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Abstract

Nowadays, people identification is gaining importance due to the security
problems and terrorist attacks that have occurred in recent years. Traditionally,
people identification has been performed using face, iris or fingerprint recognition
approaches that automatically identify the subject without the collaboration of
a human. Thus, this systems have helped to automatize the identification pro-
cess providing reliable results faster than a group of watchmen identifying people
through security cameras. However, those kind of systems require the collabora-
tion of the subject for being identified what introduces a huge limitation because
in some scenarios that collaboration is impossible. For example, people wearing
special security suits (e.g. NBC suits) should remove a part of the suit to be
identified what is a nonsense situation. Moreover, terrorists or thieves are not
going to collaborate with a system that will help the police to capture them.

In this world where safety is a priority, gait recognition has emerged as an
effective alternative to traditional recognition methods. In contrast to face, iris or
fingerprint recognition, gait recognition does not require the collaboration of the
subject and it is robust against clothes that cover the entire body. Therefore, gait
recognition can be implemented in situations where any other recognition system
could work due to the limitations of the environment. Thus, gait recognition has
softer requirements both for the hardware and for the subject to be identified. It
allows to use cheap security cameras that can be located in high places covering
a large visible space. Moreover, the subjects do not need to collaborate or even
know that they are being identified by their way of walking.

Gait recognition is being studied more in detail in recent years and everyday
is more often to find published paper about this topic while some time ago very
few researchers worked on it. However, not only theoretical applications are
being proposed using gait recognition. Real applications are being used in Japan
where gait recognition is considered as a criminal probe to identify the causer.
Moreover, it is sounding like possible security control for airports in the near
future.



iv ABSTRACT

In this thesis we tackle the gait recognition problem from different perspec-
tives which are useful in different situations. Firstly, we propose a solution based
on hand-crafted features which is specially useful when few training data is avail-
able. This solution uses a pipeline to obtain high-level features from the input
data and, finally, it produces a probability distribution to identify the subject
that appears in the input. Secondly, we propose a deep learning approach which
is able to obtain the high-level features and the probability distribution of the
subject identity in a joint manner.This approach is specially suitable when the
video resolution is small and the training data is enough to avoid overfitting.
Additionally, if multiple sources of information are available at the same time,
we have designed a set of fusion schemes to combine the information to improve
the performance of the system. This way, the information can be combined at
different levels in the pipeline of the approaches producing different grades of
precision. When instead of multiple sources of information, there are multiple
kind of labels per sample, we have designed a multi-task approach which learns
to produce all the output information at the same time. Thus, for a given sam-
ple, the proposed approach produces multiple labels using the gait information.
Due to the current importance of the deep learning approaches, he have studied
the power consumption of those kind of methods during training to propose im-
provements to save energy and money. Lastly, we have proposed an incremental
learning approach which learns new classes while retains the previously learned
ones. This way, this approach allows to perform smaller training processes using
less information.
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1 Introduction

The word gait refers to the way a person walks. The gait has been studied
since a long time ago, specially, applied to medical and biomechanical analysis.
In the 1890s, Christian Wilhelm Braune and Otto Fischer performed an analysis
of the human gait under loaded and unloaded conditions [37]· With this analysis,
they optimized the equipment of the German infantry. Later, in the 1970s, Mor-
rison [102] analyzed the gait focusing on physical parameters such as joint angles,
joint movements, etc., and how the different parts affect the walking process, pa-
rameterizing the movement of the limbs involved in the gait. In the last years,
gait analysis is attracting attention in medical environments because it is a non-
invasive method useful to detect diseases affecting the locomotion of a subject.
Some examples are Parkinson’s disease [101], scoliosis [69] or osteoarthritis [99].
Very related to the medical environment, we found the performance analysis in
sports, which aims to provide better equipment (e.g. shoes, bikes, etc.) to elite
athletes. In this field, gait analysis helps to develop better racing shoes [54] or
better running techniques [34] to maximize the performance of the athletes.

Recently, the gait is being used as a biometric pattern to identify people.
Actually, humans are good recognizing people at certain distance, what provides
a non-invasive approach to identify people without their collaboration. Most of
the biometric approaches used to identify people require the collaboration of the
subject, for example, putting a finger in a sensor (fingerprint recognition [86]),
looking at a camera (iris [29] or face recognition [156]). However, gait recognition
does not require this collaboration and could be applied in the context of video
surveillance, ranging from control access in restricted areas to early detection of
persons of interests as, for example, v.i.p. customers. Even, gait recognition has
been used in criminal investigation [85] to identify a perpetrator using the gait

1
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related probes collected in a crime scene.

In all aforementioned scenarios, the general process of study consists of three
main steps: data acquisition, data analysis and decision making according to the
acquired data.

The data acquisition step has evolved with the advent of the new technologies.
At the beginning of the gait studies, the data acquisition was handmade, that is,
the researcher took notes from the raw data observed with his or her eyes. This
methodology limited the quantity and the quality of the acquired data, specially
in those experiments where the observed subject was in movement, as it was very
dependent of the visual and writing capabilities of the researcher. Moreover, the
short-term memory or active memory of the researcher played an important role
as the more capacity of the active memory, the more data could be annotated. By
the end of the 19th century, the first rudimentary sensors appeared and they made
the data acquisition easier. These first sensors were mechanical and inaccurate
but they allowed to discretize the movement. Then, at the end of the 20th century,
the computer appears and many different sensors were developed to measure
different physical modalities (e.g. infrared, depth, visual, audio). An example
of different outputs obtained from different sensors can be seen in Figure 1.1,
where the same scene is recorded with three different sensors (normal camera,
gray-scale camera and depth sensor). Combining a computer with those sensors,
researchers could record the information of the movement with higher sampling
frequency, what allowed more detailed analysis. Moreover, the different kind of
sensors gave new information that was impossible to perceive by the human eye.
Thus, all those new devices improved the data acquisition.

The data analysis, like the data acquisition, was handmade until the com-
puters appeared. As computing capabilities of computers grew, more complex
analyses could be performed. Thus, basic analyses such as statistical models ob-
tained from tens or hundreds of samples, evolved to more complex methods that
were trained on thousands or tens of thousands of samples. Researchers realized
that the more data and the more complex models were used, the better results
were obtained. This led to a race to get more data to build larger models that in
turn needed more and more data. Today, huge models trained with thousands of
millions of samples produce outputs that were unavailable some years ago. So,
what will be the limit of this race without control? Probably, the size of the
databases will reach a limit due to the costs of creating and maintaining them.
The same will happen with the size of the models due to the hardware resources
necessary to train them in reasonable times. The only exceptions will be large
companies with millions of users using their services (e.g. Facebook or Google).
This makes available an infinity of data and, thanks to their great benefits, they
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can afford the computational resources to manage them.

Related to the analysis step, we have the decision making step that, unlike
the other two previous ones, has not changed substantially. Although there is
more available data and more complex analyses can be performed, the main
objectives that led to develop those analysis are essentially the same. Roughly,
there are three main kinds of outputs or decisions: classification, regression and
detection; and those are the same for problems from the 19th century and for
problems for the 21th century. However, it is true that today, we are facing more
ambitious problems thanks to computers, new sensors and analysis, and what
used to be image segmentation or classification, today is action recognition or
object detection and tracking in a video.

(a) RGB (b) Gray (c) Depth

Figure 1.1: Same scenario recorded with different kinds of sensors.

1.1. Motivation

Access control and security in general are gaining importance during the last
years. Most of the solutions developed to solve those problems are based on
biometric identification using a wide range of physical characteristics like iris,
fingerprint, face, etc., but all these approaches have weaknesses. On the one
hand, some of them require the collaboration of the subject to be identified (e.g.
iris or fingerprint recognition) or, on the other hand, they are very sensitive to
changes in the shape (e.g. face recognition). However, gait recognition is a non-
invasive way to implement security controls which does not require collaboration
of the subject.

Focusing on the gait recognition problem, most of the works available in the
literature are based on silhouette representations [47]. This kind of input is
very weak against changes in the shape of the subject, specially to changes in
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the clothes or the view-point. Therefore, the great interest on gait recognition
combined with the limitations of the previous approaches in the literature, created
the following motivations for our studies:

To develop a more robust method against changes in the shape of the
subjects using a different kind of input.

Be able to identify people in a realistic scenario with multiple cameras
at different points of view. In this regard, our approach must be able to
identify people without knowing the view-point beforehand.

Due to the advent of deep learning, we decided to create one or more
approaches based on deep learning techniques to compare them with hand-
crafted approaches.

Take advantage of the different data sources and information about the
subjects available today in many datasets and real life.

1.2. Objectives and phases

The main purpose of this thesis is to develop a new approach for multi-view
gait recognition that uses optical flow as main input instead of silhouettes. This
input provides a richer information about the movement of the subject while he or
she walks in a video and it allows to build better representations and models. In
addition, as the representation focus on the movement, it is more robust against
changes in the shape of the subjects. As part of this main objective, we have
defined a set of specific objectives enclosed to it:

1. To develop an approach based on hand-crafted features, specifically, using
optical flow as input to build a low-level representation and, finally, a high-
level representation which is used to train a traditional classifier. If there
were available multiple kinds of input data, all that input information will
be used by the model.

2. To develop a second approach based on deep learning building architectures
for the gait recognition problem. In this case, we plan to explore the best
kinds of architectures available in the literature for other tasks. Like in the
previous objective, if there were available multiple kinds of input data, all
that input information will be used by the model.
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3. To develop an incremental learning methodology to add new classes to
previously trained models keeping only a small subset of samples from the
old classes. This methodology will be useful for fast addition of a new
class in a real-life scenario.In that situation, each incremental training step
of new classes will require a small subset of training data and much less
training time.

4. To perform a power consumption study in deep learning models to charac-
terize them in an unexplored field which is very important from a monetary
point of view.

To achieve these objectives, the following phases have been carried out:

1. We reviewed the state-of-the-art to select the best approaches and the
datasets used to evaluate our method and compare it with other state-
of-the-art approaches. According to the published data, size of the datasets
and objectives proposed, we decided to use AVAMVG [30], MoBo [45],
CASIA-B and C [151] and TUM-GAID [52] datasets.

2. To develop the hand-crafted approach, we selected the low-level and high-
level representations to encode the movement and information about the
gait. Finally, the video representation is fed into a classifier to obtain
the identity of a subject. As there were available multiple types of inputs
in the used datasets, we explored different fusion schemes to combine the
information and to improve the results of our baseline approach. We divided
the fusion into two different schemes: late fusion which is performed with
the probabilities of the classifiers, and early fusion which is performed at
feature level before the classifier. For each one of the schemes, we performed
three different fusion approaches.

3. To develop the deep learning approach, we selected a baseline architecture
based on AlexNet [71] and we adapted it to the gait recognition prob-
lem. We performed a comparison with other two kinds of architectures:
ResNet [49] and a network based on 3D convolutions [130]. The same ex-
periments are executed for all networks to find the best one for the problem
of gait recognition. As in the previous point, we evaluated different fusion
schemes for the deep learning approach. In this case, we used three late
fusion approaches and one early fusion approach. Note that, as the deep
learning method builds its own representation, the early fusion can only
be done in the definition of the architecture. In our case, we concatenated
the features coming from different kinds of inputs at different levels in the
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deep architecture. In this step, we also decided to explore the benefits of
training a deep learning approach with a combined loss function to perform
multiple tasks at the same time.

4. We studied the gait recognition problem from an incremental learning point
of view. In this case, we wanted to add more classes to a trained model
without re-training from scratch. Thus, we combined two loss functions, one
to retain the previous knowledge and the other one to learn new information
from the new classes.

5. Finally, we analyzed the energy consumption during the training process of
different kinds of CNN architectures and the impact of the hyper-parameters
in the power consumption and accuracy of the models. The energy con-
sumption has been measured physically with an external device connected
to the GPUs used for running the training code.

In this list of phases, phase 1 is necessary for all objectives since the dataset are
used in all of them. Phase 2 and 3 accomplished objectives 1 and 2, respectively.
Finally, phases 4 and 5 carried out objectives 3 and 4.

1.3. Thesis contributions

We have developed different approaches using different techniques to find the
best possible solution. Therefore, we have tried to solve the problem starting
from different points of view taking advantage of the last techniques developed
in other fields and the information included in the datasets. Thus, we have de-
veloped approaches based on hand-crafted features and deep learning. Moreover,
we have proposed different fusion schemes to take advantage of multiple sources
of information. Finally, to make more attractive our approaches to the indus-
try, we have developed an incremental learning approach which is able to learn
new classes incrementally, and a power consumption study of our deep learning
approach.

Therefore, the contributions of this thesis according to the proposed objectives
are:

For objective 1, hand-crafted approach, the contributions are:

1. A new gait descriptor (PFM) that combines the potential of HAR de-
scriptors with the rich representation provided by FV encoding. This
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new descriptor uses optical flow as input instead of the common sil-
houettes used by most of the published works.

2. The proposed descriptor is able to deal with multiple viewpoints at
test time, even if the approach is trained with different viewpoints to
the tested ones.

3. An unified approach for using audio, depth and visual information for
the problem of gait recognition.

4. A multimodal-based approach for gender and shoes recognition.

5. State-of-the-art results on AVAMVG, MoBo, CASIA-B, CASIA-C and
TUM-GAID datasets.

For objective 2, deep learning approach, the contributions are:

1. A preprocessing stage to extract, organize and normalize low-level mo-
tion features for defining the input data.

2. A set of CNN architectures that can be used directly as classifiers or to
extract discriminative gait signatures from low-level motion features
(i.e. optical flow).

3. The proposed approach is able to deal with multiple viewpoints at test
time, even if the approach is trained with different viewpoints to the
tested ones.

4. A set of CNN architectures for data fusion.

5. A multi-task approach that is able to produce multiple kind of outputs
(i.e. identification, gender and age) from a single input.

6. State-of-the-art results on TUM-GAID and CASIA-B datasets.

For objective 3, incremental learning approach, the contributions are:

1. An end-to-end approach designed specifically for incremental learning.
This approach can be realized with any deep learning architecture.

2. State-of-the-art results on CIFAR-100 [70] and ImageNet [71].

For objective 4, energy consumption study, the contributions are:

1. A combined energy and performance analysis on a multi-GPU setup
using the two most popular types of CNNs, and particularized for
the forward, backward and weight update stages of a deep learning
algorithm.
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2. Accuracy statistics to find out the best algorithm parametrization de-
pending on three different metrics: time, energy consumption and
energy-delay product.

3. Comparison between Maxwell and Pascal architectures for all those
features above.

A public MATLAB’s implementation of all approaches 1.

1.4. Thesis organization

This thesis is organized as follows. Chapter 2 describes the principles of the
different algorithms used in the thesis. Chapter 3 reviews the state-of-the-art of
gait recognition. Chapter 4 contains the published works that support this thesis
with a brief summary of each one of them. Chapter 5 contains the work that is
not published yet. Finally, the conclusions of this thesis and the future work are
presented in Chapter 6.

1https://github.com/fmcp/

https://github.com/fmcp/


2 Background

In this chapter we present some background on machine learning based on
hand-crafted features, deep learning, information fusion schemes, incremental
learning and energy consumption in deep learning approaches. Although there
exist many different approaches for each developed topic, this chapter focuses on
those works directly related to our contributions.

Section 2.1 and Section 2.2 provide background on hand-crafted approaches
and deep learning approaches, discussing the different ways to solve the problem
depending on the kind of input of the system. Section 2.3 and Section 2.4 describe
the bases of information fusion and incremental learning using hand-crafted or
deep learning approaches. Finally, Section 2.5 talks about optimization of deep
learning approaches from an energy consumption point of view.

2.1. Machine learning based on hand-crafted fea-
tures

Hand-crafted features are those features which are obtained from manually
designed operations. These operations can be a convolution, a morphological
operation or any other operation which takes an image or video as input and
produces a set of new information. Although there exits a wide range of opera-
tions, all of them share a common characteristic, they are manually designed for a
specific problem. This is a huge difference compared to deep learning approaches,
described in Section 2.2, where the operations are self-learnt.

In these kinds of approaches, the input data is passed through a pipeline to

9
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obtain the final output which, depending on the problem, can be a probability
distribution among classes (classification problem), a number or set of numbers
(regression problem), etc. Although, there are many different problems, in gen-
eral, this pipeline is composed of a set of common operations to any computer
vision problem. Figure 2.1 shows a general sketch with the basic operations
composing this pipeline which will be described below. Those operations can be
summarized in a pre-processing step to prepare the input data for further opera-
tions, a low-level features computation to describe basic information of the input,
a high-level features computation to describe the global input, and a final step to
solve the problem (classification, regression, etc.).

In this thesis we designed a new approach based on dense trajectories [62] and
Fisher vectors [110] to identify people using their way of walking. To the best of
our knowledge, our work is pioneer using this setup for gait recognition.

In the next sections those steps will be described in detail, paying special
attention to specific approaches used in the developed methods of this thesis.
Note that in the following, the word features or descriptors are going to be used
indistinctly as they have the same meaning.

2.1.1. Data pre-processing

This is usually the first step done in any computer vision problem. The main
objective of this step is to prepare the data to obtain better results. Usually, the
information recorded by any sensor contains noise or artifacts due to the physical
conditions of the scene or limitations of the sensor itself. Therefore, in an ideal
world, this noise should not exist and this step would be unnecessary. However,
the noise is present in all signals and the approaches must deal with it trying to
remove it or, at least, mitigate it as much as possible.

The pre-processing not only has to deal with noise, it also can be used to
prepare the data used by the algorithm. Common operations are: balancing of
the training set so all classes have a similar number of samples, removing duplicate
data, mean subtraction, data compression, data augmentation, etc. Therefore,
after these operations, the information will be better used by the algorithm.

The operations executed may differ depending on the kind of input data and
the kind of problem. Thus, for images, RGB pictures are usually transformed
into gray-scale ones to compress the information and save time and computational
resources. For video, it is usual to resize the video into a smaller scale to save
resources and time. To remove noise in the images, the most common operation
is gaussian blurring which decreases the noise but also reduces the details of the
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Figure 2.1: Hand-crafted features pipeline

image.

Figure 2.2 shows the output of three different operations applied to the same
frame. An example of applying a gaussian blur can be observed in Figure 2.2a.
Figure 2.2b contains the image in gray-scale. Finally, Figure 2.2c shows the
mirror image as an example of data augmentation.

2.1.2. Low-level descriptors

This step takes the input coming from the pre-processing step (Section 2.1.1)
to produce a set of descriptors, that is, information which describes the scene
observed in an image or video. By this way, the visual information stored in
the input data is summarized and structured to make easier the search for the
solution in the explored problem.



12 Chapter 2. Background

(a) Gaussian blur (b) Gray (c) Mirror

Figure 2.2: Different pre-processing operations applied to the same image

To build low-level descriptors, two sub-steps must be performed. The first step
involves the detection of the most important points or regions in the input. Thus,
the operations to compute the descriptors will focus on those regions producing
better features which describe the important visual information, ignoring the
superfluous and unnecessary data. Sometimes this process requires a long time
or it is very difficult to perform due to specific characteristics of the input data,
so, there exist approaches where the detection process is replaced by a dense
grid of points equally distributed along the input. As all image information is
taken into account with this approach, the execution time is negligibly but the
amount of information is huge and the features obtained can be worse than when
a detection step is performed. Assuming this disadvantage can be mitigated
during the construction of high-level descriptors (Section 2.1.2), a good policy is
implemented to filter out the unnecessary information.

Figure 2.3 shows two different approaches for detecting important regions
on images or videos. Figure 2.3a shows the output of the minimum eigenvalue
algorithm for corners detection. Green points represent the important regions,
and, as the algorithm detects corners, they are located on the bricks and borders
of the person. A dense grid can be observed in Figure 2.3b. Red dots represent
the points of the grid and the green lines show the movement along time of the
grid points. Note that this detection has been applied to a video to track the
movement of the subjects appearing in the scene. Comparing both images, it is
clear the huge difference of detecting the important parts of the image or using
a dense grid. While in the first image the amount of points is relatively small, in
the second image almost the whole image is covered by points of the grid, what
produces larger descriptors.

Once the important parts are located, they have to be described in an under-
standable way by the computer. The main objective is to represent the visual
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information of each important region and its neighbourhood in a way that should
be invariant to rotations, scale, etc. That is the most important point when re-
searchers develop new descriptors. For example, when people describe an image,
they do not care about the scale or the rotation of the image with respect to
their point of view. Therefore, the description will be the same for an image of
10x15cm and for an image of 100x150cm. Although this process is easy for a
human, for a computer it is really hard because for bigger images, more informa-
tion is taken into account when the descriptor is built. Therefore, the descriptors
for images with different sizes will be different although the information is es-
sentially the same. However, there exist descriptors like SIFT [84] which are
invariant to some image transformations such as rotations or scale. Then, it is
important to develop or use invariant descriptors during the design of the pipeline
of the approach. Some examples of common descriptors used in the literature
are SIFT [84], HOG [28], HOF [111] or DCS [62], being the first one applied to
images and the rest for videos.

(a) Corners (b) Dense trajectories

Figure 2.3: Different low-level features

2.1.2.1. Dense trajectories and DCS

In this section, the use of dense trajectories and DCS as low-level descriptors
is explained in detail since they are used in an approach developed in this thesis
(Section 4.1).

The first step is to compute densely sampled trajectories. Those trajectories
are computed by following the approach of Wang et al. [136]. Firstly, dense
optical flow F = (ut, vt) is computed [36] on a dense grid (i.e. step size of 5
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pixels and over 8 scales). Then, each point pt = (xt, yt) at frame t is tracked to
the next frame by median filtering as follows:

pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ F )|(x̄t,ȳt) (2.1)

where M is the kernel of median filtering and (x̄t, ȳt) is the rounded position of
pt. To minimize drifting effect, the tracking is limited to L frames. As a post-
processing step, noisy and uninformative trajectories (e.g. excessively short or
showing sudden large displacements) are removed. These short-term trajectories
(or tracklets) are represented in Figure 2.3b by green lines for each considered
point (in red).

Once the local trajectories are computed, they are described with the Divergence-
Curl-Shear (DCS) descriptor proposed by Jain et al. [62], which is computed as
follows:



div(pt) =
∂u(pt)

∂x
+
∂v(pt)

∂y

curl(pt) =
−∂u(pt)

∂y
+
∂v(pt)

∂x

hyp1(pt) =
∂u(pt)

∂x
− ∂v(pt)

∂y

hyp2(pt) =
∂u(pt)

∂y
+
∂v(pt)

∂x

(2.2)

As described in [62], the divergence is related to axial motion, expansion and
scaling effects, whereas the curl is related to rotation in the image plane. From
the hyperbolic terms (hyp1, hyp2), we can compute the magnitude of the shear
as:

shear(pt) =

√
hyp2

1(pt) + hyp2
2(pt) (2.3)

Then, those kinematic features are combined in pairs as in [62] to get the final
motion descriptors.

2.1.3. High-level descriptors

While low-level descriptors focus on features like corners or edges, high-level
descriptors focus on describing the image as a whole, like humans do. In this
step, the low-level features produced in the previous step are used as input to
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produce a new set of features to describe the global input. Although this step
seems repetitive with respect to the previous one, it is necessary to summarize
the low-level information for the classification step. Therefore, without this step,
the algorithm would not be able to abstract from small details to understand the
high level meaning of the input.

Like with low-level descriptors, the detection and describing processes must
be performed to produce the high-level descriptors. In this case, the detection
process does not look into visual details in the input since it uses a set of low-
level features. Therefore, the detection process usually performs an unsupervised
procedure known as clustering, to find out the different patterns present in the
data. Before doing this operation, it is necessary to compute a dictionary of
patterns in a training set. This dictionary will describe the different patterns
present in the training images. Therefore, at test time, the low-level features
of the image will be compared with the patterns of the dictionary to select the
closest one.

With the detected patterns, the representation process constructs a final de-
scriptor which describes the whole image. Usually, this high-level descriptor is a
vector whose length depends on the approach. Then, after this step, the input
image has been transformed into a single vector which is able to describe the
scene of the input.

