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Abstract—Unit-Biased (HUB) is an emerging format based on
shifting the representation line of the binary numbers by half
unit in the last place. The HUB format is specially relevant
for computers where rounding to nearest is required because
it is performed simply by truncation. From a hardware point
of view, the circuits implementing this representation save both
area and time since rounding does not involve any carry propa-
gation. Designs to perform the four basic operations have been
proposed under HUB format recently. Nevertheless, the square
root operation has not been confronted yet. In this paper we
present an architecture to carry out the square root operation
under HUB format for floating point numbers. The results of
this work keep supporting the fact that the HUB representation
involves simpler hardware than its conventional counterpart for
computers requiring round-to-nearest mode.

Index Terms—Digit recurrence square root, HUB format, on-
the-fly conversion

I. INTRODUCTION

Half-Unit-Biased (HUB) is a new format based on shifting
the representation line of the binary numbers by half unit in
the last place [1]. This emerging representation meets impor-
tant features namely i) the round to nearest is achieved by
truncation, ii) bit-wise two’s complement of numbers and iii)
no double rounding error. It is specially relevant in computer
where round to nearest is required. The consequence of these
features is that the complexity of the underlined hardware of
HUB systems is less than that of its conventional counterpart.

In modern computer processors, compilers and standards,
rounding-to nearest is the most extended rounding mode (in
fact, it is the default mode of the IEEE754-2008 [2]). Round to
nearest involves a final addition of one unit-in-the-last-place
(ULP), which slows down the system (it often belongs the
critical path). The implementation of this kind of rounding is
relatively complex and it involves an increase in both area and
delay. Therefore, it is normally found in floating-point circuits.
HUB representation does not have this problem since rounding
to nearest is carried out by truncation.

The efficiency of using HUB for fixed-point representation
has been showed in [3] and [4] and for floating-point in
[5], [6] and [7] (HUB format is not valid for pure integer
numbers). In [6] a half-precision floating-point HUB unit is
used for high dynamic range image and video systems (based
on additions and multiplications). By reducing bit-width while
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maintaining the same accuracy, the area cost and delay of FIR
filter implementations has been drastically reduced in [3], and
similarly for the QR decomposition in [4].

In [5] the authors carry out an analysis of using HUB format
for floating point adders, multipliers and converters from a
quantitative point of view. Experimental studies demonstrate
that HUB format keeps the same accuracy as conventional
format for the aforementioned units, simultaneously improving
area, speed and power consumption (14% speed-up, 38% less
area and 26% less power for single precision floating point
adder, 17% speed-up, 22% less area and slightly less power for
the floating point multiplier). For division, the delay is exactly
the same as its conventional counterpart with a moderate
reduction in the area [7]. Nevertheless, to the best of our
knowledge, the square root operation has not been confronted
yet.

In this paper, we deal with the square root operation for
floating point representation under HUB format. We adapt the
algorithm of the square root by digit recurrence of [8] to HUB
floating point numbers. A similar solution is found for HUB
floating point division in [7], and some ideas of that work
are used in this paper. In comparison with the counterpart
conventional square root by digit recurrence with on-the-fly
conversion we prove that the number of iterations and delay
are kept whereas the hardware requirements are moderately
reduced. Our results for the square root confirm the previously
observed fact that the underlined hardware of the HUB floating
point alternative is simpler than its conventional counterpart
with no time penalty.

Thus, we consider that this emerging format may play an
important role the design of the new generations of computers
requiring round to nearest.

The rest of the paper is organized as follows: in section
II we present the fundamental of the HUB representation. In
section III we show the adaptation of algorithm of the square
root by digit recurrence to the HUB format. Next we deal with
the number of iterations and calculation of bits required for
the data path. A comparison with the standard representation
is presented in section IV. Finally, in the last section we give
the summary and conclusion.

II. HUB FORMAT FOR FLOATING-POINT

In [1], the authors present the mathematical fundamentals
and a deep analysis of the HUB format. In this section we
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summarize the HUB format defined in [1] and particularize
it for the floating-point normalized HUB numbers, which are
used for the square root in the next sections.

