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RESUMEN EN ESPAÑOL 

En este trabajo presentamos tres estudios (estudios 1, 2 y 3) con el objetivo de 

explorar el papel de los tratamientos mediante la repetición y la imitación junto 

con el tratamiento farmacológico en pacientes con afasia crónica tras accidente 

cerebrovascular. El primer estudio fue diseñado para tratar a tres pacientes con 

afasia de conducción tras lesiones en el hemisferio izquierdo. El segundo y el 

tercer estudio incluyeron la evaluación y el tratamiento de un paciente con afasia 

de conducción cruzada.  

ANTECEDENTES 

El lenguaje es una de las características de la especie humana - una parte 

importante de lo que nos hace humanos (Christiansen et al., 2003). El lenguaje 

es una manera de comunicarse a través de símbolos.  

La afasia es la pérdida de la capacidad de producir o entender el lenguaje. Por 

lo general se manifiesta como una dificultad para hablar o entender el lenguaje, 

y la lectura y la escritura también pueden estar afectadas. Por tanto, también 

puede alterar al uso del lenguaje de señas y Braille. Es un trastorno del 

procesamiento del lenguaje que hace que el paciente esté incapacitado para la 

comunicación y el ajuste socio-afectivo (Berthier & Pulvermüller, 2011).  

El accidente cerebrovascular es la causa más común de afasia; sin embargo, 

otras patologías cerebrales estructurales y ciertas afecciones 

neurodegenerativas (enfermedad de Alzheimer, afasia progresiva primaria) 

también pueden producirla. La incidencia de afasia por accidente 

cerebrovascular oscila entre 43-60 por 100.000 individuos en Europa y los 

EE.UU. La gravedad de la afasia en el período agudo después del accidente 
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cerebrovascular es un predictor de mortalidad y dependencia. Un tercio de los 

pacientes con afasia después del accidente cerebrovascular son menores de 65 

años de edad, y aproximadamente la mitad de ellos tendrán una esperanza de 

vida mayor de 5 años después del accidente cerebrovascular (Berthier & 

Pulvermüller, 2011). La discapacidad causada por la afasia provoca un gran 

impacto socioeconómico en el paciente (Pulvermüller & Berthier, 2008). 

En el siglo XIX, las observaciones sobre la afasia de Broca (1865) y Wernicke 

(1906) sugirieron que la función del lenguaje depende de la actividad de la 

corteza cerebral. Al mismo tiempo, Wernicke (1906) y Lichtheim (1885) también 

elaboraron el primer modelo de red a gran escala del lenguaje que incorporaba 

vías de materia blanca de largo alcance y de corto alcance (conexiones 

transcorticales) en el procesamiento lingüístico. Tradicionalmente, el fascículo 

arcuato (AF) (ramo dorsal) se consideraba el principal camino para la repetición. 

La neurociencia cognitiva moderna ha proporcionado herramientas, incluida la 

neuroimagen, que permiten el examen in vivo de las vías de la sustancia blanca 

de corta y larga distancia que unen las áreas corticales esenciales para la 

repetición verbal. Sin embargo, se han publicado hallazgos contradictorios, con 

algunos investigadores defendiendo el papel de los ramos dorsal y ventral, 

mientras que otros sostienen que sólo participan áreas corticales (corteza 

parietotemporal de Silvio (Lambon & Ralph, 2014). 

La afasia de conducción (CA) se refiere a un síndrome caracterizado por un 

habla fluida con repetición alterada, frecuentes errores parafásicos (usualmente 

fonémicos), pero con una comprensión relativamente preservada y una 

alteración en la localización y denominación de palabras (Hillis et al., 2007). El 

lenguaje escrito puede verse afectado de manera similar (Balasubramanian, 



	 13	

2005). Este síndrome generalmente ocurre en los períodos crónicos y puede 

observarse durante la recuperación de la afasia de Wernicke. La CA es 

comúnmente causada por daño en el lóbulo parietal inferior y AF (Pandey & 

Heilman, 2014). Ueno y Lambon Ralph (2013) demuestran que los intentos 

repetidos de aproximación fonética a las palabras de destino (conduite 

d'approche), típicamente observadas en pacientes con CA y daño dorsal-ventral 

dual del AF, se basa en la actividad complementaria de la corriente semántica 

ventral. 

La recuperación de la afasia ocurre durante un período de tiempo que va desde 

varios meses hasta muchos años (Lee, 2010). La imitación ha jugado un papel 

importante en muchos tratamientos de afasia no fluente con la justificación de 

que la información visual complementa otra información sensorial para uso en 

mecanismos de habla oral (Lee, 2010). 

La farmacoterapia es otro enfoque de tratamiento de la afasia que se utiliza para 

estimular la reorganización neural, sobre la premisa de que la recuperación 

funcional observada refleja directamente la reparación de los circuitos 

neuronales que median el lenguaje y otras funciones cognitivas (Cahana-Amitay 

et al., 2014). Se ha argumentado que los fármacos, como el donepezilo (DP), 

son particularmente prometedores para el tratamiento de la afasia en sus 

estadios agudos y crónicos (Berthier et al., 2011). DP es el segundo 

medicamento aprobado en España para la enfermedad de Alzheimer. Al igual 

que tacrina, mejora moderadamente la función cognitiva leve-moderada. Es un 

inhibidor reversible no competitivo de la acetilcolinesterasa que incrementa la 

concentración de acetilcolina en las sinapsis por lo que aumenta la transmisión 

colinérgica. Ejerce su acción de forma más selectiva a nivel cerebral, con muy 
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poca actividad sobre las colinesterasas a nivel periférico. Al igual que otros 

inhibidores de la colinesterasa (tacrina), por su propio mecanismo de acción, 

cualquier efecto terapéutico del fármaco dependerá de la presencia de neuronas 

colinérgicas funcionantes. DP presenta una biodisponibilidad del 100% tras su 

administración oral que no se ve alterada por la presencia de alimentos. Las 

concentraciones plasmáticas máximas se alcanzan en 3-4 horas. Tiene un 95% 

de unión a proteínas plasmáticas. Se metaboliza nivel hepático por el sistema 

enzimático P 450 dando lugar a varios metabolitos, algunos de los cuales son 

activos. Tanto DP como sus metabolitos se excretan principalmente en orina y 

un menor porcentaje en heces. La vida media de eliminación es de 70 horas 

aproximadamente. El tratamiento debe iniciarse con 5 mg/día en dosis única 

diaria por la noche. Esta dosis debe mantenerse, por lo menos, 1 mes para 

permitir que se alcancen las concentraciones de estado estacionario. Tras el 

primer mes, la dosis puede incrementarse a 10 mg/día en dosis única. Ésta es 

la dosis máxima ya que dosis mayores no han sido estudiadas en ensayos 

clínicos. DP es un fármaco, en general, bien tolerado. Los efectos adversos más 

frecuentes (5-10 %) son náuseas, vómitos y diarreas. Calambres musculares, 

fatiga e insomnio son también otros efectos adversos detectados con menor 

frecuencia. La hepatotoxicidad descrita con tacrina no ha sido descrita con 

donepezilo. Se han descrito alteraciones psiquiátricas como alucinaciones, 

agitación y comportamiento agresivo que, se han resuelto cuando se ha dejado 

de utilizar el fármaco o se ha reducido la dosis. Aunque teóricamente podría 

interaccionar con medicamentos que se metabolizan a nivel hepático por las 

mismas isoenzimas, no se han descrito interacciones con teofilina, cimetidina o 
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digoxina. Tampoco se han descrito interacciones con medicamentos que 

presentan una elevada unión a proteínas plasmáticas.  

OBJETIVOS 

1) Evaluar si los efectos del tratamiento con el DP combinado con dos técnicas 

diferentes de terapia del habla con los beneficios en déficits relacionados con la 

producción del habla, la comunicación cotidiana, la memoria a corto plazo y la 

repetición en tres pacientes con la afasia de conducción tras Lesiones del 

hemisferio izquierdo. 

2) Describir detalladamente los déficits en la producción del habla, la 

comunicación cotidiana, la memoria un corto plazo y la repetición en un paciente 

(JAM) con AC crónica por el ictus. 

3) Explorar por primera vez si JAM, un paciente con AC cruzada (afasia por daño 

en el hemisferio derecho), puede obtener beneficios con el entrenamiento de la 

repetición-imitación intensiva y tratamiento farmacológico con DP, y también si 

los beneficios propuestos con estas Las intervenciones pueden inducir la 

plasticidad estructural en la sustancia gris y los tractos de materia blanca que 

sustentan la producción de la comunicación y la comunicación cotidiana. 

ESTUDIO 1 

Referencia: Berthier, M.L., Dávila, G., Green-Heredia, C., Moreno Torres, I., 

Juárez y Ruiz de Mier, R., De-Torres, I., and Ruiz-Cruces, R. (2014). Massed 

sentence repetition training can augment and speed up recovery of speech 

production deficits in patients with chronic conduction aphasia receiving 

donepezil treatment. Aphasiology, 28, 188-218. 
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La duración y la intensidad con que se debe administrar la terapia de afasia es 

un área importante de la investigación en curso, sin embargo hasta la fecha 

pocos estudios han abordado el impacto de las terapias de afasia distribuidas en 

el tiempo en comparación con las terapias intensivas, y los resultados 

disponibles son controvertidos (véase Cherney et al. , 2011, Harnish et al., 2008, 

Martins et al., 2013, Sage et al., 2011).  

Existe un acuerdo general de que la terapia de la afasia en pacientes con 

accidente cerebrovascular es beneficiosa cuando se utilizan protocolos de 

intervención basados en la evidencia (Basso & Macis, 2011; Bhogal et al., 2003; 

Capple et al., 2005; Cicerone et al., 2011; , 1998). Sin embargo, todavía existen 

algunas limitaciones no relacionadas con las características esenciales de las 

intervenciones, por ejemplo, la terapia de la afasia consume mucho tiempo y es 

costosa (Berthier, 2005), y estas dificultades explican, entre otras razones, la 

brecha que existe entre lo que la investigación sobre la terapia de afasia 

recomienda como la cantidad apropiada de tratamiento y la provisión real (Code 

& Petheram, 2011). Además, la adherencia a la terapia de afasia prolongada no 

siempre es factible debido a problemas logísticos (por ejemplo, dificultades de 

transporte). Por último, la falta de voluntad para participar y el abandono de la 

terapia se informan comúnmente en pacientes de edad avanzada (Basso & 

Macis, 2011). Por lo tanto, la idea de que los beneficios proporcionados por la 

terapia de afasia puede ser aumentada y acelerada utilizando enfoques 

emergentes (por ejemplo, drogas, estimulación cerebral transcraneal y eléctrica) 

debe ser explorada. Por ejemplo, una terapia diferida en el tiempo no es 

particularmente útil en la afasia crónica, pero potenciar sus efectos beneficiosos 

con los fármacos se ha asociado con mejores resultados (Berthier et al., 2003, 
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2006). Siguiendo la misma línea de pensamiento, el siguiente paso es saber si 

la misma cantidad de terapia, pero administrada en un período de tiempo más 

corto, combinando la terapia intensiva con fármacos, puede producir mejores 

resultados. Curiosamente, la evidencia preliminar de un solo paciente con AC 

crónica demostró mayores ganancias con la terapia en masa que con terapia 

extendida en el tiempo, y los beneficios proporcionados por la intervención 

anterior se correlacionaron con el aumento de activación de los ganglios basales 

izquierdos y el reclutamiento en el hemisferio derecho (Harnish et al.). Por lo 

tanto, para obtener más conocimientos sobre la integración de terapias 

emergentes con intervenciones clásicas, este estudio compara la eficacia de dos 

diferentes intervenciones conductuales (terapia de afasia distribuida en el tiempo 

e intensiva) en tres pacientes con AC crónica que reciben tratamiento con el 

potenciador colinérgico DP. 

El entrenamiento de la repetición intensiva de oraciones (MSRT) mejoró los 

déficit de producción de habla en pacientes con afasia de conducción crónica y 

lesiones perisilvianas izquierdas que recibieron tratamiento con DP. 

Los efectos de MSRT se compararon con los de una terapia del lenguaje no 

intensiva (DSLT) en términos de producción verbal, memoria a corto plazo y 

repetición en pacientes con CA crónica por accidente cerebrovascular, tratados 

con el inhibidor de la colinesterasa DP.  

Ambas intervenciones mejoraron el rendimiento en las tareas de producción de 

habla, pero se encontraron mayores mejoras con DP-MSRT que con DP-DSLT. 

El tratamiento DP-MSRT mejoró la situación basal de los pacientes, en cuanto a 

repetición de pares de palabras, tripletes, oraciones nuevas y experimentales 
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con generalización de ganancias a la severidad de afasia, conexión del habla y 

frases de control no tratadas.  

Estudios experimentales en roedores indican que la acetilcolina promueve la 

transmisión sináptica, estimula la plasticidad sináptica y coordina la actividad de 

grupos de neuronas que potencian la percepción, la atención, el aprendizaje y 

los procesos de memoria (Sarter et al. ., 2003, 2005). La estimulación colinérgica 

en condiciones experimentales facilita la neuroplasticidad, y los cambios 

resultantes son más evidentes cuando la modulación colinérgica se combina con 

el entrenamiento (plasticidad dependiente de la experiencia) (Kleim & Jones, 

2008; Sarter et al., 2003, 2005). Los estudios de neuroimagen humana de los 

sistemas colinérgicos corroboran y extienden los relatos fisiológicos de la función 

colinérgica publicados en estudios experimentales en animales (véase Bentley 

et al., 2011). 

Aunque no hemos realizado neuroimagen funcional en estos tres pacientes, 

nuestros resultados invitan a especulaciones sobre el papel de DP-MSRT en la 

modulación de las redes disfuncionales y subutilizadas. Al inicio, el desempeño 

deteriorado en la lista de palabras y la repetición de frases en nuestros pacientes 

puede atribuirse a la disminución sináptica en la vía colinérgica lateral izquierda 

(insula y materia blanca frontoparietal) (Buckingham & Buckingham, 2011; Gotts 

et al., 2002; Gotts & Plaut, 2004, McNamara & Albert, 2004, Selden et al., 1998, 

Tanaka et al., 2006) con compensación incompleta de los déficits por los tractos 

de la sustancia blanca perisilviana derecha. Sugerimos que la potenciación 

colinérgica con DP potenció los efectos de la terapia de afasia no sólo revirtiendo 

la disminución sináptica en las áreas disfuncionales del hemisferio izquierdo, 

sino, lo que es más importante, mediante el reclutamiento de las vías 
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perisilvianas derechas. Recientes estudios de intervención en afasia crónica 

demostraron que los beneficios en la producción de habla con Terapia de 

Entonación Melódica (Schlaug et al., 2009; Zipse et al., 2012) y en la repetición 

y el nombramiento con Terapia restrictiva para la afasia (CIAT) (Breier et al., 

2011) se asociaron con plasticidad funcional y estructural del AF derecho. 

Sugerimos que MSRT (y en menor medida DSLT) en combinación con DP 

también podría reclutar redes del hemisferio derecho. Después de ambos 

tratamientos, nuestros pacientes recuperaron la capacidad de repetir con 

facilidad las palabras objetivo anteriormente inaccesibles en ambas listas y 

frases nuevas. También recuperaron la retención del orden de las palabras como 

se refleja por un incremento significativo en el número de repeticiones correctas 

de tripletes y oraciones. Esto puede haber sido el resultado de la reversión de la 

disminución sináptica (Gotts & Plaut, 2002) y la reducción de activación de 

propagación de los competidores (Foster et al., 2012) inducida por DP. Además, 

es tentador argumentar que el aumento de la eficiencia neural y el mejor 

desempeño de las tareas promovidas por la estimulación colinérgica (Ricciardi, 

et. al, 2013) se reforzaron con MSRT con el objetivo de fortalecer la actividad de 

los tractos de la sustancia blanca perisilviana del hemisferio derecho (AF), 

previamente subutilizado, al servicio de la repetición. Además, la potenciación 

colinérgica también podría haber modulado las regiones frontoparietales 

implicadas en los procesos ejecutivo-atencionales (Demeter & Sarter, 2013), así 

como la atención y memoria a corto plazo auditivo-visual a través de una 

interacción dinámica entre corrientes auditivas dorsales y ventrales derechas 

(Majerus et al., 2012) . La recuperación de déficit de producción en pacientes 

con afasia fluida generalmente sigue una secuencia fija (por ejemplo, Kertesz, 
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1984, Kohn et al., 1996) evolucionando desde la producción inicial de 

neologismos relacionados con objetivos, errores y omisiones fonológicas 

seguidos de errores fonológicos y formales mejor identificados. Los beneficios 

proporcionados por las intervenciones combinadas en nuestros tres pacientes 

estaban en desacuerdo con el patrón habitual de recuperación de CA descrito 

en casos crónicos, porque tras ambas intervenciones no se vieron estos pasos 

aparentemente obligados de recuperación. Además, se encontró que DP-MSRT 

aumentó y aceleró la recuperación en comparación con DP-DCSLT. 

ESTUDIO 2 

Referencia: De-Torres, I., Dávila, G., Berthier, M.L., Walsh, S.F., Moreno-Torres, 

I., & Ruiz-Cruces, R. (2013). Repeating with the right hemisphere: reduced 

interactions between phonological and lexical-semantic systems in crossed 

aphasia? Frontiers in Human Neuroscience, Oct 18; 7: 675.  

Está bien establecido que la mayoría (95%) de los diestros tienen dominancia 

del hemisferio cerebral izquierdo para el lenguaje (Annett, 1998; Wada & 

Rasmussen, 2007). Una minoría (5%) de diestros tiene especialización 

hemisférica derecha para el lenguaje (Loring et al., 1990; Annett, 1998; Pujol et 

al., 1999; Knecht et al., 2002) y dominancia mixta (producción y recepción de 

lenguje representada en ambos hemisferios) lo que puede ocurrir tanto en 

cerebros sanos (Lidzba et al., 2011) como lesionados (Kurthen et al., 1992; 

Paparounas et al., 2002; Kamada et al., 2007; Lee et al., 2008) de individuos 

diestros, lo que es mucho menos frecuente. 

La rareza de la lateralización completa o incompleta del lenguaje en el hemisferio 

derecho explica por qué sólo una minoría de individuos diestros desarrollan 
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déficit de lenguaje después de una lesión en el hemisferio derecho (afasia 

cruzada) (Bramwell, 1899; Alexander et al., 1989a; Mariën et al. , 2001, 2004). 

Aunque la afasia cruzada es rara, el análisis del funcionamiento del lenguaje en 

estos sujetos representa una oportunidad ideal para examinar si su desempeño 

lingüístico y la arquitectura neural que sustenta las funciones lingüísticas en el 

hemisferio derecho son las mismas que las reportadas en sujetos con dominio 

del hemisferio izquierdo (Catani et al , 2007, Turken & Dronkers, 2011, y Catani 

& Thiebaut de Schotten, 2012). En este trabajo se reporta la aparición de afasia 

fluida con repeticiones severamente anormales y déficits en la comprensión de 

la oración (CA) en un paciente varón (JAM) que sufrió una lesión subcortical 

derecha severa. Esta correlación clínico-anatómica es infrecuente, pero su 

descripción puede iluminar aún más la organización neural del lenguaje 

proposicional en el hemisferio derecho. En un intento por lograr esto, en el 

presente estudio se delineó la localización de los daños a los tractos de sustancia 

blanca que sustentan la repetición del lenguaje en un paciente con la ayuda de 

secciones cerebrales representadas en un atlas de conexiones cerebrales 

humanas (Catani y Thiebaut de Schotten, 2012) y  con estudio de difusión de 

imagen (DTI) de tractos bilaterales de materia blanca (tractografía). 

La lesión que causó la afasia de JAM era de localización estriatal / capsular, 

abarcando el AF derecho y el fascículo frontal-occipital inferior (IFOF), el tallo 

temporal y la sustancia blanca debajo del giro supramarginal. Al evaluar su 

repetición, JAM mostró efectos de lexicalidad (repetía mejores palabras que no-

palabras, pero la manipulación de otras variables léxico-semánticas ejerció 

menos influencia en el rendimiento de la repetición. En este paciente casi nunca 

se observaron los efectos de imaginabilidad y frecuencia, la producción de 
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parafasias semánticas durante la repetición de oraciones o el mejor desempeño 

en la repetición de oraciones nuevas que los clichés. El estudio DTI reveló daños 

en el segmento derecho largo y directo del AF y el IFOF con preservación relativa 

de los segmentos anterior e indirecto del FA, junto con vías de la sustancia 

blanca perisilviana izquierda completamente desarrolladas. Utilizando el 

cuestionario de comunicación en las actividades de la vida diaria (CAL) se vio 

que la cantidad y calidad de la comunicación estaban deterioradas. Estos 

hallazgos sugieren (1) que las lesiones estriatales / capsulares que se extienden 

al AF derecho y el IFOF en algunos individuos con dominancia del lenguaje en 

hemisferio derecho se asocian con patrones de repetición atípicos que podrían 

reflejar la reducción de las interacciones entre los procesos fonológicos y léxico-

semánticos; Y (2) que los pacientes con CA cruzada también pueden mostrar 

habilidades de comunicación reducidas a pesar de tener un habla espontánea 

fluida. 

La afectación inferior del tronco temporal y el IFOF, superiormente al AF y la 

materia blanca debajo del giro supramarginal, pueden provocar limitación de 

acceso a la información léxico-semántica durante la repetición de listas de 

palabras y repetición de oraciones. La interrupción del segmento directo largo 

del AF derecho podría explicar el rendimiento anormal en la repetición de 

palabras y no palabras. La lesión del tracto ventral derecho (IFOF) que comunica 

la corteza insular y el putamen podría ser responsable del deterioro del proceso 

léxico-semántico y sintáctico necesario para la comprensión exacta de la oración 

y la repetición. Además, la participación de la corteza temporal basal derecha 

(tallo temporal, área del lenguaje basal) puede haber cortado las vías 

comisurales (comisura anterior) que interrumpen la conectividad funcional con 
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su parte homóloga contralateral, limitando aún más el acceso al significado 

durante la comprensión (Umeoka et al., 2009; Warren et al., 2009) y también con 

el giro temporal posterosuperior dificultando el procesamiento fonológico 

(Ishitobi et al., 2000, Koubeissi et al., 2012). Es necesario un análisis más 

profundo de los individuos con dominancia del lenguaje del hemisferio derecho 

para mejorar nuestra comprensión sobre el papel de los tractos de materia 

blanca en la repetición del lenguaje. 

ESTUDIO 3:  

Referencia: De-Torres I., Berthier M.L., Paredes-Pacheco J., Poé-Vellvé N., 

Thurnhofer-Hemsi K., López-Barroso D., Torres-Prioris M.J., Alfaro F., Moreno-

Torres I., Dávila G. (2017). Cholinergic potentiation and audiovisual repetition-

imitation therapy improve speech production and communication deficits by 

inducing structural plasticity in white matter tracts. Frontiers in Human 

Neuroscience (in press). 

Se estudiaron cambios longitudinales cerebrales en los tractos de la materia gris 

y de materia blanca en JAM, varón diestro con CA crónica por una lesión 

subcortical derecha (afasia cruzada) tratado con dos intervenciones. Se utilizó 

un diseño de intervenciones múltiples en un solo paciente que incluía dos dos 

evaluaciones de tratamiento y dos post-tratamiento. El diseño utilizado fue un A-

B-BC-D1-D2. Después del establecimiento de una línea base estable 

(evaluación A), el paciente recibió DP 5 (mg / día) durante 4 semanas y luego la 

dosis aumentó (10 mg / día) durante 12 semanas sin terapia del habla en ninguna 

de estas dos fases (evaluación B) . Posteriormente, el paciente continuó con DP 

(10 mg / día) combinado con terapia LLR (evaluación BC). Después de terminar 
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la terapia combinada, hubo dos períodos de lavado de DP y LLR (evaluaciones 

D1-D2). Se evaluó ampliamente el leguaje de JAM en el momento basal (semana 

0), puntos finales B (semana 16) y BC (semana 28) y en los seguimientos 

(semanas 36 y 44). Otros tratamientos farmacológicos (escitalopram, losartán y 

sitagliptina / metformina, omeprazol, baclofeno y levetiracetam) se mantuvieron 

sin cambios durante el ensayo. El estudio fue realizado de acuerdo con la 

Declaración de Helsinki y el protocolo fue aprobado por el Comité Local de Ética 

Comunitaria para Ensayos Clínicos y la Agencia Médica Española. Este estudio 

de caso único se realizó como parte de un proyecto de investigación 

independiente financiado por Pfizer / Eisai, España y fue diseñado, conducido y 

controlado por el investigador principal (MLB). El estudio se registró con el 

número EudraCT 2008-008481-12. 

Para la planificación de la terapia logopédica específica para JAM acuñamos los 

principios terapéuticos de Pulvermüller y Berthier (2008): 

1. Alta intensidad: alta frecuencia. 

2. Relevancia para el comportamiento: práctica del lenguaje en el contexto de 

acciones cotidianas. 

3. Focalización en la capacidad: la utilización de las capacidades preservadas 

del paciente, especialmente las que se utilizan para evitar la dificultad en ellas. 

Agregar al criterio de larga duración, ya que la aplicamos cuatro meses de forma 

continuada. 

JAM, en la evaluación preliminar, no presentaba dificultad en la repetición de 

palabras o no palabras solas, dificultad con la repetición de dos palabras y gran 
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dificultad ante la repetición de tripletes de palabras y oraciones. La terapia 

planificada para él se llamó Repite-conmigo (Look-listen&repeat-LLR) y consiste 

en la repetición de listas de oraciones grabadas en vídeo. El paciente ve y 

escucha a una persona grabada en vídeo que dice una frase a la cámara, y, a 

continuación, el paciente tiene un tiempo de cinco segundos para repetir la 

oración. Recibe tanto la entrada fonológica como el feedback visual de la mímica 

bucal y facial. Las listas contienen 50 oraciones, salvo las primeras iniciales de 

iniciación y aprendizaje del método (nivel I) que son más cortas (30 oraciones). 

El número de palabras por frase en el nivel I es de 4,46 y en el nivel II 6,10. 

Trabaja un mínimo de 30 minutos por la mañana y otros tantos por la tarde 

durante un período de 16 semanas. Es evaluado semanalmente en la ejecución 

de la tarea. Se le cambia la lista de palabras semanalmente si consigue repetir 

correctamente el 90% de las palabras. Ninguna lista se planeó para JAM con 

demora para la repetición, ya que la tarea presenta suficiente grado de dificultad 

para él y para proporcionar un buen ritmo de exigencia semanal que vaya 

permitiendo mejora progresiva de los resultados. La repetición de oraciones en 

si misma, y no de palabras solas, por la longitud de las mismas y la necesidad 

de repetición en el mismo orden las palabras, supone por sí mismo un 

entrenamiento de la memoria a corto plazo aunque no se le pida al paciente un 

retraso extra antes de repetir como propone Lee (2010) en su método IMITATE. 

Todas las frases utilizadas Repite-conmigo (LLR) cumplen las siguientes 

características: palabras de alta frecuencia de uso, alta imaginabilidad y 

predictibilidad, longitud y dificultad gramatical creciente. Para ello utilizamos los 

diccionarios de frecuencia de palabras de Alameda y Cuetos (1992). Empleamos 

campos semánticos familiares para el paciente. 
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La relación causal entre los cambios plásticos observados y la modulación 

colinérgica es difícil de alcanzar, pero concuerda con los resultados de diferentes 

líneas de investigación (Mesulam et al., 1992, Raghanti et al., 2008, Bohnen et 

al., 2009, Hiraoka Et al., 2009, Imamura et al., 2015). El análisis postmortem del 

sistema colinérgico humano en el lóbulo frontal mesial (área de Brodmann 32) 

(Raghanti et al., 2008), uno de los orígenes anatómicos del FAT (Catani et al., 

2013) y crucial para las intenciones comunicativas (Catani y Bambini, 2014), 

reveló densos grupos de axones colinérgicos que probablemente representan 

eventos locales de plasticidad o reordenamiento de circuitos (Mesulam et al., 

1992; Raghanti et al., 2008). Un estudio in vivo utilizando tomografía por emisión 

de positrones (PET) y 1Cmetil-4-piperidinil propionato acetilcolinesterasa (AChE) 

en sujetos de edad media y ancianos no demenciados con afectación de la 

sustancia blanca periventricular de origen vascular se asoció con una menor 

actividad colinérgica por una interrupción en las vías colinérgicas ascendentes 

(Bohnen et al., 2009).  