To illustrate this process, Figure 2.4 shows a sketch of the process performed
to compute the widely used Bag of Words (BoW) descriptor [126]. In this case,
the dictionary is obtained with the K-Means algorithm [81] which is also used
to find the closest patterns during test time. Those patterns are defined by the
centroids obtained with the K-Means algorithm. Then, to build the feature vector
for a new sample, a clustering operation is performed over the low-level features
to find the closest patterns of the dictionary. After that, the feature vector is
represented by the histogram of occurrences of each pattern. In this case, the
length of the feature vector depends on the number of patterns or centroids of
the dictionary.

2.1.3.1. Fisher Vectors

In this section, the use of Fisher Vectors as high-level descriptors is explained
in detail as they are used in an approach developed in this thesis (Section 4.1).
As described above, our low-level features are based on motion properties ex-
tracted from person-related local trajectories. In order to build a high-level gait
descriptor, we need to summarize the local features. We propose here the use of
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Image K-Means Histogram Features

Figure 2.4: Bag of words

Fisher Vectors (FV) encoding [110].

The FV, that can be seen as an extension of the Bag of Words (BOW) rep-
resentation [126], builds on top of a Gaussian Mixture Model (GMM), where
each Gaussian corresponds to a visual word. Whereas in BOW, an image is rep-
resented by the number of occurrences of each visual word, in FV an image is
described by a gradient vector computed from a generative probabilistic model.
The dimensionality of FV is 2ND, where N is the number of Gaussians in the
GMM, and D is the dimensionality of the local motion descriptors xt. In this
thesis, we will use the term Fisher Motion (FM) to refer to the FV computed on
a video from low-level motion features.

Assuming that our local motion descriptors {xt ∈ RD, t = 1 . . . T} of a
video V are generated independently by a GMM p(x|λ) with parameters λ =

{wi, µi,Σi, i = 1 . . . N}, we can represent V by the following gradient vector [108]:

Gλ(V ) =
1

T

T∑
t=1

∇λ log p(xt|λ) (2.4)

where T is the total number of local descriptors and ∇λ denotes the gradient
operator with respect to λ.

Following the proposal of [110], to compare two videos V and W , a natural
kernel on these gradients is the Fisher Kernel: K(V,W ) = Gλ(V )TF−1

λ Gλ(W ),
where Fλ is the Fisher Information Matrix. As Fλ is symmetric and positive def-
inite, it has a Cholesky decomposition F−1

λ = LTλLλ, and K(V,W ) can be rewrit-
ten as a dot-product between normalized vectors Γλ with: Γλ(V ) = LλGλ(V ).
Then, Γλ(V ) is known as the Fisher Vector of video V. As stated in [110], the
capability of description of the FV can be improved by applying it a signed
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square-root followed by L2 normalization. So, we adopt this finding for our de-
scriptor.

To clarify this process, Figure 2.5 shows a sketch of the process performed to
compute Fisher Vectors. In this case, the dictionary is obtained with a Gaussian
Mixture Model. Those patterns are defined by the means and variances of the
gaussians. Then, to build the feature vector for a new sample, a gradient vector is
computed in the dictionary. In this case, the length of the feature vector depends
on the number of gaussians and the size of the input features.

Image GMM Gradient vector Features

Figure 2.5: Fisher Vectors

2.1.4. Classification

This is the final step and it takes the high-level descriptors to obtain categories
or classes based on similarities extracted from the input samples. In a formal way,
a classification algorithm maps an observation o to a class c. Note that we are
going to focus on the classification as it is the problem developed on this thesis.
However, there are many other kinds of tasks like regression, verification, etc,
that are not described in this document.

The classification problem is an instance of supervised learning where the
training set is fully annotated and those labels are available during training.
There are many different kinds of classification algorithms adapted to different
problems. Therefore, the selection of an adequate classifier is a critical point
during the design of a computer vision approach.

Classification algorithms are usually divided into binary or multi-class algo-
rithms depending on the number of classes allowed to use. A binary classifier only
separates between two classes while a multi-class model supports more than two
classes. However, binary classifiers can be extended to a multi-class setup using
an one-vs-all (OvA) or an one-vs-one (OvO) strategy. In the one-vs-all strategy,
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one classifier per class is trained with positive samples from the selected class
and negative samples from the rest of the classes. Then, each classifier learns to
separate its class from the others. In this case, the classifiers used must output a
real-valued confidence score for its decision, allowing to combine decisions from
multiple classifiers. In the one-vs-one, one classifier per pair of classes must be
trained. Then, the number of classifiers is computed with Equation 2.5.

C =
K(K − 1)

2
(2.5)

Where K is the number of classes and C the number of classifiers. Each one
of those classifiers is trained with positive samples from one class of the couple
and negative samples from the other class of the pair. To perform an ensemble
classification, a voting scheme is applied and the output class will be the most
voted one.

Some examples of binary classifiers are Support Vector Machine (SVM) [27],
Perceptron [118] or Linear Regressors. Regarding multi-class classifiers, the most
common are Neural Networks [96], Naive Bayes [39] or Decision Trees [113].

2.1.4.1. SVM

This section explains in detail the Support Vector Machines (SVM) [27] as
they are used in the approach developed in this thesis. SVMs are a kind of
supervised learning models used for binary classification problems. Like other
binary classifiers, SVMs are used to solve linear problems where the samples are
represented as points in the space and the model learns to separate samples from
different classes with a line. However, SVM models can also solve non-linear
problems using the kernel trick, which maps the samples to a high-dimensional
space where samples from different classes are separated by a gap which is as
wide as possible. In this case, the classes are separated by a hyperplane.

More formally, a SVM model is trained by minimizing the Equation 2.6.

L =
1

2
wTw + C

N∑
i=1

ξi (2.6)

subject to yi(wTφ(xi) + b) ≥ 1 − ξi and ξi ≥ 0, i = 1..., N , where w is the
vector of coefficients, C is the capacity constant, b is a constant, ξi represents
parameters for handling non-separable data, N is the number of training samples,
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y represents the label of the training sample, xi are the independent variables
and φ is the kernel used to map the input data to the feature space. With this
formulation, w and b are updated during the training process until the algorithm
converges. C must be selected carefully to avoid overfitting. Note that, as it is
a binary problem, the possible label values are +1 for a sample belonging to a
class and −1 for a sample belonging to another class. If the problem has multiple
classes, P binary SVMs are trained (as many as different classes) in a one-vs-all
strategy.

2.2. Deep learning

The term Deep Learning refers to a kind of machine learning algorithms that
use a set of layers of nonlinear processing units for feature extraction and trans-
formation, where each layer uses as input the output of the previous one. This
kind of models can learn at the same time the features to represent the informa-
tion at different levels and the layers used to solve the problem (classification,
regression, etc). Thus, this approach can be seen as a black box which takes the
input data (samples + labels) to produce an output automatically using a set of
self-learned features.

This kind of models can be considered an extension of the traditional Artifi-
cial Neural Networks [96] but using more layers and, depending on the kind of
architecture, a structured setup using spatial filters. The main difference with
respect to traditional approaches is the number of trainable parameters. Tradi-
tional approaches have around one hundred of parameters maximum while deep
models can have millions of them. Therefore, the amount of data required to op-
timize that large number of parameters is huge. Then, if the amount of training
data is reduced, this kind of models tend to overfit having worse performance
than traditional methods.

Deep models are defined by their architecture, which is a set of different layers,
and the loss function, which depends on the kind of problem and it is used to
compute the errors of the predictions. As there exist many kinds of deep models,
this manuscript is going to focus on Convolutional Neural Networks because are
used in the developed approach.

Convolutional Neural Networks (CNNs) are a kind of deep models specifically
designed to work with images applying kernels or convolutions to obtain the
features. In these networks, some layers have a spatial structure to simulate
traditional kernels applied in convolutional operations. Then, the first layers tend
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to produce low-level features focused on corners, edges, patterns, etc., and the last
layers focus on high-level details with more meaning like eyes or faces (depending
on the problem, the details will change). Figure 2.6 shows a general architecture
of a CNN where the input frames are passed through a set on convolutions and
pooling operations to produce a final vector. This vector is evaluated in the
fully-connected layers (FC) and a final probability distribution is obtained.

To train a CNN, the first step is to prepare the training data and define
the architecture of the network. This a very important step to guarantee the
convergence of the model. On the one hand, the data must be normalized, usually
by subtracting the mean of the training data to each sample. On the other hand,
the layers and loss function define the architecture and its behaviour during
training and testing. The second step is the selection of the solver algorithm
that will minimize the loss function to optimize the parameters of the model.
Finally, the hyper-parameters of the model must be defined according to the
specific characteristics of the problem. Then, the training process starts and, if
everything works well, the model will converge. The training process can be split
into three main steps which are performed iteratively until the model converges.
The first training step is the forward pass where the input data is passed through
the CNN to obtain the activations and loss error. Then, the second training step,
called backpropagation, is executed to compute the partial derivatives of each
parameter according to the error obtained from the loss function. These partial
derivatives encode the direction and value of the parameter update needed to
minimize the loss error. Finally, the parameter update is executed to minimize
the loss error according to the derivatives obtained in the previous step.

In this thesis we designed a new deep learning architecture specifically for the
gait recognition problem. It takes the optical flow as input to identify the subject
appearing in a sequence.

Next sections explain with more details all these steps.

2.2.1. Layers

A layer is the fundamental part of a CNN due to it defines the behaviour of the
model, learning capacity and training requirements. All CNNs are composed of a
sequence of layers where every layer transforms the inputs through a differentiable
function. When all layers are put together, they conform the architecture of the
CNN.

Nowadays, there are many kinds of layers so this manuscript will comment
only the most important layers which are more frequently used in the literature.
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Figure 2.6: Example of a generic CNN architecture, where the input is a set of
images and the output is a probability distribution with as many elements as
classes included in the system

Specifically, the explained layers are convolution, pooling, normalization, fully-
connected, dropout and batch-normalization.

2.2.1.1. Convolutional layer

Convolutional layers are the core of the CNNs and they perform most of
the computations of the networks. The parameters of this layer consists of a
set of learnable filters simulating a small spatial kernel. Then, during forward
pass, every filter is convolved across the input sample. After this operation, each
filter produces a 2-dimensional (for 2D convolutions) or 3-dimensional (for 3D
convolutions) activation map with the responses to the spatial information of the
input. Stacking the activations map of all filters, we obtain the output volume
used as input by the following layer. Intuitively, the first layers of the network
will learn filters that focus on some types of visual features such as corners or
edges, on the other hand, higher layers will learn filters to focus on meaningful
patters like fingers or wheels for example.

To create a convolutional layer, a set of parameters must be defined:

Kernel size. Defines the shape of the filter (width and height).

Depth. Number of filters of the layer. Each filter will produce an activation
map that will be stacked to conform the activation volume.

Stride. Step size of the sliding window over the input data. Big stride values
will produce less local features as there are bigger gaps between windows.

Padding. Number of zeros added to each side of the input sample. It allows
to control the shape of the output volume.
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Then, the shape (width or height) of the output volume produced by a layer
can be computed with Equation 2.7.

O =
I −K + 2P

S
+ 1 (2.7)

where I is the input size (width or height), K is the kernel size (width or
height), P is the padding value, S is the stride value and O the output size.

From a neural point of view, each filter is implemented by a neuron whose
weights encode the kernel. To implement the sliding window used in the tradi-
tional convolution, for every step there is a neuron which computes the convolu-
tion. Thus, there are neurons distributed along the two dimensions of the input
to compute the convolution at the same time. This assumes a large number of
parameters to optimize what would cause problems with overfitting. To overcome
this problem, the number of parameters is reduced by making an assumption: if
one kernel is useful in some position (x, y), it should be useful also in another
position (x2, y2). By this way, all neurons of a kernel shares the same parameters
what reduces the amount of trainable weights of the network.

Finally, like in layers of traditional Neural Networks, convolutional layers are
usually followed by a non-linear activation function which helps the model to
generalize or adapt to the data. There exists many different activation functions
but the most common are:

Sigmoid: f(x) = 1
1+e−x . Activation values in the range [0, 1]. A problem

with this activation function happens when the values saturate to 0 or 1

because the gradients at these regions are almost zero. Therefore, during
backpropagation, gradients will tend to zero and the convergence will be
penalized. In addition, the parameter initialization plays an important role
with this function to prevent saturation.

Tanh: f(x) = e2x−1
e2x+1 . Activation values in the range [−1, 1]. Like sigmoid,

its activations saturate but it is zero-centered what makes it more preferable
to sigmoid.

ReLU (Rectified Linear Unit) [103]: f(x) = max(0, x). Activation values in
the range [0,∞]. This function is the most used today as it accelerates the
convergence and is really fast to compute compared to previous functions.

Figure 2.7 shows the activation values of the three activation functions com-
mented above.
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Figure 2.7: Activation functions

The backpropagation of a convolutional layer is also a convolution but with
a flipped version of the filter parameters.

2.2.1.2. Pooling layer

The function of this layer is to reduce the shape of the input data to reduce
also the number of parameters of the network to prevent overfitting. The natural
position of this layer in the network is after convolutional layers to reduce the data
size progressively. The computation of this layer is similar to the convolutional
layer, the input traversed with a sliding window and an operation is applied to
every window to obtain an output volume. In this case, the operation produces
a single value for the whole window so the final size of the output is smaller than
the input size.

Like for the convolutional layer, to create a pooling layer, a set of parameters
must be defined:

Window size. Defines the shape of the window (width and height).

Stride. Step size of the sliding window over the input data. Big stride values
will produce less local features as there are bigger gaps between windows.

Padding. Number of zeros added to each side of the input sample. It allows
to control the shape of the output volume.
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Operation. Operation performed to the window. The maximum is the
most common operation but there are more operations such as minimum,
average, L2, etc.

The backpropagation of this layer depends on the operation performed. For
the max operation, which is the most common, the backward pass only has to
route the gradient to the input with the highest value. Therefore, during forward,
it is necessary to store the indices of the maximum values per window to perform
the backpropagation.

2.2.1.3. Local Response Normalization layer

This layer simulates the lateral inhibition process that happens in the human
brain. In broad terms, the lateral inhibition is the capacity of an excited neuron
to reduce the activity of its neighbours. This process stops the spreading of
nerve impulses from excited neurons to its neighbours in the lateral direction.
This increases the contrast producing an increased sensory perception. Figure 2.8
illustrates this effect with the Match bands [83], which is an optical illusion where
lateral inhibition makes the darker area falsely appear even darker and the lighter
area falsely appear even lighter.

Figure 2.8: Mach bands

This effect is also useful in CNNs to boost neurons with higher activations.
This is specially useful with ReLU layers because the activations are unbounded
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and they must be normalized. The idea is to detect features with large activa-
tions. Then, when this normalization is applied to an excited neuron and its
neighbourhood, the neuron becomes even more sensitive compered to the neigh-
bour neurons. At the same time, it will restrict the activations that are uniformly
large in a local neighborhood. If all the values are large, the normalization will
reduce all of them.

Although this layer has been widely employed in the past and it is employed
in state-of-the-art networks, its use has decreased in the last years as, in practice,
its contribution is minimal in most of the cases.

2.2.1.4. Fully-connected layer

This layer is the principal component of the traditional Neural Networks and it
is also used in convolutional networks. In this layer, the neurons have connections
to all activations in the previous layer unlike convolutional layers that only have
local connections. This layer concentrates most of the parameters of the network
and it is usually located in the later layers of the network, storing the high level
knowledge used by the classifier.

Due to its large number of parameters, the amount of these layers included in
a network is very limited to prevent overfitting. In fact, current networks usually
have only one fully-connected layer in contrast to the two, three or even more
fully-connected layers included in older models.

2.2.1.5. Dropout layer

Dropout is a regularization technique used in neural networks to reduce over-
fitting. This layer implements this operation which is applied to the layer con-
nected to it. During training, for each iteration, individual neurons or nodes
are randomly dropped out with a probability of p or kept with a probability of
1 − p. This operation is only applied during training to avoid co-dependency
between neurons which curbs their individual activations leading to overfitting.
During test, Dropout is not applied and all neurons of the network are taken into
account.

This layer is specially useful with fully-connected layers because they concen-
trate most of the parameters of the network and overfitting is more significant
in this kind of layers. Therefore, the natural position of this layer is after a
fully-connected layer to decorrelate its neurons.
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During backpropagation, this layer applies the same operation to the gra-
dients, that is, the neurons deactivated during forward produce zero gradients
during backward.

2.2.1.6. Batch-normalization layer

During training, the input data is grouped into small blocks of information
called batchs. Thus, the information passed through the network may be very
different in every iteration, penalizing the training process. For more details
about batch and training process, please, check Sections 2.2.4 and 2.2.3.1. To
overcome this problem, this layer normalizes the output of the layer to which it is
connected. Like input data can have values in many different ranges, activations
coming from previous layers can have different ranges of values. Therefore, like
with input data, a normalization of the activations could speed up the convergence
of the network. In addition, as the activations are normalized, the covariance shift
problem is less important and the overfitting is reduced. For example, a network
trained with images captured with artificial light will produce bad results with
images captured with sunlight. Thus, there is a covariance shift between training
and test sets. However, batch-normalization can help to overcome this problem.

To facilitate the convergence of the network, this layer is attached to every
convolutional layer after the activation function to normalize the output data.
Batch-normalization normalizes the activation by subtracting the mean of the
batch samples and dividing by the standard deviation of the batch. In addition,
there are two trainable parameters to scale and shift the data to keep fixed the
mean and variance of the output values. Thus, activations are now in the same
range and backpropagation has to deal with less oscillations when approaching the
local minimum so it converges faster. Batch-normalization also helps to reduce
the impact of earlier layers on the later layers of the network by keeping the
mean and variance fixed, which makes layers more independent from the others.
Moreover, it also helps to regularization, reducing overfitting, as covariance shift
is minimized.

2.2.2. Loss function

A loss function or cost function is a function that maps the output features of
the model onto a real number that represents the cost associated to that output.
During the training process, the optimizer tries to minimize that cost function
to find the best possible solution. The loss function must be selected according
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to the objective of the network. Thus, while for a classification problem the cost
of the loss function represents the penalty applied to incorrect predictions, for a
regression problem the cost of the loss function represents the distance from the
predicted output to the objective.

In the following sections, the manuscript is going to focus on the classification
and regression loss functions used in the developed approaches.

2.2.2.1. Cross-Entropy loss function

A Cross-Entropy loss function quantifies the difference between two probabil-
ity distributions, the predicted and the ground-truth distribution. For this loss
function, the ground-truth or label distribution must be encoded as an one-hot
vector. That is, the vector which encodes the probability distribution has as
many elements as classes and only the correct label is set to 1, the rest are set to
0.

Equation 2.8 is used to compute the cross-entropy loss for a multi-class setup.

L(p, q) = − 1

N

N∑
i=1

C∑
j=1

pij log qij , (2.8)

where qi is a probability obtained by applying a softmax function to the logits
of a classification layer for the sample i, pi is the ground-truth for the sample i,
N is the total number of samples and C the total number of classes.

2.2.2.2. Tukey’s biweight loss function

Tukey’s biweight loss function [11] is a robust regression loss function that
reduces the influence of outliers during the learning process. The loss L(ŷi, yi) =

ρ(rMAD
i ) is based on the residual ri of the training samples ri = yi − ŷi and is

defined by the equations:

ρ(ri) =

{
c2

6 [1− (1− ( ric )2)3] , if|ri| ≤ c
c2

6 , otherwise
(2.9)

rMAD
i =

yi − ŷi
1.4826×MAD

(2.10)
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MAD = median
k∈{1,...,S}

(∣∣∣∣rk − median
j∈{1,...,S}

(rj)

∣∣∣∣) (2.11)

where constant c is set to 4.6851 as suggested in [11], S is the number of training
samples, and the subscripts k and j are indexes referred to the training samples.

This layer may be replaced by another regression-like loss function, as the L2
distance: La(ŷi, yi) = ||ŷi − yi||22. However, the performance of the Tukey’s loss
is better than L2 as it is more robust to outliers.

2.2.3. Optimizers

During training of a network, its parameters must be optimized to solve the
problem for which it has been designed. This process implies to compute the
gradients for a loss function and apply those gradients to update the parameters.
The optimizer is the algorithm which performs those two operations to optimize
the weights of the model.

Gradient descent is the most popular algorithm used to perform the optimiza-
tion process. It miminizes an objective function J(θ), which is parameterized by
the weights of the model θ ∈ Rd, by updating the weights in the opposite direction
of the gradient of the objective function ∇θJ(θ) with respect to the parameters.

The following sections will explain the most frequently used algorithms for
optimizing the weights of a deep learning model.

2.2.3.1. Mini-batch Gradient Descent

The mini-batch gradient descent is the most used algorithm for optimizing
deep learning models. This algorithm updates the weights of the model for every
mini-batch of n training samples according to Equation 2.12. By this way, the
variance of the updates is reduced and the convergence is more stable.

θ ← θ − α 1

n

n∑
i=1

(hθ(x
(i))− y(i))x(i) (2.12)

where θ are the parameters of the model, α is the learning rate, n is the size
of the mini-batch, hθ(x(i)) is the output value of the model for the x(i) sample,
y(i) is the label of the sample i and x(i) is the input sample.
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2.2.3.2. Momentum

Mini-batch gradient descent has problems when the surface has ravines, that
is, areas where the surface curves more in one dimension than in another. In these
scenarios, mini-batch gradient descent oscillates between the sides of the ravine
while the movement in the other axis is very slow. Therefore, the optimization
process will take a long time in these cases.

In [112], the author proposes a new algorithm called Momentum. This al-
gorithm is based on mini-batch gradient descent but adding a new parameter
γ which is the fraction of the update of the past step used during the current
step. This term helps to accelerate the convergence as it performs bigger updates
on dimensions whose gradients have the same direction and smaller updates for
dimensions with gradients pointing to different directions. Equation 2.13 shows
the steps to update the parameters of the network using this approach.

vt =γvt−1 + α
1

n

n∑
i=1

(hθ(x
(i))− y(i))x(i)

θ ←θ − vt

(2.13)

where θ are the parameters of the model, α is the learning rate, n is the size
of the mini-batch, hθ(x(i)) is the output value of the model for the x(i) sample,
y(i) is the label of the sample i, x(i) is the input sample, γ is a decay constant,
vt is the current update and vt−1 is the past update.

2.2.3.3. Nesterov accelerated gradient

Nesterov accelerated gradient [104] (NAG) tries to go one step ahead of mo-
mentum by computing two steps in one. When momentum is used to update the
weights of the model, θ − γvt−1 gives an approximation of the future position of
the parameters which is completed when the gradients are aggregated. Thus, to
go one step ahead, a new step can be done computing the gradients with respect
to the approximate future position θ − γvt−1. Equation 2.14 shows the steps to
update the parameters of the model.

vt =γvt−1 + α∇θJ(θ − γvt−1) (2.14)
θ ←θ − vt (2.15)
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where γ is a decay constant, θ are the parameters of the model, vt is the
current update and vt−1 is the past update.

2.2.3.4. Adagrad

Adragrad [33] is an optimization algorithm based on mini-batch gradient de-
scent that adapts the learning rate for each parameter. That way, it uses lower
learning rates to perform smaller updates for parameters associated with frequent
features and, higher learning rates to produce bigger updates for parameters as-
sociated with infrequent features.

Adagrad uses Equation 2.12 to update the weights as in mini-batch gradient
descent but changing the learning rate value (α) by Equation 2.16.

lrt,i =
α√

Gt,ii + ε
(2.16)

where lrt,i is the leaning rate for the parameter i at step t, α is the base
learning rate, Gt,ii is a diagonal matrix where each diagonal element (i, i) is the
sum of the squares of gradients with regard to θi and ε is a smoothing term to
avoid zero-divisions.