The HUB format is based on shifting to the right the
numbers that can be exactly represented under conventional
format by adding a bias. The bias is just half ULP. Let X
denote a HUB number represented by a digit-vector X =
(Xn−1, Xn−2, · · ·X1, X0, X−1, · · ·, X−f ) in a radix β. The
value of this HUB number is

X =

 n−1∑
i=−f

Xi · βi

+
β

2
· β−f−1 (1)

where the term β
2 · β−f−1 represents the bias.

A floating-point HUB number is similar to a regular one
but its significand follows the HUB format. Therefore, the
only difference is the format of the significand. In this paper
we deal with floating-point HUBs operands with a normalized
significand in radix-2.

Let us define x as a floating-point HUB number, which
is represented by the triple (Sx,Mx, Ex) in such a way
that x = (−1)SxMx2

Ex , where the significand Mx is a
HUB magnitude. A normalized HUB significand fulfills that
1 < Mx < 2. Thus, for radix-2 the digit-vector has the
form Mx = (Mx0 ,Mx−1 ,Mx−2 , · · ·,Mx−f

), where each digit
is now a bit, and so it is composed by f + 1 bits. Let
representative form denote the digit-vector. For a radix–2 HUB
significand, expression (1) becomes

Mx =

[
f∑

i=0

Mxi · 2−i

]
+ 2−f−1 (2)

where 2−f−1 is the bias. Thus, although the normalized HUB
significand is represented by f+1 bits, according to expression
(2) the binary version of a normalized HUB significand is
composed by f + 2 bits:

Mx = 1.Mx−1Mx−2 · · ·Mx−f
1 (3)

The binary version is required to operate with HUB numbers.
Thus, let operational form denote the binary version. Figure 1
shows both the representative and the operational forms. We
can see that the least significant bit (LSB) of the operational
form of a nonzero HUB number is always equal to 1, and it is
implicit in the format (similar situation takes place for the most
significant bit (MSB) of the significand in the IEEE normalized
floating-point numbers). Let ILSB denote the implicit LSB of
a HUB number.

Let ERN (Exactly Represented Number) denote a real
number which is exactly represented for a specific floating-
point system, and let denote STEP the distance between two

STEP
−32

−32

1.000

1.0101

1.001 1.010 1.011 1.100 1.101

1.0011 1.0101 1.0111 1.1001 1.1011

HUB  ERN Conventional ERN

Fig. 2. ERNs for the conventional and the HUB systems, STEP=2−3

Stored (for both)
0 10101111  1.00001111010111001010010 
0 10101111  1.000011110101110010100101

81 25

S E 1. F 1
SP HUB format

Example

Operational form

ILSB

S E F
SP IEEE 754

&

81 24

S E 1. F

2381

32

33

34

SP HUB format

Operational form

Stored

SP IEEE 754

SP IEEE 754 (Operat.)
SP HUB format (Operat.)

0 10101111  00001111010111001010010 
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consecutive ERNs. For a standard floating-point system with
a normalized significand, the counterpart HUB floating point
system with the same STEP has their ERNs placed between
two consecutive ERN of the standard system (and vice versa).
This is an important feature that can be seen in Figure 2. In
this figure we can see the position of consecutive ERNs for
both representations. The position of each ERN of the standard
is represented by a white circle whereas the counterpart HUB
is represented in black circle, with a common STEP of 2−3

(which involves 4-bit significand for the standard and 5 bits
for the counterpart HUB for this example). Notice that both
formats have the same number of ERNs, there are not any
common ERN among them and the distance between to
consecutive ERN is the same (that is, the STEP), keeping the
same accuracy [1].

In spite of the operative form of the HUB requires one
bit more than its conventional counterpart, the ILSB does not
have to be stored or transmitted because it is a constant. Thus,
both formats require the same storage space. The ILSB is
required explicitly (operational form) only to operate under
HUB format. For example, the HUB operational form with
the same precision as the IEEE-754 simple precision (SP),
has 25 bits for the significand, where the first and last bits
are implicit and only 23 bits are stored, as in the conventional
representation. Figure 3 shows the different sizes for storage,
the operational form of the conventional SP IEEE-754 and the
operational form of HUB, as well as the position of the ILSB.