De forma complementaria, un estudio histoquímico de un paciente joven con 

lesiones vasculares subcorticales puras reveló ruptura de las vías ascendentes 

colinérgicas en la sustancia blanca profunda, aunque algunas fibras ricas en 

acetilcolina y neuronas corticales colinérgicas sobrevivieron incluso en las áreas 

de mayor denervación colinérgica (Mesulam et al., 2003). Por otra parte, el 

conocimiento en los sitios del cerebro donde se produce la unión de DP está 

proporcionando más información. Un estudio en sujetos sanos utilizando PET y 

[5- (11) C-metoxi]-DP mostró una concentración moderada del radiotrazador en 

algunas áreas corticales (giro cingulado frontal y anterior) que son los orígenes 

del FAT (Hiraoka et al. , 2009, Catani et al., 2013). Por último, los estudios in 
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vitro demostraron que el tratamiento con DP, a través de la estimulación de los 

receptores nicotínicos, aumenta rápidamente la diferenciación oligodentrocítica 

y la mielinización (Imamura et al., 2015). 

Las evaluaciones con neuroimagen, DTI y morfometría basada en voxel (VBM) 

se realizaron basalmente y tras los dos periodos de tratamiento. Se comparó con 

la neuroimagen de 21 controles sanos varones adultos. El tratamiento con DP 

de forma aislada y combinado con LLR indujo una marcada mejoría en la afasia 

y los déficits de comunicación, así como en medidas seleccionadas de 

producción de habla conectada y repetición verbal. Las ganancias obtenidas en 

la producción de habla se mantuvieron muy por encima de las puntuaciones 

iniciales incluso cuatro meses después de terminar la terapia combinada. El DTI 

longitudinal mostró plasticidad estructural en el tracto Aslant frontal derecho 

(FAT) y segmento directo del AF (DSAF) con ambas intervenciones. No se 

encontraron cambios estructurales favorables en otros tramos de materia blanca 

ni en áreas corticales unidas por estos tractos. En conclusión, la potenciación 

colinérgica sola y combinada con una terapia de afasia basada en modelos 

mejoró los déficits de lenguaje promoviendo cambios estructurales plásticos en 

los tractos de la sustancia blanca derecha. 

Numerosos estudios demuestran la eficacia de la terapia logopédica intensiva 

de la afasia, pero ello conlleva limitaciones económicas si se precisa de un 

terapeuta presencial en todas las horas de tratamiento. Existen alternativas 

factibles como entrenar a un familiar / cuidador en la facilitación de la terapia al 

paciente, o el uso de programas informáticos. Otra ventaja de estas opciones 

supone la posibilidad de tratamiento en los ambientes habituales del paciente y 

se minimizan dificultades como el desplazamiento al lugar de la terapia o la 
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incompatibilidad de horarios (Pulvermüller & Berthier, 2008). La telerehabilitación 

consiste en la aplicación de las Tecnologías de la Información y la Comunicación 

a la prestación de servicios de rehabilitación a distancia. Un ejemplo puede ser 

la utilización de videos interactivos en el domicilio del paciente para llevar a cabo 

el entrenamiento logopédico, como hemos aplicado en el caso objeto de este 

trabajo. Farreny et al., (2012) defienden que los ordenadores han sido integrados 

a prácticamente todas las áreas de la actividad humana. Permiten una 

presentación, organización y control sistemático de la información, y en 

consecuencia, pueden ser una herramienta de gran utilidad en la terapia del 

lenguaje. El aumento de la demanda de programas de rehabilitación en la 

mayoría de países de nuestro entorno se debe tanto al incremento de la 

longevidad de la población, como al creciente número de individuos que 

presentan algún grado de discapacidad como resultado de múltiples procesos 

patológicos. El diseño de los diferentes programas de rehabilitación debe 

superar con frecuencia barreras geográficas o económicas que dificultan su 

implantación y limitan su eficacia. La telerehabilitación se presenta como una 

alternativa útil y accesible desde el punto de vista tecnológico y económico 

(Farreny et al., 2012). 

CONCLUSIONES 

1) En el estudio 1 se demuestra, por primera vez, que el tratamiento combinado 

el entrenamiento intensivo de repetición de oraciones (MSRT) (40 horas en ocho 

semanas) con DP asocia mejores resultados en los déficits de producción de 

habla que los Que se obtuvo con el tratamiento combinado de DP y terapia del 

habla menos intensiva (DSLT) (40 horas en 16 semanas). Aunque ambos tipos 

de intervenciones fueron eficaces para mejorar los déficits de producción de 
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habla, MSRT combinado con DP aumentó y aceleró los beneficios 

proporcionados por la terapia más extendida en el tiempo (DSLT). Estos 

hallazgos demuestran que los tratamientos intensivos están asociados con los 

mejores resultados que las terapias tradicionales, no intensivas. Además, estos 

hallazgos sugieren que la combinación de un tratamiento biológico (DP) con las 

intervenciones basadas en los modelos de son estrategias prometedoras para el 

tratamiento de la post-ictus. 

2) Para implementar una intervención terapéutica similar a la del Estudio 1, se 

evaluó un paciente (JAM) con la afasia de conducción crónica post-ictus con el 

objetivo de establecer una evaluación basal completa (Estudio 2). Encontramos 

deficiencias de lenguaje y comunicación estabilizadas. Los déficits de lenguaje 

afectaron principalmente a la repetición y el perfil de estos déficits atípicos, lo 

que refleja una menor interacción entre los sistemas semánticos, fonológicos y 

léxicos. Este hallazgo sugiere que la interacción entre ambos hemisferios 

cerebrales en pacientes con afasia cruzada es atípica. 

3) La intervención basada en modelos utilizando un fármaco (DP) y la terapia de 

imitación repetitiva con apoyo audiovisual en el paciente JAM mejoró los déficits 

de lenguaje y comunicación (Estudio 3). Estos cambios positivos fueron 

apoyados por cambios plásticos altamente focales en los tractos de la sustancia 

blanca derecha (FAT y segmento directo del AF derecho). No encontramos 

plasticidad estructural en el área de materia gris interconectada por estos tractos 

ni en el hemisferio izquierdo. 
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PREFACE 

The aims of these 3 studies (Studies 1, 2 and 3) was to explore the role of 

repetition and imitation training and drug treatment in patients with chronic post-

stroke conduction aphasia (CA). The first intervention study was designed to treat 

three patients with CA after lesions in the left hemisphere. The second and third 

studies involved the evaluation and treatment of a patient with crossed CA. The 

abstracts of these three studies are presented separately at the beginning of each 

study.  
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Prólogo 

Los objetivos de estos 3 estudios (estudios 1, 2 y 3) son explorar el papel de 

tratamientos a través de la repetición y la imitación, junto con tratamiento 

farmacológico en pacientes con afasia crónica tras accidente cerebrovascular). 

El primer estudio fue diseñado para tratar a tres pacientes con afasia de 

conducción tras lesiones en el hemisferio izquierdo. El segundo y el tercer 

estudio incluyeron la evaluación y el tratamiento de un paciente con afasia de 

conducción cruzada. Los resúmenes de estos tres estudios se presentan por 

separado al comienzo de cada uno, como se podrá leer a continuación. 
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ABBREVIATIONS                                                                                       

AF: Arcuate fasciculus 

ASAF: Anterior segment of the AF  

AVSTM: Auditory-verbal short-term memory 

CA: Conduction aphasia  

CAL: Communicative activity log  

CIAT: Constraint-induced aphasia therapy 

CIU: Correct information unit 

DP: Donepezil 

DSAF: Direct segment of arcuate fasciculus 

DSLT: Distributed speech-language therapy 

DTI: Diffusion tensor imaging  

FAT: Frontal aslant tract 

IFOF: Inferior frontal-occipital fasciculus 

LLR: Look-listen and repeat  

MIT: Melodic intonation therapy 

MSRT: Massed sentence repetition therapy  

PALPA: Psycholinguistic assessments of language processing in aphasia  

rsfMRI: Resting state functional magnetic resonance imaging  
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SLF: Superior longitudinal fasciculus  

SMA: Supplementary motor area 

VBM: Voxel-based morphometry 

WAB: Western aphasia battery 
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INTRODUCTION                                                                                       

Language is one of the hallmarks of the human species – an important part of 

what makes us human (Christiansen et al., 2003). Language is a way to 

communicate through symbols. Aphasia is the loss of ability to produce and/or 

understand language. This usually manifests as a difficulty speaking or 

understanding spoken language and reading and writing are also usually 

impacted. Aphasia can also affect the use of sign language and Braille. Aphasia 

is a disorder of language processing that makes the patient disabled for 

communication and social-affective adjustment (Berthier & Pulvermüller, 2011). 

The negative impact of aphasia can be magnified in anxiety-provoking 

environmental circumstances such as new situations, noisy environments, 

distracting elements, or several people speaking at the same time. 

Stroke is the most common cause of aphasia; however any structural brain 

pathology and certain neurodegenerative conditions (Alzheimer’s disease, 

primary progressive aphasia) can produce aphasia as well. The incidence of 

aphasia after stroke ranges from 43-60 per 100,000 individuals in Europe and 

U.S. The severity of aphasia in the acute period after stroke is a predictor of 

mortality and dependence. A third of patients with aphasia after stroke are under 

65 years of age, and approximately half of them will have a life expectancy 

greater than 5 years after stroke (Berthier & Pulvermüller, 2011). The disability 

caused by aphasia provokes a great social-economical impact to the patient 

(Pulvermüller & Berthier, 2008). 

In the nineteenth century, ground-breaking observations on aphasia by Broca 

(1865) and Wernicke (1906) suggested that language function depends on the 
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activity of the cerebral cortex. At the same time, Wernicke (1906) and Lichtheim 

(1885) also elaborated the first large-scale network model of language which 

incorporated long-range and short-range (transcortical connections) white matter 

pathways in language processing. The arcuate fasciculus (AF) (dorsal stream) 

was traditionally viewed as the major language pathway for repetition, but 

scientists also envisioned that white matter tracts traveling through the insular 

cortex (ventral stream) and transcortical connections may take part in language 

processing. Modern cognitive neuroscience has provided tools, including 

neuroimaging, which allow the in vivo examination of short- and long-distance 

white matter pathways binding cortical areas essential for verbal repetition. 

However, this state of the art on the neural correlates of language repetition has 

revealed contradictory findings, with some researchers defending the role of the 

dorsal and ventral streams, whereas others argue that only cortical hubs (Sylvian 

parieto-temporal cortex) are crucially relevant (Berthier & Lambon Ralph, 2014). 

Conduction aphasia 

CA refers to a syndrome characterized by fluent speech with impaired repetition, 

frequent paraphasic errors (usually phonemic) but relatively preserved 

comprehension and impaired word finding and naming (Hillis et al., 2007).  

Written language may be similarly affected (Balasubramanian, 2005). This 

syndrome usually occurs in the chronic periods and it may be observed during 

recovery from a Wernicke aphasia.  

CA is commonly caused by damage to the inferior parietal lobe and AF (Pandey 

& Heilman, 2014). In a computational modeling investigation of the dual dorsal-

ventral pathway implicated in verbal repetition, Ueno and Lambon Ralph (2013) 
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demonstrate that the successful phonetic approximations to target words 

(conduite d'approche), typically observed in patients with CA and damage to the 

dorsal pathway (AF), relies on the complementary activity of the ventral semantic 

stream.  

Speech and Language Therapy 

Recovery from aphasia occurs over a period of time ranging from several months 

to many years (Lee, 2010). Imitation has played an important role in many 

treatments for non-fluent aphasia with the rationale that visual input complements 

other sensory information for use in oral speech mechanisms (Lee, 2010). 

Pharmacotherapy of Aphasia 

Pharmacotherapy is one of several biological approaches for the treatment of 

aphasia which is used to stimulate neural reorganization, on the premise that 

observed functional recovery directly reflects reparation of neural circuits 

mediating language and other cognitive functions (Cahana-Amitay et al., 2014). 

Drugs, such as donepezil (DP) have been argued to be particularly promising for 

aphasia treatment in its acute and chronic stages (Berthier et al., 2011). 
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OBJECTIVES                                                                                             

1) To evaluate whether the effects of treatment with the cholinesterase 

inhibitor donepezil (DP) combined with two different speech therapy 

techniques provide benefits in deficits involving speech production, 

everyday communication, short-term memory, and repetition in 

three patients with chronic post-stroke CA after left hemisphere 

lesions. 

2) To describe the profile deficits in speech production, everyday 

communication, short-term memory, and repetition in a patient 

(JAM) with chronic post-stroke crossed CA. 

3) To address for the first time the question of whether JAM, a patient 

with crossed CA (e.g., aphasia after right hemisphere damage), can 

obtain benefits with intensive repetition-imitation training and 

pharmacological treatment using donepezil, and also if the 

hypothetized benefits with these interventions can induce structural 

plasticity in grey matter and white matter tracts underpinning speech 

production and everyday communication.   
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Objetivos                                                                                                    

1) Evaluar si los efectos del tratamiento con donepezilo combinado con dos 

técnicas diferentes de terapia del habla proporcionan beneficios en déficits 

relacionados con la producción del habla, la comunicación cotidiana, la memoria 

a corto plazo y la repetición en tres pacientes con afasia de conducción tras 

lesiones del hemisferio izquierdo. 

2) Describir detalladamente los déficits en la producción del habla, la 

comunicación cotidiana, la memoria a corto plazo y la repetición en un paciente 

(JAM) con AC crónica por ictus. 

3) Explorar por primera vez si JAM, un paciente con AC cruzada (afasia por daño 

en el hemisferio derecho), puede obtener beneficios con el entrenamiento de la 

repetición-imitación intensiva y tratamiento farmacológico con donepezilo, y 

también si los beneficios propuestos con estas intervenciones pueden inducir la 

plasticidad estructural en la sustancia gris y los tractos de materia blanca que 

sustentan la producción del habla y la comunicación cotidiana. 
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STUDY 1: Distributed and massed sentence repetition training improved speech 

production deficits in patients with chronic conduction aphasia and left perisylvian 

lesions receiving donepezil treatment. 

Reference: Berthier, M.L., Dávila, G., Green-Heredia, C., Moreno Torres, I., Juárez y Ruiz de 
Mier, R., De-Torres, I., and Ruiz-Cruces, R. (2014). Massed sentence repetition training can 
augment and speed up recovery of speech production deficits in patients with chronic conduction 
aphasia receiving donepezil treatment. Aphasiology, 28, 188-218. 

 

Abstract - Study 1 

The effects of massed sentence repetition therapy (MSRT) were compared to 

those of distributed speech-language therapy (DSLT) in measures of verbal 

output, short-term memory and repetition in patients with chronic post-stroke CA 

receiving treatment with the cholinesterase inhibitor donepezil (DP). Both 

interventions improved performance in speech production tasks, but better 

improvements were found with DP-MSRT than with DP-DSLT. Larger treatment 

effects were found for DP-MSRT in comparison with baselines and DP-DSLT in 

repetition of word pairs and triplets, and novel and experimental sentences with 

generalisation of gains to aphasia severity, connected speech and non-treated 

control sentences. In conclusion, combined interventions with DP and two 

different aphasia therapies (DSLT and MSRT) significantly improved speech 

production deficits in CA, but DP-MSRT augmented and speeded up most 

benefits provided by DP-DSLT.  
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Introduction- Study 1 

Conduction aphasia (CA) is characterised by a disproportionate deficit in repeti- 

tion in the context of fluent verbal output and relative sparing of auditory com- 

prehension (Albert, Goodglass, Helm, Rubens, & Alexander, 1981; Berthier, 

Dávila, García-Casares, & Moreno-Torres, 2014; Kohn, 1992). However, in 

recent years, CA has been fractionated in a spectrum of syndromes which are to 

some extent dependent on aphasia severity, moment of aphasia evaluation, type 

of repetition tasks used, lesion location and availability of compensatory brain 

mechanisms (Berthier et al., 2012; Gvion & Friedmann, 2012; Nadeau, 2001). 

Within this syndromic spectrum, two major types of CA (reproduction and 

repetition) prevail (Shallice & Warrington, 1977). The reproduction subtype is 

characterised by phonemic paraphasias in all verbal modalities and recurring 

production of sequential phonemic approximations to the target word aimed to 

self-repair errors (conduite d’approche), a pattern of deficits variously ascribed to 

deficits in speech programming (Bernal & Ardila, 2009), output phonological 

encoding (Kohn, 1992) or combined deficits in sensory- motor integration and 

phonological short-term memory (Buchsbaum et al., 2011; Hickok, Houde, & 

Rong, 2011). The repetition subtype is less severe than the previous one 

because it shows virtually isolated repetition deficits which have been linked to a 

selective impairment in auditory-verbal short-term memory (AVSTM) (Shallice & 

Warrington, 1977). 

Acute post-stroke CA roughly accounts for 13% of all aphasic syndromes, with 

most patients achieving good recovery, yet this figure increases (~23%) when 

chronic aphasic patients are taken into account (Laska et al., 2001) because CA 

often represents the end-stage of more severe aphasic syndromes (e.g., global 
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aphasia, Wernicke’s aphasia) (Kertesz, 1984). In chronic CA, residual 

phonological errors and self-corrections may hinder verbal output and functional 

communication, and deficits in AVSTM additionally disrupt comprehension of 

complex sentences. Moreover, even in patients who attain good outcomes, the 

profile of CA may latently remain post recovery (Ueno et al., 2011), particularly 

when patients are subjected to demanding testing conditions (Berthier et al., 

2012; Jefferies et al., 2006). Collectively, these findings imply that devising 

neuroscience-driven interventions for residual CA could be an important area of 

enquiry. However, despite its prevalence, reports dealing with theoretically 

motivated treatments for CA are scant. In the next section, we describe 

interventions aimed to improve speech production and AVSTM in CA. 

In 1833, the Dublin physician Jonathan Osborne (1794–1864) examined 

repeatedly over the course of a year a young aphasic patient with fluent polyglot 

jargon, good comprehension of spoken and written words and poor repetition 

(Breathnach, 2011), a combination of features which Wernicke comprehensively 

described more than 40 years later under the rubric of CA (De Bleser et al., 1993; 

Weiller et al., 2011; Wernicke, 1906, 1977). After the initial evaluation, Osborne 

recommended his patient “to commence learning to speak like a child repeating 

first, the letters of the alphabet, and subsequently words, after another person” 

(Breathnach, 2011, p. 25). In a follow-up evaluation eight months later, repetition 

exercises lead to considerable improvements in spontaneous speech and 

repetition. The beneficial effects of this intervention were overlooked until recently 

(see below) perhaps because therapies training the most affected language 

domain (repetition) to improve fluency and content in spontaneous speech were 

viewed counter- productive. In this context, in a tutorial textbook of acquired 
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aphasia, Taylor Sarno contended “The therapist chooses those techniques or 

exercises that allow the patient to use preserved skills, thereby increasing the 

chances for successful performance” (Taylor Sarno, 1998, p. 617). Although 

Taylor Sarno’s recommendation was accepted as a dogma by many speech 

therapists, recent developments challenge this classical thinking and modern 

rehabilitation strategies reveal that interventions directed to repair damaged 

processes are effective (Basso, 2003). For example, Basso suggests that an 

“Intervention should be targeted to the underlying damaged processes rather 

than simply treating the presenting symptoms or looking for a strategy that 

bypasses the deficit” (Basso, 2003, p. 199). Interventions aimed to remediate 

language deficits in CA have been reported applying traditional techniques 

(Cubelli et al., 1988; Léger et al., 2002) or modern massed therapies such us 

Constraint-Induced Aphasia Therapy (CIAT) (Harnish, et al., 2008; Pulvermüller 

et al., 2001). Since some interventions in CA tailored to improve speech 

production also trained other language domains (reading aloud, picture naming) 

besides repetition (Cubelli et al., 1988; Léger et al., 2002), these studies are not 

reviewed here. 

In the past two decades, several single-case studies used repetition exercises to 

improve speech production and AVSTM in CA. Kohn, Smith and Arsenaut (1990) 

were the first researchers that used sentence repetition exercises in a patient with 

a moderately severe chronic reproduction CA who had greater speech fluency in 

repetition than in conversation. The authors selected repetition as the training 

strategy because they wanted to increase speech fluency rather than accuracy 

in word production. Two sets of 20 sentences were constructed. One set included 

sentences rich in semantic content and was composed of substantives and verbs 
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(e.g., “She was there”), whereas the other set was composed of sentences 

containing pronouns, adverbs and functor verbs (e.g., “Tom played ball”). After 

two months of sentence repetition exercises carried out at home with the help of 

family members, improvements were documented in sentence repetition with 

generalisation of benefits to picture description. The authors concluded that 

benefits provided by repetition exercises resulted from improvement in phonemic 

planning in all output modalities rather than from gains in AVSTM (Kohn et al., 

1990). 

Francis, Clark, and Humphreys (2003) trained word and sentence repetition to 

improve sentence comprehension in a patient with mild receptive aphasia 

associated to recurrent strokes. Gains after treatment were observed in digit 

span, long-term word recognition memory, sentence repetition and Token Test. 

However, since the patient had suffered recurrent stroke episodes, it has been 

argued that spontaneous improvement may have played a role in the recovery 

process (Salis, 2012). 

Majerus, Van der Kaa, Renard, Van der Linden, and Poncelet (2005) treated a 

patient with a phonological short-term memory disorder in two phases. In the 

initial phase, the patient was asked to repeat pairs of bi-syllabic words or non-

words immediately after hearing the stimuli. When the patient achieved a 

stabilisation in phonological production, delayed repetition tasks (repetition after 

a 5-second filled interval) that required holding meaningful and meaningless 

phonological information in AVSTM were used. The patient was treated during 

16 months (twice per week) and modest improvements were found in digit and 

non-word span, non-word repetition and rhyme judgements. Also, the patient had 
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the personal impression of better comprehension in conversational contexts 

involving more than two partners. 

Koenig-Bruhin and Studer-Eichenberger (2007) treated a stroke patient with 

chronic repetition CA. The purpose was to examine whether deficits of the 

temporary storage of verbal information could be improved with sentence 

repetition exercises. Therefore, they trained repetition of sentences that were of 

four to seven words long with increasing delays between the stimulus and 

response. The control task consisted of repeating words of four to six words 

without delay. Treatment significantly improved sentence repetition, and gains 

were generalised to sentence length in oral production and spans for digits and 

bi-syllabic words. These findings were interpreted in the frame of the interactive 

spreading activation model of speech processing as reflecting a slowing down in 

activation decay (Koening-Bruhin & Studer- Eichenberger, 2007). 

In a comprehensive study, Kalinyak-Fliszar, Kohen, and Martin (2011) trained 

repetition to improve AVSTM and executive processing in a patient with chronic 

CA using a multiple-baseline, multiple-probe design across behaviours. These 

researchers used repetition of words and non-words in immediate and delayed 

conditions. Gains in repetition performance were mostly restricted to treated 

items, but post-treatment measures of language ability indicated improvements 

in single and multiple word-processing tasks, verbal working memory tasks and 

verbal span. Taken together, these results suggest that treating these deficits 

directly with repetition training may improve speech production (repetition), 

AVSTM and executive-attentional processes, presumably by reinforcing 

activation and maintenance of linguistic information in AVSTM (Kalinyak-Fliszar 

et al., 2011; Koening-Bruhin & Studer-Eichenberger, 2007). 
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WHY TRAINING REPETITION IN CONDUCTION APHASIA HELPS? 

The abovementioned strategy of training repetition to improve speech production 

and AVSTM deficits is based on scientific knowledge gathered from lesion 

studies (Gold & Kertesz, 2001; Kohn et al., 1990; Martin et al., 1994; Schlaug et 

al., 2009; Zipse et al., 2012) and computational network modelling (Dell et al., 

2007). Collectively, results from these studies suggest that the functional 

mechanisms suitable of reparation in CA are a variable combination of 

pathological reduction of network connection strength, rapid decay of activation 

in semantic-lexical-phonological networks and restricted AVSTM (Gold & 

Kertesz, 2001; Jefferies et al., 2007; Kalinyak-Fliszar et al., 2011; Koening-Bruhin 

& Studer-Eichenberger, 2007; Martin, 1996; Martin & Saffran, 2002). Failure of 

these mechanisms can be inferred even in patients with mild CA who, in spite of 

being able to repeat single words with ease (Caplan & Waters, 1992), show 

abnormal repetition performance when task demands are increased (repetition of 

word lists and sentences, delayed repetition) (Jefferies et al., 2007). It has been 

contended that auditory repetition under stressing conditions may adversely 

impact performance because connection strength and maintenance of language 

traces in dysfunctional areas of the left hemisphere are unstable (Martin et al., 

1994; Martin & Saffran, 2002) with little room for natural compensation by 

contralateral homotopic regions (see data from patient JVA in Berthier et al., 

2012). In support, knowledge from both computational network modelling (Ueno 

et al. 2011) and resting state functional magnetic resonance imaging (rsfMRI) in 

patients with focal brain lesions to critical areas (e.g., connectors) (Gratton et al., 

2012) shows that disruption of network architecture impacts in nearby and remote 

components of the networks and even in contralesional areas. In chronic CA 
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patients with extensive left hemisphere lesions, these remote effects may result 

in reduced function and failure to successfully recruit alternative neural systems 

(e.g., right perisylvian white matter pathways). Therefore, implementing massed 

and highly focused therapies, like sentence repetition training, might be useful to 

facilitate the use of alternatives routes when the original ones are enduringly 

damaged. Massed sentence repetition therapy aims, as other neuroscience-

inspired therapies (CIAT) (Pulvermüller et al., 2001), the potentiation of both 

associationist (or coincident) Hebbian learning (Hebb, 1949) and 

interconnectivity of language with other processes (attention, executive function, 

motor system) as well as the attenuation of the deleterious effect of learned non-

use in the persistence of cognitive deficits after brain injury (see Pulvermüller & 

Berthier, 2008). 

The neural mechanisms promoting recovery from speech production deficits in 

response to sentence repetition/imitation training have been examined in patients 

with non-fluent Broca’s aphasia and improvements were related to recruitment of 

left ventral stream (inferior fronto-occipital fasciculus [IFOF]) when this white 

matter bundle was spared by the lesion (Fridriksson et al., 2012) or right 

hemisphere networks in cases with large left hemisphere lesions (Schlaug et al., 

2009; Zipse et al., 2012). A complimentary participation of the mirror neuron 

system (Ertelt & Binkofski, 2012; Small et al., 2010) or visual areas (Fridriksson 

et al., 2012) has been suggested as well. However, at present, the biological 

roots of recovery from CA have not been investigated, yet the beneficial role of 

repetition training can be tentatively inferred from the abovementioned data 

(Zipse et al., 2012). Before addressing this topic, we will briefly outline the current 

state-of-the-art of the neural mechanisms underpinning normal language 



	 47	

repetition and maintenance of the verbal trace in short-term memory. This would 

allow the elaboration of a conceptual framework for understanding the neural 

mechanisms instantiating residual repetition in CA and the development of 

rehabilitation strategies for exploiting this residual capacity to facilitate recovery. 

The role of cortical areas (inferior parietal lobule, superior temporal gyrus) and 

white matter pathways (AF, IFOF) underpinning repetition is still a matter of 

controversy (Bernal & Ardila, 2009; Berthier et al., 2012; Dick & Tremblay, 2012; 

Saur et al., 2008). Some authors defend the role of cortical areas (e.g., Bernal & 

Ardila, 2009), whereas others maintain that perisylvian white matter tracts (AF, 

IFOF) are the anatomic signatures of repetition (Berthier et al., 2012;	Friederici & 

Gierhan, 2013; Geschwind, 1965; Gierhan, 2013; Rijntjes, et al., 2012; Saur et 

al., 2008). Diffusion tensor imaging (DTI) studies have examined the anatomy 

and connectivity of white matter tracts subserving repetition (Catani et al., 2005; 

Catani & Thiebaut de Schotten, 2012; Catani et al., 2007; Saur et al., 2008). DTI 

studies not only allow delineation of the fine architecture of long-distance and 

short-distance white matter tracts (for review see Geva, et al., 2011), but can also 

reveal anatomic asymmetries which might be related to differences in repetition 

performance in normal and brain- damaged subjects (Berthier et al., in press; 

Catani et al., 2007). Long-distance white matter tracts binding remote cortical 

language sites are segregated in a dual stream architecture (dorsal and ventral 

streams), wherein the role of the dorsal auditory stream system (AF, superior 

longitudinal fasciculus) is to monitor auditory-motor integration of speech by 

allowing a fast and automated preparation of copies of the perceived speech 

input (Peschke et al., 2009; Rijntjes et al., 2012; Saur et al., 2008). The ventral 

auditory stream (IFOF, extreme capsulae and uncinate fasciculus) participates in 
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the mapping of sounds onto meaning (Cloutman, 2012; Peschke et al., 2009; 

Saur et al., 2008) although the precise functional role of every tract is still 

controversial (Duffau et al., 2009; Harvey et al., 2013). Word and sentence 

information temporarily activated in the dorsal and ventral language processing 

networks is presumably controlled and maintained via a left fronto-parietal 

attention processing network (Majerus, 2013; Majerus et al., 2012). 