One of the main benefits of this algorithm is the auto-tuning of the learning
rate, which is a critical point during the training process. Thus, with this ap-
proach, one only has to define an initial learning rate and it is fine-tuned during
the training process for each parameter. However, this benefit is also a mayor
problem during the training as to adapt the learning rate, squared gradients are
aggregated in Gt,ii and, as all values are positive, these values grow indefinitely
making the learning rate smaller in each step. Therefore, the learning rate will
became small enough to stop the learning process.

2.2.3.5. Adadelta

Adadelta [152] is an extension of Adagrad which solves the problem with the
decreasing learning rate due to the aggregation of squared gradients. In this case,
the aggregation of gradients is limited to a fixed windows size w. This way, the
gradients are only accumulated during w steps what solves the problem with the
learning rate. To execute this operation more efficiently, the sum of gradients is
recursively defined as an exponentially decaying average of the w past squared
gradients.
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Thus, in Equation 2.16, the term Gt,ii is substituted by Equation 2.17.

E[g2]t = γE[g2]t−1 + (1− γ)g2
t (2.17)

where E[g2]t is the average of gradients for step t, γ is a decay constant similar
to the used in the momentum approach, E[g2]t−1 is the average of gradients for
the past step and g2

t is the squared gradient for step t.

However, Equation 2.17 can be rewritten using a new decaying average de-
fined over the squared parameter updates (Equation 2.18) instead of the squared
gradients.

E[∆θ2]t = γE[∆θ2]t−1 + (1− γ)∆θ2
t (2.18)

where E[∆θ2]t is the average of parameter updates for step t, γ is the same
decay constant, E[∆θ2]t−1 is the average of parameter updates for the past step
and ∆θ2

t is the squared parameter update for step t.

Substituting Gt,ii in Equation 2.16 by Equation 2.18, the denominator can be
approximated by the Root Mean Squared (RMS) error criterion of the gradient:
RMS[∆θ]t =

√
E[∆θ2]t+ ε. Since RMS[∆θ]t is unknown beforehand, it is

approximated with the RMS of the parameter updates until the previous step.
Thus, substituting all terms in the equations, the update rule for Adadelta is
defined in Equation 2.19.

θt+1 ← θt −
RMS[∆θ]t−1

RMS[g]t
gt (2.19)

where θt+1 are the parameters in the step t+1, θt are the current parameters,
RMS[∆θ]t−1 is the root mean squared of parameter updates until the current
step, RMS[g]t is the root mean squared of current gradients and gt are the current
gradients.

2.2.3.6. Adam

Adaptive Moment Estimation (Adam) [67] is another approach that adapts
the learning rate for each weight of the model. Like Adadelta, it stores the expo-
nentially decaying average of past squared gradients vt. In addition, Adam also
stores an exponentially decaying average of past gradients mt which is similar to
momentum. Equations 2.20 and 2.21 are used to compute mt and vt respectively.
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mt = β1mt−1 + (1− β1)gt (2.20)

vt = β2vt−1 + (1− β2)g2
t (2.21)

where β1 and β2 are decay constants, mt−1 and vt−1 are the decaying average
of past gradients and the decaying average of past squared gradients, respectively,
for step t−1, gt are the current gradients and g2

t are the current squared gradients.

Parameters mt and vt are estimations of the first moment (mean) and the
second moment (variance). Due to both parameters are initialized as zero-vectors,
they are biased towards zero, specially during the first steps and when parameters
β1 and β2 are close to 1. To solve that biasing problem, both parameters are re-
computed with Equations 2.22 and 2.23.

m̂t =
mt

1− βt1
(2.22)

v̂t =
vt

1− βt2
(2.23)

Finally the updating rule of Adam is shown in Equation 2.24.

θt+1 ← θt −
α√
v̂t + ε

m̂t (2.24)

where θt+1 are the parameters in the step t+1, θt are the current parameters,
α is the learning rate, m̂t is the bias corrected estimation of the first moment, v̂t
is the bias corrected estimation of the second moment and ε is a smoothing term.

2.2.4. Hyper-parameters

Hyper-parameters are the variables that define high level concepts of the net-
work such as complexity of the model or learning capacity. These parameters
must be set before the training process as they cannot be optimized. To de-
cide the best values of the hyper-parameters, a cross-validation process must be
performed.

Regarding deep learning approaches, the most common hyper-parameters are:
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Architecture of the network. The architecture includes the number and
kind of layers and the number of filters of each layer.

Learning rate. Defines the update speed of the weights. Lower learning
rates produce slower training processes and bigger learning rates accelerates
the convergence but excessively big values could make the network not to
converge.

Weight decay. Parameter included in the weight update rule that causes
the weights to exponentially decay to zero if no other update is performed.
It helps to reduce overfitting.

Batch size. Number of samples fed into the network during every training
step.

Stop criterion. Rule to stop the training. It can be a number of training
iterations, a minimum accuracy, overfitting detection, etc.

2.3. Information fusion

When several sources of information are available, a method to fuse those
sources can be used to improve the performance of the global approach. On
the one hand, we can combine those sources of information before learning a
classification model. This approach is usually known as early fusion. A typical
example of early fusion is the concatenation of feature vectors. On the other
hand, we can train independent classifiers for each source of information, and
then, define a strategy to fuse the classification or confidence scores. This is
known as late fusion.

In this thesis we applied six different fusion schemes to the approach based
on handcrafted features and to the deep learning approach. In both cases, the
fusion is able to help the training process to obtain better results.

In this section, both fusion schemes are explained together with some exam-
ples of each one.

2.3.1. Early fusion

This fusion is performed at feature level, that is, before learning the classi-
fication model. As features from different sources or modalities are combined,
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the future classifier has more information to represent the classes and to ob-
tain a better separation between them. However, depending on the combination
approach, the fused features can be excessively large, penalizing the learning
process. Therefore, a good fusion scheme is necessary to deal with large feature
vectors.

2.3.1.1. Feature vector concatenation

The simplest method for information fusion is vector concatenation. Given a
set of n row vectors {f1, f2, ..., fn}, each computed from a different type of feature,
a new feature vector f̂ is defined as the concatenation of the n feature vectors.
This approach can be considered as an early fusion method, since the combination
of information is carried out before any learning/classification procedure.

In a deep learning approach, this scheme is easily carried out having a branch
per source of information and concatenating them at some point in the architec-
ture. Then, after the concatenation, all layers are common to all modalities. By
this way, the model can learn features from all sources at the same time.

2.3.1.2. Bi-modal codewords

This kind of early fusion [149] builds a unique representation that fuses all
the information provided by two different sources. In this manner, instead of
concatenating the information, the method learns how to mix the information
from different modalities into a unique and richer representation.

Given a set of n row vectors {f1, f2, ..., fn}, each computed from a different
type of modality. The distance between the representation of each modality is
computed and a clustering technique is applied to this information in order to
select the best features that represent the correlation between modalities. The
groups obtained in the clustering process are used to build a new feature vector
f̂ that encodes the fused information from the original representation of each
modality.

2.3.1.3. Multiple Kernel Learning

Multiple Kernel Learning (MKL) [132] is another approach for early fusion.
It is based on the idea of applying a function, or kernel, that maps the input
data to a higher dimensionality where the data are linearly separable. From this
idea, the authors extend it to use a combination of kernels instead of using a
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single kernel. Then, the method tries to find an optimal kernel that best maps
the information to make it separable.

Given a set of k row vectors {f1, f2, ..., fk}, each computed from a different
type of modality and being δ1, ..., δk the k−associated distance functions, where
δk = wTk fk. The algorithm tries to find the optimal kernel Kopt =

∑
k dkKk

where Kk is the k-th kernel matrix (i.e. function of δk) and d are the weights.
The computation is performed as an SVM optimization framework where the
primal problem can be formulated as:

min
wk,b,d,ξ≥0

1

2

∑
k

wTk wk
dk

+ C
∑
k

ξk +
λ

2
||d||2p

s.t. yi(
∑
k

wTk fk + b) ≥ 1− ξ, i = 1, ..., N
(2.25)

where || · ||p represents the Euclidean p-norm, ξk is the slack parameter, C is
the regularization parameter and finally, wi and and b are the weights and bias of
the SVM, respectively. Nevertheless, this formulation is equivalent to concatenate
K modalities of each sample. The authors present a richer representation that
uses the product of kernels instead of the sum.

2.3.2. Late fusion

This fusion scheme is carried out at score level, that is, after learning the
classification model, using its probability distribution as input. In this case, the
idea is to combine the classification scores from different sources to produce a
better probability which combines all the information. By this way, each indi-
vidual model for each modality is supposed to obtain the best accuracy possible
for that modality. Thus, if multiple of those models are combined, the output
probability should be better than the individual ones.

This fusion scheme can be applied to any kind of classification model either
hand-crafted or deep model.

2.3.2.1. Weighted Scores

Weighted scores (WS) is a late fusion method that uses the estimated accuracy
of the individual models to assign a weight to each confidence score, obtaining in
this way a new combined score.
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Given a set of n confidence score vectors {s1, s2, ..., sn}, associated to n mod-
els, and their corresponding weighting factors {a1, a2, ..., an}, the final score vec-
tor sf is computed as follows:

sf =
n∑
i=1

si ∗ ai (2.26)

where the sum of the weighting factors is equal 1.

2.3.2.2. Classifier over the scores

Classifier over the scores is another late fusion method that builds a classifier
using as input the confidence scores of all modalities obtained in a training set. By
this way, the classifier is able to automatically learn a relation between modalities
that maximizes the classification performance.

Given a set of n confidence score vectors {s1, s2, ..., sn}, obtained from n

models, we build a new feature vector fs by concatenating those scores. Then,
a classifier is trained on those new feature vectors {fs}, to obtain a final fusion
score sf .

2.3.2.3. Rank Minimization

The method proposed by Ye et al. [150], for the problems of object categoriza-
tion and video event detection, can be classified into the category of late fusion
methods.

Let s = [s1, s2, ..., sm] be a confidence score vector of a model on m samples.
A pairwise relationship matrix T is constructed from s as:

Tjk = sign(sj − sk) (2.27)

Given n models, the robust late fusion method of Ye et al. aims at optimizing
the following problem:
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min
T̂ ,Ei

‖T̂‖∗ + λ
n∑
i=1

‖Ei‖1,

s.t. Ti = T̂ + Ei, i = 1, ..., n, (2.28)

T̂ = −T̂>

Where Ti is the pairwise relationship matrix of the i-th model, ‖ · ‖∗ denotes
the nuclear norm of a matrix (i.e. the sum of the singular values of the matrix),
Ei is a sparse matrix associated to the i-th model, T̂ is the estimated rank-2
pairwise relationship matrix consistent among the samples and models, and λ is
a positive tradeoff parameter to be cross-validated. Such optimization problem
is solved by inexact Augmented Lagrange Multiplier method [79].

As described in [150], given the estimated matrix T̂ , and assuming that T̂ is
generated from ŝ as T̂ = ŝe> − eŝ>, the new score vector ŝ is computed as

(1/m)T̂ e = arg min
ŝ
‖T̂> − (ŝe> − eŝ>)‖2F , (2.29)

treating (1/m)T̂ e as the recovered ŝ after the late fusion of the input scores.

2.4. Incremental learning

One of the main challenges in developing a visual recognition system targeted
at real-world applications is learning classifiers incrementally, where new classes
need to be learned continually. For example, a face recognition system needs to
handle new faces to identify new people. This task needs to be accomplished
without having to re-learn faces learned previously. While this is trivial to ac-
complish for most people (we learn to recognize faces of new people we meet
every day), it is not the case for a machine learning system. Traditional models
require all the data (corresponding to the old and the new classes) to be available
at training time, and are not equipped to consider only the new data with a small
selection of the old data. In an ideal system, the new classes should be integrated
into the existing model, sharing the previously learned parameters.

Traditionally, this problem has been faced using hand-crafted features com-
bined with SVMs. SVMs are specially useful for this problem as storing the
support vectors of the current model, the current decision boundaries are kept
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and, when new classes are added, the training process is easier as the system only
has to separate the new classes from the old ones.

However, deep learning approaches are more powerful and obtains better re-
sults than SVMs, therefore, this manuscript focuses on incremental learning from
a deep learning point of view

In this thesis we designed a new incremental learning approach based on deep
learning. The pipeline and architecture proposed are able to obtain state-of-the-
art results for the problems of image recognition and gait recognition.

2.4.1. Deep incremental learning

A truly incremental deep learning approach for classification is characterized
by its:

Ability to being trained from a flow of data, with classes appearing in any
order, and at any time.

Good performance on classifying old and new classes.

Reasonable number of parameters and memory requirements for the model.

End-to-end learning mechanism to update the classifier and the feature
representation jointly.

Therefore, an ideal approach would be able to train on an infinitely-large
number of classes in an incremental way, without losing accuracy, and having
exactly the same number of parameters, as if it were trained from scratch.

Figure 2.9 shows an scheme of a general incremental learning approach where
a deep model is used as feature extractor common to all classes (new and old),
and new classification layers are attached to the feature extractor when new
classes are added to the model. To train the model, it is necessary to include
a loss function per classification layer with old classes. This loss function or
distillation loss retains the knowledge from old classes. Finally, a classification
loss is necessary to learn the new classes and the separability between old a new
classes.

During training, all losses are combined to adapt the weights of the model
retaining the old knowledge and including the new one.
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Figure 2.9: Incremental model. Given an input image, the feature extractor
produces a set of features which are used by the classification layers (CLi blocks)
to generate a set of logits. Grey classification layers contain old classes and their
logits are used for distillation and classification. The green classification layer
(CLN block) contains new classes and its logits are involved only in classification.

2.5. Energy consumption of deep learning

From the point of view of High Performance Computing, Deep Learning ap-
plications are gaining momentum in the realm of Artificial Intelligence thanks to
the use of accelerators that employ thousands of cores to carry out the costly
computation of CNN models. An important aspect that must be evaluated when
accelerators are applied to both CNN training and testing steps is the power con-
sumption of the architecture. That way, the flagship performance metric is no
longer GFLOPS (Giga Floating-Point Operations Per Second), but GFLOPS/w
(GFLOPS per watt).

Thus, energy consumption has gained relevance among researchers during the
big-data era as it can represent more than 20% of the budget in Data Centers
nowadays. From a global point of view, costs in energy consumption have ex-
ceeded 5 billion dollars per year over the last decade only in the US [12], and
it is predicted that the energy billing will increase in forthcoming years if power
optimizations are not conducted in all levels, including operating systems, kernels
and applications.
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The industry is aware about the need of low-power CNN acceleration when
using them extensively. Google is a clear example with Tensor Processing Unit
(TPU) tailored to their TensorFlow framework in its data centers, claiming that
they are able to reduce power an order of magnitude versus GPUs [63]. How-
ever, these TPU processors are not publicly available and only Google researchers
and some selected research groups are allowed to use them. Moreover, the TPU
processors are physically located in Google’s datacenters precluding physical mea-
surements of energy consumption.

FPGAs are other kind of accelerators commonly used in heavy computation
processes. However, due to the their expensive costs, hard programming and lack
of frameworks, their use is very limited in the deep learning field.

On the other hand, GPUs provide a good computational capacity with a mod-
erate cost. In addition, GPU manufactures are reducing the value of GFLOPS/w
of these architectures in a significant way. Moreover, available GPU programming
models are user friendly, what has allowed the creation of many frameworks that
take advantage of their computational capacities. Thus, thanks to these benefits,
GPUs are being extensively used for deep learning purposes.

In this thesis we carried out a comprehensive study of the power consumption
incurred by several NVDIVIA GPUs on different CNN models. To the best of
our knowledge, our work is pioneer on measuring the actual power consumption
of CNNs with wires and measurement devices physically plugged to the pinout of
latest GPU generations and multi-GPU platforms, and even identifying the most
expensive operators and functions in terms of energy budget.

2.5.1. Energy consumption on GPUs

To measure the energy consumption on GPUs, it is necessary to use specific
devices, as GPUs do not include this capability. The developed system to measure
current, voltage and wattage is based on a Beaglebone Black, an open-source
hardware [10] combined with the Accelpower module [42], which has eight INA219
sensors [2]. Inspired by [60], wires taken into account are two power pins on the
PCI-express slot (12 and 3.3 volts) plus six external 12 volt pins coming from
the power supply unit (PSU) in the form of two supplementary 6-pin connectors
(half of the pins used for grounding). See Figure 2.10 for details.

Accelpower uses a modified version of pmlib library [4], a software package
specifically created for monitoring energy. It consists of a server daemon that
collects power data from devices and sends them to the clients, together with a
client library for communication and synchronization with the server.



Figure 2.10: Wires, slots, cables and connectors for measuring energy on GPUs.





3 Related work

This chapter reviews the related work for the gait recognition problem. To
make this chapter more understandable, it has been divided into sections accord-
ing to the approach described. Thus, Sections 3.1 and 3.2 reviews hand-crafted
and deep learning approaches respectively. Sections 3.3 and 3.4 focuses on fu-
sion and multi-task methods. Section 3.5 describes the incremental learning
approaches. Finally, Section 3.6 reviews the energy consumption studies applied
to deep learning approaches.

3.1. Hand-crafted approaches

Many research papers have been published in recent years tackling the prob-
lem of human gait recognition using different sources of data, like inertial sen-
sors [107, 106], foot pressure [157], infrared images [146] or the traditional images.
For example, in [59] we can find a survey on this problem summarizing some of
the most popular approaches. Some of them use explicit geometrical models of
human bodies, whereas others use only image features. A sequence of binary
silhouettes of the body is adopted in many works as input data. In this sense,
the most popular silhouette-based gait descriptor is the called Gait Energy Im-
age (GEI) [47]. The key idea is to compute a temporal averaging of the binary
silhouette of the target subject. Liu et al. [80], to improve the gait recognition
performance, propose the computation of HOG descriptors from popular gait de-
scriptors as the GEI and the Chrono-Gait Image (CGI). In [90], the authors try to
find the minimum number of gait cycles needed to carry out a successful recogni-
tion by using the GEI descriptor. Martin-Felez and Xiang [91] [92], using GEI as

43
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the basic gait descriptor, propose a new ranking model for gait recognition. This
new formulation of the problem allows to leverage training data from different
datasets, thus, improving the recognition performance. Another silhouette-based
approximation is Motion Silhouette Image (MSI) [74]. This approach generates
a gray-scale image where each pixel contains the temporal history of the motion
of that pixel. As noisy silhouettes have a huge impact in this representation,
Lee et al. [76] propose a new descriptor based on MSI, the Motion Energy Image
(MEI). This new representation assigns to each pixel the mean energy of each
silhouette within a fixed size window. By this way, the effect of noise in one frame
is minimised with the energy of the other frames. Alternatively, in [3], Akae et al.
propose a temporal super resolution approach to deal with low frame-rate videos
for gait recognition. They achieve impressive results by using binary silhouettes
of people at a rate of 1-fps. Hu proposes in [57] the use of a regularized local
tensor discriminant analysis method with the Enhanced Gabor representation
of the GEI. In addition, the same author defines in [56] a method to identify
camera viewpoints at test time from patch distribution features. Recently, Lai
et al. [73] proposed a novel discriminant subspace learning method (Sparse Bilin-
ear Discriminant Analysis) that extends methods based on matrix-representation
discriminant analysis to sparse cases, obtaining competitive results on gait recog-
nition. In many works it is assumed that the target person follows a straight
path, however, Iwashita et al. [61] explicitly focus on curved trajectories. Gong
et al. [41] propose a method that uses dense local spatio-temporal features and a
Fisher-based representation rearranged as tensors.

3.2. Deep learning approaches

A new realm of the feature learning field for recognition tasks started with the
advent of Deep Learning (DL) architectures [43]. Recently, DL approaches based
on CNN have been used on image-based tasks with great success [72, 124, 153]. In
the last years, deep architectures for video have appeared, specially focused on ac-
tion recognition, where the inputs of the CNN are subsequences of stacked frames.
The very first approximation of DL applied to stacked frames is proposed in [75],
where the authors apply a convolutional version of the Independent Subspace
Analysis algorithm to sequences of frames. By this way, they obtain low-level
features which are used by high-level representation algorithms. A more recent
approach is proposed in [66], where a complete CNN is trained with sequences of
stacked frames as input. In [123], Simonyan and Zisserman proposed to use as
input to a CNN a volume obtained as the concatenation of two channels: optical
flow in the x-axis and y-axis. To normalize the size of the inputs, they split
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the original sequence in subsequences of 10 frames, considering each subsample
independently. Donahue et al. [32] propose a new viewpoint in DL using a novel
architecture called ‘Long-term Recurrent Convolutional Networks’. This new ar-
chitecture combines CNN (specialized in spatial learning) with Recurrent Neural
Networks (specialized in temporal learning) to obtain a new model able to deal
with visual and temporal features at the same time. Recently, Wang et al. [137]
combined dense trajectories with DL. The idea is to obtain a powerful model that
combines the deep-learnt features with the temporal information of the trajec-
tories. They train a traditional CNN and use dense trajectories to extract the
deep features to build a final descriptor that combines the deep information over
time. On the other hand, Perronnin et al. [109] proposed a more traditional ap-
proach using Fisher Vectors as input to a Deep Neural Network instead of using
other classifiers like SVM. Recently, He et al. [48] proposed a new kind of CNN,
named ResNet, which has a large number of convolutional layers and ‘residual
connections’ to avoid the vanishing gradient problem.

Although several papers can be found for the task of human action recognition
using DL techniques, few works apply DL to the problem of gait recognition. In
[55], Hossain and Chetty propose the use of Restricted Boltzmann Machines to
extract gait features from binary silhouettes, but a very small probe set (i.e. only
ten different subjects) were used for validating their approach. Yan et al. [147]
use GEI descriptors, computed on completed walking cycles, as input data for a
Convolutional Neural Network (CNN). The proposed CNN is able to extract high-
level features that are used in a multi-task framework, where the goals are gait,
angle view and scene recognition. A more recent work, [144], uses a random set of
binary silhouettes of a sequence to train a CNN that accumulates the calculated
features in order to achieve a global representation of the dataset. In [40], raw 2D
GEI are employed to train an ensemble of CNN, where a Multilayer Perceptron
(MLP) is used as classifier. Similarly, in [5] a multilayer CNN is trained with
GEI data. A novel approach based on GEI is developed on [143], where the CNN
is trained with pairs of gallery-probe samples and using a distance metric.

Despite most CNNs are trained with visual data (e.g. images or videos), there
are some works that build CNNs for different kinds of data like inertial sensors or
human skeletons. Holden et al. [53] propose a CNN that corrects wrong human
skeletons obtained by other methods or devices (e.g. Microsoft Kinect). Neverova
et al. [105] build a temporal network for active biometric authentication with
data provided by smartphone sensors (e.g. accelerometers, gyroscope, etc.).

Recently, some authors have proposed the use of 3D convolutions to extract
visual and temporal data from videos. Tran et al. [130] define a new network
composed of 3D convolutions in the first layers that has been successfully applied
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to action recognition. Following that idea, Wolf et al. [141] build a CNN with
3D convolutions for gait recognition. Due to the high number of parameters
that must be trained (3D convolutions implies three times more parameters per
convolutional layer), Mansimov et al. [87] show several ways to initialize a 3D
CNN from a 2D CNN.

