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Abstract. A non-negative matrix factorization approach to dimension-
ality reduction is proposed to aid classification of images. The original
images can be stored as lower-dimensional columns of a matrix that hold
degrees of belonging to feature components, so they can be used in the
training phase of the classification at lower runtime and without loss in ac-
curacy. The extracted features can be visually examined and images recon-
structed with limited error. The proof of concept is performed on a bench-
mark of handwritten digits, followed by the application to histopathologi-
cal colorectal cancer slides. Results are encouraging, though dealing with
real-world medical data raises a number of issues.

1 Introduction

A non-negative matrix factorization (NMF) method for learning reduced feature
sets for image classification is introduced in the current study. The approach is
important for real-world learning tasks, where images have a massive dimension
than may hinder the classification process. On the other hand, distinguishing
between the redundant knowledge and the discriminative indicators is a critical
aspect of medical images, whose supervised labelling is often noisy. Nevertheless,
the task is worthwhile, given the decisive information that classification can
provide to diagnosis support.

In this context, the aim of the proposed approach is twofold. Firstly, it will
be able to discover the inside feature components that can be further visually
inspected. Secondly, the reduced matrix obtained from the factorization can
be subsequently used in the training part of the classification instead of the
larger initial data matrix, with the given labels. Additional test examples can
be encoded and classified, allowing for efficient prediction.

A first test case demonstrates the effectiveness of the methodology in bench-
mark conditions. The second application of the NMF is performed on the chal-
lenging task of histopathological slide interpretation in search of cancerous pat-
terns for the colorectal disease.

The structure of the paper is set as follows. The NMF technique for image
reinterpretation is put forward in section 2. The proof of concept on handwritten
digit data is outlined in subsection 3.1, whereas the application to the medical
task is described in subsection 3.2. Conclusions are drawn in the enclosing
section of the paper.
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2 Non-negative Matrix Factorization for Image Encoding

The current study proposes a NMF methodology to model dimensionality re-
duction and subsequent classification for image data sets. The approach follows
several steps. Non-negative factorization of an n×m-sized matrix Y ≥ 0, where
the inequality is considered component-wise, yields two factors W,H, both also
non-negative, so that the approximation error ‖Y −W H‖ is minimized. Several
choices for the matrix norm are possible, but in this work we restrict ourselves to
the most usual Frobenius norm. If the sizes of W and H are n× r and r×m re-
spectively, the algorithm is meaningful when r � min(n,m) and, as such, it has
been related to Principal Components Analysis and Low Rank Approximation.
For notation, background and examples, see [1] and references therein.

NMF has been applied to several tasks related to feature selection and di-
mensionality reduction, including text mining and source separation. In the
particular context of image processing, p×q resolution images are first reshaped
to n = p q-dimensional vectors, so that each image forms a column of an n×m
matrix Y , where m is the number of images available. The matrix is subse-
quently decomposed as Y ≈ W H, where the key parameter r is set manually.
In this work we implement the Hierarchical Alternating Least Squares (HALS)
algorithm, which solves the unconstrained least squares problem alternatively
for one column of W and one row of H at a time, followed by projection to
ensure non-negativity. Initialization, which is known to be a critical aspect of
the algorithm, is based upon Singular Value Decomposition [2]. Also note that
the algorithm allows for easy scaling or normalizing the columns of W : for each
column W.j , compute αj = max(W.j) and replace W.j ← W.j

αj
, as well as the

rows of H by Hj. = αj Hj., so the product W H remains constant, and each
column of W is distributed in the interval (0, 1).

Since W,H are non-negative, if the columns of W are scaled to the same
magnitude as those of Y , they can be interpreted as features or cluster centres
within Principal Components Analysis and Self-Organizing Maps [3]. In turn,
each column H.i constitutes an encoded or compressed version of the correspond-
ing original image Y.i, which could be later recovered by Ŷ.i = W H.i, and the
encoding error can be assessed by ‖Y.i − Ŷ.i‖.

In this work we propose the inclusion of the NMF algorithm as a previous
step to the application of a classification method, which is expected to have an
enhanced performance and reduced computational cost due to the much lower
dimensionality of the trained vectors Hi, in contrast to the original images Yi.
Thus NMF will play a similar role to that of autoencoders in Deep Learning
architectures [4], with the added benefit of easier interpretation of results as
feature vectors. The W matrix is constructed as a result of the NMF algorithm,
which can be considered a sort of training. Then, a subsequent test image y
should be encoded into a compressed vector h, in such a way that y ≈ W h.
The compression can be achieved by the Moore-Penrose pseudoinverse W+ =(
W>W

)−1
W> and the low-dimensional code is obtained by h = W+ y, as

suggested by [5] in the context of source separation.
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Fig. 1: Features or basis images in the resulting matrix W provided by NMF
with r = 30 on the handwritten digit data.

3 Experimental Results

The application of NMF to image data is expected to provide dimensionality
reduction and subsequent faster learning of the classifier.

3.1 Experiment 1: Proof of Concept on Handwritten Digits

The first experiment assesses the NMF algorithm by considering the benchmark
synthetic handwritten digit data set provided by Matlab, which consists of train-
ing and test sets containing 5000 28x28 resolution sample images each. The task
is then to categorize the 784-dimensional vectors into the 10 classes.

3.1.1 Encoding

The key hyperparameter r is manually set as r = 30, which triggered the best
performance within the experimental trials. The corresponding features appear-
ing in the columns of W are shown in Figure 1. For the training set, the encoded
images are directly recovered by ŷ = W h from the columns of H computed in the
factorization. For the test set, the encoded version h = W+ y is first computed,
and decoded again by ŷ = W h. The encoding error for 5 random columns of the
test set are depicted in Figure 2, where it can be seen that the reduced versions
look similar to the original ones with a visually assessable small error.
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Fig. 2: Five handwritten digit test samples in original (top row) and en-
coded/decoded version (bottom row). Mean error: 2.46, 2.48, 3.23, 4.01, 2.36.