Anatomically, the dorsal stream (AF) is more lateralised to the left hemisphere 

than other white matter tracts including the ventral stream (IFOF) (Hickok & 

Poeppel, 2007; Nucifora et al., 2005) and the former also has individual 

differences in its intra- and inter-hemispheric architecture (Catani & Thiebaut de 

Schotten, 2012; Catani et al., 2007). The most common anatomical pattern of the 

AF is characterised by extreme leftward lateralisation of the direct segment and 

lack of this segment in the right hemisphere, a configuration that predominates in 

males. A second pattern has been identified having a less strongly lateralised 

long direct segment in the left hemisphere than the previous pattern and it is 

associated with a vestigial right hemisphere direct component. The third pattern, 

usually documented in females, has a roughly symmetrical distribution of direct 

segments (Catani & Mesulam, 2008). Data from healthy subjects revealed that 

the auditory-motor integration needed to learn new words depends on the activity 

of the left AF (López-Barroso et al., 2013) and also that superior verbal learning 

through repetition correlates with the symmetrical pattern (Catani et al., 2007). 

The advantage for certain cognitive functions (verbal learning) amongst 

individuals having symmetrical AF raises the possibility that left brain-damaged 

patients praised with a well-developed direct segment of the right AF may be ideal 

candidates to rehabilitation strategies tailored to exploit repetition through this 
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pathway (Schlaug et al., 2009; Zipse et al., 2012). In this context, DTI performed 

before and after Melodic Intonation Therapy (MIT) (Sparks et al.,1974) and CIAT 

(Pulvermüller &	Berthier, 2008; Pulvermüller et al., 2001) in patients with Broca’s 

aphasia showed that post-therapy gains in language performance correlated with 

structural plasticity of the right AF (Breier et al., 2011; Schlaug et al., 2009; Zipse 

et al., 2012). 

Verbal repetition entails the imitation of not only incoming auditory stimuli, but 

also visual signals through action observation (Iacoboni et al., 1999; Keysers et 

al., 2003; Kohler et al., 2002). Imitation, action understanding, learning and 

language may depend partially on the activity of the mirror neuron system. The 

mirror neurons are located in Brodmann’s area 44, superior temporal gyrus and 

inferior parietal lobule. Since these cortical areas are interconnected through the 

auditory dorsal stream (AF), it has been contended that the mirror neuron system 

and the dorsal white matter bundle are tightly intertwined (Arbib, 2010; Corballis, 

2010). This would imply that interventions combining repetition of auditory signals 

with visual stimuli (viewing the mouth of a person speaking aloud the to-be-

repeated material) would create a more compelling scenario for rehabilitation 

than repeating auditory stimuli alone. Fridriksson and colleagues (Fridriksson et 

al., 2012) found that audiovisual feedback improved more spontaneous speech 

than audio-only feedback in patients with chronic Broca’s aphasia. A similar line 

of thought has been exploited to devise a new intervention (IMITATE) to train 

repetition and imitation of audio- visual stimuli in aphasic patients (Lee et al., 

2010; Small et al., 2010). Up to now, IMITATE has not been used to treat CA 

patients, but based on the abovementioned role of repetition training in previous 

cases, it is tempting to envision that this technique would also apply for CA 
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patients. Despite the improvements provided by auditory repetition training in 

spontaneous speech (Kohn et al., 1990), sentence comprehension (Francis et 

al., 2003) and AVSTM (Kalinyak-Fliszar et al., 2011), it can be wondered whether 

complementary interventions in CA may enhance recovery further. One potential 

strategy, which is discussed below, is strengthening language gains provided by 

aphasia therapy with pharmacotherapy. 

CAN CHOLINERGIC MODULATION BOOSTS APHASIA THERAPY EFFECTS 

IN CONDUCTION APHASIA? 

The efficacy of aphasia therapy is well proven (Basso, 2003; Cherney, 2012; 

Varley, 2011). Nonetheless, developing complementary strategies to augment 

and speed up its benefits is advantageous (Allen et al., 2012; Berthier & 

Pulvermüller, 2011; Small & Llano, 2009). Amongst these strategies, drug 

therapy is emerging as a promissory option to augment cognitive function in both 

healthy individuals (Husain & Mehta, 2011) and brain-damaged patients (Berthier 

et al., 2011; Shisler et al., 2000; Small & Llano, 2009). The basic idea behind 

using drugs to treat aphasia is that focal brain lesions interrupt the ascending 

projections of major neurotransmitter systems (e.g., acetylcholine, dopamine) 

from basal forebrain or brainstem to cerebral cortex and subcortical nuclei 

causing synaptic depression in both perilesional areas and remote regions 

(Berthier & Pulvermüller, 2011; Gotts & Plaut, 2002). Thus, drugs enhancing or 

leveraging the activity of neurotransmitters in dysfunctional but still viable speech 

and language areas can improve aphasic deficits. Moreover, since executive 

functions and attention resources may be abnormal in patients with CA (Kalinyak-

Fliszar et al., 2011), restoring neurotransmitter activity in non-eloquent areas 

mediating these functions with drugs (DP) that modulate these cognitive functions 
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(Sarter et al., 2003; Sarter et al., 2005) may contribute to augment the gains 

obtained with repetition therapy. In the same vein, improving cholinergic activity 

in other non-language regions (e.g., cingulate gyrus, orbitofrontal cortex, basal 

ganglia) can likewise contribute to indirectly boost language functions by 

improving functional communication, cognitive control, goal-directed behaviour 

and mood (Berthier, 2012; Whyte et al., 2008). 

Cholinergic agents are commonly used to treat Alzheimer’s disease (Birks, 2006). 

On the basis of their beneficial effects on language deficits and repetitive 

verbalisation (statements, stories) in patients with Alzheimer’s disease (Asp et 

al., 2006; Rockwood et al., 2007) and cognitive deficits of vascular origin (Barrett 

et al., 2011), the use of cholinergic drugs (DP and galantamine) have been 

extended to treat post-stroke aphasia. Drugs targeting the cholinergic system 

were used for the first time to treat aphasic deficits in the late 1960s (Luria et al., 

1969), and these agents recently led to evidence for beneficial effects on naming 

and other language functions in post-stroke aphasia (Berthier et al., 2006; 

Berthier et al., 2003; Chen et al., 2010; Hong et al., 2012; Tanaka et al., 2006). 

Anatomical studies in the human brain reveal that the perisylvian language cortex 

is innervated by cholinergic fibres emanating from the nucleus basalis of Meynert 

or Ch4 group (Boban et al., 2006; Mesulam, 2004; Simić et al., 1999) and also 

that cholinergic activity is greater in the left temporal lobe than in the right one 

(Klein & Albert, 2004). Basal forebrain cholinergic projections are not only 

directed to the cortical language core as they also innervate more discrete cortical 

fields (e.g., cingulate gyrus, precuneus, orbitofrontal cortex) and cholinergic 

projections arising from the upper brainstem modulate the activity of thalamus 

and basal ganglia (Mesulam et al., 1992). 
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The modulation of the cholinergic system in post-stroke aphasia seems to be 

beneficial even when unpaired with aphasia therapy (Chen et al., 2010; Hong et 

al., 2012). Nevertheless, in light of the growing experimental data showing that 

cortical map plasticity induced by cholinergic agents can be enhanced further as 

soon as the cholinergic stimulation is administered in combination with 

behavioural training (Ramanathan et al., 2009), recent intervention trials in 

aphasia successfully combined cholinergic stimulation with aphasia therapy 

(Berthier et al., 2003, 2006). The mechanisms by which cholinergic stimulation 

promote recovery from aphasia are still unknown, but several mechanisms has 

been proposed to explain how cholinergic modulation facilitates access to target 

words during behavioural training including reversion of synaptic depression 

(Gotts & Plaut, 2002), reduction of spreading activation of competitors (Foster et 

al., 2012) and increase of speed and accuracy of information processing (Berthier 

& Green, 2007). In other words, it is possible that cholinergic modulation makes 

brain structure a more fertile ground for behavioural intervention. 

THE PRESENT STUDY 

The duration and intensity with which aphasia therapy need to be administered 

is an important area of ongoing research, yet to date few studies have addressed 

the impact of distributed as compared to massed aphasia therapies on outcomes 

and available results are controversial (see Cherney et al., 2011;	Harnish et al., 

2008; Martins et al., 2013; Sage et al., 2011). There is general agreement that 

aphasia therapy in stroke patients is beneficial when evidence-based protocols 

of intervention are used (Basso & Macis, 2011; Bhogal et al., 2003; Cappa et al., 

2005; Cicerone et al., 2011; Robey, 1998). However, some limitations not related 

to the essential characteristics of the interventions still exist. To name a few, 
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aphasia therapy is time consuming and expensive (Berthier, 2005), and these 

difficulties would explain, amongst other reasons, the gap that exists between 

what the research on aphasia therapy recommends as the appropriate amount 

of treatment and the actual provision in several countries (Code & Petheram, 

2011). Moreover, adherence to prolonged aphasia therapy is not always feasible 

due to logistic problems (e.g., transportation difficulties). Finally, unwillingness to 

participate and abandonment of therapy are commonly reported in elderly 

patients (Basso & Macis, 2011). Therefore, the idea that the benefits provided by 

aphasia therapy can be augmented and speeded up using emerging approaches 

(e.g., drugs, transcranial and electrical brain stimulation) needs to be explored. 

For example, DSLT is not particularly useful in chronic aphasia, but potentiating 

its beneficial effects with drugs has been associated with better outcomes 

(Berthier et al., 2003, 2006). Following the same line of thought, the next step is 

to know if the same amount of therapy but administered in a shorter period of 

time combining massed, theoretically motivated interventions with drugs may 

yield better outcomes. Interestingly enough, preliminary evidence from a single 

patient with chronic CA demonstrated greater gains with massed therapy than 

with distributed therapy, and benefits provided by the former intervention 

correlated with increased left basal ganglia and right hemisphere recruitment 

(Harnish et al., 2008). Therefore, to gain further knowledge on the integration of 

emerging therapies with classical interventions, this study compares the efficacy 

of two different behavioural interventions (distributed and massed aphasia 

therapies) in three patients with chronic CA receiving drug treatment with the 

cholinergic enhancer DP. 
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Methods- Study 1 

PARTICIPANTS 

The three male patients who participated in the present study had been included 

in a 20-week open-label pilot trial evaluating the effects of DP and DSLT in 

chronic post- stroke aphasia (total sample = 11 patients) (Berthier et al., 2003). 

Eligible partici- pants for that trial had to meet the following criteria: (1) native 

speaker of Spanish, (2) right handed, (3) between the ages of 18 and 70 years, 

(4) chronic aphasia (> 1 year) and (5) left hemisphere stroke lesion. After the last 

end point of the trial (washout phase, week 20), these three patients were invited 

to take part in an extension phase (8 weeks) combining DP with MSRT. All three 

patients were selected because they had relatively homogeneous language 

deficits of lesser severity (baseline WAB-AQ score: [mean ± SD] 72.4 ± 9.6) than 

the other eight patients (baseline WAB-AQ score: [mean ± SD] 45.3 ± 13.4) 

(Berthier, 2005) and because they had relatively homogeneous lesion locations 

on MRI scans. 

CASE DESCRIPTIONS 

Patient RRM. This patient was a 51-year-old right-handed male, who left school 

at 15 and had previously been a newspaper worker. He suffered a large left 

fronto- temporo-parietal infarction 17 months before trial enrolment. In the acute 

post- stroke period, he had a right hemiparesis and global aphasia which 

gradually evolved to a severe CA with mild apraxia of speech. Aphasia therapy 

during one year (two sessions a week) partially improved auditory 

comprehension and non-fluent speech production. On baseline evaluation with 

the Western Aphasia Battery (WAB) (Kertesz, 1982), his language deficits were 
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consistent with CA. RRM’s speech was dysfluent and contaminated by word 

retrieval problems, neologisms, phonological and formal errors (Table 1). Further 

testing with selected subtests of the Psycholinguistic Assessments of Language 

Processing in Aphasia (PALPA) (Kay et al., 1995) disclosed a relative 

preservation of auditory comprehension (words, lexical decisions and sentences) 

but input phonology (auditory minimal word and non-word pairs) was abnormal. 

Picture naming was moderately impaired. Word repetition, though impaired, was 

less affected than non-word and digit repetition. Sentence repetition was 

moderately impaired. 

Patient VRG. This patient was a 52-year-old right-handed male, who left school 

at 16 and had previously worked as an administrative. He suffered a large left 

fronto-temporo-parietal infarction 22 months before referral for the present trial. 

In the acute period, he had a right hemiparesis and global aphasia. He gradually 

recovered with speech-language therapy and physiotherapy, but on referral to 

our unit, he had a dystonic right hand and foot posture and a moderate CA (Table 

1). On the WAB, his speech was fluent and free of phonological paraphasias but 

showed word retrieval problems and occasional formal errors. Further testing with 

PALPA subtests disclosed a relative preservation of auditory comprehension 

(lexical decisions and words) except for discriminating minimal word and non-

word pairs and sentence comprehension. Picture naming was preserved. Word 

repetition was mildly impaired but much better than non-word and digit repetition. 

Sentence repetition was moderately impaired. 

Patient JTO. This patient was a 72-year-old right-handed male who suffered a 

left fronto-temporo-parietal infarction 13 months before referral for participating 

in this drug trial. He had worked as an attorney until his retirement at age 65. In 



	 56	

the acute post-stroke phase, he showed a rapidly resolving right hemiparesis and 

a global aphasia. Aphasia therapy (two sessions a week) was beneficial but gains 

reached a plateau after 6 months of treatment. On baseline evaluation, he had a 

moderate CA (see Table 1). On picture description from the WAB, his speech 

was fluent and free of phonological paraphasias. However, his utterances were 

punctuated by word retrieval problems, formal, perseverative and semantic 

errors. On PALPA subtests, he had a relative preservation of auditory 

comprehension (lexical decisions and words), except for discriminating minimal 

word and non-word pairs and sentence comprehension. Picture naming was 

moderately impaired. Word repetition was mildly impaired but much better than 

non-word and digit repetition. Sentence repetition was impaired. 
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Table 1| Background language testing. 

Test RRM VRG JTO 

Western Aphasia Battery 

Aphasia Quotient (range: 0 - 100) 

 Information content (max: 10) 

 Fluency (max: 10) 

 Comprehension (max: 10) 

 Repetition (max: 10) 

 Naming (max: 10) 

 

61.6 

7 

  5§ 

9.7 

4.6 

4.5 

 

 

76 

8 

6 

9.3 

4.2 

8.5 

 

 

79.8 

9 

8 

9.1 

6 

7.8 

 

PALPA 

 Nonword Minimal Pairs (n = 56) 

 Word Minimal Pairs (n = 56) 

 Auditory Lexical Decision (n = 160) 

 Repetition, Syllable Length  (n = 24) 

 Repetition: Nonwords (n = 24) 

 Spoken Word - Picture Matching (n = 40) 

 Spoken Sentence - Picture Matching (n = 
60) 

 Naming by Frequency (n = 60) 

 Digit Production 

 

46 (.82) 

48 (.86) 

154 (.96) 

   17* 

7 

40 (1.0) 

55 (.92) 

30 (.50) 

2 

 

47 (.84) 

48 (.86) 

150 (.94) 

  21** 

9 

40 (1.0) 

49 (.87) 

54 (.90) 

3 

 

41 (.73) 

46 (.82) 

148 (.92) 

      20*** 

10 

38 (.95) 

48 (.80) 

45 (.75) 

2 

Patients are arranged in order of Aphasia Quotient scores derived from four subtests (spontaneous speech, comprehension, 
repetition, and naming). The combination of fluent speech production (WAB fluency score ≥ 5), relatively preserved comprehension 
(WAB comprehension score > 7) and impaired repetition (WAB repetition score < 6.9) indicates conduction aphasia.  

§ This patient additionally had mild apraxia of speech (Ardila & Roselli, 1990). His verbal production was less fluent than usually 
reported (Broca-like CA) (Song, Dornbos, Lai, Zhang, Li, Chen, & Yang, 2011). Word repetition versus non-word repetition: * p = 
0.01; ** p = 0.001; ***p = 0.008 (Fisher Exact Test, two-tailed). 

 

Neuroimaging. MRIs at the chronic stage were performed in all three patients on 

different 1.5-T scanners. Areas of infarctions were manually drawn on 

representative axial slices (templates 3, 12, 18, 26) from the MRIcron software 

(www.mccausland-center.sc.edu/mricro/mricron) (Rorden, 2005). Lesion 

mapping was done by a radiologist (RR-C) who was blind to patients’ 

demographic and clinical information using a modification of the methodology 

described by Gardner et al. (Gardner et al., 2012). Lesion size was estimated by 
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overlying a standardised grid of squares (square area .1225 cm) onto each 

patient’s template of the left hemisphere (grid area: 10.29 cm) and working out 

the percentage of squares damaged relative to undamaged parts of the left 

hemisphere (Gardner et al., 2012). Total or partial involvement of cortical and 

subcortical regions was registered (Table 2), and Brodmann’s areas involved by 

the lesions were identified in every patient with the aid of the Brain Voyager Brain 

Tutor (www.brainvoyager.com/BrainTutor.html). Regions of ischaemic gliosis 

surrounding the infarctions were also drawn on the basis of increased signal in 

T2- weighted images. The relative involvement of perisylvian white matter tracts 

(AF and IFOF) was estimated using an atlas of human brain connections (Catani 

& Thiebaut de Schotten, 2012). 

Large parts of the left middle and superior temporal gyri, supramarginal gyrus, 

dorsal insula and white matter corresponding to the dorsal stream (AF) were 

severely damaged in all patients. The ventral insula (posterior and middle parts) 

through which the ventral stream (IFOF) runs was severely damaged in two 

patients (RRM and JTO) and mildly affected in the remaining patient. Patient 

RRM had the more severe aphasia and the largest area of damage due to a 

frontal extension of the infarct, whereas less severe aphasia and relatively 

smaller lesions were documented in patients VRG and JTO. Further details of the 

patients’ lesions are shown in Table 2 and Figure 1. 

 

 



	

Table 2 | Lesion analysis 

Patient % of 

damagea 

         STG 

BA 22  41  42 

MTG 

BA 21 

ITG 

BA 20 

AG 

BA 39 

SMG 

BA 40 

POT 

BA 37 

DLPFC 

BA 9/46 

orbIFG 

BA 47 

trIFG 

BA 45 

opIFG 

BA 44 

Ventral 

insula 

Dorsal 

insula 

Dorsal 

stream 

Ventral 

stream 

Basal 

ganglia 

RRM 27 2      2      2 2 - 1 2 - -       - - 1 1 1 2 2 2 1 

VRG 14.3 2      2      2 2 - - 2 - -       - - 1 1 - 2 2 1 1 

JTO 14.1 2      2      2 2 - - 2 - -       - - - - 2 2 2 2 1 

Quantification of lesion location: 2 = complete involvement/serious damage to cortical/subcortical region; 1 = partial involvement/mild damage to cortical/subcortical region. Abbreviations of cortical regions: STG = 
superior temporal gyrus; ITG = inferior temporal gyrus; AG = angular gyrus; SMG = supramarginal gyrus; POT = posterior occipito-temporal area; DLPFC = dorsolateral prefrontal cortex; orbIFG = pars orbitalis of the 
inferior frontal gyrus; trIFG = pars triangularis of the inferior frontal gyrus; opIFG = pars opercularis of the inferior frontal gyrus. aLesion size was estimated by overlying a standardized grid of squares onto each 
patient’s template and working out the percentage of squares damaged relative to undamaged parts of the left hemisphere (Gardner et al.,2012). 
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STUDY DESIGN 

As already stated, language data from these three patients were initially included 

in a group analysis together with data from the other eight patients (total sample 

= 11) (Berthier et al., 2003). For the present case-series study, data from the 

initial phase (weeks 0 to 16), washout (weeks 16 to 20) and extension phase 

(weeks 20 to 28) were analysed in an individual basis, except for treatment effects 

which were analysed as a group using Cohen’s d statistics (Cohen, 1988). 

Therefore, a within-patient design, with baselines across behaviours and a 

washout period was adopted (Gast & Ledford, 2009). An A1-BC-A2-BD was used 

wherein A1 represented the initial base-line testing, BC was the combination of 

DP with DSLT, A2 was a new baseline after the washout period and BD was the 

combination of DP with MSRT. Multiple baseline evaluations before initiating the 

trial were not performed because language deficits in all patients were considered 

stable by virtue of their long aphasia duration (>1 year) and because they had 

reached a plateau with previous interventions which motivated referral for 

participation in the trial. The analysis of an A1-BC-A2-BD design led to three 

treatment comparisons, and three effect sizes were computed to represent the 

three demonstrations of experimental effect. These effect sizes relate to the 

phase comparisons of A1-BC (baseline to the first intervention phase—week 0 

vs. week 16), BC-A2 (the first treatment phase to the washout, second baseline—

week 16 vs. week 20), and A2-BD (the second baseline to the second intervention 

phase— week 20 vs. week 28). Further comparisons between A1 and BD and 

BC and BD were performed. Language evaluations were performed at baselines 

A1 (week 0) and A2 (week 20) and at end points BC (week 16) and BD (week 

28). The study was performed according to the Declaration of Helsinki and the 
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protocol was approved by the Local Community Ethics Committee for Clinical 

Trials. This study was conducted as an independent research project funded by 

Pfizer/Eisai, Spain, and it was designed, conducted and controlled by the 

principal investigator (MLB). 

DRUG TREATMENT 

In both drug phases of the study, all patients received DP (5 mg once a day) 

during a four-week titration phase followed by a 12-week maintenance phase 

(week 4 to week 16) (BC) and by a four-week maintenance phase (week 24 to 

week 28) (BD). Drug treatment and aphasia therapy were interrupted during the 

washout period (week 20 to week 24). Compliance was determined at every visit 

by tablet counts. DP tablets were provided by Pfizer/Eisai, Spain. The detection 

of potential adverse events was monitored during the trial. 

APHASIA THERAPIES 

Distributed speech-language therapy (DSLT). All three patients received DSLT 

at the same rehabilitation centre and were treated by the same speech therapist. 

DSLT followed a syndrome-specific standard approach and the therapeutic 

repertoire ranged from exercises involving naming, repetition, sentence 

completion, following commands, spoken object-picture matching and 

conversations on topics of the patients’ own choice (Basso, 2003; Basso, Forbes, 

& Boller, 2013; Pulvermüller et al., 2001). In this trial phase, patients received 

DP-DSLT during 16 weeks and the total hours of therapy was 40 (~2.30 h/wk). 

Massed sentence repetition therapy (MSRT). MSRT consisted of sentence 

repetition exercises and these were practiced at home where the patients were 

required to repeat audio-taped sentences. Patients received explanations on how 
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to perform MSRT and one training practice session by a speech therapist. There 

were two sets of 20 sentences similar to the ones used by Kohn et al. (1990). 

One set was composed of sentences rich in semantic content (substantives, 

verbs) (e.g., “The boy runs”), whereas the other set included sentences mainly 

composed of pronouns, verbs and functor verbs (e.g., “She thinks about 

everything”). Sentence length in both sets ranged from 2 to 7 words. In this phase, 

patients received DP-MSRT during 8 weeks and the total number hours of 

therapy was 40 (~ 1 h/day, 5 days a week). 

Control sentences. To evaluate possible generalisation of gains provided by 

MSRT, patients were asked to repeat a control list of 60 sentences which were 

not included in the therapy sets. Sentences length also ranged from 2 to 7 words 

(e.g., “give me bread”; “the girl sleeps in the sofa”). Testing was conducted only 

at baseline A2 (week 20) and end point BD (week 28). 

 

Figure 1. Representative axial slices (3, 12, 18, 26) from the MRIcron software 
(www.mccauslandcenter.sc. edu/mricro/mricron) (Rorden, 2005) depicting the full extension of lesions in 
each patient. See further details in text and lesion topography in Table 2. 
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OUTCOME MEASURES 

Aphasia severity: WAB-aphasia quotient. To rate changes in the severity of 

aphasia the WAB-AQ was used. The WAB-AQ is a measure of aphasia severity 

which has been shown sensible enough to detect longitudinal changes in 

previous drug trials with different cholinesterase inhibitors (Berthier et al., 2003, 

2006; Chen et al., 2010; Hong et al., 2012). Reductions in the WAB-AQ scores ≥ 

5 at end points (BC and BD) in comparison to baselines (A1 and A2) were 

considered a positive response to the intervention (Berthier et al., 2011; Cherney 

et al., 2010). 

Connected speech production. To examine connected speech production, 

speech samples in baselines and post-treatment phases were obtained from the 

picture description (picnic scene) of the WAB during a time limit of 5 minutes. All 

descriptions were audio-taped and transcribed. Since measures to rating 

spontaneous speech (fluency and information content) of the WAB are to a 

certain extent unreliable, speech samples were analysed for percentage of 

correct information units (%CIU) defined as non-redundant content words that 

convey correct information about the stimulus (Marchina et al., 2011; Nicholas & 

Brookshire, 1993; Zipse et al., 2012) using the following formula: number of 

CIUs/number of words × 100. According to Nicholas and Brookshire (1993) to be 

classified as CIUs, words should not only be intelligible in context, but also be 

accurate, relevant and informative with respect to the stimulus. Meaningless 

utterances, perseverations, paraphasias and other inappropriate information 

(exclamations) were counted as words, but not classified as CIUs. 
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REPETITION TASKS 

Word and non-word repetition. Two subtests of PALPA were used. Repetition of 

words was assessed with the Repetition: Syllable Length (test 7), and non-words 

with the Repetition: Non-words (test 8). 

Word pair repetition. To assess the effect on performance during word repetition 

when the memory load is increased, patients were required to repeat word pairs 

in three different conditions: (1) no delay direct (e.g., “house-flower”) (n = 55), (2) 

no delay inverted (e.g., “flower-house”) (n = 55), and (3) unfilled delay (after a 

delay of 5 seconds unfilled by the neither the patient or researcher) (n = 55) (Gold 

& Kertesz, 2001; Martin et al., 1996). 

Word triplet repetition. To assess the influence of interventions on lexical-

semantic information when the demand of the AVSTM is increased, all patients 

were asked to repeat word triplets. This task is a modification of the one used by 

McCarthy and Warrington (1987) in patients with CA. The present repetition 

battery included three lists of high-frequency words and three lists of low-

frequency words (Berthier, 2001). Two sets of 60 three-word lists (verb-adjective-

noun) were constructed. These were composed of word strings of increasing 

semantic richness that is from non-organised to organised semantic information. 

Two 20 three-word lists (List 1: 60 high-frequency words; List 4: 60 low-frequency 

words) consisted of random word combinations (e.g., “walk-shiny-pools”). Two 

other 20 three-words lists (List 2: 60 high-frequency words; List 5: 60 low-

frequency words) conveyed loosely constrained meaningful informa- tion (e.g., 

“crawl-slow-baby”), and two other 20 three-word lists (List 3: 60 high- frequency 

words; List 6: 60 low-frequency words) conveyed closely constrained meaningful 
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information (e.g., “eat-green-apple”). Words were read at a rate of one per 

second, and patients were required to repeat the words in the order given by the 

examiner. Responses were scored for the number of lists repeated verbatim in 

each condition and for the number of words repeated accurately as a function of 

serial position (initial, medial and final) in the list, irrespective of whether the list 

was repeated accurately or not. 

Repetition of clichés and novel sentences. Patients with CA tend to show better 

performance on repeating novel sentences than idiomatic clichés, because they 

can access meaning during repetition of the former type of sentences (McCarthy 

& Warrington, 1984). To explore this dissociation, all three patients were asked 

to repeat familiar idiomatic phrases of Spanish (n = 40) taken from the 150 

Famous Clichés of Spanish Language (Junceda, 1981) and a set of novel, control 

phrases (n = 40) that were constructed following the methodology described by 

Cum and Ellis (1999). Novel phrases were derived from the idiomatic phrases by 

replacing one to three content words in each phrase by other words matched in 

length of words and word frequency. Both sets of phrases (clichés and novel) 

were randomised and read aloud to patients one at a time. 
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Results- Study 1 

APHASIA SEVERITY: WESTERN APHASIA BATTERY-APHASIA QUOTIENT 

Individual analyses showed that the aphasia severity measured with the WAB-

AQ improved significantly in comparison with baseline assessment (A1) with both 

interventions in all patients (DP-DSLT: RRM and VRG, p < .001; JTO, p = .016; 

DP-MSRT: RRM and VRG, p <.001, JTO, p = .01).3 Comparison of washout- 

baseline assessment (A2) with DP-MSRT (BD) showed significant gains in JTO 

(p < .001) and a strong trend for significance in both RRM and VRG (p = .063). 

Intervention with DP-MSRT (BD) was associated with better outcomes than DP- 

DSLT (BC) (mean increases on the WAB-AQ = 3.2), but differences did not reach 

statistical significance (Table 3). 

CONNECTED SPEECH PRODUCTION 

Post-interventions changes in percentage of CIUs relative to baseline (A1) were 

variable across patients. Patient RRM improved 14% with DP-DSLT and 70% 

with DP-MSRT; patient VRG improved 3% with DP-DSLT and 10% with DP- 

MSRT; and patient JTO decreased 8% with DP-DSLT and improved 13% with 

DP- MSRT. In patient RRM, who obtained the lower scores in speech production 

(WAB fluency: 5/10; WAB information content: 7/10) at baseline, remarkable 

improvements occurred after both interventions, but mostly with DP-MSRT. 