3.3. Fusion approaches

Since there are different descriptors for representing the same data, an inter-
esting idea would be to try to combine those descriptors into a single one that
could benefit from the original descriptors. To perform this task, several methods
have appeared [8, 142]. Also, the emergence of new cheaper devices that record
multimodal spectrums (e.g. RGB, depth, infrared) has allowed to investigate
how to fuse that information to build richer and more robust representations for
the gait recognition problem. Traditionally, fusion methods are divided into early
fusion methods (or feature fusion) and late fusion (or decision fusion). The first
ones try to build descriptors by fusing features of different descriptors, frequently,
using the concatenation of the descriptors into a bigger one as in [25]. On the
other hand, late fusion tries to fuse the decisions obtained by each classifier of
each modality, usually, by applying arithmetic operations like sums or products
on the scores obtained by each classifier as in [25, 52]. Fusion has been also
employed with CNN to improve the recognition accuracy for different computer
vision tasks. For example, two independent CNNs fed with optical flow maps
and appearance information (i.e. RGB pixel volumes) are employed in [123] to
perform action recognition. Then, class score fusion is used to combine the soft-
max output of both CNNs. In a similar way, Eitel et al. [35] have proposed a
DL approach for object recognition by fusing RGB and depth input data. They
concatenate the outputs of the last fully-connected layers of both networks (those
processing RGB and depth data) and process them through an additional fusion
layer. Wang et al. [134] also employ a multimodal architecture composed by two
CNN networks to process RGB-D data. They propose to learn two independent
transformations of the activations of the second fully-connected layer of each net-
work, so correlation of color and depth features is maximized. In addition, these
transformations are able to improve the separation between samples belonging
to different classes.
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3.4. Multi-task approaches

Although in gait recognition the main goal is to recognize the identity of
people by the way they walk, other tasks can be defined from the gait patterns
as gender recognition or age estimation. Generally, those additional tasks are
addressed independently of the identification task [52]. In contrast, in other
contexts as face recognition, works as [127] and [155] show that simultaneous
learning of several tasks provides benefit to the main task. Therefore, we explore
in this thesis the benefits of a novel multi-task CNN-based architecture for gait
recognition. In the context of gait recognition, we can find the recent work of
Yun et al. [147] that uses GEI as input of a CNN to predict the subject identity,
the camera viewpoint and the scenario (i.e. normal, with coat, with bag). Note
than only identity is a biometric feature and the input is the hand-crafted GEI
descriptor.

3.5. Incremental learning approaches

We now describe relevant methods in the field of incremental learning by
organizing them into traditional ones using a fixed feature set, and others that
learn the features, i.e. , through deep learning frameworks, in addition to training
classifiers.

Traditional approaches

Many initial methods for incremental learning targeted the SVM classifier [27],
exploiting its core components: support vectors and Karush-Kuhn-Tucker con-
ditions. Some of the methods [119] retain the support vectors, which encode
the classifier learned on old data, to learn the new decision boundary together
with new data. Cauwenberghs and Poggio [24] proposed an alternative to this
by retaining the Karush-Kuhn-Tucker conditions on all the previously seen data
(which corresponds to the old classes), while updating the solution according to
the new data. While these early attempts showed some success, they are limited
to a specific classifier and also do not extend to the current paradigm of learning
representations and classifiers jointly.

Another relevant approach is learning concepts over time, in the form of life-
long [129] or never-ending [98, 26, 31] learning. Lifelong learning is akin to trans-
ferring knowledge acquired on old tasks to the new ones. Never-ending learning,
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on the other hand, focuses on continuously acquiring data to improve existing
classifiers or to learn new ones. Methods in both these paradigms either require
the entire training dataset, e.g. , [26], or rely on a fixed representation, e.g.
, [31]. Methods such as [97, 117, 121] partially address these issues by learning
classifiers without the complete training set, but are still limited due to a fixed
or engineered data representation. This is achieved by: (i) restricting the clas-
sifier or regression models (e.g. , those that are linearly decomposable [121]), or
(ii) using a nearest mean classifier (NMC) [97], or a random forest variant [117].
Incremental learning is then performed by updating the bases or the per-class
prototype, i.e. , the average feature vector of the observed data, respectively.

Overall, the main drawback of all these methods is the lack of a task-specific
data representation, which results in lower performance.

Deep learning approaches

This class of methods provides a natural way to learn task-specific features and
classifiers jointly [116, 123, 13]. However, learning models incrementally in this
paradigm results in catastrophic forgetting, a phenomenon where the performance
on the original (old) set of classes degrades dramatically [95, 44, 38, 7, 114, 82,
77, 115, 122]. Initial attempts to overcome this issue were aimed at connectionist
networks [95, 38, 7], and are thus inapplicable in the context of today’s deep
architectures for computer vision problems.

A more recent attempt to preserve the performance on the old tasks was
presented in [77] using distillation loss in combination with the standard cross-
entropy loss. Distillation loss, which was originally proposed to transfer knowl-
edge between different neural networks [50], was adapted to maintain the re-
sponses of the network on the old tasks whilst updating it with new training
samples [77]. Although this approach reduced forgetting to some extent, in par-
ticular, in simplistic scenarios where the old and the new samples come from
different datasets with little confusion between them, its performance is far from
ideal. This is likely due to a weak knowledge representation of the old classes, and
not augmenting it with an exemplar set. Works such as [115, 131] demonstrated
this weakness of [77] showing significant errors in a sequential learning scenario,
where samples from new classes are continuously added, and in particular when
the new and the old samples are from related distributions.

Other approaches using distillation loss, such as Jung et al. [64] propose to
freeze some of the layers corresponding to the original model, thereby limiting
its adaptability to new data. Triki et al. [131] build on the method in [77] using
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an autoencoder to retain the knowledge from old tasks, instead of the distillation
loss. This method was also evaluated in a restrictive scenario, where the old and
the new networks are trained on different datasets, similar to [77]. Distillation
loss was also adopted for learning object detectors incrementally [122]. Despite
its success for object detection, the utility of this specific architecture for more
general incremental learning scenarios we target here is unclear.

Alternative strategies to mitigate catastrophic forgetting include, increasing
the number of layers in the network to learn features for the new classes [120, 128],
or slowing down the learning rate selectively through per-parameter regulariza-
tion [68]. Xiao et al. [145] also follow a related scheme and grow their tree-
structured model incrementally as new classes are observed. The main drawback
of all these approaches is the rapid increase in the number of parameters, which
grows with the total number of weights, tasks, and the new layers.

Rebuffi et al. [115] present iCaRL, an incremental learning approach where
the tasks of learning the classifier and the data representation are decoupled.
iCaRL uses a traditional NMC to classify test samples, i.e. , it maintains an
auxiliary set containing old and new data samples. The data representation
model, which is a standard neural network, is updated as and when new samples
are available, using a combination of distillation and classification losses [50, 77].

3.6. Energy consumption studies on deep learning

Moons et al. [100] propose methods at system and circuit level based on
approximate computing. They always perform training using 32-bit, lowering
precision during the test phase. They claim energy gains up to 30x without
losing classification accuracy and more than 100x at 99% classification accuracy,
compared to a commonly used 16-bit fixed point number format. Cai et al.
propose NeuralPower [16], a layer-wise predictive framework based on sparse
polynomial regression, for predicting the serving energy consumption of a CNN
deployed on different GPU platforms and Deep Learning software tools, attaining
an average accuracy of 88.24% in execution time, 88.34% in power, and 97.21%
in energy. Andri et al. introduce YodaNN [6], an energy and area efficiency
accelerator based on ASIC hardware optimized for BinaryConnect CNNs which
basically removes the need for expensive multiplications during training, also
reducing I/O bandwidth and storage. Yang et al. [148] propose an energy-aware
pruning algorithm for CNNs that directly uses energy consumption estimation of
a CNN to guide the pruning process. The energy consumption of AlexNet and
GoogLeNet are reduced by 3.7x and 1.6x, respectively, with less than 1% top-5
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accuracy loss. Results are obtained via a energy estimation tool for Deep Neural
Networks publicly available in [1]. Lin et al. [78] propose PredictiveNet to skip
a large fraction of convolutions in CNNs at runtime without modifying the CNN
structure or requiring additional branch networks. An analysis supported by
simulations is provided to justify how to preserve the mean square error (MSE)
of the nonlinear layer outputs. Energy savings are attained by reducing the
computational cost by a factor of 2.9x compared to a state-of-the-art CNN, while
incurring marginal accuracy degradation.

Moving away from estimators, predictors and simulators, we may find exam-
ples of real energy measurements and studies on low-power devices like DSPs
[94] and FPGAs [14], even for CNN applications [138, 93]. But to the best of
our knowledge, there are no works measuring the actual power consumption of
CNNs with wires and measurement devices physically plugged to the pinout of
latest GPU generations and multi-GPU platforms, and even identifying the most
expensive operators and functions in terms of energy budget.



4 Published Work

This chapter collects the set of papers published during the PhD. Specifically,
four papers have been published in journals indexed in the Journal of Citation
Report (JCR) and two of the most important conference paper. Moreover, other
three papers have been published in international conferences. Thus, nine papers
are the outcome of this PhD.

4.1. List of Published Papers

Journal papers:

• Marín-Jiménez, M. J., Castro, F. M., Carmona-Poyato, Á., Guil, N.
(2015). On how to improve tracklet-based gait recognition systems.
Pattern Recognition Letters, 68, 103-110.
Doi: 10.1016/j.patrec.2015.08.025.

• Castro, F. M., Marín-Jiménez, M. J., Guil, N. (2016). Multimodal
features fusion for gait, gender and shoes recognition. Machine Vision
and Applications, 27(8), 1213-1228. Doi: 10.1007/s00138-016-0767-5.

• Castro, F. M., Marín-Jiménez, M. J., Mata, N. G., Muñoz-Salinas, R.
(2017). Fisher motion descriptor for multiview gait recognition. In-
ternational Journal of Pattern Recognition and Artificial Intelligence,
31(01), 1756002. Doi: 10.1142/S021800141756002X.

• Castro, F. M., Guil, N., Marín-Jiménez, M. J., Pérez-Serrano, J.,
Ujaldón, M. (2018). Energy-based Tuning of Convolutional Neural
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Networks on Multi-GPUs. Concurrency and Computation: Practice
and Experience (to appear). Doi: 10.1002/cpe.4786.

Conference papers:

• Castro, F. M., Marín-Jiménez, M. J., Guil, N. (2015). Empirical study
of audio-visual features fusion for gait recognition. In International
Conference on Computer Analysis of Images and Patterns (CAIP)
(pp. 727-739). Doi: 10.1007/978-3-319-23192-1_61.

• Castro, F. M., Marín-Jiménez, M. J., Guil, N., López-Tapia, S., Pérez
de la Blanca, N. (2017). Evaluation of CNN architectures for gait
recognition based on optical flow maps. In International Conference
of the Biometrics Special Interest Group, BIOSIG 2017, Darmstadt,
Germany, September 20–22, 2017 (pp. 251-258).
Doi: 10.23919/BIOSIG.2017.8053503.

• Marín-Jiménez, M. J., Castro, F. M., Guil, N., de la Torre, F., Medina-
Carnicer, R. (2017). Deep multi-task learning for gait-based biomet-
rics. In Image Processing (ICIP), 2017 IEEE International Conference
on (pp. 106-110). Doi: 10.1109/ICIP.2017.8296252.

• Castro, F. M., Marín-Jiménez, M. J., Guil, N., de la Blanca, N. P.
(2017). Automatic learning of gait signatures for people identifica-
tion. In International Work-Conference on Artificial Neural Networks
(IWANN) (pp. 257-270). Doi: 10.1007/978-3-319-59147-6_23.

• Castro, F. M., Marín-Jiménez, M. J., Guil, N., Schmid, C., Ahahari,
K. (2018). End-to-End Incremental Learning. European Conference
on Computer Vision (ECCV), (to appear). Doi: 10.1007/978-3-030-
01258-8_15.

4.2. Summary of the papers that support this the-
sis

This section presents a summary of each one of the journal papers that support
this thesis. For each one of them, we attach a brief summary and a full copy of
the published document.
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4.2.1. Reference [89] ‘On how to improve tracklet-based
gait recognition systems’

In [89] we study different proposals to improve the previous work published
in [22] based on gait recognition using dense trajectories. A first improvement
is the use of RootDCS instead of the common DCS descriptor. Thus, this new
descriptor applies an element wise square root to the L1-normalized DCS de-
scriptors. This regularization stabilizes the variance between bin values of the
kinematic features histogram what improves the representation capacity of the
descriptors. Another way of improvement is the use of sparse trajectories instead
of dense ones because not all trajectories contributes to describe the gait. There-
fore, the idea is to discard trajectories whose mean velocity vectors are similar to
the median velocity of the person. This way, the most relevant trajectories are
stored (e.g. arm and leg swing) and the superfluous ones are removed (horizontal
displacement of the body). Since the final descriptors used in [22] have a large
dimensionality, a PCA dimension reduction is applied to reduce that dimension-
ality. However, as we are facing a labeled problem, a semi-supervised approach
can be used to increase the separability of the reduced descriptors. Finally, as
we are using a set of SVMs in an one-vs-all approach, the output scores can be
very similar sometimes. Thus, we propose the use of a Rank Minimization step
whose aim is to combine the outputs of different classifiers to obtain a final and
more robust decision on a set of test samples.

A thorough set of experiments is performed on three challenging datasets to
validate our proposals. In all cases, the proposed improvement overcomes the
results obtained by the baseline method.

4.2.2. Reference [18] ‘Multimodal features fusion for gait,
gender and shoes recognition’

Since there can be multiple sources of information or modalities recorded at
the same time when a person is walking, our objective is to fuse those different
modalities to improve the recognition results obtained with a single source of
information. In this paper, we study six different ways to fuse the information
of different modalities, where three of them are late fusions (performed at score
level) and the other three are early fusion (performed at descriptor level).

Regarding the early fusion approaches, we propose three versions: vector
concatenation, where the feature vectors are concatenated to produce a larger
one; bimodal codewords where a common dictionary is learned to produce a final
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feature vector which mixes information from all modalities; and, multiple kernel
learning where an optimization process is performed to obtain an optimal kernel
which maps the information of all modalities into a higher feature space where
the classes are more separable.

Regarding the late fusion approaches, we propose three options: weighted
scores, where a weighted sum is applied to the output scores of each individual
modality; SVM over the scores, where a SVM model is trained over the probabil-
ity distributions obtained from each isolated modality; and, rank minimization,
where a minimization process is done to obtain better combined probabilities.

According to the experimental results, the modality fusion helps to improve
the accuracy of the system as long as the combined features are representative
themselves. That is, if a modality obtains poor results, fusing that modality with
another one will produce poor results as well.

4.2.3. Reference [21] ‘Fisher motion descriptor for multi-
view gait recognition’

In this work, we extend the conference version paper [22]. This version, ex-
tends the experimental section to four datasets with multiple-views and walking
conditions such as carrying a bag, wearing different clothes, coating shoes, tread-
mills, etc. Therefore, the objective of this paper is to explore the proficiency of
the previously proposed approach which, due to length limitations, was impossi-
ble to test. In addition, some changes are performed to improve the accuracy of
the global pipeline.

The thorough experimentation confirms that our approach is able to deal with
changes in the shape and multiple views, obtaining state-of-the-art results in all
datasets.

4.2.4. Reference [17] ‘Energy-based Tuning of Convolutional
Neural Networks on Multi-GPUs’

In this study, we analyze the energy consumption during the training process
of a CNN. Since this is an expensive process which uses a lot of resources, it is
interesting to consider the energy as a parameter which can be minimized such
as the loss. This way, apart from the final accuracy, the energy is also taken
into account in the designing process of the CNN architecture because the energy
consumed has an economical impact, and a network that consumes less energy
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can be a great saving.

As many possible architectures can be designed, we focus on the following
ones: an AlexNet [72] version adapted to the problem of gait recognition and
the original AlexNet used for image recognition, a ResNet [48] network for image
recognition on ImageNet and an adapted version for gait recognition. This way,
we are studying two kinds of networks used as baseline in most of the current
approaches, and two of the most common kinds of input (images and video).
Moreover, we also analyze the impact of the batch size to the accuracy and
energy consumption. Finally, we also consider the impact of doing a multi-GPU
training together with different GPU architectures (Pascal and Maxwell in our
case).

According to the results, in small datasets, minimizing power consumption
and accuracy is very complex since small batch sizes are required to obtain a good
training process what penalizes energy consumption. However, networks based
on AlexNet are an exception supporting larger batch sizes allowing to minimize
power consumption while maintaining good accuracy. In large databases, large
batch sizes can be used without lowering accuracy, which allows consumption and
accuracy to be optimized together. Regarding GPU architectures, Pascal achieves
better consumption and higher frequencies as expected. Finally, configurations
with multiple GPUs yield good results with two devices. With more than two
devices, the problem has to be studied individually.

4.3. Additional papers

This section presents a summary of two conference papers that contains tech-
niques not published in journals. For each one of them, we attach a brief summary
and a full copy of the published document.

4.3.1. Reference [88] ‘Deep Multi-Task Learning for Gait-
based Biometrics’

In this work, we explore the use of gait information for different tasks, not
only for identification. Although gait is mainly used for people identification,
other biometric tasks can be defined based on gait, e.g. gender recognition or age
estimation. However, not much attention has been paid to the fact that those
tasks are closely related and can benefit ones from the others when are jointly
considered during training.
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We propose a multi-task learning approach based on a combined loss function
for training CNNs from optical flow data. By this way, the gait signatures or gait
features obtained by the network are simultaneously suitable for all the tasks
trained during the multi-task learning process.

According to the results, the multi-task learning speeds up the the velocity
of convergence of the objective function, it also improves the capacity of gener-
alization of the shared gait signatures obtained for the biometric tasks and, it is
able to improve the previous state-of-the-art results.

4.3.2. Reference [20] ‘End-to-End Incremental Learning’

Although deep learning approaches achieve state-of-the-art results when they
are trained with huge datasets or, at least, using the entire dataset, they have
problems when training new classes incrementally. This problem is known as
catastrophic forgetting, which is a huge decrease in the performance of the network
when new classes are trained incrementally.

We propose an end-to-end approach that learns deep neural networks incre-
mentally, using the new data from the new classes and only a small exemplar set
of samples from the old classes. The training process is based on a loss function
composed of a distillation measure to retain the knowledge from the old classes,
and a cross-entropy loss to learn the new classes.

According to the results, our end-to-end approach is able to obtain state-of-
the-art results on two challenging datasets (i.e. CIFAR-100 and ImageNet).



5 Unpublished Work

This chapter contains those works which are not published yet. Specifically,
Section 5.1 explains the fusion approach developed for deep learning applied to
gait recognition and, Section 5.2 describes the incremental learning approach
developed for gait recognition.

5.1. Multimodal gait recognition with CNNs

In this work, the experimental study is directed towards three main objectives.
The first objective is the identification of good architectures that, using as input
2D spatial information from a sequence of video frames or 3D spatio-temporal
information from a finite subset of video frames, are capable of achieving high
scores in the task of gait recognition. To this effect we design 2D-CNN and 3D-
CNN architectures with different depth (i.e. layers). In addition, as previous
works [72] have shown that deeper CNN models achieve better generalization
power, we have also designed a ResNet architecture based on [48]. The second
objective is the use of diverse types of raw input features (i.e. volumes of gray-
level pixels, optical flow maps and depth maps) to automatically derive gait
signatures. And, the last objective is to assess if the combination of information
derived from different inputs allows to obtain better models for the task of gait
recognition.

Therefore, the main contributions of this work are:

A comparative study of state-of-the-art CNN architectures using as input
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Figure 5.1: Pipeline for gait recognition. a) The input is a sequence of
RGB-D video frames. b) Low-level features are extracted along the sequence and
stacked building volumes. c) Volumes are passed through the CNN to obtain gait
signatures. d) CNN outputs are combined. e) A final decision is taken to output
an identity.

2D or 3D information blocks representing spatial and spatio-temporal low-
level information, respectively, from data.

A thorough experimental study to validate the proposed framework on the
standard TUM-GAID and CASIA-B datasets for gait identification.

An extensive experimental study of low level feature fusion.

State-of-the-art results on both datasets, being our fusion scheme the best
approach.

5.1.1. Proposed approach

In this section we describe our proposed framework to address the problem
of gait recognition using CNNs. The pipeline proposed for gait recognition based
on CNNs is represented in Figure 5.1:

1. Gather low-level features along the whole sequence.

2. Crop the obtained OF maps to obtain square-shaped frames, and stack L
consecutive OF maps.
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Figure 5.2: CNN input data. Sample frames extracted from a subsequence of
25 frames. (top rows) Optical flow in x-axis and y-axis. where positive flows
are displayed in pink and negative flows in blue (best viewed in color). (bottom
rows) Gray pixels and depth maps of the same sequence.

3. Build up a data cuboid from consecutive low-level feature maps.

4. Feed the CNN with the low-level feature cuboid to extract the gait signa-
ture.

5. Fuse information from the different inputs.

6. Apply a classifier to decide the subject identity.

5.1.1.1. Input data

We describe here the different types of low-level features used as input for the
proposed CNN architecture. In particular, we use optical flow, gray pixels and
depth maps. An example of the three types of low-level features is represented
in Figure 5.2. Our intuition is that this set of low-level features will cover both
motion (i.e. optical flow) and appearance information (i.e. pixels and depth) of
people.

Optical flow. The use of optical flow (OF) as input data for action representa-
tion in video with CNN has already shown excellent results [123]. Nevertheless
human action is represented by a wide, and usually well defined, set of local mo-
tions. In our case, the set of motions differentiating one gait style from another
is much more subtle and local.
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Let Ft be an OF map computed at time t and, therefore, Ft(x, y, c) be the
value of the OF vector component c located at coordinates (x, y), where c can
be either the horizontal or vertical component of the corresponding OF vector.
The input data IL for the CNN are cuboids built by stacking L consecutive OF
maps Ft, where IL(x, y, 2k − 1) and IL(x, y, 2k) corresponds to the value of the
horizontal and vertical OF components located at spatial position (x, y) and time
k, respectively, ranging k in the interval [1, L].

Since each original video sequence will probably have a different temporal
length, and CNN requires a fixed size input, we extract subsequences of L frames
from the full-length sequences. In Figure 5.2 we show five frames distributed
every six frames along a subsequence of twenty-five frames in total (i.e. frames
1, 7, 13, 19, 25). The first row shows the horizontal component of the OF (x-axis
displacement) and second row shows the vertical component of the OF (y-axis
displacement). It can be observed that most of the motion flow is concentrated
in the horizontal component, due to the displacement of the person. In order to
remove noisy OF located in the background, as it can be observed in Figure 5.2,
we might think in applying a preprocessing step for filtering out those vectors
whose magnitude is out of a given interval. However, since our goal in this work
is to minimize the manual intervention in the process of gait signature extraction,
we will use those OF maps as returned by the OF algorithm.

Gray-level pixels. When using CNNs for object detection and categorization,
the most popular low level features are raw pixels [72]. In contrast to [123],
that uses single RGB frames for action recognition, we build cuboids of gray
pixels with the aim of better capturing the important features of the subject
appearance. Note that in gait recognition, color is not as informative as it is for
object recognition. Therefore, using only gray intensity will eventually help CNN
to focus just on the gait-relevant information. An example can be seen in the
corresponding row of Figure 5.2.

Depth maps. The use of depth information has not been explored much in the
field of gait recognition. In [52] they basically use depth to segment people from
background and compute the Gait Energy Volume descriptor [125]. Castro et al.
[18] represent depth information in a gray-scale image where the intensity of a
pixel is the depth value scaled to [0, 255]. In our opinion, depth information is
rich and should be studied in depth for this problem. Therefore, given a sequence
of depth maps, we extract depth volumes that will be used as input data for the
corresponding CNN architecture. An example of depth maps can be seen in the
bottom row of Figure 5.2.
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Figure 5.3: Proposed CNN architectures for gait signature extraction.
a) 2D-CNN: linear CNN with four 2D convolutions, two fully connected layers
and a softmax classifier. b) 3D-CNN: 3D CNN four 3D convolutions, two fully
connected layers and a softmax classifier. c) ResNet-A: residual CNN with a
2D convolution, three residual blocks (red boxes), an average pooling layer and
a final softmax classifier. d) ResNet-B: residual CNN with a 2D convolution,
four residual blocks (red boxes), an average pooling layer and a final softmax
classifier. More details in the main text.

5.1.1.2. CNN architectures for gait signature extraction

We have selected the three architectures that most frequently appear in the
bibliography and produce state-of-the-art results in different topics (e.g. action
recognition, object detection, etc.). The three proposed architectures are:

A linear CNN with 2D convolutions (2D-CNN ), which is the traditional
and most common architecture.