A. round to nearest for HUB numbers

Let m denote the number of bits of the operational form
of a normalized HUB number (that is, including the ILSB).
Consider a normalized non-HUB number M (1 < Mx < 2)
which is composed by p bits (M [0 : p− 1]) with p > m− 1.
We want to round this number to a HUB number of m−1 bits
(representative form). The rounded normalized HUB number
M ′ is given by the m− 1 MSB of M (representative form):

M ′[0 : m− 2] = M [0 : m− 2] (4)

This equation means that the rounded HUB number is achieved
by truncation of the m − 1 MSB of M . This truncation
produces a round to nearest number due to the definition of a
HUB number (see equation (2) with f = m − 2), as proved
in [1].

When a number is just between two ERNs (tie condition),
the proposed rounding is always performed in the same
direction (toward up), which produces a bias. In some applica-
tions, this causes annoying statistical anomalies. To avoid this
problem in those applications, an unbiased round to nearest is
achieved in [5] for HUB without carry propagation. The tie
condition takes place when the bits beyond bit M [m− 2] are
all 0, that is M [m−1 : p−1] = 0...0. In this case, the unbiased
rounded normalized HUB number M ′ is (representative form):

M ′[0 : m− 2] = M [0 : m− 3, 0] (5)

Thus, the unbiased rounding is achieved by truncation and
forcing the LSB of the representative form to zero, that is the
bit M ′[m−2] = 0, as proved in [5]. Thus, this unbiased round
to nearest is not so different from the IEEE 745 tie to even,
since it is like a tie to even of the representative form. The
main difference is that the HUB format does not involve any
carry propagation.

III. SQUARE ROOT BY DIGIT RECURRENCE FOR HUB
NUMBERS

In this work we follow the digit recurrence algorithm of the
square root proposed in [8] and [9]. We develop the parts of
the algorithm required for the computations related to HUB
numbers, and what is similar to the conventional one is not
detailed but referenced (for example, the computation of the
selection function does not change for HUB and then it is
not shown in this paper). At this point, it is important to note
that the operational form of a HUB significand is treated as a
conventional number, that is, the role of the ILSB is similar to
the rest of the bits. The only difference from the counterpart
IEEE representation is that the HUB significand has one extra
bit. Thus, we operate in conventional arithmetic and return to
HUB format for rounding.

Let x denote a floating-point HUB number such that x is
represented by (Sx,Mx, Ex) with Mx magnitude and normal-
ized HUB significand. The result of the square root operation

s =
√
x (6)

is a floating-point HUB number represented by (Ss,Ms, Es),
with Ms magnitude and normalized. The exponent of the result

Es is obtained by division by two (Es = Ex/2, using a simple
arithmetic right shift of one position) and the significant of
the result Ms is the square root of the original significant
Ms =

√
Mx. Nevertheless, the actual algorithm involves some

scaling in the initial input data x to make easy the computation
of the final exponent and to take the initial value into the
convergence range of the algorithm.

The algorithm is made of three main steps: initialization,
recurrence and termination. In the initialization step the input
HUB number is suitably scaled to the range that support the
recurrence (second step). In the second step N iterations of a
recurrence are carried out, in which each iteration produces
one digit of the result [9] (the value of N is discussed later
in section III-E), and finally in the termination step a new
scaling, normalization and rounding are performed.

Let us start by the main step: the recurrence

A. The recurrence

Let us deal with the square root of the significand
√
Mx. In

what follows we show the digit recurrence step for square root
for HUB numbers (see [8] for a detailed description for regular
numbers). We assume that the initial significant Mx is suitably
scaled such that new value M ′

x belongs to the convergence
range of the algorithm: 1

4 ≤ M ′
x < 1 (an initial scaling is

performed in the initialization step as shown later in subsection
III-B).

Let S(i) denote the value of the result after i iterations:

S(i) =
i∑

j=0

sjr
−j (7)

where s0 is calculated in the initiation step, r is the radix
of the result and sj is the j-th digit of the result. We use
a symmetric signed-digit set of consecutive integers for the
result s such as si ∈ [−a, a], where a ≥ ⌈r/2⌉ to keep a
redundant representation. The redundancy factor is

ρ =
a

r − 1
,

1

2
< ρ ≤ 1 (8)

The digit s0 should be 1 for ρ < 1 to represent a value greater
than ρ, and it can be 1 or 0 for ρ = 1.

