Galileo and new opportunities in Satellite Navigation

Omar García Crespillo

Institute of Communication and Navigation

Knowledge for Tomorrow

Satellite Navigation – General Principles

Satellite broadcasts :

- · orbital data and ephemeris
- precise time stamp (atomic clocks)

Receiver measurements:

- compares transmission and reception time (flight time)
- distance between satellite and receiver.
- Receiver placed in a spherical shell:
 - trilateration
 - Position + time

Satellite Navigation – Application Fields

- Navigation: automotive, aircrafts, shipping, space
- **Geodesy:** surveying, mapping, geology, archaeology, civil engineering, topography
- Time keeping: mobile communication
- systems, internet traffic
- Search and Rescue (SAR)
- Fleet management
- Traffic control
- Geolocation based games
- Marketing
- Social Networks

Safety of life applications (e.g. Civil aviation)

DLR

Safety of life applications

- Rely more on GNSS in the future (SESAR and NextGen)
- Allow for new type of approaches (e.g. curve)
- Increment of air traffic density \rightarrow Reduce distance between aircrafts
- Not only accuracy is therefore important → Integrity and availability

GNSS Vulnerabilities

DLR

System Error Monitoring

Characterization of Satellite Orbit and Clock Errors

SIS Verification with High Gain Antenna

Experimentation and Verification Network (EV-NET)

Ionosphere Monitoring Prediction Center (IMPC)

Detection, Analysis and alert of Ionospheric Events

- Modeling of the lonosphere through the determination of the TEC (Total Electron Content)
- Detection of the amplitude and phase of scintillation for multifrequency GNSS measurements

DLR Research Aircraft

Evaluation of measurements and system performance through flight trials

D-CODE (Dornier 228) ATTAS (VFW 614) ATRA (Airbus 320)

RF Interferences

- GNSS signals are deeply buried in the noise and can be easily disturbed by interference from other signals
- Received power at Earth surface:
 ~ -160 dBW =
 0.000 000 000 000 000 1 Watt
- Can be disturbed by:
 - Accumulated noise (e.g. UWB)
 - High power pulses (DME, TACAN)

- High Power Continuous Wave (Harmonics from TV stations etc.)
- Personal Privacy Devices Jammers

Interference by GPS Jammers (PPD) at Newark Airport

- Intentional jamming is reality!
- Personal Privacy Devices (jammers) disturb GPS and GBAS reference stations
- Operation illegal
- Price: \$ 30 \$ 200 in Internet
- Interference mitigation required

Source: R.H. Mitch et al., Signal Characteristics of Civil GPS Jammers, ION GNSS 2011

Airport Newark Liberty International, Motorway close to airport

Some DLR GNSS Antenna Arrays

Galileo E1/E6 standard and miniaturized

Galileo E1/E5 standard and miniaturized

GPS miniaturized

GPS conformal

Practical Realization: Complete System

Beamforming and DOA-estimation in Flight Tests

DLR

Repeater Test Set-Up

Direction of Arrival (DOA) Estimation in Repeater Scenario

Concept of Joint Attitude Determination and Spoofing Detection Algorithm

M. Appel, A. Konovaltsev, and M. Meurer, "Robust Spoofing Detection and Mitigation based on Direction of Arrival Estimation," in Proc. ION GNSS+ 2015, Tampa, FL, USA, 2015.

Loss of satellites due to maneuvers: Inertial Coasting

- · Loss of satellites due to maneuvers
- Time gap due to restart of smoothing filters

Continuity and availability requirements might not be fulfilled

Multisensor Fusion

Highlight: Inertial aided array antenna attitude

Improving the signal-to-noise ration (CN₀ improvements of 10 dB possible)

Reliable tracking the Line of Sight (LoS) satellite signal

Multisensor Fusion

- Accuracy improvement
- Low sensitivity to faults/biases
- Local and global fault detectability improvement
- Availability improvement thanks to the reduction of Protection Levels

Alternative Position Navigation and Timing (APNT)

GNSS denied area

It is meant to be a GNSS backup System

Signals under consideration:

- Distance Measurement Equipment (DME), eDME
- L-band Digital Aeronautical Communications System (LDACS)
- Universal Access Transceiver (UAT)
- Mode S transponder/1090 Mhz (ADS-B)

DLR Oberpfaffenhofen

Employees: 1.590 Area: 245.000 m² Research institutes and facilities:

- Microwaves and Radar Institute
- Institute of Communications and Navigation
- Institute of Atmospheric Physics
- Remote Sensing Technology Institute
- Institute of Robotics and Mechatronics
- German Remote Sensing Data Centre
- Space Operations and Astronaut Training
- Galileo Control Centre
- Flight Experiments

Institute of Communication and Navigation

Employees

- ~ 140 employees
- ~ 115 scientists/PhD candidates

Facilities

- Neustrelitz
- Oberpfaffenhofen

Organization Chart Institute of Communications and Navigation

OH8-KNI-Organigramm

Stand: 01.10.2014