These improvements were less evident in VRG and JTO who had more fluent 

and informative verbal productions at baseline (see Tables 1 and 3). 
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WORD AND NON-WORD REPETITION 

Baseline scores (A1) in Word Repetition, Syllable Length from PALPA (test 7) 

were mildly impaired in two patients (VRG, .88; JTO, .83) and moderately 

impaired in the other patient (RRM,.71). Word repetition was significantly better 

than non-word repetition in all three patients at baseline (A1) (Table 2). As 

expected, there were no significant changes in single word repetition after both 

interventions in both patients with mildly impaired performance at baseline (VRG 

and JTO, p ≥ .25) most likely due to ceiling effect, whereas a trend for 

improvement was seen after both interventions in the patient (RRG) with 

moderately impaired performance (both treatments, p = .063). All patients 

showed moderately impaired ability to repeat items of the Repetition: Non-words 

PALPA subtest (test 8) at baseline (A1). Numerically, all patients improved test 

performance with both interventions. A trend for significant improvement was only 

observed in JTO after both interventions (p = .063), whereas no changes were 

found in the remaining two patients. 

DIGIT SPAN 

No changes were seen with either therapy in all three patients (p = .1) (Table 2). 

 

 

 



	

Table 3 | Results of language testing at baseline, endpoints and washout. 
 

 
 
 
Measure 

RRM 
 

Baseline - DP/CSLT - Washout -  DP/MSRT 
  (Wk 0)     (Wk 16)    (Wk  20)      (Wk 28) 

VRG 
 

Baseline - DP/CSLT - Washout - DP/MSRT 
  (Wk 0)     (Wk 16)      (Wk  20)   (Wk 28) 

                               JTO 
 
Baseline - DP/CSLT - Washout - DP/MSRT 
   (Wk 0)     (Wk 16)     (Wk  20)    (Wk 28) 

Western Aphasia Battery (WAB) 
    Picture description  

        % Correct information units b 

    Aphasia Quotient (max = 100) a 

 
 

             13             29              25             83 
      
             61.6         78.6           77.2          81.6 
  

 
     
         80              87              77            90 
    
         76              88.4           85            90    
     

 
 
      78             70              87              91 
     
      79.8          87             76.8           91.1 
 

   Repetition (max = 100) (WAB) 
   Word repetition (n = 24) (PALPA 7) 
   Nonword repetition (n = 24) (PALPA 8) 
   Digit production 

              46             70              62             88 
              17            18              17              22 
               8             12                9               12 
               2              3                 3                3  

 

        42              82              74            76 
         21             23               23            23 
          9             11                 8             10 
          3               3                  2              3 

      60             64              64              76 
      20            22               23              23 
      10            14               17              15 
        2              2                3                 3 

Word list repetition 
   Word pairs 
     no delay direct (n = 55) 
     no delay inverted (n = 55) 
     unfilled 5 sec. delay (n = 55)       
  Triplets (high-frequency) (n = 60) 
     Random word combination 
     Loosely constrained information 
     Constrained information 
  Triplets (low-frequency) (n = 60) 
     Random word combination 
     Loosely constrained information 
     Constrained information 
Sentence repetition  

    Idiomatic clichès (max = 40) 
    Novel sentences (max = 40) 
 
    Therapy sentences (max 40) 
    Control sentences (max = 60) 

 
 
             49             46             46              48 
             45             49             48              48 
             49             49             48              50 
 
               0               6               7               12 
               2               5             10               12 
               5             11             11               17 
 
               1               8               6               10 
               1               8             11               13 
               7               8               9               14 
 
               4               8               6                 9 
              11             18             19              23 
 
              NT            NT              20              39 
              NT            NT              30              44 

 
 

        32             52               46             48 
        38             48               45             51 
        42             50               48             50 
 
         5               6                6               10 
         3               8                8               13 
         4               6              10               15 
 
         0              0                 0                 9 
         0              2                 2               10 
         1              6                 4               10 
 
        12            15              16               17 
        14            18              15               20 
 
        NT           NT             21               37 
        NT           NT             34               47 

 
 

      30            32               35              38  
      34            38               35              40 
      25            33               41              43 
 
        2              4                  5               7 
        3              7                10             12 
        9            15                14             16 
 
        1             2                   4                4 
        4             1                   5                8 
        6           12                   6                9 
 
       17           25                23            24 
       19         27                  29            32 
 
       NT         NT                 22            38 
       NT         NT                 35            47 

Data from these patients were grouped and treatment effects were analysed using Cohen’s d statistic (Cohen, 1988). 
a
A1 (baseline) versus BC (DP-DSLT): Cohen’s d = 1.0 and A2 (washout-baseline) versus BD (DP-

MSRT): Cohen’s d = 1.2. WAB-AQ: BC (DP-MSLT) versus BD (DP-MSRT), Cohen’s d = 1.3. 
b

A1 (baseline) versus BD (DP-MSRT): Cohen’s d = 1.14, A2 (washout-baseline) versus BD (DP-MSRT): Cohen’s d = 

1.05, BC (DP-CSLT) versus BD (DP-MSRT): Cohen’s d = 1.22. A Cohen’s d effect size of .2 to .3 might be a “small” effect, around .5 a “medium” effect and .8 to infinity, a “large” effect (Cohen, 1988). 
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WORD PAIR REPETITION 

No delay direct. At baseline evaluation, one patient had mildly impaired perfor- 

mance (RRM, .89), whereas the other two patients had moderately impaired 

performance (VRG, .58; JTO, .54). Patient VRG significantly improved with both 

DP- DSLT (BC) and DP-MSRT (BD) relative to baseline evaluation (A1) (p = 

.001), but there were no differences between therapies. His scores in post-

washout evaluation (baseline A2) were significantly better than in baseline 

evaluation (A1), and performance after DP-MSRT (BD) were also significantly 

better than post-washout evaluation (A2) (p = .031). In patient JTO, DP-DSLT 

(BC) showed a trend for improvement in comparison with baseline (A1), and a 

significant improvement with DP-MSRT (BD) was found in comparison with both 

baseline (A1) (p = .008) and washout-baseline (A2) evaluations (p = .031). No 

changes were found in patient RRM most likely due to ceiling effect. 

No delay inverted. Baseline evaluation revealed that one patient had mildly 

impaired performance (RRM, .81), whereas the other two patients had 

moderately impaired performance (VRG, .69; JTO, .61). Patient VRG improved 

with both DP- DSLT (BC) (p = .002) and DP-MSRT (BD) (p = .001), but there 

were no differences between interventions. His scores in washout evaluation (A2) 

were significantly better than that in baseline evaluation (A1) (p = .016), and 

scores after DP-MSRT (BD) were better than those obtained in washout-baseline 

(A2) evaluation (p = .031). Patient JTO only improved with DP-MSRT (CD) 

relative to baseline evaluation (A1) (p = .008), and gains with this intervention 

were significantly better than those obtained with DP-DSLT (BC) (p = .031). 

Scores in this patient also showed a trend for improvement after DP-DSLT (BC) 
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in comparison with baseline evaluation (A1) (p = .063). Patient RRM did not show 

improvements with either therapy most likely due to ceiling effect. 

Unfilled 5-second delay. At baseline evaluation, two patients had mild to 

moderate impaired performance (RRM, .89; VRG, .76), whereas the other patient 

had severely impaired performance (JTO, .45). Patient VRG showed significant 

improvements with both therapies relative to baseline evaluation (A1), with better 

scores after DP- MSRT (BD) (p = .004) than after DP-DSLT (BC) (p = .008). 

However, there were no differences between these two interventions. In this 

patient, scores after washout (A2) were significantly better than those obtained 

in baseline evaluation (A1) (p = .031). Scores in patient JTO significantly 

improved with both DP-DSLT (BC) (p = .008) and DP-MSRT (BD) (p = .001) 

relative to baseline evaluation (A1), but gains were significantly better with DP-

MSRT (BD) than with DP-DSLT (BC) (p = .002). Scores after washout (baseline 

A2) were significantly better than those obtained at baseline (A1) (p = .001) and 

after DP-DSLT (BC) (p = .008). No changes were found in patient RRM with either 

therapy possibly due to ceiling effect. 

WORD TRIPLET REPETITION 

The number of word triplets repeated accurately by these three patients in each 

condition is shown in Table 3 and according to serial position in Figure 2. 

Treatment with DP-DSLT (BC) significantly improved all high-frequency word 

triplets (Lists 1–3) in comparison with baseline (A1) in two patients (RRM, p < 

.001; VRG, p = .008) but not in the other patient (JTO, p = .125). As expected, 

analyses of all low-frequency word triplets (Lists 4–6) revealed less robust gains 

than in repetition of high-frequency word strings, but again there were significant 
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improvements with DP-DSLT (BC) relative to baseline (A1) in two patients (RRM, 

p = .031; VRG, p = .016) and no changes in the other patient (JTO, p = .125). 

Comparisons of all high-frequency word triplets (Lists 1–3) between baseline (A1) 

and washout (baseline A2) revealed significantly better performance in post-

washout evaluation (A2) in two patients (RRM, p <.001; VRG, p = .031). No 

changes were found in the remaining patient (JTO, p = .125). Differences in 

repetition of all low- frequency word triplets (Lists 4–6) between baseline (A1) and 

washout (A2) revealed significantly better performance in post-washout 

evaluation (A2) in one patient (RRM, p < .001), a trend for improvement in another 

(VRG, p = .063) and no changes in the remaining patient (JTO, p = .125). 

After treatment with DP-MSRT (BD) word triplet repetition was significantly better 

than scores at baseline evaluation (A1) in all patients in the repetition of both 

high-frequency strings (Lists 1–3) and low-frequency strings (Lists 4–6) (all 

patients, p <.005). Similar results were found when repetition of high-frequency 

and low- frequency triplets after treatment with DP-MSRT (BD) was compared 

with scores at post-washout testing (A2) in all patients (RRM and VRG, in both 

measures p ≤ .001; JTO, in both measures p = .031). Importantly, combined 

intervention with DP-MSRT (BD) significantly improved performance in repetition 

of high- frequency word triplets in comparison with scores after DP-DSLT (BC) in 

all patients (both RRM and VRG, p < .001; JTO p = .031) and in repetition of low- 

frequency word triplets in two patients (VRG, p <.001; JTO p = .031). There was 

a trend for improvement in the remaining patient (RRM, p = .063). Finally, results 

were even more robust when all lists (1–6) were analysed together. Patients’ 

performance with DP-DSLT were significantly better than the ones obtained at 

baseline (A1) (all patients, p < .001) and scores after DP-MSRT were significantly 
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better than those obtained at baseline (A1) and post-washout (A2) testing (all 

patients in both evaluations, p <.001). Scores after DP-MSRT (BD) were better 

than those obtained with DP-DSLT (BC) (all patients, p < .001). 

Changes induced by both interventions in the repetition of word triplets were also 

analysed taking into consideration the semantic relatedness of word strings, so 

that the following triplets were analysed: random word combination (Lists 1 and 

4), loosely constrained information (Lists 2 and 5) and constrained information 

(Lists 3 and 6). For the sake of simplicity, high-frequency and low-frequency 

triplets were analysed together. Repetition of word triplets containing random 

word combination (Lists 1 and 4) improved with DP-DCSL relative to baseline 

(A1) only in one patient (RRM, p <.001). Treatment with DP-MSRT (BD) provided 

greater improvement than DP-DSLT in two patients (RRM, p = .008; VRG, p < 

.001), and a trend for improvement was seen in the remaining patient (JTO, p = 

.063). Scores after DP- MSRT (BD) were significantly better than the ones in 

washout testing (A2) in two patients (RRM, p = .004; VRG, p <.001) and better 

than baseline (A1) in all three patients (RRM and VRG, both p = .004; JTO, p < 

.008). Repetition of word triplets containing loosely constrained semantic 

information (Lists 2 and 5) improved with DP-DCSL relative to baseline in two 

patients (RRM, p = .002; VRG, p <.016). Treatment with DP-MSRT (BD) provided 

greater improvement than DP-DSLT in all patients (p = .001). Scores after DP-

MSRT (BD) were significantly better than the ones in washout testing (A2) in one 

patient (VRG, p < .001) and also better than baseline (A1) in all patients (p <.001). 

Finally, repetition of word triplets containing constrained semantic information 

(Lists 3 and 6) improved with DP-DCSL relative to baseline in all patients (RRM 

and VRG, p < .016; JTO, p <.001). Treatment with DP-MSRT (BD) provided 
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greater improvement than DP-DSLT two patients (RRM and VRG, p = .001). 

Scores after DP-MSRT (BD) were significantly better than the ones in washout 

testing (A2) in two patients (RRM and VRG, p < .001) and also better than 

baseline (A1) in all patients (p <.001). Changes in serial position were noted 

(Figure 2). At baseline, all patients showed primacy and recency effects; items 

occurring in the initial and final position were repeated better than items in medial 

positions. After DP-DSLT, one patient RRM significantly improved performance 

in positions 2 and 3 in high-frequency words and all positions in low-frequency 

words (all, p < .005), whereas another patient (VRG) improved positions 1 and 2 

with this therapy and position 1 with DP-MSRT (all p = .0001). 
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CLICHÉS AND NOVEL SENTENCES 

Numerically, all patients showed better baseline performance on repeating novel 

sentences than clichés although differences did not reach significance. After 

interventions RRM and VRG did not show improvement in cliché repetition with 

either intervention, whereas JTO improved his performance in this task with both 

DP-DSLT (p = .008) and DP-MSRT (p = .016). However, there were no changes 

when DP-MSRT was compared with washout testing (A2). As expected, better 

out- comes were found in repetition of novel sentences in two patients with DP-

DSLT compared with baseline (A1) (RRM, p = .016; JTO, p = .008), and even 

more robust benefits were found in all three patients when DP-MSRT was 

compared with baseline (A1) (RRM and JTO, p <.001; VRG, p = .031). No 

changes were found, however, when intervention with DP-MSRT was compared 

with washout testing (A2). 

THERAPY AND CONTROL SENTENCES 

Table 3 shows patients’ performance on repetition of therapy and control 

sentences. Scores after DP-MSRT (BD) were significantly better than those 

obtained at wash- out (A2) in all three patients in both therapy sentences (all, p 

< .005, Fisher Exact Test, two-tailed) and control sentences (all, p <.05, Fisher 

Exact Test, two-tailed). 
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Discussion- Study 1 

In this case-series study, we did find that both treatments (DP-DSLT and DP- 

MSRT) improved repetition of word lists and therapy and control sentences with 

generalisation of gains to aphasia severity and connected speech during picture 

description. The combination of DP with MSLT provided better results in 

connected speech during picture description and word list repetition than DP 

combined with a less-intensive therapy administered during a longer period 

(DSLT). Importantly, our patients received the same number of hours (40 hours) 

of aphasia therapy administered with different timetables (16 weeks of DSLT and 

8 weeks of MSRT) and separated between them by a washout period (4 weeks). 

Furthermore, DSLT trained different language domains (naming, repetition, 

sentence completion, following commands, spoken object-picture matching and 

conversations), whereas MSRT trained only a single language domain (sentence 

repetition). Treatment with DP was safe and well tolerated at usual doses. Only 

one patient (RRM) developed mild irritability and right leg muscle cramps that not 

required drug discontinuation. Before advancing further in the discussion, let us 

examine the theoretical and clinical justification that encouraged us to use MSRT 

in this case-series study. 

DONEPEZIL AND MASSED SENTENCE REPETITION THERAPY 

The treatment with MSRT was selected on the basis of previous studies (see 

Introduction) and clinico-anatomical relationships documented in our patients. In 

the acute stroke period, our three patients had global aphasia secondary to large 

left perisylvian infarctions. Aphasia severity gradually improved, and when 

participants were formally evaluated for inclusion in the present trial (mean 
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aphasia duration: 17.3 months), the pattern of language deficits was consistent 

with the diagnosis of CA (Berthier et al., 2014; Kertesz, 1982; Kohn, 1992). 

Further baseline cognitive testing of language in these patients revealed 

impaired/preserved language functions and a pattern of errors (e.g., phonological 

paraphasias in single word repetition and formal and semantic paraphasias in 

word list repetition) that placed their syndromes in the phonological-deep 

dysphasia continuum (Jefferies et al., 2007; Martin, 1996; Wilshire & Fisher, 

2004). The occurrence of these deficits affecting the storage capacity of 

phonological and lexical-semantic processes in conjunction with extensive 

damage involving the left dorsal and ventral auditory streams concurs with the 

hypothesis suggesting that residual repetition in these disorders reflects partial 

reliance on right hemisphere activity (Berthier et al., 2012; Demeurisse & Capon, 

1991). 

Recent studies in Wernicke’s aphasics reveal dual acoustic-phonological and 

semantic breakdowns correlating with left temporo-parietal involvement (Robson 

et al., 2012; Robson et al., 2012). Our patients also had lesions involving these 

posterior cortical sites, yet their baseline performance in certain phonological and 

lexical-semantic processing tasks ranged from mildly impaired to normal. The 

mildness of these receptive deficits most likely reflects the consecutive beneficial 

effect of both spontaneous improvement and aphasia therapy prior to trial 

inclusion via restitutive integration of non-damaged areas of the left hemisphere, 

the right hemisphere or both (Fernandez et al., 2004; Harnish et al., 2008; Weiller 

et al., 1995). Potential candidate regions in the left hemisphere for mediating 

recovery are the prefrontal-parietal (angular gyrus) cortices (Meltzer et al., 2013; 

Sharp et al., 2010) and basal ganglia (Harnish et al., 2008). Nevertheless, the 
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role of these areas in recovery cannot be accepted in a straightforward way 

because patient RRM had partial damage to the prefrontal and angular cortices 

and all patients had severe damage to areas encompassing the superior 

longitudinal fasciculus linking these distant cortical sites. The role of left basal 

ganglia could not be discarded, however, as all patients had only mild 

involvement of the left putamen and functional neuroi- maging in the female CA 

patient reported by Harnish et al. (2008) with a larger involvement of left basal 

ganglia, which revealed that she was capable of activating some spared parts of 

the striatum after massed aphasia therapy. Brain activation after distributed 

therapy was less noticeable (Harnish et al., 2008). Although functional 

neuroimaging could not be performed in our patients to examine the spontaneous 

and treatment-induced compensatory reorganisation of these functions, our 

findings in anatomical MRI suggest a prominent role of the right hemisphere 

reorganisation after distributed and massed therapies combined with DP. 

We did find that DP-MSRT provided significantly better outcomes than DP- DSLT 

in most repetition subtests (word pairs, word triplets and novel sentences). 

Sentences practiced during DP-MSRT also improved, and there was a 

generalisation of gains to untreated control sentences. We also did find medium 

to large treatment effects for DP-MSRT in comparison with baselines (A1, A2), 

and DP-CSLT (BC) in aphasia severity (WAB-AQ), and connected speech 

(%CIUs) with DP-MSRT. Improvement in some of these tasks implies a 

generalisation of benefits triggered by DP-MSRT, which is in consonance with 

the results reported in previous intervention studies of CA exclusively treated with 

repetition training (Kalinyak-Fliszar et al., 2011; Koening-Bruhin & Studer-

Eichenberger, 2007; Kohn et al., 1990; Majerus et al., 2005). Nevertheless, 
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findings from the present trial are not fully comparable with previous studies 

because we augmented the benefits provided by MSRT with a drug. Our findings 

emphasise the usefulness of implementing neuroscientifically based therapies, 

like MSRT (and MIT), which are specifically intended to recruit the activity of 

normal brain structures (right AF) to compensate the function of their homologues 

in the damaged hemisphere (Schlaug et al., 2009; Zipse et al., 2012). 

MECHANISMS UNDERPINNING RECOVERY WITH DONEPEZIL COMBINED 

WITH MASSED SENTENCE REPETITION THERAPY 

Experimental studies in rodents indicate that acetylcholine promotes synaptic 

transmission, stimulate synaptic plasticity and coordinates the activity of groups 

of neurons in response to internal and external stimuli eventually enhancing 

perception, attention, learning and memory processes (Picciotto et al., 2012; 

Sarter et al., 2003, 2005). Cholinergic stimulation in experimental conditions 

facilitates neuroplasticity, and the resulting changes are more apparent when 

cholinergic modulation is paired with training (experience-dependent plasticity) 

(Kleim & Jones, 2008; Sarter et al., 2003, 2005). Human neuroimaging studies of 

the cholinergic systems substantiate and extend physiological accounts of 

cholinergic function reported in experimental animal studies (see Bentley et al., 

2011). 

Although we did not perform functional neuroimaging in these three patients, our 

results invite speculations on the role of DP-MSRT in modulating dysfunctional 

and underused networks. At baseline, impaired performance on word list and 

sentence repetition in our patients may be ascribed to synaptic depression in the 

left lateral cholinergic pathway (insula and fronto-parietal white matter) 



	 80	

(Buckingham & Buckingham, 2011; Gotts, et al., 2002; Gotts & Plaut, 2004; 

McNamara & Albert, 2004; Selden et al., 1998; Tanaka et al., 2006) with incom- 

plete compensation of deficits by the right perisylvian white matter tracts. We 

suggest that cholinergic enhancement with DP boosted aphasia therapy effects 

not only by reverting synaptic depression in dysfunctional areas of the left 

hemisphere but, more importantly, by recruiting right perisylvian pathways. 

Recent intervention studies in chronic aphasia demonstrated that benefits in 

speech production with MIT (Schlaug et al., 2009; Zipse et al., 2012) and in 

repetition and naming with CIAT (Breier et al., 2011) were associated with 

functional and structural plasticity of the right AF. We suggest that MSRT (and to 

a lesser extent DSLT) in combination with DP might also recruit right hemisphere 

networks. After both treatments, our patients reacquired the ability to repeat with 

ease previously inaccessible target words in both lists and novel sentences. They 

also recovered the retention of word order as reflected by significant increment 

in the number of correct repetition of word triplets and sentences. This may have 

resulted from reversion of synaptic depression (Gotts & Plaut, 2002) and 

reduction of spreading activation of competitors (Foster et al., 2012) induced by 

DP. Also, it is tempting to argue that increased neural efficiency and better task 

performance promoted by cholinergic stimulation (Ricciardi, et al., 2013) were 

enhanced further with MSRT aimed to strengthen the activity of right hemisphere 

perisylvian white matter tracts (AF) previously underused in the service of speech 

repetition. Furthermore, cholinergic enhancement might also have modulated 

fronto-parietal regions implicated in executive-attentional processes (Demeter & 

Sarter, 2013) as well as attention and AVSTM through a dynamic interaction 

between right dorsal and ventral auditory streams (Majerus et al., 2012). 
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Recovery of production deficits in patients with fluent aphasia generally follows a 

fixed sequence (e.g., Kertesz, 1984; Kohn et al., 1996) evolving from initial 

production of target-related neologisms, phonological errors and omissions 

followed by better identifiable phonological and formal errors and eventually 

progressing to below-average or normal performance. Benefits provided by 

combined interventions in our three patients were at variance with the usual 

pattern of recovery from CA described in chronic cases because both 

interventions circumvented these seemingly obligate steps of recovery. 

Moreover, we found that DP-MSRT augmented and speeded up recovery in 

comparison with both DP-DCSLT. 

LIMITATIONS 

Our intervention trial has the shortcoming of using an open-label, within-subject 

design implementing two successive treatments. Indeed, one drawback of this 

design is the increased likelihood of residual beneficial effects of treatment with 

DP-DSLT on the outcome of DP-MSRT treatment (carryover effect) (Grady et al., 

2001). Nonetheless, to minimise the impact of the carryover effect on the 

outcomes of DP-MSRT, we introduced a four-week washout period between both 

interventions. Despite the introduction of this non-intervention period, post-

washout performance (A2, week 20) in all patients remained well above the 

scores obtained at baseline (A1, week 0). Several hypotheses have been 

advanced to account for this persistent improvement (Berthier et al., 2003, 2006; 

Code et al., 2010; FitzGerald et al., 2008; Hughes et al., 2000), and some of them 

are related to the use of DP. The first argument maintains that the persistence of 

gains in cognition after a washout period of 4 weeks may depend on the long 

plasma half-life of DP (~104 hours) (FitzGerald et al., 2008). Another hypothesis, 
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more compelling than the previous one, suggests that DP promotes brain 

plasticity in language and short-term memory systems and that these 

neuroplastic changes persist after DP withdrawal (Berthier et al., 2003, 2006; 

FitzGerald et al., 2008; Hughes et al., 2000). A complimentary piece of 

information unrelated to DP treatment refers to the role of delayed beneficial 

effect of aphasia therapy after its interruption in chronic aphasic patients (Code 

et al., 2010). It is also worth emphasising in defence of the benefits provided by 

DP-MSRT that although our patients received the same number of hours of 

aphasia therapy (40 hours) administered with different timetables, the duration of 

the drug treatment during DSLT was actually the double (16 weeks) than the one 

received by patients during MSRT (8 weeks). This suggests that the addition of 

DP to MSRT increased and speeded up recovery in comparison with DP-DSLT. 

Finally, our participants’ expectation and motivation generated by their 

participation in a trial with a new pharmacological treatment of aphasia may have 

played a role in improvement. Even though participants remained motivated 

throughout the whole trial, in our experience the great expectation for improving 

depends more on the initial response to pharmacological treatment than the 

addition of an alternative rehabilitation technique (e.g., MSRT) in the last phase 

of the trial. Therefore, if our belief is correct, one can expect a greater impact of 

motivation on outcomes in the initial (DP-DSLT) rather than in final phase (DP-

MSRT) of the trial. 
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STUDY 2: A case of crossed conduction aphasia. 

Reference: De-Torres, I., Dávila, G., Berthier, M.L., Walsh, S.F., Moreno-Torres, I., & Ruiz-
Cruces, R. (2013). Repeating with the right hemisphere: reduced interactions between 
phonological and lexical-semantic systems in crossed aphasia? Frontiers in Human 
Neuroscience, Oct 18; 7: 675.  

 

Abstract - Study 2 

Speech production and communication deficits were studied in a single-case 

male patient (JAM) with crossed aphasia (aphasia after right hemisphere) and 

the neural correlates of were also examined with neuroimaging. Repetition 

performance was widely assessed in a patient with crossed CA and a 

striatal/capsular vascular lesion encompassing the right AF and inferior frontal-

occipital fasciculus (IFOF), the temporal stem and the white matter underneath 

the supramarginal gyrus. JAM showed lexicality effects repeating better words 

than non-words, but manipulation of other lexical-semantic variables exerted less 

influence on repetition performance. Imageability and frequency effects, 

production of meaning-based paraphrases during sentence repetition, or better 

performance on repeating novel sentences than overlearned clichés were hardly 

ever observed in this patient. DTI disclosed damage to the right long direct 

segment of the AF and IFOF with relative sparing of the anterior indirect and 

posterior segments of the AF, together with fully developed left perisylvian white 

matter pathways. Communication in activities of daily living (amount and quality) 

were reduced. Altogheter, these findings suggest (1) that striatal/capsular lesions 

extending into the right AF and IFOF in some individuals with right hemisphere 

language dominance are associated with atypical repetition patterns which might 

reflect reduced interactions between phonological and lexical-semantic 
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processes; and (2) that patients with crossed CA can also display reduced 

communication abilities in spite of having fluent spontaneous speech.   

Introduction - Study 2 

It is well-established that the majority (95%) of right-handeds have their left 

cerebral hemispheres dominant for language (Annett, 1998; Wada & 

Rasmussen, 2007). A minority (5%) of right-handeds have right hemispheric 

specialization for language (Loring et al., 1990; Annett, 1998; Pujol et al., 1999; 

Knecht et al., 2002) and mixed language dominance (language production and 

reception represented in different hemispheres) which can occur in both normal 

(Lidzba et al., 2011) and brain damaged right-handeds (Kurthen et al., 1992; 

Paparounas et al., 2002; Kamada et al., 2007; Lee et al., 2008) is even more 

infrequent. The rarity of complete or incomplete lateralization of language to the 

right hemisphere explains why only a minority of right-handed individuals develop 

language deficits after right hemisphere injury (crossed aphasia) (Bramwell, 

1899; Alexander et al., 1989a; Mariën et al., 2001, 2004). Although crossed 

aphasia is rare, analysis of language functioning in these subjects represents an 

ideal opportunity to examine whether their language performance and neural 

architecture underpinning language functions in the right hemisphere are the 

same as those reported in subjects with left hemisphere language dominance 

(Catani et al., 2007; Turken & Dronkers, 2011; Catani & Thiebaut de Schotten, 

2012). Here, we report the occurrence of fluent aphasia with severely abnormal 

repetition and deficits in sentence comprehension (CA) in a patient who suffered 

a large right subcortical stroke lesion. This clinical-anatomical correlation is 

uncommon, but its description can further illuminate the neural organization of 

propositional language in the right hemisphere. In an attempt to accomplish this, 
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in the present study the localization of damage to white matter tracts 

underpinning language repetition was outlined in one patient with the aid of brain 

sections depicted in an atlas of human brain connections (Catani & Thiebaut de 

Schotten, 2012) and with DTI of bilateral white matter tracts. 