The digit recurrence algorithm is based on keeping a resid-
ual inside a convergence bound in each iteration. The residual
w is defined as

w(i) = ri(x− S(i)2) (9)

The bound to be kept is

−2ρS(i) + ρ2r−i < w(i) < 2ρS(i) + ρ2r−i (10)

and the initial condition is

w(0) = M ′
x − S(0)2 (11)

The final recurrence is

w(i+ 1) = rw(i)− 2S(i)si+1 − s2i+1r
−(i+1) (12)

For clarity in the exposition let define the function

F (i) = −2S(i)si+1 − s2i+1r
−(i+1) (13)
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such that the recurrence (12) becomes

w(i+ 1) = rw(i) + F (i) (14)

The recurrence is performed in such a way that w(i) is
always bounded by equation (10). The value of si+1 is selected
according to the digit selection function, which is obtained as
a function of a truncated version of rw(i) and S(i) (see [9]
for details). If the final residual is negative, a correction step
is required (by subtracting one ulp to the result).

Figure 4 shows the basic modules and the timing of square
root by digit recurrence. The residual w(i) can be repre-
sented in non redundant (i.e. conventional two’s complement)
or redundant form (carry-save or signed-digit). Normally a
redundant representation is preferred since it results in a faster
iteration and that is what we assume in this paper (the addition
of rw(i) and F (i) belongs to the critical path as well as the
computation of F (i), see timing in figure 4).

In order to carry out a possible final correction a sign detec-
tion of the last residual is needed. For a residual in redundant
representation (i.e a carry-save implementation w = wc+ws)
the sign detection of the last residual is difficult since it
involves the conversion from redundant to conventional rep-
resentation. To solve this problem a sign detection lookahead
network for the carry-save representation of the residual is
proposed in [9] which avoids the slow conversion.

The adder proposed in figure 4 works in redundant arith-
metic to speedup the computation. We propose to use the
carry-save representation such that the residual w(i) is com-
posed by a sum and carry words (w(i) = ws(i)+wc(i)), and
the adder of figure 4 is a 3-2 CSA. The right input of the
adder of figure 4 is F (i), which is a function of S(i) (see
Eq. (13)). The problem is that S(i) is a signed digit number
which is not compatible with any input of a 3-2 CSA. In order
to have a compatible value at the right input of the adder,
S(i) has to be converted from signed-digit representation to
two’s complement form by using an on-the-fly conversion
technique. On the other hand, the final result S(N) has to

be converted from redundant to conventional representation
too. Both processes (generation of a two’s complement form
of F (i) and on-the-fly conversion of the result) are related
and work in parallel in boxes ”F calculation” and ”On-the-fly
conversion” of figure 4. Now we describe both processes.

1) On-the-fly conversion of the result: Consider a new form
SD(i) (Decremented form) which is defined as

SD(i) = S(i)− r−i (15)

The on-the-fly conversion algorithm is based on performing
concatenations of digits instead of addition of digits, in such
a way that carry propagation is prevented. In terms of con-
catenations the algorithm is

S(i+ 1) =

{
(S(i) ∥ si+1) if si+1 ≥ 0
(SD(i) ∥ (r − |si+1|)) if si+1 < 0

(16)

SD(i+ 1) =

{
(S(i) ∥ si+1 − 1) if si+1 > 0
(SD(i) ∥ (r − 1− |si+1|)) if si+1 ≤ 0

(17)

where the symbol ∥ means concatenation and S(0) =
SD(0) = 0. Basically this algorithm keeps a copy of S(i) and
a its decremented value SD(i), which are suitably updated in
every iteration.

At this point is important to note that the square root
algorithm proposed in [8] includes a third equation similar to
equation (15) (with an addition of r−i instead of a substraction
and with the associated updating equations similar to equations
(16)) which is needed to perform the final rounding on-the-
fly (see section IV). Rounding involves a final addition of
one ULP in a standard representation system. Nevertheless, in
HUB this addition is not required any more since rounding is
carried out simply by truncation. Thus, the HUB implemen-
tation of the square root save area since the third equation
proposed in [8] is not required here.

Figure 5 shows a simple architecture to carry out the on-the-
fly conversion for HUB result as well as the termination step
and F (i) generation. The network of shifers and multiplexors
and the corresponding control unit of figure 5 make possible
the updating of S(i) and SD(i).