A linear CNN with 3D convolutions and pooling (3D-CNN ), which is spe-
cially designed to capture information in videos.

A 2D very deep residual CNN (ResNet), which produces state-of-the-art
results in most challenging tasks.

The input to our CNN is a volume of gray pixels, OF channels or depth maps of
size N ×N × L. See Section 5.1.2 for the actual values of N and L used in the
experiments.
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We describe below the four models compared in the experimental section
(Sections 5.1.4 and 5.1.5). Note that, along this section, we use the term ‘softmax
layer’ to refer to a fully-connected layer with as many units as classes followed
by a softmax exponential layer.

2D-CNN: This CNN is composed of the following sequence of layers (Fig-
ure 5.3a):

‘conv1 ’, 96 filters of size 7× 7 applied with stride 1 followed by a normal-
ization and max pooling 2× 2.

‘conv2 ’, 192 filters of size 5×5 applied with stride 2 followed by max pooling
2× 2.

‘conv3 ’, 512 filters of size 3×3 applied with stride 1 followed by max pooling
2× 2.

‘conv4 ’, 4096 filters of size 2× 2 applied with stride 1.

‘full5 ’, fully-connected layer with 4096 units and dropout.

‘full6 ’, fully-connected layer with 2048 units and dropout.

‘softmax ’, softmax layer with as many units as subject identities.

All convolutional layers use the rectification (ReLU) activation function.

3D-CNN: As optical flow has two components and the CNN uses temporal
kernels, the network is split into two branches: x-flow and y-flow. Therefore,
each branch contains half of the total filters described below. Then, this CNN is
composed by the following sequence of layers (Figure 5.3b):

‘conv1 ’, 96 filters of size 3× 3× 3 applied with stride 1 followed by a max
pooling 2× 2× 2.

‘conv2 ’, 192 filters of size 3 × 3 × 3 applied with stride 2 followed by max
pooling 2× 2× 2.

‘conv3 ’, 512 filters of size 3 × 3 × 3 applied with stride 1 followed by max
pooling 2× 2× 2.

‘conv4 ’, 4096 filters of size 2× 2× 2 applied with stride 1.

‘concat ’, concatenation of both branches (x-flow and y-flow).

‘full5 ’, fully-connected layer with 4096 units and dropout.
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‘full6 ’, fully-connected layer with 2048 units and dropout.

‘softmax ’, softmax layer with as many units as subject identities.

All convolutional layers use the rectification (ReLU) activation function.

ResNet-A: This CNN is composed by the following sequence of layers and
residual blocks (a sequences of two convolutions of size 3 × 3, as defined in [48]
for CIFAR Dataset). This model is specially designed for small datasets with low
variability because this kind of networks tends to overfit due to its high number
of layers. As our architecture follows the indications defined by the authors [48],
we only describe the main blocks (Figure 5.3c):

‘conv1 ’, 16 filters of size 3 × 3 applied with stride 1 followed by a max
pooling 2× 2 and stride 2.

‘block 1 ’, 5 residual blocks with convolutions of 16 filters of size 3×3 applied
with stride 1.

‘block 2 ’, 5 residual blocks with convolutions of 32 filters of size 3×3 applied
with stride 1.

‘block 3 ’, 5 residual blocks with convolutions of 64 filters of size 3×3 applied
with stride 1.

‘average pooling ’, size 8× 8 with stride 1.

‘softmax ’, softmax layer with as many units as subject identities.

All convolutional layers use the rectification (ReLU) activation function and batch
normalization.

ResNet-B: This model is an extension of the model ResNet-A. The number and
size of layers of this model is increased and it is specially designed for datasets
with high variability (e.g. CASIA-B). This CNN is composed by the following
sequence of layers and residual blocks (a sequence of three convolutions of size
1×1, 3×3 and 1×1, as defined in [48]). As our architecture follows the indications
defined by the authors, we only describe the main blocks (Figure 5.3d):

‘conv1 ’, 64 filters of size 7 × 7 applied with stride 1 followed by a max
pooling 3× 3 and stride 2.

‘block 1 ’, 4 residual blocks with convolutions of 64 filters of size 3×3 applied
with stride 1.
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‘block 2 ’, 6 residual blocks with convolutions of 128 filters of size 3 × 3

applied with stride 1.

‘block 3 ’, 8 residual blocks with convolutions of 256 filters of size 3 × 3

applied with stride 1.

‘block 4 ’, 3 residual blocks with convolutions of 256 filters of size 3 × 3

applied with stride 1.

‘average pooling ’, size 2× 2 with stride 1.

‘softmax ’, softmax layer with as many units as subject identities.

All convolutional layers use the rectification (ReLU) activation function and batch
normalization.

Model training

For 2D and 3D models, we perform an incremental training to speed up and
to facilitate the convergence. In this incremental process, initially, we train a
simplified version of each model (i.e. less units per layer and no dropout) and,
then, we use its weights for initializing the layers of a more complex version of
that previous model (i.e. 0.1 dropout and more filters and units). By this way,
we train three incremental versions using the previous weights until we obtain
the final model architecture represented in Figure. 5.3.

During CNN training, the weights are learned using mini-batch stochastic gra-
dient descent algorithm with momentum equal to 0.9 in the first two incremental
iterations of the 2D and 3D models, and 0.95 during the last one. Note that
ResNet-A and ResNet-B are trained from scratch in just one iteration (without
incremental training) so momentum for these nets is set to 0.9. We set weight
decay to 5 · 10−4 and dropout to 0.4 (when corresponds). The number of epochs
is limited to 20 in TUM-GAID and the learning rate is initially set to 10−2 and
it is divided by ten when the validation error gets stuck. Due to the specifics of
the ResNet models, the initial learning rate is set to 0.1.

In CASIA-B we limit the training stage to 30 epochs, the learning rate is
initially set to 10−3 and it is divided by two when the validation error gets stuck.
At each epoch, a mini-batch of 150 samples is randomly selected from a balanced
training set (i.e. almost the same proportion of samples per class). Note that for
ResNet models we use a mini-batch of 64 samples. When the CNN training has
converged, we perform five more epochs on the joint set of training and validation
samples.
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5.1.1.3. Single modality

Once we have obtained the gait signatures, the final stage consists in classi-
fying those signatures to derive a subject identity. Although the softmax layer
of the CNN is already a classifier (i.e. each unit represents the probability of
belonging to a class), the fully-connected layers can play the role of gait signa-
tures that can be used as input of a Support Vector Machine (SVM) classifier.
Since we are dealing with a multiclass problem, we define an ensemble of C bi-
nary SVM classifiers with linear kernel in an ‘one-vs-all’ fashion, where C is the
number of possible subject identities. Previous works (e.g. [21]) indicate that
this configuration of binary classifiers is suitable to obtain top-tier results in this
problem. Note that we L2-normalize the top fully-connected layer before using
it as feature vector, as early experiments shown improved results.

In Section 5.1.1.1, we split the whole video sequence into overlapping subse-
quences of a fixed length, and those subsequences are classified independently.
Therefore, in order to derive a final identity for the subject walking along the
whole sequence, we apply a majority voting strategy on the labels assigned to
each subsequence.

An alternative way for obtaining a final label for a video v from the set of
subsequences {si} is to derive the identity from the product of softmax vectors
(i.e. probability distributions Pi) obtained:

P (v = c) =

t∏
i=1

Pi(si = c), (5.1)

where t is the number of subsequences extracted from video v, P (v = c) is the
probability of assigning the identity c to the person in video v and Pi(si = c) is
the probability of assigning the identity c to the person in subsequence si.

5.1.1.4. Multiple modalities

In the case where several low-level features have been used, we explore differ-
ent approaches for combining the outputs of the CNN.

Late fusion. Focusing on the softmax scores returned by each CNN, we explore
the following approaches to combine them: product and weighted sum. These
approaches are considered as ‘late fusion’ ones, as fusion is performed on the
classification scores.

A) Product of softmax vectors. Given a set of n softmax vectors {Pi} obtained
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from a set of different modalities {mi}, a new score vector Sprod is obtained as:

Sprod(v = c) =
n∏
i=1

Pi(mi = c) (5.2)

where n is the number of modalities used to classify video v, Sprod(v = c) can be
viewed as the probability of assigning the identity c to the person in video v and
Pi(mi = c) is the probability of assigning the identity c to the person in modality
mi.

B) Weighted sum of softmax vectors. Given a set of n softmax vectors obtained
from a set of different modalities {mi} a new score vector Sws is obtained as:

Sws(v = c) =
n∑
i=1

βiPi(mi = c), (5.3)

where n is the number of modalities used to classify video v, Sws(v = c) can
be viewed as the probability of assigning the identity c to the person in video
v, Pi(mi = c) is the probability of assigning the identity c to the person in
modality mi and βi is the weight associated to modality mi, subject to βi > 0

and
∑n
i=1 βi = 1.

β values are selected empirically by cross-validation. Note that the values
used for each experiment are specified in its corresponding section.

Early fusion. The fusion performed at descriptor level is known as ‘early fusion’.

In our case, as we are working with CNNs, early fusion could be performed
at any layer before the ‘softmax’ one. Depending on the layer, the combined
descriptors are matrices (fusion before a convolutional layer) or vectors (fusion
before a fully-connected layer). We have tried all the possible fusion locations
for our CNNs and we have selected the best solution according to the results
obtained. In our case, the best early fusion location is after layer ‘full6’ of each
modality. The activations of those layers are concatenated and fed into a new
set of layers to perform the actual fusion. Therefore, we extend the 2D and 3D
networks shown in Figure 5.3 with the set of additional layers summarized in
Figure 5.4:

‘concat :’ concatenation layer;
‘full7 :’ fully-connected layer with 4096 units, ReLU and dropout;
‘full8 :’ fully-connected layer with 2048 units, ReLU and dropout;
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Figure 5.4: Proposed set of layers for early fusion. A concatenation layer
and three fully-connected layers are followed by a softmax classifier used to di-
rectly derive an identity. More details in the main text.

‘full9 :’ fully-connected layer with 1024 units, ReLU and dropout; and,
‘softmax :’ softmax layer with as many units as subject identities.

During the training process, the weights of the whole CNN (the branch of each
modality and the fusion layers) are trained altogether, automatically learning the
best combination of weights for the modalities. From our point of view, this kind
of fusion is considered early as it is not performed at classification-score level, as
done above.

For ResNet models, due to their high number of layers, we do not stack more
fully-connected layers to prevent overfitting. Therefore, the selected early fusion
architecture is the same as for the rest of models but without fully-connected
layers:

‘concat :’ concatenation layer;
‘softmax :’ softmax layer with as many units as subject identities and dropout.

5.1.2. Implementation details

We ran our experiments on a computer with 32 cores at 2.3 GHz, 256 GB of
RAM and a GPU NVidia Titan X Pascal, with MatConvNet library [133] running
on Matlab 2016a for Ubuntu 16.04.

For the following experiments with CNN, we resized all the videos to a com-
mon resolution of 80 × 60 pixels, keeping the original aspect ratio of the video
frames. Preliminary experiments support this choice [23], as this size exhibits a
good trade-off between computational cost and recognition performance. Note
that resolution 80× 60 is 4 times lower than original CASIA-B and 8 times lower
than TUM-GAID one.
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Given the resized video sequences, we compute dense OF on pairs of frames
by using the method of Farneback [36] implemented in OpenCV library [15].
In parallel, people are located in a rough manner along the video sequences by
background subtraction [65]. Then, we crop the video frames to remove part
of the background, obtaining video frames of 60 × 60 pixels (full height is kept)
and to align the subsequences (people are x-located in the middle of the central
frame, #13) as in Figure 5.2.

Finally, from the cropped OF maps, we build subsequences of 25 frames by
stacking OF maps with an overlap of O% frames. In our case, we chose O = 80%,
that is, to build a new subsequence, we use 20 frames of the previous subsequence
and 5 new frames. For most state-of-the-start datasets, 25 frames cover almost
one complete gait cycle, as stated by other authors [9]. Therefore, each OF
volume has size 60× 60× 50.

The same process described above is applied to the gray pixels and depth
inputs, obtaining volumes of size 60 × 60 × 25. Before feeding the CNN with
those data volumes, the mean of the training set for each modality is subtracted
to the input data. Both gray and depth values are normalized to the range
[0, 255]. Note that in CASIA-B, due to the high variability between viewpoints,
it is necessary to normalize gray values to the range [0, 1].

To increase the amount of training samples we add mirror sequences and
apply spatial displacements of ±5 pixels in each axis, obtaining a total of 8 new
samples from each original sample.

5.1.3. Performance evaluation

For each test sample, we return a sorted list of possible identities, where the
top one identity corresponds to the largest scored one. Therefore, we use the fol-
lowing metrics to quantitative measure the performance of the proposed system:
rank-1 and rank-5. Metric rank-1 measures the percentage of test samples where
the top one assigned identity corresponds to the right one. Metric rank-5 mea-
sures the percentage of test samples where the ground truth identity is included
in the first five ranked identities for the corresponding test sample. Note that
rank-5 is less strict than rank-1 and, in a real system, it would allow to verify
if the target subject is any of the top five most probably ones. Final results at
sequence level are obtained by applying a majority vote strategy except in the
product of softmax scores which is the only case where we have probabilities
between 0 and 1 and therefore, we can multiply them for obtaining a sequence
probability.



5.1. Multimodal gait recognition with CNNs 69

Along this section, we are going to use the following notation: ‘SM-Vote’:
softmax decision followed by majority voting to obtain the sequence level results;
‘SM-Prod’: softmax decision followed by the product of the scores to obtain the
sequence level results; ‘SVM-L2’: SVM with L2 normalization of the features;
‘SVM-SM’: SVM trained with the scores of the softmax.

5.1.4. Experimental results on TUM-GAID

In ‘TUM Gait from Audio, Image and Depth’ (TUM-GAID) 305 subjects
perform two walking trajectories in an indoor environment. The first trajectory
is performed from left to right and the second one from right to left. Therefore,
both sides of the subjects are recorded. Two recording sessions were performed,
one in January, where subjects wore heavy jackets and mostly winter boots, and
the second in April, where subjects wore different clothes. The action is captured
by a Microsoft Kinect sensor which provides a video stream with a resolution of
640× 480 pixels with a frame rate of approximately 30 fps. Some examples can
be seen in the left part of Figure 5.5 depicting the different conditions included
in the dataset.

Hereinafter the following nomenclature is used to refer each of the four walking
conditions considered: normal walk (N ), carrying a backpack of approximately 5
kg (B), wearing coating shoes (S ), as used in clean rooms for hygiene conditions,
and elapsed time (TN-TB-TS ). Each subject of the dataset is composed of: six
sequences of normal walking (N1, N2, N3, N4, N5, N6 ), two sequences carrying
a bag (B1, B2 ) and two sequences wearing coating shoes (S1, S2 ). In addition,
32 subjects were recorded in both sessions (i.e. January and April) so they have
10 additional sequences (TN1, TN2, TN3, TN4, TN5, TN6, TB1, TB2, TS1,
TS2 ). Therefore, the overall amount of videos is 3400.

We follow the experimental protocol defined by the authors of the dataset [52].
Three subsets of subjects are proposed: training, validation and testing. The
training set is used for obtaining a robust model against the different covariates
of the dataset. This partition is composed of 100 subjects and the sequences N1
to N6, B1, B2, S1 and S2. The validation set is used for validation purposes and
contains 50 different subjects with the sequences N1 to N6, B1, B2, S1 and S2.
Finally, the test set contains other 155 different subjects used in the test phase.
As the set of subjects is different between the test set and the training set, a
new training of the identification model must be performed. For this purpose,
the authors reserve the sequences N1 to N4, from the subject test set, to train
the model again and the rest of sequences are used for testing and to obtain the
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Figure 5.5: Datasets for gait recognition. (left) TUM-GAID. People walk-
ing indoors under four walking conditions: normal walking, wearing coats, car-
rying a bag and wearing coating shoes. Top and bottom rows show the same set
of subjects but in different months of the same year. (right) CASIA-B. People
walking indoors recorded from eleven camera viewpoints and under three walking
conditions: normal walking, wearing coats and carrying a bag.

accuracy of the model. In the elapsed time experiment, the temporal sequences
(TN1, TN2, TN3, TN4, TN5, TN6, TB1, TB2, TS1, TS2 ) are used instead of
the normal ones and the subsets are: 10 subjects in the training set, 6 subjects
in the validation set and 16 subjects in the test set.

In our experiments, after parameter selection, the validation sequences are
added to the training set for fine-tuning the final model.

In this section, we first examine the impact of CNN architectures in automatic
extraction of gait signatures from diverse low-level features, studying which one
is the more convenient for the different scenarios. Afterwards, we evaluate the
impact of combining gait signatures from different low-level features for people
identification. Finally, we compare our results to the state-of-the-art ones.

5.1.4.1. Architecture and feature evaluation

In this experiment, we evaluate the individual contribution of each low-level
feature (i.e. gray pixels, optical flow and depth maps) and each architecture (i.e.
2D, 3D and ResNet) for extracting discriminative gait signatures. Note that,
as this dataset only contains a single viewpoint, ResNet models tend to overfit
due to the lack of variability in the training data. Therefore, we use ResNet-A
(see Section 5.1.1.2 for more details) which is shallower than traditional ResNet
models. Tabs. 5.1, 5.2 and 5.3 summarize the identification results obtained on
TUM-GAID with each modality: Gray, OF and Depth. Each column contains
the results for rank-1 (R1) and rank-5 (R5) for each scenario. The last column
‘AVG ’ is the average of each case (temporal and non temporal) weighted by the
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Figure 5.6: Best average accuracy. a) non-temporal scenarios (N, B, S) b)
temporal scenarios (TN, TB, TS)

number of classes.

Table 5.1: Feature selection on TUM-GAID Gray-modality. Percentage
of correct recognition by using rank-1 (R1) and rank-5 (R5) metrics. Each row
corresponds to a different classifier and modality. Each column corresponds to a
different scenario. Best average results are marked in bold.

N B S TN TB TS AVG
R1 R5 R1 R5 R1 R5 R1 R5 R1 R5 R1 R5 R1 R5

2D
-C

N
N SM-Vote 99.4 100 99.0 99.7 98.4 99.7 31.3 53.1 34.4 65.6 34.4 62.5 92.8 96.1

SM-Prod 100 100 99.7 99.7 98.4 99.7 28.1 62.5 37.5 71.9 34.4 59.4 93.2 96.5
SVM+L2 100 100 99.7 99.7 98.4 99.7 34.4 68.8 31.3 78.1 34.4 68.8 93.2 97.2
SVM-SM 99.4 99.7 99.4 99.4 97.4 98.7 28.1 65.6 34.4 71.9 34.4 68.8 92.5 96.4

3D
-C

N
N SM-Vote 99.7 100 98.4 99.7 96.8 99 21.9 50 21.9 46.9 12.5 43.8 90.9 94.6

SM-Prod 97.7 97.7 93.9 94.2 91.3 91.6 18.8 37.5 21.9 37.5 12.5 31.3 87.1 89
SVM+L2 100 100 98.1 99.4 97.7 99 18.8 56.3 28.1 62.5 15.6 62.5 91.3 95.8
SVM-SM 99.7 99.7 98.4 99 96.8 97.7 21.9 43.8 21.9 53.1 12.5 43.8 90.9 93.9

R
E
SN

E
T

-A SM-Vote 99.4 100 95.8 99.4 96.1 99 25 62.5 34.4 98.8 25 59.4 90.6 96.1
SM-Prod 99 100 96.5 99.4 95.5 99 28.1 56.3 34.4 68.8 25 56.3 90.7 95.8
SVM+L2 100 100 97.4 99 97.7 100 34.4 53.1 34.4 53.1 34.4 50 92.4 95.2
SVM-SM 100 100 95.8 97.7 97.1 98.7 25 50 25 62.5 25 56.3 90.8 94.8

In Figure 5.6 appears the best average performance for non-temporal and
temporal scenarios per modality. If we focus on the non-temporal scenarios (N,
B and S ), we can see that features based on Gray or Depth are able to outperform
the results obtained with OF. On the other hand, if we focus on the temporal
scenarios (TN, TB and TS ), the worst results are obtained with Gray. These
results evidence the weakness of appearance models under conditions with high
variability between training and test samples (like our temporal experiment).
However, OF models have a better sturdiness against appearance changes on the
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Table 5.2: Feature selection on TUM-GAID OF -modality. Percentage
of correct recognition by using rank-1 (R1) and rank-5 (R5) metrics. Each row
corresponds to a different classifier and modality. Each column corresponds to a
different scenario. Best average results are marked in bold.

N B S TN TB TS AVG
R1 R5 R1 R5 R1 R5 R1 R5 R1 R5 R1 R5 R1 R5

2D
-C

N
N SM-Vote 99.4 100 97.4 100 96.4 99.4 53.1 96.9 43.8 87.5 56.3 93.8 93.4 99.1

SM-Prod 99.4 100 97.7 100 96.1 99.4 56.3 87.5 43.8 84.4 59.4 90.6 93.6 98.7
SVM+L2 99.4 100 96.5 99.4 96.8 99.4 50.0 90.6 56.3 84.4 43.8 90.6 93.1 98.6
SVM-SM 99.0 100 96.8 98.4 95.5 98.7 53.1 78.1 50.0 81.3 56.3 91.3 93.0 97.6

3D
-C

N
N SM-Vote 99 99.4 95.5 99.7 94.2 98.1 65.6 90.6 65.6 93.8 59.4 87.5 93.2 98.3

SM-Prod 98.7 99.7 97.1 99.4 94.5 98.7 71.9 87.5 68.8 87.5 65.6 84.4 94.1 98.1
SVM+L2 98.7 99.4 93.9 99 92.6 98.4 65.6 87.5 65.6 81.3 56.3 90.6 92 97.8
SVM-SM 98.7 99 95.5 99.4 94.2 97.1 65.6 90.6 65.6 81.3 59.4 84.4 93.1 97.3

R
E
SN

E
T

-A SM-Vote 94.5 99.7 81 98.4 85.1 97.7 34.4 93.8 34.4 90.6 37.5 93.8 82.1 98.1
SM-Prod 95.2 99.4 81 98.7 86.1 97.7 34.4 96.7 40.6 93.8 43.8 93.8 83 98.2
SVM+L2 99.4 99.4 93.9 98.1 92.2 98.1 37.5 87.5 40.6 81.3 53.1 90.6 90.4 97.4
SVM-SM 97.4 98.7 89.7 96.5 89.6 92.6 37.5 75 43.8 84.4 46.9 75 87.6 95.4

Table 5.3: Feature selection on TUM-GAID Depth-modality. Percentage
of correct recognition by using rank-1 (R1) and rank-5 (R5) metrics. Each row
corresponds to a different classifier and modality. Each column corresponds to a
different scenario. Best average results are marked in bold.

N B S TN TB TS AVG
R1 R5 R1 R5 R1 R5 R1 R5 R1 R5 R1 R5 R1 R5

2D
-C

N
N SM-Vote 98.4 100 65.8 90.0 96.8 99.7 34.4 93.8 34.4 93.8 50.0 84.4 82.6 96.0

SM-Prod 98.7 100 66.1 90.7 96.8 99.7 43.8 90.6 40.6 87.5 46.8 84.4 83.1 95.9
SVM+L2 99.0 99.7 69.4 85.8 97.1 99.7 46.9 84.4 37.5 81.3 50.0 84.4 84.4 94.0
SVM-SM 98.7 99.0 65.8 77.7 96.8 98.4 34.4 68.8 40.6 59.4 43.8 68.8 82.7 89.3

3D
-C

N
N SM-Vote 97.7 98.4 84.2 96.5 96.8 99.4 68.8 100 50 100 75 100 90.3 98.3

SM-Prod 98.4 100 86.8 96.1 97.4 99.4 62 87.4 53.1 96.9 78.1 100 91.4 98.2
SVM+L2 96.6 98.7 78.7 91.6 96.8 99.4 71.9 96.9 46.9 90.6 68.8 96.9 88.1 96.4
SVM-SM 98.4 99 83.6 88.4 96.4 98.4 68.8 81.3 53.1 65.6 75 87.5 90.3 93.7

R
E
SN

E
T

-A SM-Vote 77.7 99.4 60 91.6 71.8 97.4 56.3 81.3 37.5 81.3 46.9 90.6 67.7 95
SM-Prod 77.1 98.4 60 91.3 70.9 96.1 56.3 78.1 34.4 81.3 46.9 87.5 67.1 94.1
SVM+L2 99.4 99.7 91.6 97.7 97.1 99.4 31.3 50 21.9 46.9 21.9 53.1 89.4 94.4
SVM-SM 98.4 99.4 86.5 96.5 87.9 93.6 50 62.5 34.4 53.1 46.9 62.5 86.5 93
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inputs. On average, the best results are obtained when using optical flow (OF )
as base for extracting the gait signature.