Knowledge on the organization of propositional language in the right hemisphere 

comes from the analysis of aphasic patients with damage to the right hemisphere 

(see Alexander et al., 1989a; Mariën et al., 2004) and from a case series study 

of intraoperative cortical-subcortical stimulation (Vassal et al., 2010). Vassal and 

coworkers (2010) performed intraoperative cortical-subcortical electrical 

functional mapping in three right-handed adults who had right-sided low-grade 

gliomas. Right hemisphere language dominance was variously demonstrated by 

identification of language deficits during both partial epileptic seizures and 

preoperative formal testing, and activations in functional magnetic resonance 

imaging (fMRI) (one patient). During surgical interventions reproducible language 

disturbances were found by stimulating cortical sites in frontal and temporal cor- 

tices. Electrostimulation of the inferior fronto-occipital fasciculus (IFOF) elicited 

semantic paraphasias, whereas stimulation of the AF caused phonemic errors, 

thus supporting in these cases the hypothesis of a mirror organization of white 

matter tracts between right and left hemispheres (Vassal et al., 2010). 

Studying patients with crossed aphasia, Alexander and colleagues, defined two 

clinical-radiological correlations which were named “mirror image” and 

“anomalous” (Alexander et al., 1989a; Alexander & Annett, 1996; Alexander, 

1997; Mariën et al., 2004). The “mirror image” pattern assumes that the right lan- 

guage cortex has a similar structure and connections to the classical left 

language cortex, and therefore, similar language deficits to the ones observed 
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after left hemisphere injury can be expected when the same injury occurs in 

homologous areas of the right hemisphere (Henderson, 1983; Bartha et al., 

2004). This pattern occurs in as many as 60% patients and all clinical types of 

aphasia have been described (see Mariën et al., 2001, 2004). By contrast, the 

“anomalous” pattern considers that the structural arrangements and functional 

organization of the language cortex in the right hemisphere are different to the 

ones in the left language cortex, so that atypical language deficits can occur after 

right hemisphere injury (e.g., Wernicke’s aphasia associated with frontal 

damage). The anomalous pattern has been described in approximately 40% of 

patients and it can be easily identified when patients present with relatively 

isolated phonological or lexical-semantic deficits associated with large lesions in 

the right perisylvian area (Alexander et al., 1989a; Mariën et al., 2001, 2004). 

Interestingly, the association of CA with an atypical location is more commonly 

encountered with right hemisphere lesions (35%) than after left hemisphere 

involvement (13%) (Basso et al., 1985; Alexander et al., 1989a; Dewarrat et al., 

2009). Despite the relatively frequent occurrence of CA in cases of both “mirror 

image” (Henderson, 1983; Bartha et al., 2004) and “anomalous” crossed aphasia 

(Alexander et al., 1989a) comprehensive analyses of its main deficits (repetition, 

short-term memory, sentence comprehension) have been described in only three 

cases (patient ORL, McCarthy & Warrington, 1984; patient EDE, Berndt et al., 

1991; and patient JNR, Berthier et al., 2011). Below, a brief summary of the main 

findings from patient EDE are described. A further description of the other two 

cases is not provided here because their personal and developmental histories 

(mixed handedness and perinatal left hemisphere injury in JNR and left-

handedness in ORL) invalidate the diagnosis of crossed aphasia. 
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Berndt et al. (1991) described the case of a 56-year-old, strongly right-handed, 

housewife (EDE), who acutely developed fluent aphasia with impaired auditory 

comprehension and rapid cycling mood changes in association with a right 

posterior cortical infarction. A formal evaluation of deficits in EDE was initiated 10 

months after the stroke and by that time her reading and writing deficits had 

improved more than repetition span and auditory sentence comprehension. Since 

then language and cognitive deficits remained stable and were longitudinally 

evaluated during the next five years. An MRI performed approximately four-years 

post-onset revealed a right temporal-parietal infarction compromising cortical 

regions (middle temporal gyrus and posterior superior temporal gyrus, temporal 

pole, and posterior insula) engaged in auditory comprehension. In retrospect, it 

could be argued that EDE probably had an acute Wernicke’s aphasia which 

gradually resolved to CA in the chronic period (1-year post-onset) (Berndt et al., 

1991). Berndt and colleagues interpreted the clinical-anatomical relationships 

observed in EDE as indicative of “mirror image” crossed CA (Alexander et al., 

1989a; Alexander and Annett, 1996; Alexander, 1997), although her performance 

in repetition and short-term memory tasks was atypical in comparison with other 

patients presenting with short-term memory deficits after left hemisphere 

damage. Indeed, EDE had intact input phonological processing, one-item 

recency effect on list repetition, and absent meaning-based paraphrases during 

sentence repetition that in the authors’ view reflected an atypical interaction 

between right and left hemispheres (Berndt et al., 1991). Berndt and her 

colleagues concluded that in EDE: “...there appears to be an unusual dissociation 

of functions such that the perception of auditory/phonetic information is separated 

from its storage, while access to semantic information from phonemic forms in 
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connected speech is impaired... some initial processing of auditory/phonetic 

information is carried out in EDE’s intact left hemisphere, while language 

functions responsible for phonetic storage and lexical/semantic assignment to 

sentence constituents are lateralized to the right hemisphere” (p. 277). 

Analysis of repetition performance in the other two patients yielded mixed results. 

Evaluation in patient JNR replicated the results obtained in EDE (except for 

abnormal phonological input processing), but patient ORL had repetition deficits 

similar to the ones described in cases with CA and left hemisphere involvement 

(see further details in Berthier et al., 2011; McCarthy & Warrington, 1984). In light 

of the limited data available and mixed results on the pattern of repetition in 

patients with crossed CA, analysis of further cases is clearly needed. In this study, 

we specifically investigated repetition deficits in a chronic stroke patient with 

crossed subcortical CA. We also examined for the first time the role of right white 

matter pathways involvement in repetition processes in crossed aphasia. Our 

results replicate findings from previous similar cases (Berndt et al., 1991; Berthier 

et al., 2011) showing that repetition deficits have atypical features in more 

demanding tasks (sentence repetition) reflecting limited reliance on lexical-

semantic processing as has been reported in typical CA associated to left 

hemisphere damage. Further, our neuroimaging findings suggest that subcortical 

lesions in the right hemisphere lesioning perisylvian and commissural pathways 

may account for the observed language deficits by altering the interaction 

between right and left hemispheres. 
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Methods & Results - Study 2 

PARTICIPANT 

We examined language deficits including repetition performance (digits, 

words/non-words, lists of word pairs and triplets, sentences and novel 

sentences/idiomatic clichés) in a monolingual Spanish speaking patient with 

chronic CA secondary to large right hemisphere stroke lesion.  

PATIENT JAM 

JAM was a 46-year-old man who suffered a large intracerebral haemorrhage in 

the right striatal/capsular region 1 year before referral to our unit. In the acute 

period, he had a dense left hemiplegia, left hemianopia, left hemisensory loss, 

and mild left hemispatial neglect. After a short-lived period of global aphasia, 

language testing revealed fluent jargon aphasia with impaired auditory 

comprehension which gradually regressed to CA. Reading and writing were 

severely affected with features of both deep dysgraphia and deep dyslexia. He 

also had mild dyscalculia but he did not show ideomotor or buccofacial apraxia 

as reflected by ceiling scores on the apraxia subtest (60/60) of the WAB (Kertesz, 

1982). This later finding is at variance to that commonly observed in patients with 

CA associated to left hemisphere damage (Geschwind, 1965; Benson et al., 

1973; Tognola & Vignolo, 1980). At the time of formal language evaluation JAM 

was fully oriented and showed adequate insight into his deficits. His affect was 

flat and he tended to be isolated at home. He met diagnostic criteria for major 

depression as has been reported in patients with left basal ganglia strokes 

(Starkstein et al., 1988). JAM was strongly right-handed without history of 

perinatal injury, developmental delay, or familiar left-handedness. On the 
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Edinburgh Handedness Inventory (Oldfield, 1971) his score was +100. During the 

first six months after the stroke, JAM received conventional speech-language 

therapy on an individual basis (2 h/week) showing improvement in spontaneous 

speech and auditory comprehension. No beneficial changes were reported on 

repetition deficits. 

IMAGING 

METHODS 

The MRI study in JAM was per- formed on a 3-T magnet (Philips Gyroscan Intera, 

Best, The Netherlands) equipped with an eight-channel Philips SENSE head coil. 

Head movements were minimized using head pads and a forehead strap. High-

resolution T1-weighted structural images of the whole brain were acquired with 

three dimensional (3D) magnetization prepared rapid acquisition gradient echo 

(3 D MPRAGE) sequence (acquisition matrix: 240/256 r; field of view: 240 ms; 

repetition time [TR]: 9.9 ms; echo time [TE]: 4.6 ms; flip angle: 8; turbo field echo 

(TFE) factor: 200; 1 × 1 × 1 mm3 resolution). One hundred eighty-two contiguous 

slices, each 1-mm thick, 0 mm slice gap, were acquired. The total acquisition time 

of the sequence was about 4:24 min. In addition to the 3D MPRAGE, a standard 

axial T-2 weighted/FLAIR (TR = 11.000ms; TE = 125/27 ms; 264 × 512 matrix; 

field of view [FOV] = 230 × 230; 3-mm-thick slices with 1 mm slice gap) was 

obtained. A Short TI Inversion Recovery (STIR) was used to produce 24, 2.5 mm 

axial slices (interslice gap = 1 mm; TR = 4718 ms; TE = 80 ms; inversion time = 

200 ms; 264 × 512 matrix; FOV = 230 mm; number of excitations = 2). In JAM 

the anterior commissure (AC) was identified in axial and coronal T1-weighted 

images at the level of the temporal stems (Warren et al., 2009). 
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RESULTS 

Axial MRI showed right basal ganglia lesions including the putamen, part of the 

external pallidum, and anterior limb, genu, and posterior limbs of the internal 

capsulae extending superiorly to the periventricular white matter (corona radiata). 

Tissue damage was also present in the white matter surrounding the 

hippocampus and the middle temporal gyrus with posterior extension to the 

auditory and optic radiations in the temporal stem (Figure 3). The right posterior 

ventral and dorsal insular cortices and the periventricular white matter deep to 

the supramarginal gyrus were also damaged. No lesions were documented in the 

left hemisphere. 

 

Figure 3. Structural axial MRI of patient JAM showing the full extension of lesions. A 3T MRI (Short T1 
Inversion Recovery—STIR—sequence) in JAM show lesion topographies involving the right 
striatocapsular region with inferior extension to the temporal stem, ventral insular cortex, and inferior 
fronto-occipital fasciculus. Note superior extension of the lesions to the AF and white matter underneath 
the supramarginal gyrus.  
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DIFFUSION TENSOR IMAGING 

DTI allows for “in vivo” measurement of the diffusive properties of water in a way 

that allows information to be garnered about the microstructural organization of 

tissue (Basser et al., 1994). Tractography enables the orientation of white matter 

(WM) to be ascertained, thus making possible the segregation of WM into 

separate sections based on the paths of the distinct tracts (LeBihan, 2003). Data 

acquisition was performed using multi-slice single-shot spin-echo echo-planar 

imaging (EPI) with specific parameters as follows: FOV 224 mm, 2-mm-thick 

slices with 0mm slice gap, TE = 117ms, TR = 12408ms, and b factor: 3000 

s/mm2. The EPI echo train length consisted of 59 actual echoes reconstructed in 

a 112 × 128 image matrix. Sixty-four diffusion directions were used in order to 

allow for precise construction of the diffusion tensor. Motion and eddy current 

correction were performed using FSL’s FDT (http://www.fmrib.ox.ac. uk/fsl/) eddy 

current correction tool (Smith et al., 2004; Woolrich et al., 2009). Diffusion tensor 

estimation was carried out in using Diffusion Toolkit’s least-square estimation 

algorithm for each voxel (Ruopeng Wang, Van J. Wedeen, TrackVis.org, 

Martinos Center for Biomedical Imaging, Massachusetts General Hospital). The 

whole brain tractography used an angular threshold of 35 degrees and an FA 

threshold of 0.2. The tensor was spectrally decomposed in order to obtain its 

eigenvalues and eigenvectors. The fiber direction is assumed to correspond to 

the principal eigenvector (the eigenvector with the largest eigenvalue). This 

vector was color coded (green for anterior-posterior, blue for superior-inferior and 

red for left-right) in order to help generate the color FA map. An FA map was also 

generated from these eigen values. It was done using Diffusion Toolkit. Virtual 

dissections of the three parts of the AF and the IFOF were performed by using a 

region of interest (ROI) approach, following the directions of a white matter 
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tractography atlas (Catani & Thiebaut de Schotten, 2012). All virtual dissections 

were performed using TrackVis (Ruopeng Wang, and Van J. Wedeen, 

TrackVis.org, Martinos Center for Biomedical Imaging, Massachusetts General 

Hospital). 

RESULTS 

DTI was performed in patient JAM (Figure 4). DTI showed damage to the right 

long direct segment of the AF and IFOF with relative sparing of the anterior 

indirect and posterior segments of the AF together with fully developed left AF 

and IFOF.  
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Figure 4. Diffusion tensor imaging (3T MRI) of patient JAM. (A) Uninflated surface of the cerebral 
hemispheres (FreeSurfer reconstruction) depicting gyri in green and sulci in red. The right image shows a 
small cortical component of the haemorrhage (red) involving the right anterior insula and superior temporal 
gyrus. The DTI reconstruction of the AF and inferior fronto-occipital fasciculus shows (left image) damage 
to the right long direct segment of the AF (red) and inferior fronto-occipital fasciculus (blue) with relative 
sparing of short and long fibers of the anterior indirect segment (purple) and posterior segments (yellow), 
whereas the right image shows fully developed left perisylvian white matter pathways. (B) Anatomical 
axial MRI section (Short T1 Inversion Recovery—STIR—sequence) show the right striatocapsular lesion 
and perinecrotic tissue with degeneration of several white matter tracts (orange and blue arrows). AR 
indicates, auditory radiations; TS, temporal stem; SMG, supramarginal gyrus; AG, angular gyrus; EmC, 
extreme capsulae; vEmC, extreme capsulae; IFOF, inferior fronto-occipital fasciculus; AC, anterior 
commissure; AF-L, arcuate fasciculus-long segment 

 

LANGUAGE ASSESSMENT 

JAM had an Aphasia Quotient of 79.6 (mild to moderate aphasia). JAM showed 

a combination of fluent and well-articulated spontaneous speech with rare 

phonemic paraphasias and occasional approximation to target words to repair 
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errors (conduite d’approche), preserved auditory comprehension except for 

sequential commands and impaired repetition of multisyllabic words and 

sentences. Naming was relatively preserved. His WAB scores (fluency: 9, 

comprehension: 7.4, repetition: 6.2, naming: 9.2) were consistent with the 

diagnosis of CA (Kertesz, 1982).  

EXPERIMENTAL ASSESSMENTS 

To explore the interaction between phonology and lexical-semantic processing, 

JAM was evaluated using selected subtests from the PALPA (Kay et al., 1992; 

Valle & Cuetos, 1995; Kay & Terry, 2004) and a battery of experimental tests 

(Berthier, 2001). 

PHONOLOGICAL PROCESSING 

WORD PAIR DISCRIMINATION 

METHODS 

Four PALPA subtests were used to evaluate auditory processing for 

discriminating minimal pairs. These included Non-word Minimal Pairs (PALPA 1), 

Word Minimal Pairs (PALPA 2), Word Minimal Pairs Requiring Written Selection 

(PALPA 3), and Word Minimal Pairs Requiring Picture Selection (PALPA 4). The 

minimal pairs tests from the PALPA required same/different judgments for pairs 

of monosyllabic words/non-words that differed by a single phonetic feature (e.g., 

“sol-col” [sun-cabbage]). In half the trials, the two stimuli were identical and in half 

they were different. 
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RESULTS 

JAM had abnormal performance on auditory discrimination of non-word minimal 

pairs with significantly better performance on same pairs relative to different pairs 

which resulted from his tendency to classify most pairs as similar [χ2(1) = 25.2, p 

< 0.0001]. Performance was significantly better discriminating identical minimal 

word pairs than different word pairs in both JAM [χ2(1) = 9.68, p = 0.002]. Scores 

in word minimal pairs requiring picture selection were relatively preserved in JAM 

(Table 4). 

RHYME JUDGMENTS 

METHODS 

Three PALPA subtests were used to evaluate processing for Rhyme Judgments 

in Auditory/Written (PALPA 15) and Pictures (PALPA 14) presentations. In each 

rhyme judgment task, two words were presented in the corresponding modality 

and the patient was required to say whether or not they rhymed (e.g., “tarta-carta” 

[cake-letter]). There were 40 trials divided equally between rhyming and non-

rhyming pairs. 

RESULTS 

The ability of JAM to make rhyme judgments was abnormal in all modalities of 

presentation (auditory and written words and pictures) (Table 4). 
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Table 4| Phonological processing 

 

Test 

 

 

JAM 
 

Normative Data** 

 

Nonword Minimal Pairs (test 1) 

   Same          

   Different   

 

 

28/28 (1.00)* 

9/28 (.32) 

 

 

27.45 ± 0.99 

27.09 ± 1.24 

Word Minimal Pairs (test 2) 

   Same        

   Different  

 

28/28 (1.00) 

18/28 (.64) 

 

27.54 ± 1.27 

27.68 ± 0.76 

Word Minimal Pairs Requiring Picture Selection (test 4) 38/40 (.95) 38.95 ± 1.66  

Rhyme Judgements Words (test 15)  

Rhyme Judgements Pictures (test 14) 

Rhyme Judgements Written Version (test 15) 

23/40 (.58) 

24/40 (.60) 

23/40 (.58) 

35.05 ± 2.79 

33.59 ± 3.49 

35.05 ± 2.79 

Auditory Lexical Decision (test 5) 

       High imageability-high frequency  

       High imageability-low frequency   

       Low imageability-high frequency   

       Low imageability-low frequency   

       Nonwords                                        

 

20/20 (1.00) 

20/20 (1.00) 

20/20 (1.00) 

17/20 (.85) 

75/80 (.94) 

 

20.00 ± 0.00 

20.00 ± 0.00 

19.95 ± 0.21 

19.41 ± 1.15 

78.18 ± 1.95 

Visual Lexical Decision (test 25) 

       High imageability-high frequency  

       High imageability-low frequency   

       Low imageability-high frequency   

       Low imageability-low frequency   

       Nonwords                                        

 

20/20 (1.00) 

18/20 (0.90) 

20/20 (1.00) 

20/20 (1.00) 

67/80 (.84) 

 

20.00 ± 0.00 

20.00 ± 0.00 

19.95 ± 0.21 

19.41 ± 1.15 

78.18 ± 1.95 

Single Word Comprehension 

      Spoken word-picture matching (test 47)   

      Written word-picture matching (test 48)  

 

37/40 (.93) 

39/40 (.98) 

 

39.45 ± 1.67 

39.64 ± 1.46 

Sentence Comprehension 

     Auditory sentence comprehension (test 55)  

     Written sentence comprehension  (test 56) 

 

32/60 (.53) 

41/60 (.68) 

 

58.25 ± 2.61 

57.73 ± 2.60 

γγTest number follows the nomenclature of the original English version of PALPA (see Kay and Terry, 2004) which 
is sligthly different from the Spanish version. *Numbers in parentheses indicate proportion of correct responses. 
**Normative data from Valle and Cuetos (1995). Written lexical decision (missed data). 
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LEXICAL PROCESSING 

LEXICAL DECISION 

METHODS 

Word/non-word discrimination was assessed with the Auditory Lexical Decision: 

Imageability × Frequency (PALPA 5) and the Visual Lexical Decision: 

Imageability and Frequency (PALPA 25). These two versions were administered 

2 weeks apart to prevent learning. These tests use 80 words of high- and low- 

imagery and high- and low- frequency and 80 non-words derived from each of 

the real words by changing one or more letters. All non-words follow Spanish 

spelling rules and were pronounceable (Valle & Cuetos, 1995). 

RESULTS 

JAM performance on Auditory Lexical Decision was preserved for words (77/80) 

and non-words (75/80) [χ2(1) = 0.13, p = 0.718]. Misses occurred in three low- 

imageability/low-frequency items (“anger,” “dogma,” “satire”), whereas false 

alarms in non-words were derived from low- imageability words (Table 4). On 

Visual Lexical Decision JAM had better recognition of words (78/80) than non-

words (67/80) [χ2(1) = 7.31, p = 0.007].  

SINGLE WORD COMPREHENSION 

METHODS 

Single word comprehension was assessed with the Spoken Word—Picture 

Matching (PALPA 47) and the Written Word— Picture Matching (PALPA 48) 

tasks. The two versions were administered 2 weeks apart to prevent learning. 
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These tasks required that the patient match a spoken or a written closely 

semantic, one distantly semantic; one visual, and one unrelated. 

RESULTS 

The performance of JAM was relatively preserved on the auditory and written 

presentations (Table 4). 

SENTENCE COMPREHENSION 

METHODS 

Sentence comprehension was assessed using the Auditory Sentence 

Comprehension (PALPA 55) and the Written Sentence Comprehension (PALPA 

56) tasks. These two versions were administered 2 weeks apart to prevent 

learning. These tasks require matching an auditory or written sentence presented 

with one of three figures, the target one and two distractors. Several types of 

sentences were examined including reversible (e.g., “The dog is approaching the 

girl”) and non-reversible (e.g., “The dog is washed by the girl”) sentences, active 

and passive sentences, directional and non-directional sentences, and gapped 

sentences. 

RESULTS 

JAM showed severely impaired performance in both auditory and written 

modalities of presentation. Their performance was similar for reversible and non-

reversible sentences (Table 4). 
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REPETITION OF WORDS AND NON-WORDS 

METHODS 

Length, frequency, and imageability of words can influence the accuracy of 

repetition amongst aphasic patients. Studies in CA suggest that repetition of short 

words is better than repetition of multisyllabic and grammatical words 

(Goodglass, 1992; Nadeau, 2001). Therefore, performance on output 

phonological tasks was assessed with two repetition subtests [Repetition: 

Syllable Length (PALPA 7) and Repetition: Non-words (PALPA 8)]. These tests 

contain 24 words and 24 non-words of increased length (three–six letters). To 

further evaluate potential dissociations in repetition performance between words 

and non-words, the Repetition: Imageability × Frequency (PALPA 9) subtest was 

also administered. This test contains 80 words and 80 non-words presented in a 

mixed fashion. Words were grouped in four lists (20 items in each list) with 

variations in frequency and imageability. The lists contained high-frequency/high-

imageability, high-frequency/low-imageability, low-frequency/high-imageability, 

and low-frequency/low-imageability words. These lists were matched for syllable 

length; items contained between one and four syllables. The non-words were 

matched to the words for phonological complexity. Errors in all repetition tasks 

were analyzed by two of us (ID-T, GD). 

RESULTS 

Word repetition (PALPA 7) was mildly impaired in JAM (0.88). Scores in word 

repetition were marginally better than those found in non-words (PALPA 8) in 

JAM [χ2(1) = 3.72, p < 0.054]. In PALPA 9, no differences were found in JAM 

[χ2(1) = 1.51, p = 0.22]. 
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DIGIT PRODUCTION AND MATCHING SPAN 

METHODS 

This was assessed with the Digit Production/Matching Span (PALPA 13). 

RESULTS 

JAM has restricted digit production and matching span (Table 5) word to one of 

five pictures (target nouns and four distractor items [one p = 0.014]. Regarding 

word repetition in PALPA 9 test, he repeated items of the four lists with relatively 

similar efficiency. Repetition of low-imageability and low- frequency words in JAM 

(0.70). It should be noted that most non-words in the Spanish version of the 

PALPA 9 (Valle & Cuetos, 1995) have high word-likeness (Gathercole & Marin, 

1996) because they are derived from words with a single consonant (n = 30; 

“pierna” [leg] → pierla) or a vowel [n = 22; “hospital” (hospital) → hospitel] 

exchanged. While word-likeness increases the likelihood of lexicalization on 

repetition tasks in patients with typical CA and left hemisphere damage (Saito et 

al., 2003), this was not the case in our patient as lexicalizations during non-word 

repetition (PALPA 9) were rare (4/80 [0.05]). 
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Table 5| Auditory Processing: Repetition of Digits, Single Words and Nonwords 

 

Test 

 

 

JAM 

 

Normative data** 

 

Digit Production/Matching Span  

Words (test 7)γ
 

Nonwords(test 8) 

 

2/3 

21/24 (.88) 

14/24(.58) 

 

5.91 ± 0.67 / 6.18 ± 1.34 

23.81 ± 0.23 

22.95 ± 0.63 

Imageability x Frequency (test 9) 

 Words  

Nonwords 

 

46/80 (.57) 

79/80 (.98) 

 

 

Grammatical Class (test 10) 

  Nouns         

  Adjectives  

  Verbs          

Functors 

 

13/20(.65) 

12/20(.60) 

12/20(.60) 

12/20(.60) 

 

20.00 ± 0.00 

19.95 ± 0.21 

19.91 ± 0.29 

19.82 ± 0.49 

Morphology (test 11) 

  Regulars and control of regulars       

  Irregulars and control of irregulars   

Derivates and control of derivates 

 

11/20(.55) 

18/20 (.90) 

13/20(.65) 

 

19.83 ± 0.63  

19.86 ± 0.25 

19.81 ± 0.27 

γTest 7 versus test 8: χ2
(1): 12.2, p < 0.001. *Numbers in parentheses indicate proportion of correct responses. 

**Normative data from Valle and Cuetos (1995). 
 

REPETITION: GRAMMATICAL CLASS AND MORPHOLOGY 

METHODS 

Grammatical class (PALPA 10) and morphological endings (PALPA 11) were 

evaluated in JAM. PALPA 10 evaluates the effect of grammatical class. This test 

contains 80 words grouped in four different categories (nouns, adjectives, verbs, 

and functors) of 20 items in each list. PALPA 11 evaluates whether repetition is 

affected by morphological endings. This test contains 60 words grouped in three 

lists (regulars and control of regulars, irregulars and control of irregulars and 

derivates and control of derivates). 
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RESULTS 

Scores in PALPA 10 ranged from mildly (0.80) to moderately (0.60) impaired in 

JAM, but repetition performance was not influenced by grammatical class. 

Repetition with different morphological endings in JAM had low average (0.90) 

repetition of irregulars and controls of irregulars and moderately impaired (0.60) 

regular and derivates and their controls (Table 5). 

WORD PAIR REPETITION 

METHODS 

To assess the influence of lexical-semantic information on repetition ability when 

the demand of the auditory-verbal short- term memory is increased, he was asked 

to repeat word pairs (e.g., “house-flower”) (n = 56). The patient was asked to 

repeat immediately after auditory presentation in a no-delay direct condition 

(Martin et al., 1996; Gold & Kertesz, 2001) a total of 112 high-frequency words. 

The total list was composed of high-frequency/high imageability (n = 28), high-

frequency/low-imageability (n = 28); low-frequency/high-imageability (n = 28) and 

low-frequency/low-imageability (n = 28) words. Responses were scored for the 

number of word pairs repeated verbatim and for the number of words repeated 

accurately as a function of serial position (initial and final) in the list, irrespective 

of whether the word pair was repeated accurately or not. The number of correct 

words, failures to respond, and semantic, phonologic, formal, neologistic, 

perseverative, and unrelated lexical errors was evaluated. 

 

 



	104	

RESULTS 

Performance on this task was moderately impaired in him. Table 6 shows the 

number of word pairs that were repeated correctly. Further analyses disclosed 

that JAM repeated correctly 74 of the total 112 (0.66) words. There was a serial 

position effect (initial = 43/56; terminal = 26/56) [χ2(1) = 9.58, p = 0.002] which 

may be attributable to his markedly reduced memory span (two items). There 

were no effects of frequency/imageability. Abnormal responses were ordered by 

the frequency of occurrence and included: failures to respond = 17 (0.44), 

phonological errors = 7 (0.19), neologisms = 5 (0.14), formal errors = 4 (0.11), 

unrelated errors = 4 (0.11), and perseverations = 1 (0.2). There were no semantic 

errors. There were no serial position effects (initial = 30/56; terminal = 29/56) on 

word pair repetition which may be attributable to her memory span (three items). 