2) Computation of F(i): Consider si+1 > 0 in expression
(13). Operating with expression (13), we have

F (i) = −(2S(i) + si+1r
−(i+1))si+1 (18)

If we analyze this expression we can see that the addition of
2S(i) and si+1r

−(i+1) of expression (18) can be performed
by simple concatenation [8]. Thus, in terms of concatenations,
expression (13) for si+1 > 0 becomes

F (i) = −(2S(i) ∥ si+1)si+1 (19)

Now consider si+1 < 0 in expression (13). Equation 13
becomes

F (i) = 2S(i)|si+1| − s2i+1r
−(i+1) (20)

If we take into account expression (15) in equation (20) we
have

F (i) = (2SD(i) + (2r − |si+1|)r−(i+1))|si+1| (21)
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For similar reasons this expression really involves a concate-
nation. Thus, in terms of concatenation, expression (13) for
si+1 < 0 becomes

F (i) = (2SD(i) ∥ (2r − |si+1|))|si+1| (22)

Thus, these expressions can be implemented by concatena-
tion and multiplication by one radix-r digit. Figure 5 shows
the architecture to obtain S(i) and SD(i) which are used to
generate the value of F(i) in two’s complement representation
(F (i) is the right input of the adder of the general architecture
of figure 4).

B. Initialization step

On the one hand, the algorithm converges if the input data
belongs to the interval [ 14 , 1), whereas our significand Mx ∈
(1, 2). On the other hand, to compute the square root in an easy
way the exponent has to be an even number. To meet these
two conditions it is needed to scale the significand and peform
the suitable adjust of the initial exponent Ex. If (0,Mx, Ex)
is the initial HUB floating point number, we transform this
number to a new one (0,M ′

x, E
′
x) such that (0,Mx, Ex) =

(0,M ′
x, E

′
x) with 1

4 < M ′
x < 1 and E′

x even as follow:

M ′
x =

{
1
4Mx if LSB(Ex) = 0 (Ex even)
1
2Mx if LSB(Ex) = 1 (Ex odd)

(23)

and the exponent E′
x is

E′
x =

{
Ex + 2 if LSB(Ex) = 0 (Ex even)

Ex + 1 if LSB(Ex) = 1 (Ex odd)
(24)

We can see that E′
x is even and 1

4 < M ′
x < 1. For example, if

the HUB number is given by the triple (0, 1.110..., 0010) ⇒
x = 1.11... × 22 we transform this triple to the new triple
(0, 0.01110..., 0100) ⇒ x = 0.0111...× 24.

The initial value w(0) of the recurrence equation (12) is
given by equation (11). Taken into account expression (7) we
have that S(0) = s0 and then

w(0) = M ′
x − s20 (25)

The value of s0 is selected as function of ρ such that s0 = 1
for ρ < 1 to represent a result value greater than ρ; it can be
either 0 or 1 for ρ = 1 (maximum redundancy). Thus, if we
select s0 = 0 or s0 = 1 expression (25) becomes

w(0) = M ′
x − s0 (26)

As consequence, to initialize w the value of s0 is subtracted
from the scaled version of the HUB significad M ′

x.

C. Termination step

For the termination step, we have to take into account
several issues.

• Correction: the recurrence can produce a negative final
residue. In this case, the result has to be corrected by
subtracting one unit in the LSB of the just calculated
result. To do that, we select the value of result S(N)
if the residual w is non negative, or S(N) − 1 if the
residual is negative. Let sign denote the sign of the final
remainder w(N), such as sign = 0 if the remainder is
non negative, and sign = 1 if the remainder is negative.
In this last case, the decremented value S(N)− 1 can be
taken from SD(N) directly. Thus, the value of the result
after Correction (SC) is:

SC =

{
S(N) if sign = 0
SD(N) if sign = 1

(27)

• Normalization: after the correction, the final result is in
the range ( 12 , 1) since the initial significand is in the range
( 14 , 1). Thus, to obtain a normalized HUB number (range
(1, 2)) a left shift of one position is required, and the
exponent has to be conveniently updated . The normalized
HUB result s = (Ss,Ms, Es) is (representative form):

Ms[0 : m− 2] = SC[1 : m− 1]

Es =
E′

x

2 − 1
Ss = 0

(28)

Note that the final exponent Es is carried out in parallel
with the recurrence and thus, its calculation does not
belong to the critical path. Figure 6 shows a possible
circuit for for obtaining the final exponent Es as well
as the scaled initial significand M ′

x. Since the exponent
is normally an integer of few number of bits (8 for
simple precision, 11 for double), the calculation of the
new exponent can be also realized by a simple lookup
table.

