Tunable crystal structure and proton conductivity of lanthanide nitrilotrismethylphosphonates.

Inés R. Salcedo¹, Aurelio Cabeza ¹, Montse Bazaga-García¹, Rosario M. P. Colodrero², Gary Hix², Enrique R. Losilla¹, Pascual Olivera-Pastor¹.

1. Departamento Química Inorgánica, Cristalografía y Mineralogía. Facultad de Ciencias. Universidad de Málaga. Málaga, Spain

2. Wolverhampton School of Sciences. Faculty of Science and Engineering. University of Wolverhampton. Wolverhampton, United Kingdom.

email: inesrs@uma.es

Metal phosphonates are multifunctional solids with remarkable stability and proton conducting properties owing to their structure is usually composed of extended hydrogen-bond networks that favor proton transfer pathways [1]. Moreover, these properties can be enhanced by appropriate modification of the synthesis conditions [2, 3].

In this communication, a new family of isostructural 2D layered compounds based on lanthanide nitrilotris-methylphosphonates is reported. These compounds have been isolated at room temperature and have the general formula

Ln[N(CH₂)₃(PO₃H₂)₂(PO₃H)(H₂O)]SO₄·2H₂O (Ln= Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er and Yb). The coordination environment of Ln³⁺ is composed by eight oxygen atoms from three different ligands and two oxygens from bound waters. This connectivity creates positive charged layers connected to sulfate ions through hydrogen-bonds. These compounds show promising proton conductivity with values ranging between 7.6·10⁻² and 3.8·10⁻² S·cm⁻¹ at 80 °C and 95% RH and low activation energy corresponding to Grotthuss-type proton transfer mechanism. In addition, a structural transformation occurs at T > 70 °C accompanied by a remarkable enhanced conductivity. Studies on the structure-properties relationships will be discussed.

References:

[1] Metal phosphonate Chemistry: from synthesis to applications. 1st ed., edited by A. Clearfield, K. D. Demadis, RSC-Publishing, Cambridge.

[2] M. Bazaga-García, G. K. Angeli, K. E. Papathanasiou, I. R. Salcedo, P. Olivera-Pastor, E. R. Losilla, D. Choquesillo-Lazarte, Gary B. Hix, A. Cabeza, K. Demadis. (2016). Inorganic Chemistry, 55, 7414-7424.

[3] A. Cabeza, P. Olivera-Pastor, R. M. P. Colodrero. (2015). Tailored Organic-Inorganic Materials. Eds. E. Brunet, J. L. Colón, A. Clearfield. Ed. John Wiley & Sons, Inc. Ch. 4, 137-191.

Keywords: metal phosphonates, proton conductivity, crystal structure.