Her responses included phonological errors = 22 (0.49), neologisms = 11 (0.24), 

formal errors = 7 (0.16), failures to respond = 3 (0.07), unrelated errors = 1 (0.02), 

and perseverations = 1 (0.2). There were no semantic errors. 
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Table 6| Auditory Processing: Repetition of Three-Word Lists and Sentences 

Test JAM Normative data** 

High Frequency 

  Random  

  Loosely constrained  

  Constrained  

  Total 

Words _ Triplets 

1/30 (.00) _ 0/10 (0.0)	*** 

0/30 (.00) _ 0/10 (0.0) *** 

26/60 (.43) _ 0/20 (0.0) *** 

27/120 (.23) _ 0/40 (0.0) *** 

 

19.0 ± 0.8 (range: 17-20) 

18.7 ± 1.0 (range: 17-20) 

19.4 ± 0.6 (range: 18-20) 

Low Frequency 

  Random  

  Loosely constrained  

  Constrained  

  Total 

 

0/30 (.00) _ 0/10 (.00) *** 

0/30 (.00) _ 0/10 (.00) *** 

6/30 (.20) _ 0/10 (.00) *** 

6/90 (.06) _ 0/30 (.00) *** 

 

17.0 ± 2.5 (range: 11-20) 

18.6 ± 1.3 (range: 16-20) 

18.7 ± 1.2 (range: 16-20) 

Sentences (test 12) 

Idiomatic phrases*     

Novel phrases*             

2/36 (.05) *** 

8/40 (.20) *** 

9/40 (.20) *** 

Not tested 

Not tested 

Not tested 

γ* numbers in parentheses indicate proportion of correct responses unless indicated. ** taken from Berthier (2001). 
***Abnormal results 

 

REPETITION OF WORD TRIPLETS 

METHODS 

JAM was also asked to repeat word triplets. This task is a modification of the one 

used by McCarthy and Warrington (1984, 1987) in patients with CA. In the 

present battery two sets of 60 three-word lists (verb-adjective-noun) were created 

(Berthier, 2001). These were composed of word strings of increasing semantic 

richness that is from non-organized to organized semantic information. Two 

three-word lists of 20 items each (List 1: 60 high- frequency words; List 4: 60 low-

frequency words) consisted of random word combinations (e.g., "buy-sweet-

country"). Two other 20 three-words lists (List 2: 60 high-frequency words; List 5: 

60 low-frequency words) conveyed loosely constrained meaningful information 

(e.g., "defend-hero-gold”), and two other 20 three-word lists (List 3: 60 high-
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frequency words; List 6: 60 low-frequency words) conveyed closely constrained 

meaningful information (e.g., “cut-lovely-flower”). Words were read at a rate of 

one per second and JAM was required to repeat the words in the order given by 

the examiner. Responses were scored for the number of lists repeated verbatim 

in each condition and for the number of words repeated accurately as a function 

of serial position (initial, medial and final) in the list, irrespective of whether the 

whole triplet was repeated accurately or not. The number of correct words, 

failures to respond, and semantic, phonologic, formal, neologistic, perseverative, 

and unrelated lexical errors was evaluated. 

RESULTS 

Performance on this task was severely impaired in him (Table 6). JAM failed to 

repeat any word triplet correctly (e.g., “read-new-book” → read . . . don’t know). 

Since he became frustrated after repeated unsuccessful attempts the task was 

discontinued after 10 consecutive failures in each list. Analysis of individual words 

during these interrupted trials indicated that JAM repeated more words in triplets 

rich in semantic relations than in the other lists, showing significantly better 

performances in high-frequency triplets than low-frequency triplets [χ2(1) = 4.17, 

p < 0.041].  

Note that since in JAM this task was interrupted after 10 consecutive failures in 

each list, only 180 words could be analyzed. His responses were failures to 

respond = 144 (0.80), semantic errors = 5 (0.03), perseverations = 4 (0.02), 

phonological errors = 3 (0.02), unrelated errors = 2 (0.01), and neologisms = 1 

(0.00). Patient’s performance according to the serial position in the list were 

relatively similar for initial (0.3), medial (0.1), and terminal (0.7) positions. 
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REPETITION OF SENTENCES 

METHODS 

Sentence repetition was assessed with the PALPA 12. This task evaluates the 

ability to repeat auditorily-presented sentences (n = 36) of different length (from 

5 to 9 words). It is composed of reversible sentences (n = 20) and non-reversible 

(n = 16) sentences. Serial position curves were generated for all 7-word 

sentences (n = 18). 

RESULTS 

Sentence Repetition (PALPA 12) was severely abnormal in him (Table 6). JAM 

could repeat some non-reversible sentences yet his performance was severely 

abnormal (8/36 [.22]). Error analysis revealed that he omitted many words and 

mainly produced phonological errors. JAM produced rare semantic errors (“man” 

→ owner) and semantic perseverations. There were no paraphrases in strict 

sense, except for the presence of a difficult to classify sentence (sentence 17: 

“This dog has more cats to chase” → This dog . . . this cat, there are more to run) 

in which the meaning of the original sentence was not fully replicated in the 

response (Saffran & Marin, 1975). Analyses of serial position curves of seven 

word sentences revealed a tendency for repeating initial (items one and two) and 

terminal (item 6) words (range of correct for these positions: 60–80%) correctly 

with frequent omissions (range of correct: 20–40%) of words in the midportion of 

sentences (items three, four, five) in JAM.  
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REPETITION OF CLICHÉS AND NOVEL SENTENCES. 

METHODS 

To explore possible dissociation between both types of sentences, JAM was 

asked to repeat familiar idiomatic Spanish sentences (clichés) (n = 40) taken from 

the 150 Famous Clichés of Spanish Language (Junceda, 1981) as well as a set 

of novel sentences (n = 40) that were construed following the methodology 

described by Cum and Ellis (1999) and Berthier et al. (2011). For example, for 

the idiomatic cliché: “Me lo dijo un pajarito” (“A little bird told me”) the novel control 

sentence: “Me lo dijo mi compadre” (“My friend told me”) was created.  

RESULTS 

JAM was moderately impaired in these tasks obtaining relatively similar scores 

in both types of sentences. He rarely made paraphrases in novel sentence 

repetition (3/40 [.08]) and only 1 paraphrase (1/40 [.02]) was heard in repetition 

of idiomatic clichés (“Mess things up” → Make a mess). 
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Discussion - Study 2 

We have described the profile of language deficits in a chronic aphasic patient. 

They did poorly in input phonological tasks (minimal pairs, rhyme judgments) 

when stimuli were presented in auditory and written modalities. Lexical-semantic 

processing for single words (lexical decision, comprehension) was relatively 

preserved in these input modalities, but JAM infrequently accessed meaning 

when asked to comprehend and repeat complex verbal messages. Indeed, a 

relatively preserved performance in single word repetition contrasted with a 

severe impairment in repetition of digits, non-words, word lists, sentences, novel 

phrases and idiomatic clichés. In several instances, repetition was not 

significantly influenced by the frequency, imageability, and lexicality of stimuli. 

This atypical combination of language deficits could also be deemed uncommon 

because they took place in a strongly right-handed patient with residual crossed 

CA associated with predominantly right striatal/capsular lesions also affecting the 

AF, IFOF, anterior commissure, and temporal stem. The distinctive features of 

this clinical-anatomical correlation are discussed below. 

CROSSED SUBCORTICAL APHASIA 

Crossed subcortical aphasia is a rare condition to the extent that in a recent 

review of the literature only nine cases met criteria for “possibly reliable” or 

“reliable” diagnosis (De Witte et al., 2008). During the acute and early chronic 

periods JAM most likely had Wernicke’s aphasia and left hemiplegia which 

resulted from extensive right striatal/capsular lesions extending into the temporal 

stem/IFOF and supramarginal gyrus/AF. This clinical-anatomical correlation 

likely represents the right-sided analogue to the syndrome of Wernicke-type 
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aphasia with right hemiparesis secondary to left subcortical injury originally 

described by Naeser et al. (1982). This syndrome, which is considered a rare 

entity (Wolfe & Ross, 1987), usually occurring with atypical language deficits 

(Damasio et al., 1982), has not been well-defined in crossed aphasic patients 

(Basso et al., 1985). In their original publication, Naeser and colleagues (1982) 

described three aphasic syndromes associated with left capsular/putaminal 

involvement and variable lesion extension to either anterior-superior, posterior, 

or both anterior-superior and posterior neighboring structures. Of these, the 

syndrome that best fits with the one we found in JAM after right hemisphere injury 

is characterized by poor comprehension, fluent Wernicke’s type speech, and 

lasting right hemiplegia in association with left capsular/putaminal damage and 

posterior lesion extension to the auditory radiations in the temporal stem (Cases 

4, 5, and 6 in Naeser et al., 1982, pp. 8-10). In Naeser et al.’s case series (1982) 

testing in the chronic period was possible in one patient and it revealed 

improvement in all language modalities. 

Our patient may be interpreted as presenting “mirror image” crossed CA 

(Alexander et al., 1989a) for two reasons: (1) similar surface symptoms and lesion 

topography to the syndrome described after left hemisphere involvement; and (2) 

gradual resolution of language deficits from receptive aphasia to a less severe 

CA as is regularly described in cases with Wernicke’s aphasia and left 

hemisphere lesions (Goodglass, 1992). Regrettably, in the aphasic patients with 

left “capsular/putaminal with posterior lesion extension” described by Naeser et 

al., 1982 language deficits (including repetition) were succinctly described, thus 

making it hard to establish whether or not their intrinsic characteristics were 

typical. Increasing our understanding on this issue is desirable because 
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evaluation of repetition deficits in patients with “mirror image” crossed CA has 

been performed only in patient EDE who unexpectedly showed atypical 

performance on word list and sentence repetition (Berndt et al., 1991). This would 

mean that repetition deficits in some cases with right-hemisphere language 

dominance deviate from the classical pattern reported in similar cases with left 

hemisphere dominance because the neural organization of language in the 

former is different. Regrettably, the scarcity of similar well-studied cases and the 

reported heterogeneity in demographic and clinical-anatomic variables prevent 

further elaborations. It suffices to say that atypical neural organization of 

language in the right hemisphere may apply for patient EDE with right temporal-

parietal involvement (Berndt et al., 1991) but possibly not for ORF, a left-handed 

conduction aphasic patient with right parietal damage and good access to 

meaning during word list and sentence repetition (McCarthy & Warrington, 1984). 

It is even more difficult clarifying the finding of atypical language deficits in our 

crossed aphasic patient with striatal/capsular involvement because atypical 

language deficits are common in left subcortical aphasia (Albert et al., 1981; 

Damasio et al., 1982; Fromm et al., 1985) and because the role of left basal 

ganglia in language deficits is still controversial (Damasio et al., 1982; Naeser et 

al., 1982; Cappa et al., 1983; Nadeau & Crosson, 1997). Most studies evaluating 

subcortical stroke provided evidence against a prominent role of basal ganglia in 

language and instead attributed language deficits to the deleterious effect of 

subcortical involvement on the overlying cortex (Nadeau & Crosson, 1997; Hillis 

et al., 2002; Radanovic & Scaff, 2003; de Boissezon et al., 2005; Choi et al., 

2007). One study on vascular aphasia secondary to left subcortical lesions mainly 

affecting the striatum ascribed lexical-semantic deficits to dysfunction of the basal 
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temporal language area and IFOF (de Boissezon et al., 2005). Anatomical data 

in our patient with crossed CA also suggest that the pattern of language deficits 

(impaired sentence comprehension, sentence repetition) may be linked to 

damage to the right basal temporal language area and white matter tracts rather 

than to the striatocapsular lesions. 

DISSOCIATED STRUCTURE-FUNCTION RELATIONSHIPS IN CROSSED 

SUBCORTICAL APHASIA? 

There is some evidence that the AF is asymmetric being larger in volume and 

having a higher fiber density in the left hemisphere compared to the right (Parker 

et al., 2005; Powell et al., 2006; Vernooij et al., 2007; Catani & Mesulam, 2008; 

Axer et al., 2012; Catani & Thiebaut de Schotten, 2012). Combining DTI and fMRI 

in a small group of strongly right-handed healthy subjects, Powell et al. (2006) 

demonstrated for the first time that a greater development of left hemisphere 

white matter tracts in comparison with their homologues counterparts correlated 

with left-sided lateralization of language function. Although this structure-function 

correspondence has been replicated in subsequent studies (Matsumoto et al., 

2008; Saur et al., 2008), other studies variously combining DTI with fMRI, Wada 

test, or other ancillary methods (resting-state functional connectivity analysis) 

have questioned the long-held assumption that leftward asymmetry in volume of 

cortical areas (planum temporale) and white matter pathways underlie functional 

lateralization (see references in Vernooij et al., 2007; Turken & Dronkers, 2011). 

In complimentary terms, differences in the intra- and inter-hemispheric 

architecture and function of perisylvian white matter tracts exist and might 

account for the distinct performance in verbal repetition in healthy subjects 

(Catani et al., 2007) and in patients presenting with contrasting aphasic deficits 
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(CA versus transcortical aphasias) (Catani et al., 2005; Berthier et al., 2012). In 

fact, DTI studies reveal intra- and inter-hemispheric variability of white matter 

pathways underpinning repetition, most notably of the AF/ superior longitudinal 

fasciculus (SLF) (Nucifora et al., 2005; Catani & Mesulam, 2008; Gharabaghi et 

al., 2009; Friederici & Gierhan, 2013). Leftward biased asymmetry of the AF/SLF 

predominates in males and usually coexists with the absence or vestigial 

development of its long segment in the right hemisphere (Catani et al., 2005; 

Powell et al., 2006; Catani & Mesulam, 2008; Thiebaut de Schotten et al., 2011; 

Catani & Thiebaut de Schotten, 2012; Häberling et al., 2013) although at least 

one study reproduced the left hemisphere architecture and connectivity in the 

right hemisphere (Gharabaghi et al., 2009). Another study found reversed 

asymmetry of the AF in healthy males with right hemisphere language 

lateralization (Häberling et al., 2013). More symmetric patterns (bilateral-left and 

bilateral) of the AF/SLF prevail in females (�40%) and some researchers consider 

that other white matter bundles (IFOF) are also less lateralized than the dorsal 

stream but this has not been confirmed in all studies (Cao et al., 2003; Rodrigo 

et al., 2007). Regarding function of the AF/SLF, recent studies using Wada test 

(Matsumoto et al., 2008) or fMRI (Saur et al., 2008) documented leftward 

lateralization in subjects with left hemisphere dominance for language; however, 

it has also been shown that left-handeds with right hemisphere language 

dominance (as seen using fMRI) (Vernooij et al., 2007) actually have left-

lateralized AF. Taken together these later findings align with the hypothesis that 

lateralized hemispheric function is not always guided by structural asymmetry 

(Wada, 2009). In support of this view, we did find dissociation between structure 

and function in JAM. The extensive right subcortical lesion in JAM hindered not 
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only the comparison of inter-hemispheric AF and IFOF architecture but also the 

possibility of ruling out a reversal of the anatomical asymmetry. Nevertheless, the 

DTI identified well-developed residual components (anterior indirect and posterior 

segments) of the right AF/SLF that have escaped from tissue damage together 

with fully developed AF and IFOF in the left hemisphere which suggest symmetric 

or leftward lateralization. Despite this structural arrangement, JAM had right 

hemisphere dominance for language as reflected by his severe and long-lasting 

repetition disorder consequential to damage to the right AF/SLF and IFOF. Our 

study did not provide direct evidence of the functional activity of the left white 

matter tracts (AF, IFOF), yet the persistence of severe deficits on repeating (non-

words, word lists and sentences) and accessing meaning during both sentence 

comprehension and repetition one year after stroke onset makes the natural and 

therapy-based compensation of such deficits by means of the fully-developed left 

white matter tracts negligible. Nevertheless, further studies are clearly needed to 

establish the structure-function relationships amongst individuals with atypical 

language lateralization. 

IS REPETITION ATYPICAL IN CROSSED SUBCORTICAL APHASIA? 

In JAM word repetition scores ranged from normal to mild impairment but their 

performance in non-word repetition was markedly abnormal, a profile generally 

described in patients with CA and left hemisphere damage (Caplan & Waters, 

1992; Goodglass, 1992). Functional neuroimaging in healthy subjects shows 

activation of superior temporal and premotor cortices bilaterally during single 

word repetition, whereas non-word repetition activates the same cortical regions 

mostly in the left hemisphere (Weiller et al., 1995; Saur et al., 2008). Studies 

combining fMRI with DTI reveal interaction between superior temporal and 
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premotor areas during sublexical repetition via the AF/SLF (Saur et al., 2008). 

Based on these observations the likely mechanism accounting for the superior 

performance in JAM on repeating words over non-words may be the conjoint 

activity of residual areas of the injured right hemisphere and the intact left 

hemisphere (Weiller et al., 1995; Ohyama et al., 1996; Abo et al., 2004). Poor 

non-word repetition may be the expected consequence of right hemisphere 

damage with limited possibility of natural left hemisphere compensation. In 

support, lesion analysis and DTI findings in JAM showed massive involvement of 

the long direct segment of the AF normally engaged in auditory/phonological 

transcoding (word and non-word repetition) (Catani et al., 2005; Saur et al., 2008; 

Catani & Thiebaut de Schotten, 2012; Cloutman, 2012; Friederici & Gierhan, 

2013). It should be noted, however, that their performance in other repetition 

tasks differed in a number of important respects from typical CA associated with 

left hemisphere lesions (Saffran & Marin, 1975; McCarthy & Warrington, 1984, 

1987; Martin, 1996; Martin & Saffran, 1997; Gold & Kertesz, 2001; Bartha & 

Benke, 2003). Repetition in phonologically-impaired patients with left hemisphere 

involvement (e.g., CA) is generally reliant on lexical-semantic processing 

(McCarthy & Warrington, 1984, 1987; Martin & Saffran, 1997; Jefferies et al., 

2007). The use of this alternative strategy increases the likelihood of producing 

word errors (formal paraphasias) and semantic errors particularly in highly 

demanding tasks such as immediate serial repetition of word lists and sentences 

and delayed repetition (Martin et al., 1994; Martin, 1996; Gold & Kertesz, 2001; 

Jefferies et al., 2006). Additionally, reliance on lexical-semantic processing in 

some conduction aphasic patients with severely abnormal phonological 

processing is manifested by “part of speech” effects (e.g., nouns are repeated 
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better than verbs) and production of semantic paraphasias (“necklace” → gold) 

during single word repetition (deep dysphasia) (Michel & Andreewsky, 1983; Katz 

& Goodglass, 1990; Butterworth & Warrington, 1995; Martin, 1996; Martin et al., 

1996; Ablinger et al., 2007; Jefferies et al., 2007). Such overreliance on lexical-

semantic processing allows CA patients to excel in repetition tasks tapping these 

functions relative to other tasks taxing phonological processing. In this vein, 

patients with typical CA show better repetition of low- frequency words embedded 

as the last word in a sentence than when the same word is presented in isolation 

(McCarthy & Warrington, 1984). Abnormal performance in repeating meaningless 

word lists by conduction aphasics improves when the meaningfulness of lists is 

increased (McCarthy & Warrington, 1987) and these patients are also better able 

to repeat novel sentences which require access to meaning than over-learned 

idiomatic clichés (McCarthy & Warrington, 1984; Berthier, 1999). Finally, 

verbatim repetition of word lists and sentences poses serious difficulties to 

conduction aphasics due to their impaired capacity to hold the phonological trace 

in AVSTM forcing them to process sentences by meaning and producing 

paraphrases of the target sentence during repetition (Saffran & Marin, 1975; 

Martin, 1993; Bartha & Benke, 2003). 

Our patient repeated words more accurately than non-words and stimulus length 

influenced more than frequency/imageability the dissociation between word and 

non-word repetition. Nevertheless, the occurrence of other above-mentioned 

features of typical CA did not occur in all repetition tasks in our patient. Indeed, 

frequency/imageability, and grammatical class had no influence on single word 

repetition performance, although we acknowledge that in one such task 

(imageability/frequency) JAM obtained high scores that may have attenuated 
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differences due to ceiling effects. This effect was not observed in JAM in the other 

task (grammatical class), however. Word pair repetition was moderately 

impaired. Moreover, the patient produced more omissions and phonological 

errors than formal errors or word pair repetition and there were no semantic 

paraphasias, a pattern of performance that differs from the “lexical bias” (formal 

and semantic errors > phonological errors) reported in patients with typical CA 

and left hemisphere damage (Gold & Kertesz, 2001). Since word triplet repetition 

was extremely poor in him, we analyzed the accuracy of individual words on 

triplets. There was an influence of frequency in JAM who produced more correct 

items while repeating high-frequency than low-frequency lists. Moreover, he 

accurately repeated more individual words in triplets containing meaningful 

semantic information than in other conditions, thus implying that accurate 

repetition required semantic support. However, reliance on lexical-semantic 

processes could be deemed incomplete because JAM did not produce meaning-

based paraphrases (e.g., “eat-delicious-apple” → eat-juicy-fruit) which is at 

variance to that frequently reported in patients with typical CA during repetition of 

two- and three-word lists (Gold & Kertesz, 2001; Berthier et al., 2012). Repetition 

of sentences from PALPA 12 was severely impaired in JAM and rarely produced 

ill-formed paraphrases in this task, novel sentences and clichés. Limited lexical-

semantic access during word triplet and sentence repetition is in accord with 

findings from the two previous cases of crossed CA (Berndt et al., 1991; Berthier 

et al., 2011). Moreover, superior repetition of novel sentences over idiomatic 

clichés previously reported in typical CA patients (McCarthy & Warrington, 1984) 

reflecting overreliance on lexical-semantic processes was not observed in JAM. 

Finally, it should be noted that JAM had more reliance on lexical-semantic 
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processes in other output modalities (reading and spelling) (De-Torres et al., in 

press), a dissociation already reported in other patients with “deep” disorders 

(e.g., Miceli et al., 1994; Jefferies et al., 2007). Analysis of further cases is clearly 

needed to examine whether or not interactions between phonological and lexical-

semantic systems in crossed CA are dysfunctional. 

If we accept that JAM, and the two previously published cases, EDE (Berndt et 

al., 1991) and JNR (Berthier et al., 2011) had limited access to meaning at least 

during sentence comprehension and repetition, the question arising now is which 

neural mechanisms are dysfunctional. Analysis of available brain images in this 

case and the outline of white matter tracts with the aid of a fiber tract atlas (Catani 

& Thiebaut de Schotten, 2012) in JAM and DTI analysis revealed that cortical and 

subcortical lesions unfailingly compromised the right dorsal (AF) and ventral 

auditory processing streams (IFOF) in all cases. DTI in JAM disclosed damage 

to the right long direct segment of the AF and IFOF with relative sparing of the 

anterior indirect and posterior segments, together with fully developed left AF and 

IFOF. The role of the dorsal language stream system (AF/SLF) is to monitor 

auditory-motor integration of speech by allowing a fast and automated 

preparation of copies of the perceived speech input (Saur et al., 2008; Peschke 

et al., 2009; Rijntjes et al., 2012). Some components of this long-distance bundle 

have also been linked to attention and short-term maintenance of phonological 

traces (Majerus, 2013). The ventral language pathways (inferior longitudinal 

fasciculus, IFOF and uncinate fasciculus) participate in comprehension by 

mapping sounds onto meaning (Saur et al., 2008; Peschke et al., 2009; Weiller 

et al., 2011; Cloutman, 2012) although the precise functional role of every tract is 

still controversial (Duffau et al., 2009; Harvey et al., 2013). These white matter 
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bundles are engaged in different language functions (Hickok & Poeppel, 2004; 

Rolheiser et al., 2011; Weiller et al., 2011; Cloutman, 2012; Friederici & Gierhan, 

2013) although they interact in a synergistic way (Rolheiser et al., 2011; 

Cloutman, 2012; Majerus et al., 2012; Majerus, 2013), so that phonological 

sequencing and articulation from the dorsal stream operate in concert with the 

semantic information from the ventral stream to guarantee efficient production 

and comprehension of language (Turken & Dronkers, 2011; Cloutman, 2012; 

Friederici & Gierhan, 2013; Rijntjes et al., 2012). Therefore, impaired sentence 

comprehension and repetition of non-words, word lists and sentences in JAM 

may be ascribed to the simultaneous damage to the ventral (AF) and dorsal 

(IFOF) streams. 

JAM, and the two previous cases, EDE and JNR (Berndt et al., 1991; Berthier et 

al., 2011) also had variable cortical involvement which definitely contributed to 

the observed deficits. Right temporo-parietal involvement (large in EDE and JRN 

and mild to moderate in JAM) was heterogeneous but consistently involved the 

right ventral temporal cortex encompassing the temporal stem and its adjoining 

auditory and visual white matter tracts. Comprehension deficits in acute (Naeser 

et al., 1982; Kümmerer et al., 2013) and chronic aphasia (Alexander et al., 1989b; 

Sharp et al., 2004) have been correlated with dysfunction of ventral temporal 

cortex and interruption of long-distance association (ventral stream—IFOF) and 

commissural (anterior commissure) cortico-cortical pathways (Sharp et al., 2004; 

Warren et al., 2009; Turken & Dronkers, 2011; Weiller et al., 2011; Cloutman, 

2012; Friederici & Gierhan, 2013). Functional neuroimaging and brain stimulation 

studies also found that the basal temporal cortex, frontal operculum and the 

ventral stream are strongly engaged in lexical-semantic and syntactic processing 
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(Nobre et al., 1994; Sharp et al., 2004; Warren et al., 2009; Rolheiser et al., 2011; 

Friederici & Gierhan, 2013; Koubeissi et al., 2012; Weiller et al., 2011). In 

consonance with these data, our patient and the two previously published cases 

(Berndt et al., 1991; Berthier et al., 2011) had auditory and written comprehension 

preserved for single words but not for sentences presented in these input 

modalities. The basal ganglia components of the lesions in our patient involved 

the anterior commissure (Warren et al., 2009; Catani & Thiebaut de Schotten, 

2012) and probably interrupted functional connectivity between homologous 

regions of the anterior and medial temporal cortex, thus preventing access to 

meaning in the left temporal cortex during sentence comprehension/production 

(Umeoka et al., 2009; Warren et al., 2009). 

In addition, tissue damage to the right basal temporal cortex is highly likely to 

disrupt its reciprocal connectivity with the posterior-superior temporal gyrus 

further hampering phonological processing (Ishitobi et al., 2000; Koubeissi et al., 

2012). Therefore, it seems that damage to these structures might have impeded 

in our patient a compensatory recruitment of the lexical-semantic system in the 

service of repetition as in usually observed in patients with chronic CA and left 

hemisphere damage. 

LIMITATIONS 

One important shortcoming of our study is that formal language evaluations could 

be performed only in the chronic period. This precluded determining whether 

some functions were spared (e.g., single word comprehension) because they 

were unaffected by tissue damage or whether they were abnormal in the early 

stages and recovered later on reflecting the action of compensatory mechanisms 
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associated with either brain reparation or the recruitment of alternative brain 

areas. Future studies in aphasic patients like the ones described here should be 

longitudinal, initiated soon after brain damage, and complemented with 

multimodal imaging (e.g., fMRI, arterial spin labeling, positron emission 

tomography) to evaluate dissociation of language functions and also to rule out 

remote effects in the contralateral hemisphere. 

CONCLUDING REMARKS 

In conclusion, our findings reveal that patients with crossed CA and right 

striatal/capsular lesions extending inferiorly to the temporal stem and IFOF and 

superiorly to the AF and white matter beneath the supramarginal gyrus may show 

limited access to lexical-semantic information during word list and sentence 

repetition. Interruption of the long direct segment of the right AF might account 

for the abnormal performance in word and non-word repetition. Damage to the 

right ventral stream (IFOF) running between the insular cortex and putamen 

might be responsible from the impairment of the lexical-semantic and syntactic 

processing necessary for accurate sentence comprehension and repetition. In 

addition, the involvement of the right basal temporal cortex (temporal stem, basal 

language area) may have severed commissural pathways (anterior com- 

missure) disrupting functional connectivity with its homologous counterpart 

further limiting the access to meaning during sentence 

comprehension/production (Umeoka et al., 2009; Warren et al., 2009) and also 

with the posterior-superior temporal gyrus disturbing phonological processing 

(Ishitobi et al., 2000; Koubeissi et al., 2012). Further analysis of individuals with 

right hemisphere language dominance is needed to enhance our understanding 

on the role of white matter tracts in language repetition. 
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STUDY 3: Cholinergic potentiation and audiovisual repetition-imitation therapy 

improve speech production and communication deficits by inducing structural 

plasticity in white matter tracts. 

Reference: De-Torres I., Berthier M.L., Paredes-Pacheco J., Poé-Vellvé N., Thurnhofer-Hemsi 
K., López-Barroso D., Torres-Prioris M.J., Alfaro F., Moreno-Torres I., Dávila G. (2017). 
Cholinergic potentiation and audiovisual repetition-imitation therapy improve speech production 
and communication deficits by inducing structural plasticity in white matter tracts. Frontiers in 
Human Neuroscience (in press). 