• Rounding-to nearest: for HUB it is carried out by trun-
cation after normalization. Thus, rounding never involves
an overflow. Consequently, no any modification of the
result of the equation (28) is needed for rounding.
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An important advantage of the HUB alternative in com-
parison with the square root of the standard representation
[8] is that the computation of the exponent can be
performed at the beginning of the full process and no
any exponent update is required after rounding because
an overflow of the significand is never produced. In a
regular representation we can not know the final exponent
of the square root until final rounding whereas in a
HUB representation we know the final exponent from
the beginning. Thus, in comparison with the HUB circuit
of figure 6, the circuit required for the exponent in
the standard representation involves an extra circuit for
updating the exponent in case of overflow.

• If we want to know if the result is exact, we have to
check the zero condition of the last residual.

Therefore, equations (28) represent the final normalized
and rounded to nearest result. Figure 5 includes the hardware
required for the termination step: the correction step is carried
out by the vertical output 2-1 multiplexer, the normalization
by the shifter placed after the multiplexor, and the rounding
by direct truncation of the m − 1 MSBs of the output of the
shifter.

D. Number of bits of the data path

The number of bits to be computed by the iterations (h)
is the number of bits of the normalized HUB significand
(m) (operational form, that is including the ILSB) plus the
guard bits required for initialization and normalization. When
the exponent is even, the initial significand Mx is scaled by
a factor 1/4 (see expression (23)) and thus, two guard bits
are required. On the other hand, since the final result after
recurrence SC ∈ ( 12 , 1) (that is, SC has the pattern 0.1xxx...,
see expression (28)), then no extra bits are required and a left
shift of one position is enough for normalization. Thus, the
width (number of bits) of the datapath (h) is

h = m+ 2 (29)

Note that the rounding bit (R) (required in the conventional
architecture) is no longer necessary under HUB format since in

HUB representation the rounding is carried out by truncation.
In the standard representation the number of bit required is
given by the size of the input data (m-1) (that is one less
bit than HUB) plus two bits for the initial scaling (similar to
HUB), plus one bit for rounding (R bit), which produces m+2
bits. Thus, the same number of bits of the data path is requited
for obtaining the square root of a number when a rounded
to nearest result is required. This is an important conclusion
since the role of the R bit in the standard representation is
now played by the ILSB of the HUB representation.

Figure 7 shows an example for HUB and for its IEEE
counterpart, where the value of w(0) is obtained from M ′x
(w(0) = M ′

x/4, assuming s0 = 0). The size of the data path
is m+ 2 for both representations.

R
ounding bit

1.xxx ... xxx

0.01xxx ... xxx0

1.xxx ... xxx

m−1

0.01xxx ... xxx1

1.xxx ... xxx1

m

form of  x
ILSB

Representative

For division

Operational

h=m+2

m−1

h=m+2

Operational

form of  x

w(0) = x/2

form of  x

w(0) = x/2

For division

b) IEEEa) HUB

R

Fig. 7. Size of the data path (h) for HUB and IEEE for the same precision

On the other hand, w(0) is not a HUB number but a
regular one, as deduced from figure 7.a, and the rest of the
iterations work in a regular way. The intermediate operations
(obtaining w(i)) work as regular computation, and once the
final result is obtained (after N iterations), the corresponding
rounded-to nearest HUB number is achieved by truncation
(similar situation takes place for partial products in HUB
multiplication, see [1] or for HUB division in [7]). Figure
8 shows the sequence of w(i) and si (which are not HUB
numbers) and how the rounded-to nearest HUB numbers are
obtained just from the final result by truncation.
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Fig. 8. Recurrence and result (ρ = 1)

Therefore, both formats involve the same number of bits
for an actual implementation. Basically, the extra bit of the
significand of the HUB format (ILSB) is compensated by the
lack of the R bit for this format, as shown in figure 7.



