT (C(u,v)) =
ω

2
[(1− α)(a+ b) + α(c+ d)− 2Xmin] (5)

where Xmin ≤ a. For simplicity, since every cost in G̃ is assumed to be a positive fuzzy
number in our study, we set Xmin = 0 without affecting the process performance.

By making the proper modifications on a, b, c and d, we can obtain the total integral for
a normalized and generalized triangular fuzzy number as for normalized or generalized
trapezoidal fuzzy number.

We need to establish a ranking for the fuzzy costs used in our algorithm. To obtain this
ranking, we must define an order relation on the set of fuzzy numbers. Let C1 and C2 be
two fuzzy weights (defined either on an edge or a path), for α ∈ [0, 1], each Ci, i = 1, 2 has
total integral SαT (C

i), then,

3



• If SαT (C
1) > (<)SαT (C

2) then C1 is greater (smaller) than C2, denoted as C1 � (≺)C2

• If SαT (C
1) = SαT (C

2) and Me(C1) > (<)Me(C2) then C1 � (≺)C2

• If SαT (C
1) = SαT (C

2) and Me(C1) = Me(C2) then C1 = C2

where Me(Ci) (i = 1, 2) denotes the median of the fuzzy number Ci.

This relation, indeed, is an order relation because it meets the antisymmetry, reflexivity
and transitivity properties. On the other hand, since the Total Integral satisfies the linearity
property, we can apply this order relation for both the comparison between the cost of two
links and the cost of two paths by means of the comparison between their Total Integrals.
Therefore, we can apply the classic Dijkstra Algorithm.

1.3 Algorithm

Let Ψ(r, v) denote the set of all paths between r and v (v, r ∈ V with v 6= r), and P ∗ ∈ Ψ(r, v)
be the shortest path between r (source) and v. The cost of P ∗ is defined as:

δ̃(r,v) = CP∗(r,v) =

 min
∀P∈Ψ(r,v)

{C(P (r,v))} if Ψ(r, v) 6= ∅

∞ if Ψ(r, v) = ∅

Then, for each vertex v ∈ V , the algorithm defines an attribute d̃, which is an upper bound
on the weight of the shortest path between the source r and v,

d̃(v) ≥ δ̃(r,v)

Given a vertex v ∈ V , we will denote by Γ (v) the set of neighbors of v, that is, adjacent
vertices to v. Moreover, we will denote by w(v) the predecessor of v in P ∗. The algorithm
considers w(v) to be either a vertex of Γ (v) or NIL. Actually, during the execution of the
algorithm, w(v) is the predecessor of v in the shortest path to v known so far. Only when
the algorithm has ended, we can say that w(v) is the predecessor of v by the shortest path
from r to v.

Every vertex has got assigned a label which adapts throughout the algorithm execution. At
each stage, the label of vertex v ∈ V contains its predecessor in the (known so far) shortest
path from r to v, and the corresponding cost of this path, i.e.,

Label(v) =
[
d̃(v), w(v)

]
with d̃(v) = d̃(w(v)) ⊕ C(w(v),v)

w(v) : (predecessor vertex of v in the provisional path P ∗(r, v))

Where C(w(v),v) is the cost of link (w(v), v). At the end of the algorithm, for each vertex v,
d̃(v) will coincide with δ̃(r,v) and w(v) will be its predecessor in P ∗(r, v).

The Initialization (algorithm 1) assigns a label to every vertex in G̃. The cost of the
shortest path from r to any other vertex in v ∈ G̃ is inicialized as∞, except for r, which is
set to be equal to 0.

4



Algorithm 1 Initialization

1: function INITIALIZE-SINGLE-SOURCE(G̃, r,L)
2: d̃(r)← (0, 0, 0)
3: w(r)← NIL
4: for each vertex v ∈ V − {r} do
5: d̃(v)←∞
6: end for
7: end function

The algorithm advances by selecting and extracting vertices from a set, denoted as H ,
which is initially defined as V . At each iteration, the vertex uwith minimum cost is selected
in H according to the ranking method described in section 1.2. Then, the neighbors of this
vertex are analyzed in algorithm 2 (Relaxation). The label of each neighbor v is updated if
the path from r to v through u has a cost less than the current one.

Algorithm 2 Relaxation of v

1: function RELAXATION(u, v, C(u,v), α)
2: d̃new(v) := d̃(u)⊕ C(u,v)

3: if SαT (d̃(v)) > SαT (d̃
new(v)) then

4: d̃(v)← d̃new(v)
5: w(v)← u
6: end if
7: end function

The algorithm ends when there are no vertices left in H . At this point, the label of each
vertex v contains δ̃(r,v) together with its predecessor w(v) on P ∗(r, v). Following a back-
ward procedure, the shortest path between r and each vertex can be found. Algorithm 3
shows the pseudocode of the Dijkstra algorithm proposed.

Algorithm 3 Dijkstra(G̃, r,L)

1: Initialize-single-source(G̃, r,L) . Initialization
2: H ← V
3: while H 6= ∅ do
4: u← t|d̃(t) = min

∀x∈H

{
d̃(x)

}
5: Update H ← H − {u}
6: if Γ (u) ∩H 6= ∅ then
7: for each vertex v ∈ Γ (u) ∩H do
8: Relaxation(u, v, C(u,v), α) . Relaxation of v
9: end for

10: end if
11: end while

5



References

[1] Vincent F. Yu and luu Quoc Dat: An improved ranking method for fuzzy numbers with
integral values. Applied Soft Computing 14., 603-608 (2014)

6


	Dijkstra algorithm for type V fuzzy graph
	Method for the arithmetic operations of normalized triangular fuzzy numbers
	Ranking method of triangular fuzzy numbers
	Algorithm