 

Abstract - Study 3 

We studied longitudinal brain changes in grey matter and white matter tracts in a 

right-handed male (JAM) with chronic CA and a right subcortical lesion (crossed 

aphasia) treated with two different interventions. A single-patient, open-label 

multiple-baseline design incorporating two different treatments and two 

posttreatment evaluations was used. The patient received an initial dose of DP 

(5 mg/day) which was maintained during 4 weeks and then titrated up to 10 

mg/day and administered alone (without aphasia therapy) during  eight weeks 

(Endpoint 1). Thereafter, the drug was combined with an audiovisual repetition-

imitation therapy (Look-Listen-Repeat - LLR) (1 hour/day) during 2 months 

(Endpoint 2). Language evaluations, DTI and voxel-based morphometry (VBM) 

were performed at baseline and at both endpoints in JAM and once in 21 healthy 

controls males. Treatment with DP alone and combined with LLR induced marked 

improvement in aphasia and communication deficits as well as in selected 

measures of connected speech production, and verbal repetition. The obtained 

gains in speech production remained well-above baseline scores even four 

months after ending combined therapy. Longitudinal DTI showed structural 

plasticity in the right frontal aslant tract (FAT) and direct segment of the AF 
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(DSAF) with both interventions. No favourable structural changes were found in 

other white matter tracts nor in cortical areas linked by these tracts. In conclusion, 

cholinergic potentiation alone and combined with a model-based aphasia therapy 

improved language deficits by promoting structural plastic changes in the right 

white matter tracts. 

Introduction - Study 3 

The term structural plasticity refers to the brain's ability to actually change its 

physical structure after repeated practice (Zatorre et al., 2012; Fridriksson and 

Smith, 2016). Very few studies have explored structural plasticity promoted by 

intensive therapy or non-invasive brain stimulation in aphasia (Zipse et al., 2011; 

Allendorfer et al., 2012; Wan et al., 2014). The preliminary evidence suggests 

thatlocation of structural plastic changes is not random as it probably depends 

upon the type of therapy (i.e., intensive MIT targets the right AF) (Schlaug et al., 

2009; van Hees et al., 2013; Fridriksson & Smith, 2016). However, there are no 

studies exploring whether structural plasticity can be enhanced combining a 

cognitive-enhancing drug and intensive therapy in chronic aphasia. Here, we 

reporta significant improvement ofaphasia severity, everyday communication and 

speech production (fluency and repetition) in a strongly right-handed male patient 

(JAM) with chronic CA and a right subcortical haemorrhage (crossed aphasia) 

while he received the cholinergic agent DP and intensive audiovisual repetition-

imitation therapy. Longitudinal brain changes examined with DTI and VBM 

revealed plastic changes in both the right FAT and the DSAF. 

The key role of cortical areas in speech production and communication deficits in 

aphasia is undisputed (Baldo et al., 2006; Borovsky et al., 2007). Nevertheless, 
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the current notion is that spoken language in normal and pathological conditions 

depend on large-scale networks that orchestrate the activity of specific brain 

regions via long-range white matter connections (see Simonyan et al., 2016; 

Halai et al., 2017). The impetus to examine structural plasticity in white matter 

tracts in JAM comes from findings of recent neuroimaging studies of white matter 

pathways underpinning speech production. A major contribution of two tracts 

(FAT and anterior segment of the AF - ASAF) to speech fluency together with 

other components of the speech production network has been demonstrated 

(Fridriksson et al., 2013; Basilakos et al., 2014). The FAT is a newly identified 

pathway in post-mortem dissections (Vergani et al., 2014), direct 

electrostimulation (Vassal et al., 2014), and DTI (Klein et al., 2007; Ford et al., 

2010; Catani & Thiebaut de Schotten, 2012, Catani et al., 2013, Kronfeld-Duenias 

et al., 2014; Broce et al., 2015). The FAT directly connects the pre-supplementary 

motor area (pre-SMA), SMA and anterior cingulate areas with the pars 

opercularis of the inferior frontal gyrus (Catani et al., 2013; Vergani et al., 2014). 

Regarding the functions of cortical areas linked by the FAT, the pre-SMA is 

related to linguistic processing and cognitive control (Catani et al., 2013; Hertrich 

et al., 2016), whereas the SMA proper participates in speech motor control 

(initiation, coordination and speech monitoring) (Laplane et al., 1977; Crosson et 

al., 2001; Alario et al., 2006; Hertrich et al., 2016). The pre-SMA and SMA 

participate on planning and motor initiation and interact with the executive motor 

cortex via the basal ganglia (motor loop) and thalamus (Bohland et al., 2006, 

2009). Lesion mapping studies show that damage to medial frontal cortex (pre-

SMA and SMA) interrupting (or not) the FAT has been associated with speech 

arrest (Martino et al., 2012), reduced speech fluency (Catani et al., 2013; 
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Balisakos et al., 2014; Kronfeld-Duenias et al. 2014), and impaired morphological 

derivation of verbs (Sierpowska et al., 2015). Another white matter tract 

implicated in speech fluency is the ASAF, which links the inferior parietal lobe 

with an inferior frontal region important for planning speech production (Marchina 

et al., 2011; Fridriksson et al., 2013; Basilakos et al., 2014; Pani et al., 2016). 

However, the AF has traditionally been related to verbal repetition (Geschwind, 

1965), although it may be divisible into three segments which support different 

functions. Verbal repetition has been linked with the activity of the long segment 

and the posterior segment of the AF (Saur et al., 2008; Catani & Thiebaut de 

Schotten, 2012), whereas its anterior segment has been related to speech 

production and conversation (Catani et al., 2013).Despite that the ASAF overlap 

with the FAT in the deep region beneath the Brodmann’s area 6, it has been 

suggested that damage to the ASAF and the FAT plays an independent yet 

synergistic deleterious effect on speech fluency in brain damaged subjects 

(Basilakos et al., 2014).The role of the uncinate fasciculus in speech fluency is 

more controversial (see Fridriksson et al., 2016; Basilakos et al., 2014; Hope et 

al., 2016). 

An important question that now arises is whether the structure of these white 

matter tracts can be successfully modified with biological approaches (drugs, 

non-invasive brain stimulation) and model-based aphasia therapies. Brain 

remodeling promoted by intensive aphasia therapiesis increasingly studied with 

neuroimaging methods. Intervention studies used repetition training in the 

presence of a picture (Heath et al., 2012) or embedded in MIT (Sparks et al., 

1974; Schlaug et al., 2009; Zipse et al., 2012) and CIAT (Pulvermüller et al., 2001; 

Breier et al., 2011) with the aim of activating the remnants of left white matter 
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pathways (AF) and/or to stimulate the compensatory activity of their homologues 

counterparts in the right hemisphere when the left ones are enduringly damaged. 

Improvements were found in picture naming (Heath et al., 2013; van Hees et al., 

2013) and speech production (Schlaug et al., 2009; Breier et al., 2011; Zipse et 

al., 2012) and attributed to therapy-promoted strengthening of auditory-motor 

assemblies or semantic-phonological connections in the right hemisphere (Zipse 

et al., 2012; Heath et al., 2012). The effectiveness of rehabilitation to improve 

aphasia outcomes is often limited, particularly in patients with extensive damage 

to the language areas. Therefore, biological therapies (drugs and non-invasive 

brain stimulation) are increasingly used to augment and accelerate the benefits 

provided by aphasia therapy. In previous studies, gains in speech production 

have been augmented combining model-based aphasia therapies and excitatory 

repetitive transcranial magnetic stimulation (rTMS) (Al-Janabi et al., 2014; see 

also Restle et al., 2012), excitatory (anodal) transcranial direct current stimulation 

(anodal-tDCS) (Vines et al., 2011) and cognitive-enhancing drugs (Berthier et al., 

2014).  

Drug therapy plays animportant role in the treatment of language deficits in 

chronic stroke patients with aphasia (Berthier & Pulvermüller, 2011; Berthier et 

al., 2011; Llano & Small, 2016). Berthier et al. (2014) used massed sentence 

repetition therapy (40 hours) to treat three patients with chronic post-stroke CA 

and large left hemisphere lesions who were receiving a cholinergic agent (DP). 

This combined intervention augmented and speeded up benefits in speech 

production deficits previously obtained in these patients with DP and distributed 

speech language therapy (40 hours) (Berthier et al., 2014). In recent years, 

however, speech pathologists recognize that auditory repetition practice alone is 
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not enough to promote manifest benefits in everyday language activities and 

functional communication (Lee et al., 2010; Fridriksson et al., 2012; 2013). 

Therefore, repetition-imitation of audiovisual stimuli have been used to treat 

aphasia (Lee et al., 2010; Fridriksson et al., 2012; 2013; Heath et al., 2012, 2013). 

The rationale behind two recently developed therapies namely Intensive Mouth 

Imitation and Talking for Aphasia Therapeutic Effects (IMITATE) (Duncan & 

Small, 2016) and Speech Entrainment (Fridriksson et al., 2012, 2013) is using 

action observation and imitation of visual and auditory stimuli to enhance the 

activity of bilateral parietal-frontal pathways (audiovisual mirror neurons) (Mashal 

et al., 2012; Duncan & Small, 2016) and ventral language streams (Fridriksson 

et al., 2012, 2013). The idea behind these therapies was taken as a basis to 

develop our method called “Look, Listen and Repeat” (LLR) 

(www.repiteconmigo.es) to improve speech production deficits and 

communication in JAM. 
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Methods - Study 3 

CASE DESCRIPTION 

PATIENT JAM 

JAM was a 46-year-old right-handed, monolingual male with no history of 

neurological disease, no family history of left-handedness, and normal 

developmental milestones (see further details in De-Torres et al., 2013). His 

personal history was remarkable for hypertension and type II diabetes. He 

suffered a right striatal-capsular haemorrhage associated with global aphasia, left 

hemianopia, and dense left hemiparesis with impaired sensation. According to 

the hospital report, as inpatient JAM suffered a single epileptic attack and at the 

time of discharge (15-days post-onset) he had fluent jargon aphasia and impaired 

comprehension. Reading and writing were also severely impaired. Four-months 

post-onset (one year before entering the drug trial), he was depressed with a 

tendency to social withdrawal (Hamilton Depression Rating Scale score: 14 - 

Hamilton, 1960). A treatment with escitalopram (20 mg/day) was associated with 

an improvement of depressive symptoms in the next few months. The first formal 

evaluation of JAM in the Unit of Cognitive Neurology and Aphasia wasperformed 

16 months after the haemorrhage. By that time, he showed a dense left 

hemiparesis (Fugl-Meyer Scale: left upper limb: 5/66; left lower limb: 7/34) (Fugl-

Meyer, 1975), mild mobility problems (Rivermead Mobility Index: 13/15) (Collen 

et al., 1991) and moderatedependency for activities of daily living (bathing, 

dressing, feeding, and grooming) (Barthel dependency index: 50/100-Mahoney 

and Barthel, 1965). In spite of having a large right subcortical lesion, he did not 

show anosognosia or neglect. On the Stroke Aphasia Quality of Life 39 (SAQoL-
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39) (Hilari et al., 2003) he obtained an average score of 2.28 (physical 2.23, 

communication 3; psychosocial 1.8, and vitality 2). 

STUDY DESIGN 

A single-patient, open-label multiple-baseline design in corporating two treatment 

and two posttreatment evaluations was used (Figure 5). The design used was an 

A-B-BC-D1-D2. Following the establishment of a stable baseline (A), the patient 

received DP 5 (mg/day) during 4 weeks and then the dose was increased (10 

mg/day) during 12 weeks without speech-language therapy in either phase (B). 

Thereafter, the patient continued with DP (10 mg /day) combined with LLR 

therapy (BC). After ending combined therapy, there were two washout periods of 

both DP and LLR (D1-D2). These effect sizes relate to the phase comparisons of 

A-B (baseline to the first intervention phase - week 0 vs week 16), B-BC (the first 

treatment phase to second treatment phase - week 16 vs week 28), BC-D1 (the 

combined treatment to the first posttreatment evaluation - week 28 vs week 36), 

BC to D2 (the combined treatment to the second posttreatment evaluation - week 

28 vs week 44). Language evaluations were performed at baselines (week 0), 

endpoints B (week 16) and BC (week 28) and at follow-ups (week 36 and week 

44). Other pharmacological treatments (escitalopram, losartan and sitagliptin/ 

metformin, omeprazole, baclofen, and levetiracetam) were kept unchanged 

during the trial. The study was performed according to the Declaration of Helsinki 

and the protocol was approved by the Local Community Ethics Committee for 

Clinical Trials and the Spanish Medical Agency. This single case study was 

conducted as part of an independent research project funded by Pfizer/Eisai, 

Spain and it was designed, conducted and controlled by the principal investigator 

(MLB). The study was registered with EudraCT number 2008-008481-12. 
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Figure 5. Study 3 design. A single-patient, open-label multiple-baseline design in corporating two 

treatment and two posttreatment evaluations was used. Following the establishment of a stable baseline, 

the patient received DP 5 (mg/day) during 4 weeks and then the dose was increased (10 mg/day) during 12 

weeks without speech-language therapy in either phase. Thereafter, the patient continued with DP (10 mg 

/day) combined with LLR therapy. After ending combined therapy, there were two washout periods of both 

DP and LLR. 

 

DRUG TREATMENT 

The drug used was DP (orally disintegrating tablets of 5 mg and 10 mg). The 

dose of DP of 10 mg/day represents the dose used in well-designed studies of 

post-stroke aphasia (Berthier et al., 2006; Woodhead et al., 2017). Compliance 

was determined at every visit by tablet counts. DP tablets were provided by 

Pfizer/Eisai, Spain. The detection of potential adverse events was monitored 

during the trial. 
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APHASIA THERAPY 

STIMULI SELECTION PROCEDURE 

All sentences included in the Look-Listen-Repeat (LLR) therapy 

(www.repiteconmigo.es) were composed of words of high frequency, high 

imageability, and predictability with an increasing length and grammatical 

difficulty. Individual words were selected from LEXESP (Léxico informatizado del 

español -Sebastián-Gallés et al., 2000). Sentences included words belonging to 

highly familiar semantic categories for both nouns (food, animals, places, 

transport, nature, household objects, everyday objects, nature, body parts, 

clothing, professions, ages, gender, family) and adjectives (colours, sizes, 

appearances, character). Three levels of difficulty were developed and there 

were several lists. The first level of difficulty contained three lists of 30 sentences 

construed with the following sentence structure: subject-verb (i.e,, "The child 

runs"); verb-direct object (i.e., "Give me the bread"), and copulative sentence 

(i.e., "The child is nice”). The second level consists of four lists of 50 sentences 

each with sentences like: subject-verb-object (i.e., "The boy stood on a chair"), 

noun-adjective-verb (i.e, "The child runs nice"); and temporal/spatial 

complements: (i.e.,"The child comes tomorrow"). It was planned a more complex 

third level that was not used with JAM because the second level was challenging 

enough to him and permitted a good working level. For the third level, a list of 25 

more complex sentences was construed including frames like: (i.e., "The boy who 

lives here is friendly") and sentences with subordinate clauses with thought verbs 

(i.e., "Angel believes that her mother will not come") and temporal subordinate 

clauses (i.e., "I’ll get it when I go home"). 
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AUDIOVISUAL RECORDINGS 

Five adult healthy subjects of both sexes and varying ages (three females and 

two males, age range: 20-50 years) collaborated in recording the audiovisual 

stimuli. All five speakers were native speakers from Spanish. Only the speaker’s 

upper body and head were recorded, and the hands were specifically excluded 

from the recordings. Each speaker was centered in the frame for all stimuli. The 

speakers were instructed to say the words and phrases as they would occur in 

everyday language. Speakers were told to start and end each clip with the mouth 

closed, looking directly at the camera. It was very important that the stimuli be as 

ecological as possible. For each stimulus, after the speaker appears, there is a 

brief delay before the initiation of speech, followed by production of the word or 

phrase and finally a brief delay after the speaker has completed voicing of the 

word.  

TREATMENT PROCEDURE 

In the baseline assessments it was noted that JAM presented no difficulty in 

repeating single words and some nonwords, showing variable difficulty with the 

repetition of two-word and three-word lists and sentences (see De-Torres et al., 

2013). Therefore, the aphasia therapy program was tailored to treat the greater 

JAM’s difficulty: sentence repetition (see Salis et al., 2015; Eoma & Sunga, 2016) 

with the aim of improving speech fluency (Kohn et al., 1990). The therapy was 

called Look-Listen-Repeat (LLR). Repetition task was developed by videotaped 

lists of sentences. JAM saw the face of a person in a videotape saying a sentence 

to the camera, and then he had a time of five seconds to repeat the prayer. The 

patient get both phonological and audio-visual input of oral and facial mimicry. 
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The lists presented 50 sentences each, except the first introductory three 

sentences (Level I) that were shorter (30 sentences). The average number of 

words per sentence in Level I was 4.46 and 6.10 in Level II. JAM was asked to 

repeat each list at least twice in the morning and twice in the afternoon. JAM was 

evaluated weekly in the execution of the therapy. The list were changed weekly 

when the objective was achieved (90% of stimuli were well-repeated). JAM was 

supposed to train sentence repetition unless 20 minutes twice a day for a period 

of 20 weeks. It was not planned for JAM training with lists of sentences with 

delayed repetition, because repeating withoutdelay posed a sufficient degree of 

difficulty for him. 

BASELINE TESTING 

Language and communication were assessed in two occasions before initiating 

treatment. The first linguistic evaluation was performed in September 2011 (at 

the end of general cognitive testing) (see De-Torres et al., 2013), whereas the 

second linguistic evaluation was performed in April 2012.  JAM patient did not 

receive any type of speech and language therapy between the first and second 

baseline evaluations.  
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OUTCOME MEASURES 

APHASIA SEVERITY 

The severity of aphasia was rated at baseline and at two different time points 

using the WAB - Aphasia Quotient (WAB-AQ). Two further evaluations were also 

carried out after ending both treatments. The WAB-AQ is a measure of aphasia 

global severity, which is sensible enough to detect longitudinal changes after 

treatment of post-stroke aphasia with different cholinergic agents (Berthier et al., 

2006; Chen et al., 2010; Hong et al., 2012; Yoon et al., 2015). Increases in the 

WAB-AQ scores ≥ 5 at the two endpoints (B and BC) and two washouts (D1 and 

D2) in comparison to baseline (A) were considered positive responses to the 

interventions (Cherney et al., 2010; Berthier et al., 2011).  

COMMUNICATION IN ACTIVITIES OF DAILY LIVING 

Communication in activities of daily living was assessed with the Communicative 

Activity Log (CAL) (Pulvermüller & Berthier, 2008). The CAL was completed by 

the spouse of JAM in the presence of one member of the research team in order 

to clarify potential misunderstanding of questions’ content or scoring. The CAL is 

composed of 36 questions divided in two parts that address quality of 

communication (e.g., ‘‘How well would the patient verbally express criticisms or 

make complaints?’’) and amount of communication (e.g., ‘‘How frequently would 

the patient verbally express criticisms or make complaints?’’). The CAL’s quality 

of communication score is obtained by summing up scores for items 1-18. The 

amount of communication score is obtained by summing up scores over items 

19-36. Scores range from 0 to 180 and high scores indicate better everyday 

communication. In previous intervention studies, the CAL has been found to be 
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sensible enough to detect beneficial longitudinal changes (Berthier et al., 2009; 

Difrancesco et al., 2012; Kurland et al., 2012; Mohr et al., 2016).  

SPEECH PRODUCTION 

To examine connected speech production, speech samples in one baseline, two 

treatment and two post-treatment phases were obtained from the Picnic Scene 

picture description of the WAB during a time limit of 5 minutes with the same 

methodology used in other patients with CA and treated with a similar therapy 

(Berthier et al., 2014). All descriptions were audiotaped and transcribed by one 

of us (MLB).  There are no fully accepted rules for rating verbal production during 

picture description in aphasia. Although measures to rating spontaneous speech 

(fluency and information content) of the WAB have been used in previous studies 

(Basilakos et al., 2014) there is general agreement that these measures are to a 

certain extent unreliable. In the present case, speech samples were analyzed 

using a more reliable methodology (Nicholas & Brookshire, 1993; Marchina et al., 

2011; Zipse et al., 2012; Wang et al., 2013, Berthier et al., 2014). The following 

metrics were examined: number of words, number of words/minute (speech rate), 

correct information units (CIU) and percentage of CIUs.  A CIU is defined as as 

non-redundant content words that convey correct information about the stimulus 

(Nicholas & Brookshire, 1993). To be classified as CIUs, words should be not 

only intelligible in context, but also accurate, relevant and informative with respect 

to the stimulus (Nicholas & Brookshire, 1993). Meaningless utterances, 

perseverations, paraphasias and other inappropriate information (exclamations) 

were counted as words, but not classified as CIUs. The percentage of correct 

information units (%CIU) was established using the following formula:  number of 

CIUs/number of words x 100.  
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REPETITION 

WORDS AND NONWORDS 

Repetition of words and nonwords was evaluated with test 9 (Repetition: 

Imageability x Frequency) of the PALPA (Kay et al., 1992; Valle & Cuetos, 1995). 

This test contains 80 words and 80 non-words presented in a mixed fashion. 

Words were grouped in four lists (20 items in each list) with variations in 

frequency and imageability. The lists contained high-frequency / high-

imageability, high-frequency / low-imageability, low-frequency / high-imageability, 

and low-frequency / low-imageability words. These lists were matched for syllable 

length; items contained between one and four syllables. The non words were 

matched to the words for phonological complexity. 

SENTENCES 

Repetition of sentences was tested with test 12 (Repetition: Sentences) from the 

PALPA battery (Kay et al., 1992; Valle & Cuetos, 1995). This task evaluates the 

ability to repeat auditorily-presented sentences (n = 36) of different length (from 

5 to 9 words). It is composed of reversible sentences (n = 20) and non-reversible 

(n = 16) sentences. 

IDIOMATIC PHRASES AND NOVEL PHRASES 

Since the production of idiomatic expressions (also called formulaic language) 

primarily depends on the activity in right-hemisphere neural networks (cf. Berthier 

et al., 2014; Stahl & Van Lancker Sidtis, 2015), a set of familiar idiomatic Spanish 

sentences (clichés) (n = 40) taken from the 150 Famous Clichés of Spanish 

Language (Junceda, 1981) was used in repetition. Moreover, previous studies on 
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CA revealed a dissociation in the ability to repeat clichés as compared to novel 

sentences (McCarthy & Warrington, 1984). Therefore, a control a set of novel 

sentences (n = 40) matched with the idiomatic phrases was also tested for 

auditory repetition (Berthier et al., 2014). For example, for the idiomatic cliché: 

“Me lo dijo un pajarito” (“A little bird told me”) the novel control phrase: “Me lo dijo 

mi compadre” (“My friend told me”) was created. 

NEUROIMAGING 

IMAGE ACQUISITION 

MRI data were acquired on a 3-T MRI scanner (Philips GyroscanIntera, Best, The 

Netherlands) with an eight-channel Philips SENSE head coil. Head movements 

were minimized using head pads and a forehead strap.  

High-resolution T1 structural images of the whole brain were acquired for the 

patient JAM at three time points: Baseline, (week 0), DP (week 12) and 

DP+therapy (week 28). The T1-weighted scans were also obtained for 22 healthy 

control subjects, matched with JAM by sex (all controls were male) and age 

(mean age: 33.05 ± 10.03 years; range: 22-59 years). The acquisition sequence 

was three-dimensional magnetization prepared rapid acquisition gradient echo 

(3D MPRAGE), with the following parameters: acquisition matrix, 268/265; field 

of view, 224 mm; repetition time (TR), 9.2 ms; echo time (TE), 4.2 ms; flip angle, 

8º ; turbo field echo (TFE) factor, 200; reconstruction voxel size, 0.68 mm × 0.68 

mm × 0.8 mm. Two hundred and ten contiguous slices were acquired, with 0 mm 

slice gap. The total acquisition time of the sequence was about 3 min.  

DTI data acquisition was performed for the patient at the three aforementioned 

time points, using multi-slice single-shot spin-echo echo planar imaging (EPI) 
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with specific parameters as follows: FOV = 224 mm x 224 mm x 120 mm, 2 mm 

thick slices with no gap, TE = 117 ms, TR was about 12500 ms, reconstruction 

matrix = 128 voxels x 128 voxels, 32 diffusion directions with b = 3000 s/mm2, 

EPI echo train length: 59. 

DIFFUSION WEIGHTED IMAGING (DWI) 

DWI data were analysed using FSL, MRtrix3 v0.3.15 (http://www.mrtrix.org/), 

NiBabel v2.1 (http://nipy.org/nibabel/) and Trackvis software packages. The data 

was denoised using MRtrix3. Motion and eddy current correction were perfomed 

using FSL. The estimated movements of the participants never exceeded 2 mm 

or 1.5º in any direction.  A brain mask was generated using FSL. After that, the 

reconstruction and tracking of FAT and AF were carried out with MRtrix3 by 

combining the Constrained Spherical Deconvolution (CSD) reconstruction 

method (Tournier et al., 2007) with probabilistic streamlines tractography 

(Tournier et al., 2010; Tournier el al., 2012). This significantly reduces the 

crossing fiber problem in diffusion images (Tournier et al., 2008). The main 

parameters used were:  mask = whole brain mask, tracking algorithm = iFOD2, 

number of generated streamlines = 1.000.000. Also, in the case of FAT, the seed 

image was a 25 mm radius sphere in the pre-supplementary/supplementary 

motor area (pre-SMA and SMA), and in the case of AF was a 20mm radius sphere 

in the inferior parietal lobule. 

NiBabel was used to transform the obtained tractograms into a readable format 

for Trackvis, which allowed a flexible 3D visualization of the tracts. In particular, 

the output of tractography generation and the b0 image were used to generate 

the tract-files using tck2trk tool in NiBabel. Trackvis was used to visualize the 
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tract-files. The FAT was examined using spheres in the posterior inferior frontal 

gyrus, pars opercularis (IFGOp) and pre-SMA/SMA to isolate the right and left 

aslant tracts (Catani & Thiebaut de Schotten, 2012). The segments of the AF 

were examined using three ROIs in the Broca’s, Wernicke’s and Geschwind’s 

areas (Catani & Thiebaut de Schotten, 2012). Spurious fibers were removed from 

the tracks by using an additional avoidance ROI (logical NOT operation). The 

FAT and the AF were dissected in both cerebral hemispheres. 

WHITE MATTER VOXEL-BASED MORPHOMETRY 

VBM analysis was performed using statistical parametric mapping (SPM12), 

(http://www.fil.ion.ucl.ac.uk/spm/), running on MATLAB R2013b (Mathworks Inc., 

Natick, MA, USA). All T1 structural images were AC-PC oriented. A lesion mask, 

drawn over the T1-weighted images of JAM for each time point, was applied to 

T1 images of the patient. Then, the T1-weighted images were segmented into 

grey matter, white matter and cerebrospinal fluid tissue classes. They were 

normalized into the MNI space with modulation option and smoothed with an 8 

mm FWHM kernel. The lesion masks were also normalized. A mask of the FAT 

and another of the AF were generated using Trackvis v0.6.0.1 

(http://www.trackvis.org/). In the case of FAT, the mask was based on the 

diffusion images (see next section) obtained at the third time point. In the case of 

the AF, the left direct segment, the left posterior segment, the right posterior 

segment and the right anterior segment were selected from the first time point, 

and the right direct segment and the left anterior segment were obtained from the 

second time point. In all cases, the chosen tracts were those with larger volume 

and better definition. These masks were coregistered to each of the three T1-

weighted images of the patient. To do so, the b0 image used to derive the mask 
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was coregistered to each T1 scan using the FLIRT and FNIRT commands of FSL 

v5.0.9 (http://www.fmrib.ox.ac.uk/fsl/). The obtained transformations were then 

applied to the masks. The coregistered masks were normalized into the MNI 

space by applying the forward deformation field of each T1-weighted image. The 

final masks were generated subtracting the lesion from the normalized FAT 

masks and from the normalized AF masks. The white matter segment of each 

time point was then compared to the white matter segments of the controls in a 

VBM analysis. Only the areas of FAT and AF were studied, applying small volume 

correction (SVC) with the normalized masks for each time point. The applied 

contrast was Control > JAM. The contrast JAM > Control did not yield any 

significant results.  
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Results - Study 3 

LANGUAGE AND COMMUNICATION FINDINGS 

Two baseline assessments revealed stable deficits in language (WAB-AQ, 

baseline 1: 78.8; baseline 2: 79.6) and everyday communication (CAL total, 

baseline 1: 113; baseline 2: 113) so that it seemsthat the benefits obtained in 

JAM were the direct effect of both treatments. A progressive improvement in both 

the WAB-AQ and CAL scores was observed at the twoendpoints. Moreover, 

these benefits remained well-above baseline scores in the two washout 

evaluations performed several weeks after ending both interventions (Table 7, 

Figure 6). On the WAB-AQ scores, a measure of aphasia severity, treatment with 

DP alone (week 12) was associated with a gain of 8.7 points relative to baseline 

assessment (p = 0.008) , an increment that allows classifying JAM as a responder 

to the drug (Cherney et al., 2010; Berthier et al., 2011). A further increment on 

the WAB-AQ (10.4 relative to baseline) when this dose of DP was combined with 

intensive and prolonged LLR therapy (week 28, p = 0.002). However, although 

scores on the WAB-AQ were higher with DP-LLR than with DP alone, this 

difference did not reach statistical significance (p =0.500). These gains remained 

stable in the first posttreatment evaluation (week 36, gain in AQ: 8.1, p = 0.008 

compared to baseline) but not in the second posttreament testing (week 44, gain 

in AQ: 4.9, p = 0.125compared to baseline). Several verbal subtests of the WAB 

contributed to increase the AQ scores in the two endpoints, most notably 

(comprehension and repetition).  