With regard to the type of architecture, the behaviour of all of them is very
similar on the non-temporal scenarios. However, for the temporal scenarios, 3D-
CNN offers its best results in combination with either OF or Depth, whereas
2D-CNN and ResNet work better with Gray. Considering the average accuracy
over all the scenarios, 2D-CNN works better with Gray, and 3D-CNN with both
OF and Depth.

Finally, note that all the strategies employed for obtaining the identity at
video level offer similar performance. However, SM-Prod seems to work slightly
better on average. Recall that it is defined as the product of probabilities obtained
at the softmax layer (see Section 5.1.1.3), what does not require to train an
additional classifier as SVM.

5.1.4.2. Feature fusion

As we can use three types of low-level features from TUM-GAID, we study
here the benefits of fusing information from the different sources. We are going
to use as basis the data of Tabs. 5.1, 5.2 and 5.3, concretely, data obtained with
the product of softmax vectors on each modality. We have experimented with
three types of fusion methods for all the combinations that include optical flow,
chosen due to its sturdiness under all walking conditions.

Firstly, we analyse the results within each type of architecture. The results of
Tab. 5.4 correspond to 2D-CNN and indicate that, in general, the best option is
to combine all three modalities for all fusion methods except for SM Prod where
it is better to use only OF and Gray. Note that for Weighted Sum, we have used
the weights 0.4, 0.3 and 0.3 for OF, Gray and Depth, respectively, when we fuse
all modalities. In the case of only two modalities, we use weights 0.6 and 0.4

for OF and the other modality, respectively. According to the results, in non
temporal scenarios we only improve the results with respect to single modalities
in scenario S while in the other scenarios we obtain similar results. Regarding
the fusion strategy, the proposed Early fusion CNN provides on average the best
results.

Focusing on the results obtained with the 3D-CNN (Tab. 5.5), the best average
accuracy is reported by the combination of all modalities by W Sum. However,
it is only slightly better than the best result obtained by using only OF. Due to
the low accuracy obtained with Gray, combining it with other features worsen
the fused results.
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Table 5.4: Fusion strategies in TUM-GAID with 2D-CNN. Percentage
of correct recognition for different modalities and fusion methods. Each row
corresponds to a different fusion strategy. Best results are marked in bold.

Fusion Modalities N B S TN TB TS AVG

Single
Gray 100 99.7 98.4 28.1 37.5 34.4 93.2
OF 99.4 97.7 96.1 56.3 43.8 59.4 93.6
Depth 98.7 66.1 96.8 43.8 40.6 46.8 83.1

SM Prod
OF-Gray 99.7 99.7 99.0 40.6 37.5 53.1 94.3
OF-Depth 92.9 88.1 98.7 59.4 40.6 46.9 89.1
All 92.9 90.0 99.0 56.3 56.3 50.0 90.2

W. Sum
OF-Gray 99.4 98.4 98.7 50.0 34.4 53.1 93.9
OF-Depth 97.7 93.9 99.0 53.1 43.8 59.4 92.7
All 99.0 98.1 99.7 50.0 34.4 53.1 94.0

Early
OF-Gray 99.4 98.7 97.7 56.3 43.8 43.8 93.9
OF-Depth 99.0 96.1 96.4 53.1 53.1 46.9 92.9
All 99.4 98.4 98.7 56.3 53.1 46.9 94.5

Finally, the ResNet architecture (see Tab. 5.6) shows unexpected low fusion
results. It may indicate that the probability distribution on the classes obtained
at the softmax layer does not show clearly defined maxima, and small changes in
those values cause important changes in the final classes. However, Early Fusion
improves the results on average for the combination OF and Gray, what indicates
that adding more inputs to the training process can be beneficial to avoid local
minima.

In summary, by using multimodal information the recognition accuracy im-
proves 0.9% with respect to the best single modality (i.e. OF ).

5.1.4.3. State-of-the-art on TUM-GAID

In Tab. 5.7, we compare our results with state-of-the-art in TUM-GAID under
all modalities previously employed (Gray, OF, Depth and Fusion). First of all, we
would like to remark that our approach uses a resolution of 80×60 while the rest
of methods use 640× 480. Therefore, our method uses 64 times less information.
If we focus on the visual modality (Gray in our case), we can see that our method
outperforms previous results in non temporal scenarios establishing a new state-
of-the-art . On the other hand, in the temporal scenarios we have lower results
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Table 5.5: Fusion strategies in TUM-GAID with 3D-CNN. Percentage
of correct recognition for different modalities and fusion methods. Each row
corresponds to a different fusion strategy. Best results are marked in bold.

Fusion Modalities N B S TN TB TS AVG

Single
Gray 97.7 93.9 91.3 18.8 21.9 12.5 87.1
OF 98.7 97.1 94.5 71.9 68.8 65.6 94.1
Depth 98.4 86.8 97.4 62 53.1 78.1 91.4

SM Prod
OF-Gray 93.5 84.8 83.5 12.5 12.5 15.6 80.4
OF-Depth 92.2 97.4 96.8 78.1 62.5 15.6 91.4
All 78.4 84.2 83.5 12.5 21.9 12.5 75.8

W. Sum
OF-Gray 97.4 98.1 96.1 71.9 50 53.1 93.6
OF-Depth 95.5 96.5 96.8 65.6 68.8 53.1 93.1
All 96.8 98.4 97.1 65.6 65.6 59.4 94.3

Early
OF-Gray 99.4 96.8 94.5 62.5 50 56.3 93.1
OF-Depth 84.8 97.4 97.4 71.9 68.8 71.9 91.1
All 99.7 98.7 97.7 34.4 25 31.3 92.3

than the other methods due to the high variability in visual information. Then,
if we focus on OF, we can see that the best results are obtained by PFM [21] with
a resolution of 640 × 480. Nevertheless, if we apply PFM with a resolution of
80×60, its results worsen dramatically and our CNN is able to outperform it in all
scenarios. If we compare our CNN with other deep learning approaches presented
in the literature, only MTaskCNN-7NN [88] is able to improve our approach.
This model has been trained in a multi-task fashion so, during training, there
are more information available to optimize the weights. If we focus on the other
deep learning approaches, we can see that we obtain similar results (only a 0.2%

lower) on average but, we obtain the state-of-the-art for temporal scenario. In
Depth modality, we can see that our method obtains better results than other
methods, which use full resolution frames, in all cases except N. Nevertheless,
on average, we are able to obtain more than a 10% of improvement. Finally, if
we fuse information from all modalities with a CNN, the average score achieved
by both scenarios (temporal and non-temporal) beats all the methods shown in
Tab. 5.7 with the exception of PFM (640x480) [21] and MTaskCNN-7NN [88],
where we are 1.5% and 1.1% below, respectively. However, if we apply the same
7NN approach as in [88], and we fuse the probabilities obtained, we set a new
state-of-the-art (96.5% vs 96.0%) for all scenarios with our 3D-CNN-7NN-All
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Table 5.6: Fusion strategies in TUM-GAID with ResNet. Percentage
of correct recognition for different modalities and fusion methods. Each row
corresponds to a different fusion strategy. Best average results are marked in
bold.

Fusion Modalities N B S TN TB TS AVG

Single
Gray 99.0 96.5 95.5 28.1 34.4 25.0 90.7
OF 95.2 81.0 86.1 37.5 40.6 43.8 83.1
Depth 77.1 60.0 71.0 56.3 34.4 46.9 67.2

SM Prod
OF-Gray 84.8 77.7 79.3 46.9 40.6 50 77.3
OF-Depth 71.2 63.6 69.6 53.1 37.5 53.1 66.2
All 79.9 80.7 81.9 56.3 34.4 56.3 77.9

W. Sum
OF-Gray 72.8 60.7 64.4 31.3 31.3 40.6 63
OF-Depth 68.3 53.9 62.5 37.5 46.9 56.3 60.2
All 72.5 60 64.7 31.3 28.1 46.9 62.9

Early-RES
OF-Gray 99.4 94.8 97.7 40.6 34.4 43.8 91.9
OF-Depth 95.8 93.2 96.1 40.6 37.5 43.8 89.9
All 80.3 87.1 88.4 40.6 50 50 81.7

using Softmax Product as fusion.

5.1.5. Experimental results on CASIA-B

In CASIA-B 124 subjects perform walking trajectories in an indoor environ-
ment (right part of Figure 5.5). The action is captured from 11 viewpoints (i.e.
from 0o to 180o in steps of 18o) with a video resolution of 320×240 pixels. Three
situations are considered: normal walk (nm), wearing a coat (cl), and carrying
a bag (bg). The authors of the dataset indicate that sequences 1 to 4 of the
‘nm’ scenario should be used for training the models. Whereas the remaining
sequences should be used for testing: sequences 5 and 6 of ‘nm’, 1 and 2 of ‘cl ’
and 1 and 2 of ‘bg ’. Therefore, we follow this protocol in our experiments, unless
otherwise stated. This makes a total of 496 video sequences for training, per
camera viewpoint.

We focus here on CASIA-B dataset, which offers different covariate factors and
multiple viewpoints. Note that, for the sake of comparison with other methods,
we train our models with all cameras and the test is performed only with the 90°
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camera as done in state-of-the-art approaches [143, 21].

5.1.5.1. Architecture and feature evaluation

As this dataset contains eleven viewpoints, ResNet models have enough vari-
ability in the training data. Therefore, we use ResNet-B (see Section 5.1.1.2 for
more details) which is deeper than ResNet-A. Tab. 5.8 summarizes the identi-
fication results obtained on CASIA-B 90o with each modality: Gray and OF.
Note that this dataset does not provide depth information. R1 and R5 columns
contain the results for rank-1 (R1) and rank-5 (R5) for each scenario. The last
column ‘AVG ’ is the average of all scenarios. The results at sequence level are
obtained by multiplying the scores of the softmax layer. Note that as in CASIA-
B there is no training partition to build the model, we have split the dataset
into a training set composed of the first 74 subjects and a test set composed of
the 50 remaining subjects, following the indications in [143]. During the training
process, all viewpoints and training samples are used.

Table 5.8: Feature selection on CASIA-B 90°: Gray and OF modalities.
Percentage of correct recognition by using rank-1 (R1) and rank-5 (R5) metrics.
Each row corresponds to a different classifier and modality, grouped by architec-
ture. Each column corresponds to a different scenario. Best average results are
marked in bold.

nm bg cl AVG
R1 R5 R1 R5 R1 R5 R1 R5

G
ra

y
2D

SM-Vote 91 98 82 95 37 82 70 91.7
SM-Prod 92 100 85 98 45 90 74 96

3D

SM-Vote 72 93 69 87 33 76 58 85.3
SM-Prod 81 92 73 90 45 77 66.3 86.3

R
E

S SM-Vote 94 100 89 98 42 83 75 93.7
SM-Prod 96 100 91 98 46 98 77.7 98.7

O
F

2D

SM-Vote 99 99 76 90 28 51 67.7 80
SM-Prod 99 99 78 93 27 62 68 84.7

3D

SM-Vote 98 99 86 99 37 70 73.7 89.3
SM-Prod 98 100 88 98 36 67 74 88.3

R
E

S SM-Vote 94 100 83 98 47 73 74.7 90.3
SM-Prod 93 100 85 98 46 71 74.7 89.7
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According to the results obtained, we can see that our model is able to identify
people with a high accuracy in scenarios nm and bg while in scenario cl we have
lower precision due to the high appearance changes. If we focus on the modality
used, on average, Gray is the best option most of the time. In this dataset, with
huge variations between points of view, the shape of the subject seems to be
important and it helps to classification. In scenario cl our models experiment a
huge decrease in accuracy mainly caused by the high variability of coats worn by
the subjects. This can be seen in Figure 5.5 on the right part of the last row.
In these pictures, the coat occludes the legs and if we add the fact that we have
different kind of coats with different number of occurrences, our CNN is not able
to learn good features for this scenario due to the high variability and low number
of samples.

On the other hand, OF seems that it is not able to find a good representation
if the shape of the subject changes drastically. We think that this is because
of the high variability in the appearance of the subjects seen from the different
cameras used for training. Therefore, as the models receive different flow vectors,
the training process cannot produce a view-independent model and the global
performance decreases. For example, frontal-views produce vectors whose main
movement is focused on Y-axis (there is no horizontal displacement of the subject)
while lateral-views produce vectors whose movement is focused on X-axis.

If we focus on the different architectures, according to the mean results, it is
clear that ResNet-B obtains the best results for each modality. That shows that
ResNet is the more powerful model if data with enough variability is available.
On the other hand, 3D-CNN obtains really good results for OF modality while
2D-CNN achieves good results for Gray modality.

5.1.5.2. Feature fusion

In this case, as we only have two modalities, fusion is performed using both.
It can be observed in Tab. 5.9 that the best method for fusing Gray and OF
features is, on average, Softmax product followed by weighted sum with weights
0.5 and 0.5 for Gray and OF, respectively. Focusing on the three architectures,
again, the best option is ResNet as it obtains the best results in all cases.

In this dataset, the late fusion of both modalities improves or obtains the
same result as single modality CNNs in all cases, apart from special cases where
the difference between the accuracy of the fused modalities is huge (e.g. cl for
2D-CNN). Anyway, on average, fusion always obtains the best results with im-
provements of more than a 3%. In this case, early fusion is not able to improve
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the single modality results. In our opinion, this is due to high variability between
viewpoints. In addition, we have observed that the two branches of the network
have different convergence speeds, hence the final features are not fused properly
producing bad representations.

Table 5.9: Fusion strategies in CASIA-B 90°. Percentage of correct recog-
nition with different fusion methods. Each row corresponds to a different fusion
method, but the two top rows that correspond to the baseline cases. Best average
results are marked in bold.

2D-CNN 3D-CNN ResNet
nm bg cl AVG nm bg cl AVG nm bg cl AVG

Gray 92 85 45 74 81 73 45 66.3 96 91 46 77.7
OF 99 78 27 68 98 88 36 74 93 85 46 74.7
SM-Prod 99 95 41 78.3 98 96 49 81 98 97 63 86
W. Sum 99 94 39 77.3 98 95 46 79.7 98 96 60 84.7
Early 83 61 26 56.7 76 74 46 65.3 67 63 38 56

5.1.5.3. State-of-the-art on CASIA-B

In Tab. 5.10, we compare our results with state-of-the-art in CASIA-B under
all modalities used before (Gray and OF ) and their fusion. First of all, we would
like to remark that our approach uses a resolution of 80 × 60 while the rest of
methods use 320× 240. Therefore, our method uses 16 times less information. If
we focus on the visual modality (Gray in our case), we can see that our ResNet-B
obtains the best results compared to the state-of-the-art even using the lowest
resolution. Indeed, our model sets a new state-of-the-art for visual data. If we
focus on OF, the best results are obtained by PFM [21] with a resolution of
640 × 480. Nevertheless, if we apply it with a resolution of 80 × 60, its results
worsen dramatically and our ResNet-B is able to outperform it in all scenarios.
With this modality, our model sets the second best result in the state-of-the-art
(apart from PFM with full resolution). Finally, our fusion (softmax product) sets
the best result and it improves our ResNet-B for Gray modality by a 8.3%.

Focusing on [143], which is the closest approach to ours as they use also
CNNs, our best average result improves a 16.3% with respect to their best average
accuracy. Focusing on individual scenarios, they only improve our results in cl
scenario if we use a single modality, probably due to the use of a gallery-probe
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scheme. During test time, they must compare the test sample with all the probe
samples to get all distances, then, they select the class of the probe sample with
the lowest distance. This approach is easier but slower than our approach where
we only need to propagate the test sample through the CNN to obtain the class.
However, if we use our fusion approach, we beat them in all scenarios and we
miminize the changes in the shape of cl scenario.

5.1.6. Conclusions

We have presented a comparative study of multi-feature systems based on
CNN architectures for the problem of people identification based on the way the
walk (gait). The evaluated architectures are able to extract automatically gait
signatures from sequences of gray pixels, optical flow and depth maps. Those
gait signatures have been tested on the task of people identification, obtaining
state-of-the-art results on two challenging datasets, i.e. TUM-GAID and CASIA-
B, that cover diverse scenarios (e.g. people wearing long coats, carrying bags,
changing shoes or camera viewpoint changes).

With regard to the type of input features, we may conclude that, under sim-
ilar viewpoints (e.g. TUM-GAID) the weakest one is gray pixels, as it is highly
appearance dependant. However, as it could be expected optical flow is the one
that better encodes body motion. Depth maps work fairly well if changes in
appearance are small (i.e. Shoes scenario). In datasets with multiple viewpoints
(e.g. CASIA-B), gray pixels achieve the best results, probably due to optical flow
produces extremely different vectors depending on the viewpoint so, during train-
ing, the optimization process is not able to build a good multiview representation
of the subjects.

Regarding the type of architecture, 2D-CNN produces better results in most
cases; 3D-CNN is specially useful in scenarios with appearance changes; ResNet
models are designed to be very deep, therefore, they need huge datasets with
high variability between samples to perform well. This has been demonstrated in
our experiments where ResNet-A produces worse results than the other two ar-
chitectures for TUM-GAID (dataset with low variability) but, on the other hand,
ResNet-B produces the best results for CASIA-B (dataset with high variability).

Finally, the experimental results show that the fusion of multiple features
allows to boost the recognition accuracy of the system in many cases or at least,
it matches the best results achieved by using a single modality.

As final recommendation and, according to the results obtained, the best
models are 3D-CNN and ResNet, being the latter the best option if the dataset
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contains enough training data. Regarding to fusion methods, the best option is
late fusion approaches and, in our case, product of the softmax scores. As future
work, we plan to study in depth our early fusion approach to solve the problem
of different convergence rates in the branches.

5.2. Incremental learning for gait recognition

Let us suppose we have a system which is able to recognize M subject identi-
ties by their way of walking. Now, we want to add N new subjects to that system
without forgetting the previous M ones. And after those N , we want to add O
more and so on. Thus, the objective of the incremental learning is to add new
subjects or classes to a trained model without training it from scratch. That is,
the new model should be very similar to the original one, but with small differ-
ences to deal with the new classes. In this work, we asses the incremental learning
applied to gait recognition. Thus, in each incremental step, a set of new subjects
is added to the system keeping the knowledge about the old ones. The developed
approach is based on our conference paper [20] but applied to gait recognition in
videos instead of image recognition. Thus, the core of this approach is the same
as the published one and it will be explained in the following sections.

Section 5.2.1 describes our model and Section 5.2.2 shows the incremental
learning details of our approach. Section 5.2.3 explains the experiments per-
formed to validate our approach for the gait recognition problem and Section 5.2.4
summarizes the results obtained. Finally, the obtained conclusions are presented
in Section 5.2.5. In summary, these conclusions indicate that our approach is
able to obtain similar results to models trained in one step, without incremental
learning.

5.2.1. Our model

Our end-to-end approach uses a deep network trained with a cross-distilled
loss function, i.e., cross-entropy together with distillation loss. The network can
be based on the architecture of most deep models designed for classification, since
our approach does not require any specific properties. A typical architecture for
classification can be seen in Figure 5.7, with one classification layer and a classi-
fication loss. This classification layer uses features from the feature extractor to
produce a set of logits which are transformed into class scores by a softmax layer
(not shown in the figure). The only necessary modification is the loss function,
described in Section 5.2.1.2. To help our model retain the knowledge acquired



84 Chapter 5. Unpublished Work

Figure 5.7: Our incremental model. Given an input image, the feature ex-
tractor produces a set of features which are used by the classification layers (CLi
blocks) to generate a set of logits. Grey classification layers contain old classes
and their logits are used for distillation and classification. The green classifica-
tion layer (CLN block) contains new classes and its logits are involved only in
classification. (Best viewed in color.)

from the old classes, we use a representative memory that stores and manages
the most representative samples from the old classes. In addition to this we per-
form data augmentation and a balanced fine-tuning. All these components put
together allow us to get state-of-the-art results.

5.2.1.1. Representative memory

When a new class or set of classes is added to the current model, a subset
with the most representative samples from them is selected and stored in the
representative memory. We investigate two memory setups in this work. The
first setup considers a memory with a limited capacity of K samples. As the
capacity of the memory is independent of the number of classes, the more classes
stored, the fewer samples retained per class. The number of samples per class, n,
is thus given by n = bK/cc, where c is the number of classes stored in memory,
and K is the memory capacity. The second setup stores a constant number of
exemplars per class. Thus, the size of the memory grows with the number of
classes.
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The representative memory unit performs two operations: selection of new
samples to store, and removal of leftover samples.

Selection of new samples. This is based on herding selection [139], which
produces a sorted list of samples of one class based on the distance to the mean
sample of that class. Given the sorted list of samples, the first n samples of the
list are selected. These samples are most representative of the class according
to the mean. This selection method was chosen based on our experiments test-
ing different approaches, such as random selection, histogram of the distances
from each sample to the class mean. The selection is performed once per class,
whenever a new class is added to the memory.

Removing samples. This step is performed after the training process to allo-
cate memory for the samples from the new classes. As the samples are stored in a
sorted list, this operation is trivial. The memory unit only needs to remove sam-
ples from the end of the sample set of each class. Note that after this operation,
the removed samples are never used again.

5.2.1.2. Deep network

Architecture. The network is composed of several components, as illustrated
in Figure 5.7. The first component is a feature extractor, which is a set of layers
to transform the input image into a feature vector. The next component is a
classification layer which is the last fully-connected layer of the model, with as
many outputs as the number of classes. This component takes the features and
produces a set of logits. During the training phase, gradients to update the
weights of the network are computed with these logits through our cross-distilled
loss function. At test time, the loss function is replaced by a softmax layer (not
shown in the figure).

To build our incremental learning framework, we start with a traditional, i.e.
, non-incremental, deep architecture for classification for the first set of classes.
When new classes are trained, we add a new classification layer corresponding
to these classes, and connect it to the feature extractor and the component for
computing the cross-distilled loss, as shown in Figure 5.7. Note that the archi-
tecture of the feature extractor does not change during the incremental training
process, and only new classification layers are connected to it. Therefore, any
architecture (or even pre-trained model) can be used with our approach just by
adding the incremental classification layers and the cross-distilled loss function
when necessary.

Cross-distilled loss function. This combines a distillation loss [50], which
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retains the knowledge from old classes, with a multi-class cross-entropy loss,
which learns to classify the new classes. The distillation loss is applied to the
classification layers of the old classes while the multi-class cross-entropy is used on
all classification layers. This allows the model to update the decision boundaries
of the classes. The loss computation is illustrated in Figure 5.7. The cross-
distilled loss function L(ω) is defined as:

L(ω) = LC(ω) +
F∑
f=1

LDf
(ω), (5.4)

where LC(ω) is the cross-entropy loss applied to samples from the old and new
classes, LDf

is the distillation loss of the classification layer f , and F is the
total number of classification layers for the old classes (shown as grey boxes in
Figure 5.7).

The cross-entropy loss LC(ω) is given by:

LC(ω) = − 1

N

N∑
i=1

C∑
j=1

pij log qij , (5.5)

where qi is a score obtained by applying a softmax function to the logits of a
classification layer for sample i, pi is the ground truth for the sample i, and N
and C denote the number of samples and classes respectively.