As a conclusion, for the same precision both the HUB and
the conventional representation require the same number of
bits to be computed by the iterations and the data path for the
recurrence has the same width. This conclusion is the same as
that obtained for HUB floating point division in [7].

E. Number of iterations

The number of iterations N depends on the number of bits
to be computed by the iterations (h) and on the radix as follows
[9]:

N =

⌈
h

log2 r

⌉
(30)

Since the value of h is the same for both the conventional
and the counterpart HUB representations, the number of itera-
tions is the same (which is consistent since both representation
have the same precision).

As a conclusion, the HUB representation and its conven-
tional counterpart have the same number of iterations and the
same data path width for the residual recurrence.

IV. DIFFERENCES BETWEEN HUB AND CONVENTIONAL
ARCHITECTURES

Both the conventional and the HUB architectures have the
same number of iterations and the same size of the data
path of the recurrence. This means that in the architecture of
figure 4 the shifter, selection function module, F calculation
module and adder are totally similar, including the timing.
The differences are due to two elements: the module ”On-the-
fly conversion” of figure 4 and the hardware required for the
computation of the exponent.

On the one hand, the on-the-fly conversion for HUB in-
volves equations (16) and (17). Apart from equations (16) and
(17), the on-the-fly conversion in the standard representation
involves a third group of equations like following [9]:

QR(i) = S(i) + r−i (31)

The updating of this expression is (by concatenation):

QR(i+ 1) =

=

 (QR(i) ∥ 0) if si+1 = r − 1
(S(i) ∥ si+1 + 1) if − 1 ≤ si+1 ≤ r − 2
(SD(i) ∥ (r + 1− |si+1|)) if si+1 < −1

(32)

These equations are required in the standard representation
since round-to-nearest requires the addition of one ULP after
the regular iterations which can take the last digit out of the
range of the selected digit set [-a,a]. In HUB, these equations
are not needed since rounding to nearest does not involve the
addition of one; it is achieved simply by truncation and the
the last digit always belongs to the digit set.

Figure 9.a shows the architecture required for the on-the-
fly conversion for HUB format and figure 9.b shows the
architecture for the conventional format, where the differences
between both architectures have been highlighted in grey color.
For both the HUB and the conventional formats equations (16)
and (17) are carried out by two 2-1 multiplexors, two shifters

and registers Q and SD and the corresponding load and shift
control. In addition to these equations, the conventional format
requires the implementation of equation (32), which involves
one extra 3-1 multiplexer, a shifter, the register QR and a more
complex control.

On the other hand and regarding the exponent, in con-
ventional representation it is possible to have an overflow
after rounding, which involves an update of the exponent.
For HUB, updating is not required since overflow is never
produced. Thus, we save some area, as shown in figure 10. In
this figure, the conventional circuit has been optimized since
the compulsory substraction of 1 and addition of 1 in case
of overflow has been compensated through the left input of
the final multiplexor. On the other hand, if a lookup table
is used to implement the generation of the final exponent, the
conventional representation has double size because it involves
an extra input (the overflow signal).

Be that as it may, we conclude that there is an clear (and
moderate) reduction in the hardware requirements of the HUB
representation, keeping the delay.
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Fig. 10. Computation of the exponent (a) for HUB and (b) for conventional
(optimized)

V. SUMMARY AND CONCLUSION

In this paper we have presented the square root of a HUB
floating point number using the digit-recurrence algorithm
and on-the-fly conversion of the result with rounding to
nearest. We have proved that, for the same precision, the
HUB representation and its conventional counterpart have the
same number of iterations and the same data path width for
the residue recurrence. Thus, the conventional architecture for
the residue recurrence can be used without any modification
for HUB computation. For the on-the-fly conversion we have
proposed an architecture that needs less hardware resources
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since one of the three equations used in conventional on-the-
fly converters is not required for HUB, and the computation
of the exponent is also simplified. This simplification of the
hardware is due to the fact that the HUB numbers are rounded
to nearest simply by truncation.

As conclusion, the square root computation under HUB
format presented in this paper confirms the fact that the
underlined hardware of the HUB floating point alternative
is simpler than its conventional counterpart, for the same
precision and keeping the same delay. Thus, we consider that
this emerging format may play an important role the design
of the new generations of computers.
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