Table 1: Results of shallow classifiers on the original and reduced digit data.
Method Configuration Acc. (%) Time (sec.)

Initial data
SVM linear, 1a1 90.96 137
MLP 1 hidden layer (30), 100 maxit, SCG 86.88 321
RF 5 variables at split, 30 trees 97.12 48

Reduced H data
SVM radial, 1a1 97.5 17
MLP 1 hidden layer (100), 300 maxit, SCG 95.98 191
RF 5 variables at each split, 30 trees 97.56 2

3.1.2 Learning

The next step is to use the labels and try to learn the image-label correspondence
by means of a classifier. Three state-of-the-art shallow approaches are imple-
mented in R, namely Support Vector Machines (SVMs), Multilayer Perceptron
(MLP) and Random Forests (RF). These choices allow to assess the encoding
ability before a variety of classification paradigms: statistical learning theory,
connectionism, and ensemble learning.

Table 1 presents the results of the three employed shallow classifiers on the
initial collection of digit images (with the training and test pre-decided splits)
and on the reduced set given by H and the accordingly encoded Htest. The
approaches were implemented in R with the corresponding packages e1071,
RSNNS and randomForest. The parameter configurations for the three ap-
proaches, which are the result of manual tuning, are also outlined within Table
1. The NN architecture for the initial data set was chosen as a trade-off between
time and accuracy. The accuracy given by the RF is the result of 30 repeated
runs of the algorithm, given the stochastic nature of the learner.

There are several conclusions that can be drawn from examining the accuracy-
time results alongside the necessary parametrization requirements in Table 1:



• The RF improves runtime when training on the compressed data H.

• For the MLP, the encoding allows for a larger architecture to be trained.

• The SVM, when using NMF, is much faster and reaches the RF accuracy.

3.2 Experiment 2: Real-world Scenario of Histopathological Images

The second experiment investigates the potential of the NMF on a more difficult
as well as highly informative image data from the medical field. The problem
tackles automatic cancer grading from histopathological digitalized slides for
colorectal tissues [6]. The pathologist is supposed to establish the cancer stage
by measuring the variation of the size, shape and texture of the glands and
nuclei [7]. There are 96 G1 (grade 1) records, 99 G2 (grade 2) and 100 G3
(grade 3) images. The collection comes from the Emergency Hospital of Craiova,
Romania 1. The original slides are at resolution 800x600 and also contain benign
instances, obtained by cutting healthy portions from tissue images of ill patients
at the indication of the pathologist [8], since biopsy is usually performed only
when there is suspicion of cancer presence.

For this experiment, the task is formulated as binary classification, i.e. to
distinguish between G1 (cancer in an incipient stage) and G23 (advanced in-
vasion). This discrimination is commonly necessary for prompt assessment by
the physician, in order to decide subsequent therapy. For a direct processing of
the images within the NMF and subsequent learning, they are compressed at
25%, i.e. having 200x150 pixels, and transformed to greyscale, thus resulting in
30000-dimensional input vectors. In order to account for the stochastic nature of
classifiers, 10 splits of repeated random sub-sampling cross-validation with 70%
training (250 samples in Y ) - 30% test (107 examples in Ytest) are performed.
Note that classification by a shallow approach of these initial samples can either
be restricted by memory limits or be intractable in terms of computational time,
depending on the implementation platform.

The NMF is applied to the training set with r = 100, which is close to the
maximum imposed by the restriction r � min(n,m). The generated matrix
H is then used for learning. The test set is obtained again by the encoding
Htest = W+ Ytest, as mentioned before in subsection 3.1.2.

The mean reached accuracy over the 10 trials is of 70%. The relatively
high number of errors is probably due to the loss of information resulting from
encoding 30000 pixels into only 100 features through the NMF. Additionally,
histopathological slides are originally stained for a better visualization by the
pathologist. The conversion to greyscale has certainly lost other important fea-
tures regarding colour display between regions.

1https://doi.org/10.6084/m9.figshare.4508672.v1

https://doi.org/10.6084/m9.figshare.4508672.v1


4 Conclusions

The paper tailored a NMF methodology to dimensionality reduction for image
learning tasks. The approach was first validated on a benchmark collection of
handwritten digits. The features were visually inspected and the encoded image
versions were seen to share a great similarity with the initial ones. Learning
only the reduced H matrix resulting from the NMF led to a test classification
accuracy into the 10 categories of 97.5% in at least 20 times less runtime.

The second test instance, the histopathological data classification into less
and greatly invasive colorectal cancer, was a preliminary study of the application
of NMF as an image encoder for a real-world medical image task. The obtained
results are acceptable, in the light of a drastic dimensionality reduction of the
data from 30000 to 100 and the use of a greyscale transformation of otherwise
stained images. These results highlight a critical issue when dealing with medical
images: labelling is time-consuming and subjective, resulting in scarce and noisy
instances for supervised classification. From a mathematical viewpoint, the data
matrix has more rows than columns, thus limiting the number of basis images
that can be obtained. The next obvious step is to artificially increase the number
of slides, e.g. by partitioning a full 800x600 image into quarters. This will allow
to increase the value of r within NMF resulting in a larger number of features,
which should eventually lead to more accurate learning. Secondly, the use of
the original RGB condition will probably comprise further important features
in the discrimination process. Dealing with these three-dimensional matrices
could be achieved by techniques of tensor factorization. Finally, the rank r of
the factorization should be optimally set through a parameter tuning heuristic,
independent of the size of the vectors under consideration for each problem.
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