The distillation loss LD(ω) is defined as:

LD(ω) = − 1

N

N∑
i=1

C∑
j=1

pdistij log qdistij , (5.6)

where pdisti and qdisti are modified versions of pi and qi, respectively. They are
obtained by raising pi and qi to the exponent 1/T , as described in [50], where
T is the distillation parameter. When T = 1, the class with the highest score
influences the loss significantly, e.g., more than 0.9 from a maximum of 1.0, and
the remaining classes with low scores have minimal impact on the loss. However,
with T > 1, the remaining classes have a greater influence, and their higher loss
values must be minimized. This forces the network to learn a more fine grained
separation between them. As a result, the network learns a more discriminative
representation of the classes. Based on our empirical results, we set T to 2 for
all our experiments.
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Memory

New
samples

Construction of 
the training set

Training process Balanced 
fine-tuning

Representative 
memory updating

Figure 5.8: Incremental training. Grey dots correspond to samples stored
in the representative memory. Green dots correspond to samples from the new
classes. Dots with red border correspond to the selected samples to be stored in
the memory. (Best viewed in color.)

5.2.2. Incremental learning

An incremental learning step in our approach consists of four main stages,
as illustrated in Figure 5.8. The first stage is the construction of the training
set, which prepares the training data to be used in the second stage, the training
process, which fits a model given the training data. In the third stage, a fine-
tuning with a subset of the training data is performed. This subset contains the
same number of samples per class. Finally, in the fourth stage, the representative
memory is updated to include samples from the new classes. We now describe
these stages in detail.

Construction of the training set. Our training set is composed of samples
from the new classes and exemplars from the old classes stored in the represen-
tative memory. As our approach uses two loss functions, i.e. , classification and
distillation, we need two labels for each sample, associated with the two losses.
For classification, we use the one-hot vector which indicates the class appearing
in the image. For distillation, we use as labels the logits produced by every clas-
sification layer with old classes (grey fully-connected layers in Figure 5.7). Thus,
we have as many distillation labels per sample as classification layers with old
classes. To reinforce the old knowledge, samples from the new classes are also
used for distillation. This way, all images produce gradients for both the losses.
Thus, when an image is evaluated by the network, the output encodes the be-
haviour of the weights that compose every layer of the deep model, independently
of its label. Each image of our training set will have a classification label and
F distillation labels; cf. Eq. 5.4. Note that this label extraction is performed in
each incremental step.



88 Chapter 5. Unpublished Work

Consider an example scenario to better understand this step, where we are
performing the third incremental step of our model (Figure 5.7). At this point
the model has three classification layers (N = 3), two of them will process
old classes (grey boxes), i.e., F = 2, and one of them operates on the new
classes (green box). When a sample is evaluated, the logits produced by the two
classification layers with the old classes are used for distillation (yellow arrows),
and the logits produced by the three classification layers are used for classification
(blue arrows).

Training process. Our cross-distilled loss function (Eq. 5.4) takes the aug-
mented training set with its corresponding labels and produces a set of gradients
to optimise the deep model. Note that, during training, all the weights of the
model are updated. Thus, for any sample, features obtained from the feature
extractor are likely to change between successive incremental steps, and the clas-
sification layers should adapt their weights to deal with these new features. This
is an important difference with some other incremental approaches like [77], where
the the feature extractor is frozen and only the classification layers are trained.

Balanced fine-tuning. Since we do not store all the samples from the old
classes, samples from these classes available for training can be significantly lower
than those from the new classes. To deal with this unbalanced training scenario,
we add an additional fine-tuning stage with a small learning rate and a balanced
subset of samples. The new training subset contains the same number of samples
per class, regardless of whether they belong to new or old classes. This subset is
built by reducing the number of samples from the new classes, keeping only the
most representative samples from each class, according to the selection algorithm
described in Section 5.2.1.1. With this removal of samples from the new classes,
the model can potentially forget knowledge acquired during the previous training
step. We avoid this by adding a temporary distillation loss to the classification
layer of the new classes.

Representative memory updating. After the balanced fine-tuning step, the
representative memory must be updated to include exemplars from the new
classes. This is performed with the selection and removing operations described
in Section 5.2.1.1. First, the memory unit removes samples from the stored classes
to allocate space for samples from the new classes. Then, the most representa-
tive samples from the new classes are selected, and stored in the memory unit
according to the selection algorithm.
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5.2.3. Experiments

We perform two experiments on TUM-GAID dataset [52] (more details about
the dataset in Section 5.1.4). In the first one, we train from scratch a CNN using
samples from the 155 subjects set. Since there are three different walking con-
ditions, the CNN has to be trained with samples from all conditions. Therefore,
we create a new training set used for this incremental problem. For training, we
take the first half of the two first sequences of each subject and walking condi-
tion and, for testing, we take the other halves of the sequences. By this way,
we are using two sequences of normal (N), bag (B) and shoes (S) divided into
two subsequences, one for training and one for testing. Note that we have to use
information from both sequences as the subjects walk in different directions in
each one. Therefore, if a full sequence was used for training and the other for
testing, the performance of the model would be poor, as the test conditions would
differ from the training ones. Intuitively, applying the mirror to the original se-
quences should help to deal with this problem as we would have samples with
subjects walking in both directions. However, early experiments showed that the
performance does not improve and it is necessary to adopt the partitioning policy
explained above. For this experiment, the memory size of the incremental model
is fixed to 1240 samples (8 samples per subject in the last incremental step).

In the second experiment, we start from a network pretrained on the 150
subjects set. This training set contains samples from all walking conditions so
the network knows how to deal with them. Thus, during the training process,
we have to retain the old knowledge to deal with the walking conditions and, at
the same time, add new subject identities using the standard training samples
(i.e. 4 sequences of normal gait (N)). To do this, we use the pretrained network
to initialize the weights of the network used during the incremental process for
the 155 subjects. By this way, the incremental network has notions about how
to treat samples with different walking conditions. This experiment allows us
to compare the final performance of our incremental approach with the non-
incremental approaches published in the literature. For this experiment, the
memory size is fixed to 1240 samples (8 samples per subject in the last incremental
step).

For both experiments, we use the following incremental steps: 5, 10, 20, 311,
50 to compare the impact of the number of new classes during the training.
The architecture, hyper-parameters and training process is the same as the one
performed in [20]. Note that we focus on the non-temporal experiment of TUM-

1Note that we chose this particular value due to 31 and 5 are the divisors of 155, which is
the number of classes of the problem.
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GAID as the temporal one is composed of a very limited number of subjects.

5.2.4. Results

Table 5.11 contains the accuracy for the first experiment and the baseline
accuracy using a network trained from scratch (without incremental learning).
Note that the accuracy shown in the table corresponds to the accuracy obtained
in the last incremental step, that is, when the model is trained for the 155 subjects
that compose the dataset. By this way, we can compare the incremental results
with the non-incremental ones. Moreover, for brevity, the accuracy is computed
for the whole test set without differentiating between walking conditions.

According to the results, step sizes of 10, 20 and 31 classes obtain similar
results, being 31 the best option with an accuracy of 97.3%. Comparing these
values with the obtained by the baseline approach using the same data partition,
the accuracy of our incremental method only decreases in 2.1%. Therefore, our
incremental approach obtains similar results to a model trained from scratch
with all classes at the same time. This way, using our incremental learning
approach, it is not necessary to keep all the training data (we only need to
store a small subset of representative samples) and the training process can be
performed incrementally as new classes arrive.

Table 5.12 contains the accuracy for the second experiment and the baseline
accuracy using a network trained from scratch (without incremental learning).
Like in the previous experiment, the accuracy shown in the table corresponds
to the accuracy obtained in the last incremental step, that is, when the model
is trained for the 155 subjects that compose the dataset. Moreover, for brevity,
the accuracy is computed for the whole test set without differentiating between
walking conditions.

According to the results, a step size of 5 classes is the best option with an
accuracy of 85.2%. Comparing this value with the obtained by the baseline
approach using the same data partition, the accuracy of our incremental method
only decreases in 2.2%. This drop in the accuracy is comparable to the obtained
in the first experiment, showing again that our approach is a good solution that
obtains results close to the model trained from scratch. In general for this case,
the performance of both models is lower because only data from the normal
walking condition are available during the incremental training.
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Table 5.11: Incremental learning results for experiment 1. Percentage
of correct recognition with different step size. Each row represents a different
model. Each column represents a different step size. More details in the main
text.

Model / # classes 5 10 20 31 50
Ours-Experiment1 95.8 97.1 97.1 97.3 91.4
Baseline 99.4

Table 5.12: Incremental learning results for experiment 2. Percentage
of correct recognition with different step size. Each row represents a different
model. Each column represents a different step size. More details in the main
text.

Model / # classes 5 10 20 31 50
Ours-Experiment2 85.2 74.8 78.5 77.4 80.4
Baseline 87.4

5.2.5. Conclusions

The experimental results on TUM-GAID, presented above, lead to the follow-
ing conclusions:

Our end-to-end approach is useful applied to gait recognition using optical
flow and videos. Therefore, we have demonstrated that it can be used in
different situations besides image recognition.

The selection of the training set is critical. When train and test sets contain
similar conditions (experiment 1), our model and the baseline obtain bet-
ter results than when the conditions are different (experiment 2). However,
if we compare our approach with the baseline, in both cases, the perfor-
mance is very similar, around 2% lower than baseline accuracy. Thus, the
results between them are comparable even though our models are trained
incrementally.

As future work, we plan to explore new selection algorithms to find better
representatives of the each class. In addition, we also want to explore the option
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of adding more weights in the intermediate layers of the model during the incre-
mental steps. By this way, the model will have more weights to store knowledge.



6 Conclusions

This chapter presents the final ideas of this thesis. Section 6.1 summarizes
the conclusions obtained from the previously described work and Section 6.2
describes the future lines of work that we plan to explore.

6.1. Conclusions

The gait recognition problem can be addressed using many different kind of
techniques. Most of the approaches previously published in the literature are
based on binary silhouettes or descriptors derived from them. However, we have
proposed a set of solutions that use raw data or optical flow as input, instead of
highly preprocessed images. This way, our approaches can disengage from the
shape of the subject, which is the information represented by the silhouettes,
and focus on better characteristics of the gait. Throughout this thesis, we have
proposed different solutions to the gait recognition problem that, depending on
the specific conditions of the setup, one can have better performance than the
other.

The proposed hand-crafted approach and later improvements obtain state-of-
the-art results in multi-view conditions and scenarios where the clothes of each
subject can vary. Moreover, the little need for training data combined with its
robustness facing changing conditions, allow this hand-crafted approach to be
used in realistic environments. However, this approach needs high resolution
(i.e. 320 × 240 or bigger) to perform well and the execution time is slow, what
difficulties a real time approximation.

93
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To solve those shortcomings, we have proposed a deep learning approach which
uses optical flow or raw data as input. This method can be used in real time with
small resolution videos (i.e. 60 × 60 is enough to obtain state-of-the-art results
in many cases). Compared with other approaches, our model obtains the best
results under similar resolutions but, without this constraint, it performs worse
in some conditions. However, this problem is not a limitation of the method and
it can be solved using a bigger training set to allow the CNN to learn a better
representation.

To take advantage of datasets with multiple modalities or sources of infor-
mation, we have proposed a set of different fusion schemes for the hand-crafted
and deep learning approaches. Thus, the use of a fusion scheme improves the
final accuracy of hand-crafted and deep learning approaches what indicates that
the use of multiples inputs helps to obtain better models. Moreover, we have
proposed a multi-task approach that uses additional information in the form of
labels. This way, the multi-task approach uses multiple labels for the same input
to produce multiple outputs. This approach also helps to the learning process as
the description of a subject involves more information and it can be described in
a better way.

Due to the importance of deep learning approaches in the last years, we have
studied the energy consumption during training of a deep learning approach for
gait recognition. The objective of this study is to help other researchers to save
energy and money during the training process which, usually, may take weeks
or even months. Thus, our study considers the energy a hyper-parameter that
can be considered during the design of the architecture of the model. Therefore,
depending on the problem, some rules can be applied to minimize the energy
consumption without penalizing the accuracy of the model.

Finally, we have proposed an incremental approach that can be used in real
scenarios where the number of classes can be incremented along the time. Thus,
with our approach, instead of retraining the whole model from scratch using
the full training set, we propose a shorter training step using a reduced number
of training samples from the previously trained classes. By this way, the new
model starts from the old one and the new classes are added while the previous
knowledge is retained. Then, a company or institution only has to store a limited
amount of data in order to retain the current behaviour of the network while the
number of classes is incremented.
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6.2. Future Work

As lines of study derived from this thesis, we plan to study the performance
of our approach with multiple persons in the scene and the impact of occlu-
sions, a new approximation for incremental learning, an implementation based
on Long short-term memory (LSTM) [51] and an in depth study about energy
consumption for deep learning approaches in embedded systems.

For the first line of study, there are no datasets with occlusions or multiple
subjects in the scene. Therefore, we would have to build a new dataset including
that conditions. To avoid recording people walking and to take advantage of the
existing datasets, we plan to create a semi-synthetic dataset combining the real
subjects from a previous dataset with synthetic information added to the original
video. Thus, to include more subjects in the scene, we will combine the subjects
from different videos into a single one. For the occlusions, the process is similar
and we will add synthetic objects to the original video. By this way, we do not
have to record a complete dataset and we could build a new dataset with endless
combinations.

For the second line, we plan to study the effect of the number of parameters
of the CNN during the incremental process. Intuitively, there should be a point
during the incremental learning where the number of parameters is insufficient
to learn new classes. Then, when this limit point is approached, the number of
parameters should grow to store new knowledge. By this way, during the incre-
mental steps, the CNN will grow when necessary and the incremental learning
will perform better.

Finally, as third line of study, due to the cyclical nature of the gait, the use of
recurrent networks and LSTMs is specially interesting. Thus, we want to study
the performance of this kind of networks compared to the traditional CNNs.

Finally, as fourth line of study, energy consumption is also an important issue
in embedded architectures. Thus, the design of applications in these platforms
requires a trade-off between computing performance and consumption. We plan
to develop a methodology that follows previous deal to deploy efficient deep
learning application. It should take into account both the different hardware
setups available in many heterogeneous architectures and several work scheduling
strategies that could be applied.





Apéndice A
Resumen en español

El análisis del paso ha sido aplicado desde hace mucho tiempo en estudios
médicos y biomecánicos. Hacia 1890, Braune y Fischer [37] fueron pioneros ana-
lizando el paso de humanos caminando con y sin carga encima, para optimizar el
equipamiento de la infantería alemana. En 1970, Morrison [102] analizó el paso y
parametrizó el movimiento de las articulaciones y extremidades involucradas en
el mismo. Durante los últimos años, el análisis del paso se ha usado en entornos
médicos, ya que es un método no invasivo que permite detectar enfermedades
que afectan a la locomoción, como pueden ser el Parkinson [101], escoliosis [69] o
artrosis [99]. Otro ámbito en el que se está utilizando el análisis del paso es el estu-
dio del rendimiento en deportistas de élite para desarrollar nuevos equipamientos
(zapatillas, bicicletas, etc) o mejorar la técnica del deportista.

Recientemente, el análisis del paso ha sido utilizado como patrón biométrico
para identificar personas. De hecho, las personas son capaces de identificar otras
personas a cierta distancia por su forma de caminar, sin necesidad de ver la cara
del sujeto, lo que permite una identificación no invasiva y que no requiere de
la colaboración del sujeto. Por contra, la mayoría de técnicas usadas hoy en día
para identificar personas como pueden ser el reconocimiento facial, del iris o de
la huella dactilar, requieren de la colaboración del sujeto a identificar, que debe
mirar a una cámara o poner su dedo en un sensor. Sin embargo, la identificación
mediante la forma de caminar no necesita de esta colaboración y puede usarse en
entornos de video-vigilancia como aeropuertos.

En todos estos casos, y en cualquier aplicación de visión artificial, el proceso
general seguido por los algoritmos consta de tres fases: adquisición de los datos,
análisis de los datos y, por último, la toma de decisiones.
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El proceso de adquisición de datos ha ido evolucionando a lo largo de los años
con la llegada de nuevas tecnologías. Así, en el comienzo de los estudios del paso,
los datos se tomaban a mano por los investigadores que observaban la escena y
tomaban los apuntes que consideraban oportunos. Esto limitaba la cantidad y
calidad de los datos obtenidos y de las posteriores conclusiones de los estudios.
Con la aparición de los primeros sensores mecánicos, el proceso de adquisición
de datos se hizo más fácil ya que, aunque estos sensores eran muy rudimentarios,
ayudaban a discretizar el movimiento y facilitar su descripción. Finalmente, con
la aparición de las computadoras, sensores electrónicos y cámaras digitales, el
proceso de adquisición de datos se hizo mucho más asequible pudiendo tomar
datos a frecuencias muy altas y con mucha precisión. Por lo tanto, las conclusiones
extraídas de este tipo de datos podían ser mucho más sólidas que las que se podían
realizar varias décadas atrás.

El proceso de análisis de los datos, como el proceso de adquisición, era manual
hasta que aparecieron las computadoras. A medida que su capacidad de cómputo
iba creciendo, los análisis que se podían realizar sobre los datos eran más com-
plejos. Así, los análisis básicos como modelos estadísticos obtenidos a partir de
cientos de datos, evolucionaron a métodos más complejos obtenidos a partir de
miles o decenas de miles de datos. Los investigadores se dieron cuenta de que
cuanto mayor cantidad de datos y modelos más complejos fueran usados, mejo-
res resultados se obtenían. Esto conllevó a una carrera para obtener más datos
para construir modelos cada vez más complejos. Hoy en día, enormes modelos
entrenados con miles de millones de muestras obtienen resultados que parecerían
imposibles años atrás.

Finalmente, el proceso de toma de decisiones, a diferencia de los dos anteriores,
no ha cambiado sustancialmente. Aunque hay muchos más datos disponibles y los
modelos utilizados son muy complejos, los objetivos principales que condujeron a
realizar los análisis son los mismos. A grosso modo, hay tres tipos principales de
decisiones: clasificación, regresión y detección, y, todas ellas, están presentes en
problemas del siglo XIX y en problemas actuales. Sin embargo, es cierto que hoy
en día nos enfrentamos a problemas más ambiciosos gracias a las computadoras,
nuevos sensores y procesos de análisis. Así, lo que solía ser un gran problema como
una segmentación o una clasificación, hoy en día el problema es el reconocimiento
de acciones o la detección de eventos en vídeos.

La motivación de esta tesis parte de que hoy en día, los sistemas de seguridad
y de control de acceso automáticos están ganando importancia y se usan cada
vez más. La mayoría de la soluciones desarrolladas para resolver estos problemas
se basan en la identificación biométrica usando un amplio abanico de caracterís-
ticas físicas de los sujetos como pueden ser el iris, la huella dactilar o la cara.
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Sin embargo, todas estas técnicas tienen una serie de limitaciones, por un lado,
requieren la colaboración por parte del sujeto a identificar (reconocimiento me-
diante la huella dactilar [86] o el iris [29]) o bien son muy sensibles a cambios en
la forma (reconocimiento facial [156]). Sin embargo, el reconocimiento del paso
es una forma no invasiva de implementar estos controles de seguridad y que no
necesita de la colaboración del sujeto. Además, es robusto frente a cambios en la
forma del sujeto ya que se centra en el movimiento.

Centrándonos en el problema de la identificación de personas a partir de su
forma de caminar, la mayoría de trabajos publicados usan representaciones basa-
das en siluetas [47]. Este tipo de entrada tiene muchos problemas cuando la forma
de los sujetos cambia, es decir, llevan distinta ropa o el punto de vista cambia. Por
lo tanto, el gran interés que hay en el reconocimiento del paso combinado con la
falta de buenos métodos disponibles en la literatura para resolver este problema,
han hecho que nos planteemos las siguientes motivaciones para desarrollar este
estudio:

Desarrollar un método robusto frente a cambios en la forma de los sujetos
a partir de diferentes tipos de información.

Ser capaz de identificar las personas desde múltiples puntos de vista. En este
caso, nuestro método debe ser capaz de identificar la persona sin conocer
el punto de vista de antemano.

Debido a la importancia que está tomando el deep learning, hemos decidido
crear uno o más enfoques basado en técnicas de deep learning para compa-
rarlas con los métodos basados en características desarrolladas a mano.

Aprovechar las diferentes fuentes de datos y la información sobre los sujetos
que están disponibles hoy en día en muchas bases de datos y entornos reales.

A partir de las motivaciones anteriores, nos planteamos el objetivo princi-
pal de esta tesis, que es desarrollar un nuevo método para la identificación de
personas a partir de la forma de caminar en entornos de múltiples vistas. Co-
mo entrada vamos a usar el flujo óptico que proporciona una información muy
rica sobre el movimiento del sujeto mientras camina, lo que permite construir
mejores representaciones y modelos. Además, como el flujo óptico se centra en
el movimiento, nuestros métodos son más robustos frente a cambios en la forma
de los sujetos. Como parte de este objetivo principal, definimos un conjunto de
objetivos específicos englobados en el mismo:

1. Desarrollar un método basado en características desarrolladas a mano, es-
pecíficamente, usando flujo óptico como entrada para construir una repre-



100 Apéndice A. Resumen en español

sentación de bajo nivel para, finalmente, construir una representación de
alto nivel que es usada para entrenar un clasificador tradicional. Si hubie-
ra múltiples tipos de información disponibles, todas esas informaciones de
entradas serán usadas a la vez por el modelo.

2. Desarrollar un segundo método basado en deep learning construyendo ar-
quitecturas para el problema de la identificación a partir de la forma de
caminar. En este caso, nuestro plan es explorar las mejores arquitecturas
disponibles en la literatura para otras tareas. Como en el objetivo anterior,
si hubiera múltiples tipos de información disponibles, todas esas informa-
ciones de entradas serán usadas a la vez por el modelo.

3. Desarrollar una metodología de aprendizaje incremental para añadir nuevas
clases a un modelo previamente entrenado usando solamente un pequeño
subconjunto de muestras de las clases antiguas. Esta metodología es útil en
situaciones donde el conjunto de muestras de entrenamiento es demasiado
grande para almacenarlo de forma indefinida o cuando el proceso de en-
trenamiento completo requiera de un tiempo excesivo de cómputo. En esas
situaciones, cada paso incremental con nuevas clases requiere un pequeño
conjunto de datos y mucho menos tiempo de entrenamiento que el modelo
completo.

4. Realizar un estudio de consumo de energía en los modelos de deep learning
para caracterizarlos desde un punto de vista no explorado anteriormente y
que es muy importante desde un punto de vista monetario.

Para conseguir estos objetivos, se han seguido las siguientes fases de desarrollo:

1. Primero se ha revisado el estado del arte para seleccionar los mejores mé-
todos y bases de datos usados para evaluar nuestro enfoque y compararnos
con los mejores métodos. De acuerdo con los datos publicados, tamaño de
las bases de datos y objetivos propuestos, se ha decidido utilizar las bases
de datos AVAMVG [30], MoBo [45], CASIA-B y C [151] y TUM-GAID [52].

2. Se ha desarrollado un método basado en características desarrolladas a
mano en el que se han seleccionado las representaciones de bajo y alto nivel
para codificar el movimiento y la información sobre la forma de caminar.
Finalmente, la representación del vídeo se introduce en un clasificador para
obtener la identidad del sujeto. Como había múltiples tipos de datos de
entrada en las bases de datos utilizadas, se exploraron diferente tipos de
fusión de información para mejorar los resultados de nuestro trabajo inicial.



Apéndice A. Resumen en español 101

Los métodos de fusión se han dividido en dos esquemas diferentes: fusión
tardía, realizada a partir de las probabilidades obtenidas de los diferentes
clasificadores y, fusión temprana, realizada a partir de de las características
obtenidas por el método antes de llegar al clasificador.