The CAL’s total and the two subscales (quality and amount of communication) 

showed significant increases in comparison with baseline under treatment with 
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DP alone (10 mg/day, week 16) (all p= 0.0001) and when DP was combined with 

LLR therapy (all p= 0.0001). Moreover, scores on CAL’s total and the quality of 

communication subscaleimproved more with combined DP-LLR therapy (week 

28) than with DP alone (week 16) (both p = 0.016), but no changes were found 

in the amount of communication between these two endpoints (p = 0.100). The 

significant gains on CAL’s total score and on its subscales were maintained 

during the two washout evaluations (weeks 36 and 44) (both p = 0.0001).  

CONNECTED SPEECH PRODUCTION FINDINGS 

All four parameters improved throughout the trial (Table 7), yet the most 

noticeable gains were found under DP alone (week 0 to week 16). A mild 

decrease in all these parameters was found with combined DP-LLR (week 28) in 

comparison with DP alone (week 16). Improvements with both interventions 

remained well above baseline scores in the two washout evaluations performed 

several weeks after ending the trial. 
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Figure 6. The graphs depict performance on language (WAB-AQ) and everyday communication 
(Communicative Activity Log), four measures of speech fluency, and repetition of idiomatic clichés and 
novel phrases at baseline, two endpoints, and two washout periods. The most impressive beneficial changes 
in language and communication and in measures of speech fluency (number of words, number of words 
per minute, correct information units [CIU] and % of CIU) were observed with DP alone (week 0 vs. week 
16). As expected, the action of DPwas enhanced on repetition of clichés and novel phrases during 
audiovisual repetition-imitation training (week 16 vs. week 28). WAB-AQ indicates Western Aphasia 
Battery. See further details in text. 
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Table 7 | Performance of patient JAM on language, communication, speech fluency and repetition tasks at baseline, two 
endpoints and two washout evaluations. 

 

 
 

 
 

 
 

REPETITION  

Repetition of words (PALPA 9) showed significant improvements in the two 

endpoints (weeks 16 and 28) in comparison with baseline assessment (both p = 

0.031), but there were no differences between them (p = 0.100) (Table 7). 

Improvements were maintained in both posttreatment evaluations (weeks 36 and 

44) (both p< 0.005). No significant benefits were found in Sentence Repetition 

(PALPA 12) with either intervention. Treatment with DP alone (week 16) failed to 

improve repetition of idiomatic (clichès) phrases (p = 0.100), but there was a 

7A. Language and Communication 
Measures 

Baseline       DP-10 mg      DP-10/SLT   Washout-1    Washout-2    
(Wk 0)          (Wk 16)          (Wk 28)         (Wk 36)       (Wk 44)             

Western Aphasia Battery (WAB) 
   Aphasia Quotient (max = 100) 
      Fluency (max = 10) 
      Comprehension (max = 10) 
      Repetition (max = 10) 
      Naming (max = 10) 
  
Communicative Activity Log, total 
Frequency 
Quality 

 
79.6                  88.3                90.0                 87.7            84.5             
  8                       9                     9                       9                9                  
 8.5                  9.25                 9.4                   8.75            8.95     
  6                     7.4                  7.8                    7.7              8.4 
 8.9                   9.5                  9.8                    9.4              6.4 
 
112                  149                 156                    158            158             
  54                    76                  76                      77               77              
  59                    73                  80                      81               81                

 

7B. Speech fluency in connected speech 
Measures 

Baseline       DP-10 mg      DP-10/SLT     Washout-1   Washout-2     
(Wk 0)          (Wk 16)         (Wk 28)          (Wk 36)       (Wk 44)             

WAB - Picture description  
      Number of elements described 
      Number of words 
      Number of words/minute 
      Time (seconds) 
      Correct information units (CIU)        
      % CIU 
      CIU/minute 

 
14                     18                  20                     18                 18  
95                    156                150                   200               136 
76                    108                104                    94                110  
75                     86                 104                   128                74  
59                    144               109                   126                105 
51                     92                  73                     63                 77  
38                    100                 76                     59                 85  

 

7C. Repetition of words and sentences 
Measures 
 

Baseline       DP-10 mg      DP-10/SLT   Washout-1    Washout-2     
(Wk 0)         (Wk 16)           (Wk 28)       (Wk 36)         (Wk 44)             

Word repetition (n = 80) (PALPA 9) 
Sentences (PALPA 12) 
Idiomatic sentences (clichès) (max = 40) 
Novel sentences (max = 40) 

   69                  75                    75                  78                  79                     
     8                  11                    12                  10                  11   
     8                   9                     23                  21                 13                        
     9                  14                    28                   24                 20                                          
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strong trend for improvement in repetition of novel phrases (p = 0.063). The 

combined intervention with DP-LLR therapy (week 28) significantly improved 

JAM’s performance on repeating idiomatic clichés and novel phrases (both p = 

0.0001) and this intervention was significantly better than the treatment with DP 

alone (week 28 vs week 16; both tasks p = 0.0001). In addition, these gains 

remained stable in both posttreatment evaluations for novel sentence repetition 

(week 36: p = 0.0001; week 44: p = 0.001) and only at the first posttreatment 

evaluation for idiomatic clichés repetition (week 36, p = 0.0001) although there 

was a trend for improvement in this task at the second posttreatment evaluation 

(week 44, p = 0.063).  

NEUROIMAGING FINDINGS 

LESION LOCATION AND VOLUME 

The structural MRI showed a large deep lesion involving the putamen, part of the 

external pallidum, and anterior limb, genu, and posterior limbs of the internal 

capsulae (Figure 7). The lesion extended superiorly to the periventricular white 

matter (corona radiata). There also was tissue damage in the white matter 

surrounding the hippocampus and the middle temporal gyrus with posterior 

extension to the auditory and optic radiations in the temporal. The right posterior 

ventral and dorsal insular cortices and the periventricular white matter deep to 

the supramarginal gyrus were also damaged. It was noteworthy that although the 

initial MRI scan was obtained in the chronic period (16-months post-stroke onset) 

the volume of the lesion expanded in the third MRI (week 28 after study entry) 

due to enlargement of its more superficial components at the level of the insular 



	146	

cortex (Figure 8). The observed lesion expansion probably resulted from 

retraction of cortical temporal tissue due to focal post-stroke atrophy. 

 

Figure 7. Depiction of an old right subcortical haemorrhage on a T1-weighted MRI sequence.Axial (top 
row), sagittal (medial row) and coronal (bottom row) views in native space. The MRI showsanextensive 
lesion with a semilunar configuration involvingthe right striatum-capsular region extending into the 
surrounding white matter. See text for further details. The neurological convention is used. R: right. 

 

 

Figure 8. Depiction of the patient’s lesion mask in the timepoint 1 (BL) and in the timepoint 3 (DP + T) 
over the patient’s normalized sagittal T1-weighted image. The lesion mask drawn of the initial MRI (16 
months post-stroke onset) was larger in the third MRI (28 weeks after study entry) due to expansion of 
itssubinsular component. The observed lesion expansion probably resulted from retraction of cortical 
tissues due to focal temporal post-stroke atrophy (not shown). 
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DIFFUSION TENSOR IMAGING: TRACTOGRAPHY 

In vivo dissection using two ROIs approach of the FAT (Catani et al. 2012) 

revealed that this pathway was well-preserved in the right hemisphere in spite of 

the lesion (Figure 9). Volume was measured along the reconstructed FAT 

streamlines independently for right and left hemispheres. Volume measures 

along the three time points suggested an initial asymmetrical pattern of 

distribution which became more symmetrical across the next evaluations 

(Baseline: left FAT: 22.08ml; right FAT: 11.97ml; DP: left FAT: 19.29ml; right FAT: 

14.51ml; DP-LLR therapy: left FAT: 22.45ml; right FAT: 18.77ml). To confirm this 

finding, a lateralization index (LI) was calculated as follow: (Right vol. - Left vol.) 

/ (Right vol. + Left vol.). The LI has previously been used to assess microstructural 

differences in white matter pathways between the cerebral hemispheres (Catani 

et al., 2007; Lopez-Barroso et al., 2013). The LI ranges between −1 and +1, 

where negative values represent left lateralization, values around zero represent 

symmetrical distribution, and positive values a right lateralization. The patient´s 

FAT showed a LI = -0.29 in the baseline phase; LI= -0.14 in DP phase; and LI = 

-0.08 in DP-LLR therapy phase. Thus, the FAT showed a more symmetrical 

pattern of distribution after the combined DP-LLR therapy treatment, suggesting 

that the structural reorganization of this pathway was related to the intervention 

and the associated improvements in fluency.  
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Figure 9. Tractography reconstruction of the left and right frontal aslant tracts (FAT) on the coronal plane 
in the three different timepoints. White matter microstructural changes are observed in the FAT in the 
baseline (BL), after drug treatment with Donepezil (D) alone and after combined Donepezil andtherapy 
(D+T). At the top, the FAT is showed bilaterally overimposed on the T1-weighted patient´s image in native 
space. At the bottom, the FAT volume is plotted graphs for each hemisphere. Note that the volume pattern 
of the left FAT is more stable than the volume of the right FAT which increases progressively across the 
study phases.  Neurological convention is used. R. 

 

Virtual dissection of the AF was performed separately for the anterior, the 

posterior and the direct segments using a 2 ROIs approach in both hemispheres. 

The three segments of the AF were reconstructed bilaterally. Volume measures 

for the three segments along the three time points showed different patterns of 

symmetry (Baseline: left anterior segment: 16.45ml; left posterior segment: 

11.5ml;  left direct segment: 42.1ml; right anterior segment: 17.25ml; right 

posterior segment: 6.93ml;  right direct segment: 13.37ml; DP: left anterior 

segment: 18.8ml; left posterior segment: 9.21ml;  left direct segment: 39.86ml; 

right anterior segment: 13.53ml; right posterior segment: 2.94ml;  right direct 

segment: 16.59ml; DP-LLR therapy: left anterior segment: 16.6ml; left posterior 

segment: 8.89ml;  left direct segment: 31.2ml; right anterior segment: 14.08ml; 

right posterior segment: 4.21ml;  right direct segment: 17.48ml). The LI revealed 
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that the direct segment was more left lateralized at the baseline evaluation (LI=-

0.51) and became more symmetrical (DP, LI= -0.41; DP-LLR therapy LI = -0.28).  

WHITE MATTER VOXEL-BASED MORPHOMETRY 

The white matter volume of each timepoint was compared to the white matter of 

the controls in a VBM analysis for regions of interests comprising the regions of 

the FAT and the AF. For the FAT, the applied contrast Control > JAM revealed 

different significant clusters in the white matter which correspond with the FAT in 

the right hemisphere, showing that the volume in these regions was lower in JAM 

compared to controls (figures 10 and 11). The total number of voxels comprised 

in the clusters decreased over the different evaluations (Table 8) indicating that 

the local volume of the ROI in JAM was more similar to the healthy brain after the 

DP and the DP-LLR therapy phases. These results converge with the 

tractography volume analysis (see previous section). For the AF, the contrast 

Control > JAM also revealed different clusters showing lower volume lower in 

JAM compared to controls. However, contrary to the pattern found in the 

tractography analysis, here the cluster was bigger across the different 

evaluations (Table 9). 
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Table 8 | White matter voxel-based morphometry of the Frontal Aslant Tract in patient JAM at baseline and two endpoints 
compared to healthy control subjects. 

  

 

pFWE-corr T Peak Coordinates (MNI) kE 

FAT Baseline 0.007 8.5 24 3 26 177 

0.018 7.89 36 -3 27 

0.042 7.37 28 -4 33 

Donepezil 0.005 8.74 28 -3 30 166 

0.007 8.54 26 6 21 

0.024 7.73 36 -3 27 

Donepezil + Therapy 0.006 8.66 32 2 26 160 

0.024 7.73 28 9 21 

0.083 6.94 28 -3 33 

0.024 7.73 28 9 21 

pFWE-corr indicates p Family Wise Error-corrected, T : t value, MNI: Montreal Neurological Institute, kE: cluster extent, 

FAT : Frontal Aslant Tract. 
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Figure 10. White matter voxel-based morphometry (VBM) results in the frontal aslant tract region of 
interest. Control group > Patient JAM: compared to patient JAM, the control group presented greater white 
matter volume in the region corresponding to the FAT in the right hemisphere. This difference decreases 
after the Donepezil phase, and after the Donepezil + therapy phases (see table X and results). No differences 
were found in the left hemisphere. Neurological convention is used. R: right.  
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Figure 11. White matter voxel-based morphometry (VBM) results in the AF region of interest. Control 
group > Patient: compared to patient JAM, control group presented greater white matter volume in the 
region corresponding to the AF in the right hemisphere (see table X and results). No differences were found 
in the left hemisphere. Neurological convention is used. R: right.  



	

Table 9 | White matter voxel-based morphometry of the AF in patient JAM at baseline and two endpoints compared to healthy control subjects. 

  pFWE-corr T Peak Coordinates (MNI) kE Ke en AS/DS/PS 

AF Baseline 0.002 9.45 32 -24 33 212 206/189/0 

0.010 8.28 34 -14 33 

0.021 7.81 28 -36 32 

0.029 7.60 32 -15 38 38 36/27/0 

0.935 4.91 32 -6 36 

0.065 7.09 36 -44 27 19 8/19/0 

Donepezil 0.003 9.15 32 -26 33 297 289/252/0 

0.020 7.85 34 -12 33 

0.025 7.69 27 -34 33 

Donepezil + Therapy 0.000 10.54 32 -12 33 306 297/265/0 

0.002 9.49 32 -30 32 

0.003 9.05 28 -24 38 

0.146 6.58 32 -46 27 16 8/15/0 

0.197 6.38 38 -42 30 13 12/13/0 

pFWE-corr indicates p Family Wise Error-corrected, T : t value, MNI: Montreal Neurological Institute, kE: cluster extent, AF: Arcuate Fasciculus. 
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Discussion - Study 3 

In the present study, treatment with DP alone and combined with LLR therapy 

improved aphasia severity, communication, and measures of speech fluency and 

repetition in JAM, a patient with crossed aphasia. The improvement ofa long-

lasting language and communication deficits in JAM may be attributed to regional 

structural neuroplastic changes in the right FAT and DSAF. However, before 

advancing further in the interpretation of our results, data from JAM should be 

interpreted with caution because he had atypicalbrain-language organization 

(see De-Torres et al., 2013). JAM had both an atypical lateralization of language 

in the right hemisphere and a rare form of crossed aphasia (subcortical CA) 

(Alexander et al., 1989; Jung et al., 2010). These atypicalities prevent 

extrapolating the results obtained in JAM to other aphasic patients with typical 

lateralization and intrahemispheric organization of language functions in the left 

hemisphere. Moreover, since we studied a single case the causality of 

neuroplastic changes found with DTI in the right FAT and DSAFremains unclear. 

Finally, the open-label, uncontrolled design of our study is another limitation. 

Despite these limitations, the present case study introduces new evidence to the 

few studies reporting the use of novel therapeutic interventions to treat crossed 

aphasia (Raymer et al., 2001; Jung et al., 2010; Lu et al., 2014). Until now, only 

three patients with chronic crossed aphasia have been treated with biological 

interventions (drugs and non-invasive brain stimulation). Raymer et al. (2001) 

treated apatient with transcortical motor aphasia with the dopamine agonist 

bromocriptine. Dopaminergic stimulation producedlong-lasting benefits in verbal 

fluency (words/minute in discourse), even after drug withdrawal, with little 

improvement in emotional prosody and gestural tasks. Language deficits in a 
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patient with crossed aphasia were treated with inhibitory (1 Hz) rTMSover 

different cortical areas of the left hemisphere. The patient JAM had chronic CA 

secondary to a right basal ganglia haemorrhage (Jung et al., 2010). After a short 

trial of rTMS over the left parietal lobe, improvements in language were restricted 

to the naming subtest of the WAB (pre-rTMS: 54/100; post-rTMS: 64/100) with 

no changes in fluency (pre-rTMS: 11/20; post-rTMS: 11.5/20). Post-treatment 

fMRI showed significant activations in the right inferior frontal gyrus, posterior 

temporal gyrus, and parietal lobe for both the noun generation and sentence 

completion paradigms (Jung et al., 2010).  

LANGUAGE AND COMMUNICATION 

Treatments with DP alone and combined with LLR therapy in JAM improved 

aphasia severity (WAB-AQ) and deficits in everyday communication (CAL). This 

parallel improvement was not unexpected. In a previous study we demonstrated 

that a combined intervention with DP and conventional speech-language therapy 

in patients with chronic post-stroke aphasia and left hemisphere lesions 

significantly improved both domains (Berthier et al., 2006). Speech fluency and 

auditory comprehension subtests of the WAB showed improvement in JAM, 

which is agreement with the results of previous studies showing that gains after 

training repetition alone (for recent reviews see Salis et al., 2015; Eom and 

Sunga, 2016) and combined with drugs (Berthier et al., 2014) can generalize to 

other language domains. The improvement in everyday communication in JAM 

is relevant because deficits in everyday communication are strongly related to 

overall aphasia severity (Fucetola et al., 2006; Mazaux et al., 2013) and because 

recovery of spoken language in many aphasic patients rarely “scale up” from 

fragmented and paraphasic emissions to more cohesive and efficient everyday 
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communication. It is important to mention that both interventions (DP and DP-

LLR therapy) improved quality but not amount of everyday communication. This 

dissociation is reasonable because at baseline assessment JAM had fluent 

spontaneous speech (see next section), but the content of his emissions was 

contaminated by hesitation, some phonemic paraphasias, and occasional self-

corrections (De-Torres et al., 2013). Therefore, there was more room for 

improvement in quality than for amount of communication. Although language 

and communication are inherently linked to convey a coordinate message during 

social interaction, these functions may be dissociable by virtue of depending on 

the activity of different cortical areas (Willems & Varley, 2011; Catani & Bambini, 

2014). Spoken production depends on the activity of perisylvian areas, whereas 

the intention to communicate relies on the activity of the medial frontal cortex 

(pre-SMA, SMA, and anterior cingulate gyrus). Since these distant cortical areas 

are connected via the FAT (Catani et al., 2013; Hartwigsen et al., 2013), modeling 

the right FAT could have speeded the propagation of neural impulses between 

the medial frontal cortex important for modulating communicative intentions and 

the inferior frontal gyrus mediating spoken production.It was noteworthy that 

voxel-brain morphometry of cortical areas connected by these two white matter 

tracts showed no changes with either intervention. 

SPEECH FLUENCY AND THE FRONTAL ASLANT TRACT 

Treatment with DP alone in JAM improved the scores on the experimental 

measures of speech fluency (efficiency and speech rate). These gains slightly 

decreased with combined DP-LLR therapy and after ending both interventions, 

thus indicating that the drug alone provided the most noticeable effects. Note that 

JAM had a fluent aphasia obtaining a high score on speech fluency of the WAB 
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(8/10) in both baseline assessments, but the score on this subtest showed no 

significant changes improvement (9/10) throughout the trial. Although stability on 

this 10-point scale may reflect a ceiling effect, it is also possible that this metric 

has failed to capture changes (see Gordon, 1998). 

Previous cross-sectional neuroimaging studies in aphasic patients with stroke 

(Marchina et al., 2011; Fridriksson et al., 2013; Wang et al., 2013; Basilakos et 

al., 2014) and degenerative conditions (Catani et al., 2013) as well as 

computational implementations (Roelofs, 2014) collectively suggest that the FAT 

and the ASAF play a synergistic role to support speech fluency during 

communication.In our longitudinal study of this single case, we foundincreased 

volume in the right FAT and reduction ofits volumetric difference relative to 

healthy controls (structural plasticity) with DP alone and DP combined with LLR 

therapy. By contrast, the right ASAFinstead showed a steady decrement in 

volumeand increased volumetric difference when compared with healthy controls 

throughout the trial. Thus, both interventions induced circumscribed structural 

plasticity in one white matter tract coupled with shrinkage of the other. These 

divergent changes arecomparable with the results of experimental studies in 

animals treated with psychoactive drugs, which showed not only that plastic 

changes are region-specific, but also that different regions can express opposite 

changes (see Kolb and Gibb, 2014; 2015). Moreover, the fact that the right FAT 

was anatomically intact can justify changes on its microstructure in response to 

pharmacological and behavioural manipulation, whereas detrimental changes in 

the ASAF probably resulted because it was involved in the lesion. Therefore, the 

shrinkage of the right ASAF in JAM cast doubts on its participation in the recovery 

of speech fluency. The role of the expansion of part of the area of tissue damage 
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during the trial on inducing reductive changes in the ASAF is elusive because its 

topographical location was more superficial than the lesion. The left FAT and 

ASAF showed no relevant volume changes with either treatment. 

REPETITION AND THE ARCUATE FASCICULUS 

Repetition of words improved with both interventions (DP and DP-LLR therapy), 

whereas repetition of sentences from the PALPA test was very difficult to JAM 

and it did not improved at all with either treatment. Repetition of clichés and novel 

phrases only improved with the combined treatment and performance on clichès 

declined thereafter, but gains in repetition of novel sentences remained highly 

significant in the first posttreatment evaluation. Thus, treatment with DP alone 

exerted amodest priming effect for novel sentence repetition only, yet the addition 

of behavioral training significantly boosted performance in both tasks. The 

superior improvement of novel sentences as compared to matched idiomatic 

clichés aligns well with findings from cases of CA after left hemisphere strokes 

treated with a similar strategy (Berthier et al., 2014). Although treatment with DP 

alone and combined DP-LLR therapy were associated with steady volume 

increments of the right DSAF, a segment of the AF implicated in verbal repetition 

(Saur et al., 2008), these changes were not apparent when this tract was 

compared to those of healthy controls.This casts doubts about the role of the both 

interventions in harnessing plasticity in the right DSAF, but also these seemingly 

opposingfindings add weight to the role of the FAT inrepetition performance 

(Hartwigsen et al., 2013). The FAT was unrelated to repetition performance in 

primary progressive aphasia (Catani et al., 2013), but verbal repetition in healthy 

subjects increased the interaction of cortical areas (pre-SMA and dorsal premotor 

cortex) connected by the left FAT (Hartwigsen et al., 2013). 
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CANDIDATE MECHANISMS FOR STRUCTURAL PLASTICITY IN WHITE 

MATTER TRACTS 

Comparisons of DTI data at pre- and post-treatment phases in JAM revealed 

local events of plasticityin theright FAT and DSAFwith no longitudinal plastic 

changes in the homologous tracts of the left hemisphere nor in the cerebral cortex 

connected by these tracts. Thus, it seems that cholinergic potentiation with DP 

alone primed selectively plastic changes in certain white mattertracts (FAT, 

DSAF) and the continued effectof this cholinergic agent acting in concert 

withrepetitive LLR therapyharnessed activity-dependent plasticity of these white 

matter tracts. The causal relationship between the observed plastic changes and 

cholinergic modulation is elusive, but it concurs with the results of different lines 

of research (Mesulam et al., 1992; 2003; Raghanti et al., 2008; Bohnen et al., 

2009; Hiraoka et al., 2009; Imamura et al., 2015). Postmortem analysis of the 

human cholinergic system in the mesial frontal lobe (Brodmann area 32) 

(Raghanti et al., 2008), which is one of the anatomical origins of the FAT (Catani 

et al., 2013) and crucial for communicative intentions (Catani & Bambini, 2014), 

revealed dense clusters of cholinergic axons which probably represent local 

events of plasticity or circuitry rearrangement (Mesulam et al., 1992; Raghanti et 

al., 2008). An in vivo study using positron emission tomography (PET) and 

1Cmethyl-4-piperidinyl propionate acetylcholinesterase (AChE) in middle-aged 

and elderly non-demented subjects with periventricular white matter involvement 

of vascular origin was associated with reduced cortical cholinergic activity most 

likely by an interruption of ascending cholinergic projections in the white matter 

(Bohnen et al., 2009). In complementary terms, a histochemical study of a young 

patient with pure subcortical vascular lesions disclosed disruption of the 
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ascending cholinergic pathways in the deep white matter, although some 

acetylcholine-rich-fibers and cholinergic cortical neurons survived even in the 

areas of greatest cholinergic denervation (Mesulam et al., 2003). Moreover, 

knowledge on the brain sites of binding of DP is providing further insight. A study 

in healthy subjects using PET and [5-(11) C-methoxy]-donepezil showed a 

moderate concentration of the radiotracer in some cortical areas (frontal and 

anterior cingulate gyrus) which are the origins of the FAT (Hiraoka et al., 2009, 

Catani et al., 2013). Finally, in vitro studies showed that treatment with DP, via 

stimulation of nicotinic receptors, rapidly increase oligodentrocyte differentiation 

and myelination (Imamura et al., 2015). 

In summary, we found that a neuroscientifically-based intervention with a 

cognitive enhancing drug and audiovisual repetition-imitation therapy improved 

chronic language and communication deficits in a patient with crossed aphasia. 

These beneficial changes were underpinned by highly focal plastic changes in 

white matter tracts in the lesioned hemisphere.   
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CONCLUSIONS   

• In Study 1 we demonstrate for the first time that treatment combining Massed 

Sentence Repetition Training (MSRT) (40 hours in eight weeks) with 

donepezil (DP) was associated to better outcomes in speech production 

deficits than pairing DP with Distributed speech-language therapy (DSLT) (40 

hours in 16 weeks). Although both types of interventions were effective to 

improve speech production deficits, MSRT combined with DP augmented and 

speed up the benefits provided by the more distributed therapy (DSLT). These 

findings demonstrate that intensive treatments are associated with better 

outcomes than traditional, non-intensive therapies.  In addition, these findings 

suggest that combining a biological treatment (DP) with model-based 

interventions are promising strategies to treat post-stroke aphasia.  

• To implement a similar therapeutic intervention than in Study 1, we evaluated 

a patient (JAM) with chronic post-stroke conduction aphasia (CA) with the aim 

of establishing a comprehensive baseline assessment in Study 2. We did find 

stable language and communication deficits. Language deficits mainly 

affected repetition and the profile of these deficits was atypical reflecting a 

reduced interaction between phonological and lexical semantic systems. This 

finding suggests that the interaction between both cerebral hemispheres in 

patients with crossed aphasia is atypical.  

• In Study 3, the model-based intervention using a cognitive enhancing drug 

(DP) and audiovisual repetition-imitation therapy in patient JAM improved 

language and communication deficits. These beneficial changes were 

underpinned by highly focal plastic changes in right white matter tracts (frontal 

aslant tract [FAT] and right direct segment of arcuate fasciculus [DSAF]). We 



	162	

did not find structural plasticity in grey matter area interconnected by these 

tracts nor in the left hemisphere.    
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Conclusiones     

• En el estudio 1 se demuestra, por primera vez, que el tratamiento 

combinando el entrenamiento intensivo de repetición de oraciones 

(MSRT) (40 horas en ocho semanas) con donepezilo (DP)  asocia mejores 

resultados en los déficits de producción de habla que los que se obtienen 

con el tratamiento combinado de DP y terapia del habla menos intensiva 

(DSLT) (40 horas en 16 semanas). Aunque ambos tipos de intervenciones 

fueron eficaces para mejorar los déficits de producción de habla, MSRT 

combinado con DP aumentó y aceleró los beneficios proporcionados por 

la terapia más extendida en el tiempo (DSLT). Estos hallazgos 

demuestran que los tratamientos intensivos están asociados con mejores 

resultados que las terapias tradicionales, no intensivas. Además, estos 

hallazgos sugieren que la combinación de un tratamiento biológico (DP) 

con intervenciones basadas en modelos son estrategias prometedoras 

para el tratamiento de la afasia post-ictus. 

• Para implementar una intervención terapéutica similar a la del Estudio 1, 

se evaluó a un paciente (JAM) con afasia de conducción crónica post-

ictus con el objetivo de establecer una evaluación basal completa (Estudio 

2). Encontramos deficiencias de lenguaje y comunicación estabilizadas. 

Los déficits de lenguaje afectaron principalmente a la repetición y el perfil 

de estos déficits fue atípico, lo que refleja una menor interacción entre los 

sistemas semánticos, fonológicos y léxicos. Este hallazgo sugiere que la 

interacción entre ambos hemisferios cerebrales en pacientes con afasia 

cruzada es atípica. 
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• La intervención basada en modelos utilizando un fármaco (DP) y la terapia 

de imitación repetitiva con apoyo audiovisual en el paciente JAM mejoró 

los déficits de lenguaje y comunicación (Estudio 3). Estos cambios 

positivos fueron apoyados por cambios plásticos altamente focales en los 

tractos de la sustancia blanca derecha (tracto aslant frontal y segmento 

directo del fascículo arcuato derecho). No encontramos plasticidad 

estructural en el área de materia gris interconectada por estos tractos ni 

en el hemisferio izquierdo. 
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