3. Se ha desarrollado en método de deep learning. Como arquitectura base se
ha utilizado AlexNet [71] adaptada al reconocimiento del paso. Además, se
ha comparado esta arquitectura base con otros dos tipos de arquitecturas
muy utilizadas en la literatura: ResNet [49] y una red basada en convolucio-
nes 3D [130]. Para realizar una comparación justa, los mismos experimentos
se han ejecutado en todas las redes para encontrar la mejor para el problema
de la identificación de sujetos a partir de su forma de caminar. Además, se
han comparado los métodos basados en deep learning con el método desa-
rrollado anteriormente basado en características desarrolladas a mano para
ver si se cumple la tendencia de que los métodos de deep learning obtienen
mejor precisión que los métodos tradicionales. Como en el punto anterior,
se han evaluado diferentes formas de fusión para el enfoque basado en deep
learning. En este caso, se han usado tres tipos de fusión tardía (a nivel
de probabilidades obtenidas de los clasificadores). En el caso de la fusión
temprana (a nivel de características), como la red construye sus propias
características, la fusión temprana solo puede realizarse cuando se define
la arquitectura de la red. En nuestro caso, las características de cada tipo
de entrada se concatenan a diferentes niveles dentro de la red. En este pa-
so, también decidimos explorar los beneficios de entrenar una red con una
función de pérdida combinada para entrenar múltiples tareas a la vez.

4. Hemos estudiado el problema del reconocimiento del paso desde un punto
de vista basado en el aprendizaje incremental. En este caso, se quería aña-
dir más clases (i.e. sujetos) a un modelo entrenado previamente sin tener
que re-entrenarlo desde cero. Para ello, se ha construido una función de
pérdida combinada, una parte para retener el conocimiento previo y otra
para aprender nueva información sobre las nuevas clases.

5. Finalmente, analizamos el consumo de energía durante el proceso de en-
trenamiento de diferentes tipos de arquitecturas CNN y el impacto de los
hiper-parámetros en el consumo de energía y la precisión de los modelos.
La energía consumida se a medido físicamente con un dispositivo externo
conectado a las GPUs usadas durante el entrenamiento.

En esta lista de fases, la primera fase es necesaria para cumplir todos los
objetivos puesto que las bases de datos se usan en todos ellos. Las fases 2 y 3
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permiten cumplir los objectivos 1 y 2 respectivamente. Finalmente, las fases 4 y
5 permiten realizar los objetivos 3 y 4.

En cuanto a las contribuciones de esta tesis, hemos desarrollado diferentes
enfoques usando diferentes técnicas para buscar la mejor solución posible. Por lo
tanto, hemos intentado resolver el problema empezando desde diferentes puntos
de vista aprovechando las últimas técnicas desarrolladas en otros ámbitos y la
información incluida en las bases de datos utilizadas. Así, se han desarrollado en-
foques basados en características diseñadas a mano y basados en deep learning.
Además, hemos propuesto diferentes formas de fusión de información para apro-
vechar múltiples tipos de entrada. Finalmente, para hacer nuestros enfoques más
atractivos para la industria, hemos desarrollado un enfoque incremental que es
capaz de aprender nuevas clases incrementalmente y un estudio sobre el consumo
de energía de los enfoques basados en deep learning durante su entrenamiento.

Por lo tanto, de forma más específica, las contribuciones de esta tesis son:

Para el objetivo 1, en enfoque basado en características diseñadas a mano,
las contribuciones son:

1. Un nuevo descriptor de la forma de caminar (PFM) que combina el
potencial de los descriptores HAR con la rica representación proporcio-
nada por la codificación FV. Este nuevo descriptor usa el flujo óptico
como entrada en lugar de las siluetas usadas por el resto de métodos
disponibles.

2. El descriptor propuesto es capaz de manejar múltiples puntos de vista
durante el test, incluso si el modelo es entrenado con vistas diferentes
a las testeadas.

3. Un enfoque unificado que usa audio, información de profundidad e in-
formación visual para resolver el problema del reconocimiento a partir
de la forma de caminar.

4. Un enfoque multimodal para el reconocimiento de la edad y de los
zapatos.

5. Resultados que superan al estado del arte en las bases de datos AVAMVG,
MoBo, CASIA-B, CASIA-C y TUM-GAID.

Para el objetivo 2, el enfoque basado en deep learning, las contribuciones
son:

1. Una fase de pre-procesamiento para extraer, organizar y normalizar la
entrada del flujo óptico.
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2. Un conjunto de arquitecturas CNN que pueden usarse directamente
como clasificadores o para extraer descriptores de la forma de caminar
a partir del flujo óptico.

3. El método propuesto es capaz de manejar múltiples puntos de vista.

4. Un conjunto de arquitecturas CNN para la fusión de datos.

5. Resultados que mejoran el estado del arte en las bases de datos TUM-
GAID y CASIA-B.

Para el objetivo 3, el enfoque incremental, las contribuciones son:

1. Un enfoque end-to-end diseñado específicamente para el aprendiza-
je incremental. Este enfoque se puede aplicar a cualquir tipo de red
profunda.

2. Resultados que mejoran el estado del arte en CIFAR-100 e ImageNet.

Para el objetivo 4, el estudio de consumo, las contribuciones son:

1. Un análisis del consumo de energía y el rendimiento en una configura-
ción multi-GPU usando dos de las arquitecturas CNN más populares.
Este estudio se centra en los pasos de forward, backward y actuali-
zación de pesos que se dan en el proceso de entrenamiento de una
CNN.

2. Estadísticas de precisión para descubrir las mejores configuraciones
basadas en tiempo, consumo de energía y el producto energía-retraso.

3. Comparación entre las arquitecturas Maxwell y Pascal.

Una implementación pública en MATLAB de todos los métodos desarrolla-
dos.

A.1. Publicaciones

Durante esta tesis se han publicado un total de cuatro artículos en revistas
internacionales indexadas en el Journal of Citation Report (JCR). Además, se
han publicado cinco artículos en conferencias internacionales. Por lo tanto, un
total de nueve artículos se han obtenido durante esta tesis.

A continuación se presenta la lista de artículos publicados:

Artículos de revista:
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• Marín-Jiménez, M. J., Castro, F. M., Carmona-Poyato, Á., Guil, N.
(2015). On how to improve tracklet-based gait recognition systems.
Pattern Recognition Letters, 68, 103-110.

• Castro, F. M., Marín-Jiménez, M. J., Guil, N. (2016). Multimodal
features fusion for gait, gender and shoes recognition. Machine Vision
and Applications, 27(8), 1213-1228.

• Castro, F. M., Marín-Jiménez, M. J., Mata, N. G., Muñoz-Salinas, R.
(2017). Fisher motion descriptor for multiview gait recognition. In-
ternational Journal of Pattern Recognition and Artificial Intelligence,
31(01), 1756002.

• Castro, F. M., Guil, N., Marín-Jiménez, M. J., Pérez-Serrano, J., Ujal-
dón, M. (2018). Energy-based Tuning of Convolutional Neural Net-
works on Multi-GPUs. Concurrency and Computation: Practice and
Experience (to appear).

Artículos de conferencias internacionales:

• Castro, F. M., Marín-Jiménez, M. J., Guil, N. (2015). Empirical study
of audio-visual features fusion for gait recognition. In International
Conference on Computer Analysis of Images and Patterns (CAIP)
(pp. 727-739).

• Castro, F. M., Marín-Jiménez, M. J., Guil, N., López-Tapia, S., Pé-
rez de la Blanca, N. (2017). Evaluation of CNN architectures for gait
recognition based on optical flow maps. In International Conference
of the Biometrics Special Interest Group, BIOSIG 2017, Darmstadt,
Germany, September 20–22, 2017 (pp. 251-258).

• Marín-Jiménez, M. J., Castro, F. M., Guil, N., de la Torre, F., Medina-
Carnicer, R. (2017). Deep multi-task learning for gait-based biome-
trics. In Image Processing (ICIP), 2017 IEEE International Conference
on (pp. 106-110).

• Castro, F. M., Marín-Jiménez, M. J., Guil, N., de la Blanca, N. P.
(2017). Automatic learning of gait signatures for people identifica-
tion. In International Work-Conference on Artificial Neural Networks
(IWANN) (pp. 257-270).

• Castro, F. M., Marín-Jiménez, M. J., Guil, N., Schmid, C., Ahahari,
K. (2018). End-to-End Incremental Learning. European Conference on
Computer Vision (ECCV), (to appear).
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A continuación presentamos un resumen de los artículos de revista que avalan
esta tesis además de los resúmenes de dos artículos de conferencia inernacional
que contienen técnicas no publicadas en revistas.

A.1.1. Referencia [89] ‘On how to improve tracklet-based
gait recognition systems’

En [89] estudiamos diferentes propuestas para mejorar nuestro trabajo pre-
vio publicado en [22] basado en el reconocimiento del paso usando trayectorias
densas. Una primera mejora es el uso de RootDCS en lugar del descriptor DCS
original. De esta forma, este nuevo descriptor aplica una raíz cuadrada a los ele-
mentos del descriptor DCS original después de aplicarle una normalización L1.
Esta regularización estabiliza la varianza entre valores del histograma de caracte-
rísticas cinemáticas, lo que mejora la capacidad de representación del descriptor.
Otra forma de mejorar es usar trayectorias dispersas en lugar de densas porque
no todas las trayectorias contribuye a describir la forma de caminar. Por lo tanto,
la idea es descartar trayectorias cuyos vectores de velocidad media son similares
a la velocidad media de la persona. De esta forma, se mantienen las trayectorias
más relevantes (movimiento de brazos y piernas) y las superfluas se eliminan (mo-
vimiento horizontal del cuerpo). Puesto que los descriptores usados en [22] tienen
una dimensionalidad muy grande, se aplicaba PCA para reducirla. Sin embargo,
como estamos resolviendo un problema etiquetado, un enfoque semi-supervisado
puede usarse para incrementar la separabilidad de los descriptores. Finalmente,
como estamos usando un conjunto de SVMs en un enfoque uno frente a todos,
las probabilidades de salida pueden ser muy similares en muchas ocasiones. Por
lo tanto, proponemos usar un proceso de Rank Minimization cuyo objetivo es
combinar las salidas de los diferentes clasificadores para obtener una salida final
más robusta.

Una experimentación exhaustiva es realizada en tres bases de datos complejas
para validar nuestras propuestas. En todos los casos, la mejora propuesta supera
a los resultados obtenidos por el método original.

A.1.2. Referencia [18] ‘Multimodal features fusion for gait,
gender and shoes recognition’

Puesto que múltiples fuentes de información o modalidades pueden ser gra-
badas a la vez mientras que una persona camina, nuestro objetivo es fusionar
esas modalidades para mejorar la precisión del reconocimiento obtenida a par-
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tir de una sola fuente de información. En este artículo, estudiamos seis formas
diferentes de fusionar la información de diferentes modalidades, donde tres de
ellas son fusiones tardías (a nivel de probabilidades) y las otras tres son fusiones
tempranas (a nivel de descriptores).

Con respecto a las fusiones tempranas, proponemos tres versiones diferentes:
concatenación de vectores, donde los vectores de características se combinan para
producir uno más grande; diccionarios bi-modales donde un diccionario común
aprende a producir un vector final de características mezclando información pro-
veniente de todas las modalidades; y, por último, el aprendizaje de kernel múltiple
donde un proceso de optimización obtiene un kernel óptimo que representa la in-
formación de todas las modalidades en un espacio de características mayor donde
las clases son más separables.

Con respecto a las fusiones tardías, proponemos otras tres opciones: probabi-
lidades pesadas, donde una suma pesada se aplica a las probabilidades de salida
de cada modalidad individual; SVM sobre las probabilidades, donde se entrena
un SVM con las probabilidades de cada modalidad individual para producir una
probabilidad combinada; y, finalmente, la minimización de ranking, donde un
proceso de minimización obtiene la mejor combinación de probabilidades.

De acuerdo con los resultados experimentales, la fusión de modalidades ayuda
a mejorar la precisión del sistema siempre que las características fusionadas sean
representativas por sí mismas. Esto es, si una modalidad obtiene resultados muy
pobres, la fusión de esa modalidad con otra también producirá malos resultados.

A.1.3. Referencia [21] ‘Fisher motion descriptor for multi-
view gait recognition’

En este trabajo, extendemos el artículo de conferencia anteriormente publi-
cado [22]. Esta versión amplía la sección experimental a cuatro bases de datos
con múltiples vistas y condiciones de paso como llevando mochilas, diferente ro-
pa, fundas en los zapatos, cintas de correr, etc. Por lo tanto, el objetivo de este
artículo es explorar las capacidades del método anteriormente publicado que, de-
bido a limitaciones de espacio, fueron imposibles de comprobar. Además, se han
realizado algunos cambios para mejorar la precisión del proceso global.

La experimentación exhaustiva ha confirmado que nuestro enfoque es capaz
de manejar cambios en la forma de los sujetos y múltiples vistas, obteniendo
resultados en el estado del arte para todas las bases de datos.
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A.1.4. Referencia [17] ‘Energy-based Tuning of Convolu-
tional Neural Networks on Multi-GPUs’

En este estudio, analizamos la energía consumida durante el proceso de en-
trenamiento de una CNN. Puesto que este es un proceso costoso y largo que
necesita muchos recurso, es interesante considerar la energía como un parámetro
que puede ser minimizado como su fuera una función de pérdida. De esta forma,
además de la precisión final, la energía también se tiene en cuenta en el proceso
de diseño de la arquitectura de una CNN porque la energía consumida tiene un
impacto económico y una red que consuma menos energía puede suponer un gran
ahorro económico.

Puesto que se pueden diseñar infinidad de arquitecturas, nosotros nos cen-
tramos en las siguientes: una versión de AlexNet [72] adaptada al problema del
reconocimiento del paso y la versión original de AlexNet para el reconocimiento
de imágenes, una red ResNet [48] para el reconocimiento de imágenes en Image-
Net y una versión adaptada al reconocimiento del paso. De esta forma, hemos
estudiado dos tipos de redes diferentes usadas como base en la mayoría de mé-
todos actuales, y dos de los tipos de datos de entrada (vídeo e imágenes) más
usados en la actualidad. Además, también analizamos el impacto del tamaño del
batch en la precisión y el consumo de energía. Finalmente, también considera-
mos el impacto de realizar el entrenamiento en un entorno con múltiples GPUs
y el efecto en el consumo de diferentes arquitecturas GPU (Pascal y Maxwell en
nuestro caso).

De acuerdo con las conclusiones extraídas, en bases de datos pequeñas, la
opción de optimizar el consumo de energía y la precisión de forma conjunta es
muy compleja ya que se requieren tamaños pequeños de batch para obtener un
buen entrenamiento, lo que penaliza el consumo de energía. Sin embargo, hay una
excepción en las redes basadas en AlexNet, ya que admiten tamaños mayores de
batch permitiendo minimizar la energía manteniendo una precisión buena. En
bases de datos grandes, se pueden usar tamaños de batch grande sin que la
precisión baje lo que permite optimizar energía y precisión conjuntamente. En
cuanto a las arquitecturas de GPU, Pascal obtiene mejores consumo y frecuencias
más altas como se esperaba. Por último, las configuraciones con múltiples GPUs
arrojan buenos resultados con dos dispositivos. Con más de dos dispositivos, el
problema tiene que ser estudiado individualmente.
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A.1.5. Referencia [88] ‘Deep multi-task learning for gait-
based biometrics’

En este trabajo exploramos el uso de la información del paso para diferentes
tareas, no solo para la identificación de personas. Aunque la forma de andar se usa
principalmente para la identificación de personas, otras tareas biométricas pueden
ser definidas en base a la forma de andar, como por ejemplo, el reconocimiento
del género de una persona o la estimación de su edad. Sin embargo, no se ha
prestado mucha atención al hecho de que esas tareas están muy relacionadas y
se pueden beneficiar unas de las otras cuando son consideradas conjuntamente
durante el entrenamiento.

Nosotros proponemos un proceso de aprendizaje multi-tarea basado en una
función de pérdida combinada para entrenar CNNs a partir del flujo óptico. De
esta forma, las características de la forma de andar obtenidas por la red, son
útiles para todas las tareas entrenadas.

De acuerdo con los resultados, el proceso de aprendizaje multi-tarea acelera la
convergencia de la red, mejora la capacidad de generalización de las características
o descriptores obtenidos por la red para tareas biométricas y, es capaz de mejorar
los resultados del estado del arte.

A.1.6. Referencia [20] ‘End-to-End Incremental Learning’

Aunque los enfoques basados en deep learning obtienen los mejores resultados
del estado del arte cuando son entrenados con bases de datos enormes o, al
menos, usando la base de datos de forma completa, tienen problemas cuando son
entrenados con nuevas clases de forma incremental. Este problema es conocido
como catastrophic forgetting, un gran empeoramiento del rendimiento del modelo
cuando se le añaden nuevas clases de forma incremental.

Nosotros proponemos un enfoque end-to-end que aprende redes de forma in-
cremental, usando nueva información de las nuevas clases y solamente un pequeño
conjunto de datos de las clases antiguas. El proceso de entrenamiento se basa en
una función de pérdida compuesta de una medida de destilación para retener el
conocimiento de las clases antiguas y, de una función de pérdida basada en la
entropía cruzada para entrenar las nuevas clases.

De acuerdo con los resultados, nuestro enfoque obtiene los mejores resultados
del estado del arte en dos bases de datos (CIFAR-100 e ImageNet). Además, es
robusto frente a bases de datos compuestas de clases similares, permitiendo que
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el método pueda ser utilizado en problemas como el reconocimiento de caras.

A.2. Conclusiones

El problema de la identificación de personas a partir de su forma de caminar
puede resolverse usando muchas técnicas diferentes. La mayoría de los enfoques
publicados anteriormente en la literatura usan siluetas o descriptores derivados
a partir de ellas. Sin embargo, nosotros hemos propuesto un conjunto de solu-
ciones que usan como entrada los datos en bruto o el flujo óptico, en lugar de
imágenes pre-procesadas. De esta forma, nuestros métodos pueden abstraerse de
la forma del sujeto, que es la información representada por las siluetas, y cen-
trarse en mejores características de la forma de caminar. A lo largo de esta tesis,
hemos propuesto diferentes soluciones al problema del reconocimiento del paso
para obtener los mejores resultados posibles dependiendo de la configuración del
entorno.

El método propuesto basado en características desarrolladas a mano y las
mejoras presentadas posteriormente obtienen resultados que mejoran el estado
del arte en entornos con múltiples vistas y escenarios donde la ropa que llevan
los sujetos puede variar. Además, la poca necesidad de datos de entrenamiento
junto con su robustez frente a condiciones cambiantes, permiten que este méto-
do pueda usarse en entornos realistas. Sin embargo, este enfoque necesita una
resolución relativamente grande (320 × 240 o mayor) para tener un buen rendi-
miento y su tiempo de ejecución es bastante lento, dificultando su aplicación en
una aproximación en tiempo real.

Para resolver esos problemas, hemos propuesto un enfoque basado en deep
learning que usa como entrada el flujo óptico o datos en bruto. Este método puede
usarse en tiempo real con vídeos a baja resolución (en muchos casos, 60 × 60 es
suficiente para obtener resultados en el estado del arte). Comparado con otros
métodos, nuestro modelo obtiene los mejores resultados usando resoluciones de
entrada similares pero, sin esta limitación, obtiene peores resultados en algunos
casos. Sin embargo, este problema no es una limitación del método y puede
resolverse usando un conjunto de entrenamiento mayor para permitir que la CNN
obtenga una mejor representación.

Para aprovechar las bases de datos con múltiples modalidades o fuentes de
información, hemos propuesto un conjunto de diferentes esquemas de fusión para
los enfoques basados en características desarrolladas a mano y en deep learning.
De esta forma, el uso de un esquema de fusión mejora la precisión final de am-
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bos métodos (basado en características desarrolladas a mano y basado en deep
learning), lo que indica que el uso de múltiples entradas ayuda a obtener mejores
modelos. Además, hemos propuesto un enfoque multi-tarea que usa información
adicional en forma de etiquetas. Así, el método multi-tarea usa múltiples etique-
tas para una misma entrada común para producir múltiples salidas. Este enfoque
también ayuda al proceso de aprendizaje puesto que el sujeto se describe con más
información.

Debido a la importancia de los métodos basados en deep learning en los úl-
timos años, hemos estudiado el consumo de energía durante el entrenamiento de
diferentes enfoques basados en deep learning aplicados al reconocimiento del pa-
so. El objetivo de este estudio es ayudar a otros investigadores a ahorrar energía
y dinero durante el proceso de entrenamiento que, normalmente, puede durar
semanas o incluso meses. Por lo tanto, nuestro estudio considera la energía con-
sumida como un hiper-parámetro que debe tenerse en cuenta durante el diseño
de la arquitectura de la red. De esta forma, dependiendo del problema, algunas
reglas pueden ser aplicadas para minimizar el consumo de energía sin penalizar
la precisión del modelo.

Finalmente, hemos propuesto un enfoque incremental que puede usarse en
entornos reales donde el número de clases puede crecer a lo largo del tiempo.
De esta forma, con nuestro enfoque, en lugar de volver a entrenar el modelo
completo desde cero usando el conjunto completo de entrenamiento, nosotros
proponemos realizar un entrenamiento más corto usando un número reducido
de muestras de entrenamiento de las clases ya entrenadas. Así, el nuevo modelo
parte del modelo anterior al que se le añaden las nuevas clases mientras el proceso
de entrenamiento trata de mantener el conocimiento anterior. Por lo tanto, una
compañía o institución solo tiene que almacenar un conjunto limitado de datos
de entrenamiento para mantener el conocimiento actual mientras que se añaden
nuevas clases al sistema.

A.3. Trabajo Futuro

Como líneas de estudio derivadas de esta tesis, planeamos estudiar el rendi-
miento de nuestro enfoque en escenas donde haya múltiples personas a la vez
junto con el impacto de las oclusiones de los sujetos, una nueva aproximación
para el aprendizaje incremental, una implementación basada en LSTM [51] y un
estudio en profundidad sobre el consumo de energía de aplicaciones deep learning
en sistemas embebidos.
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Para la primera línea de estudio, actualmente no existen bases de datos con
oclusiones o múltiples personas en la escena. Por lo tanto, tendríamos que cons-
truir la base de datos de cero incluyendo esas condiciones. Para evitar tener que
grabar a personas andando y aprovechar las bases de datos existentes, nuestra
intención es crear una base de datos semi-sintética combinando los sujetos reales
de una base de datos con información sintética añadida al vídeo original. De es-
ta forma, para incluir más sujetos en una escena, tendremos que combinar los
sujetos de diferentes vídeos en un vídeo común. Para las oclusiones, el proceso
es similar y tendremos que añadir objectos sintéticos al vídeo original. Así, no
tenemos que grabar una base de datos completa desde cero y podemos construir
una base de datos con combinaciones infinitas.

Para la segunda línea de estudio, queremos estudiar el efecto del número de
parámetros de la CNN durante el entrenamiento incremental. Intuitivamente,
debería haber un punto durante el aprendizaje incremental donde el número de
parámetros es insuficiente para aprender nuevas clases. Entonces, cuando este
límite es alcanzado, el número de parámetros debería crecer para almacenar más
conocimiento. De esta forma, durante los pasos incrementales, la CNN crecerá
cuando sea necesario y el proceso incremental tendrá mejor rendimiento.

Para la tercera línea de estudio, debido a la naturaleza cíclica del paso, el uso
de redes recurrentes y LSTMs es muy interesante. De esta forma, queremos estu-
diar el rendimiento de este tipo de redes comparadas con las CNNs tradicionales.

Finalmente, como cuarta línea de estudio, el consumo de energía es un pro-
blema importante en arquitecturas embebidas. Por lo tanto, el diseño de aplica-
ciones en ese tipo de plataformas requiere de un compromiso entre el rendimiento
computacional y el consumo de energía. Queremos desarrollar una metodología
que permita desplegar aplicaciones eficientes de deep learning.
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