Southampton

Silicon Photonics: the next revolution in telecom and beyond

Prof. Goran Mashanovich

Outline

Silicon Photonics Group

- Established at the University of Surrey in 1989
- Joined University of Southampton in 2012
- 54 people (4 academics)
- 15 projects (£28 million; EPSRC, industry, H2020, RS, RAEng)

Design

Fabrication

Characterisation

Silicon Photonics Group

Southampton

Silicon Photonics Group - Research

- Low loss waveguides $(1.3 12 \mu m)$
- Couplers, splitters, filters, interferometers, switches
- (DE)MUX
- Optical modulators, photodetectors
- Photonic/electronic integration
- Packaging
- Wafer scale testing
- Fabrication, growth, new materials
- Sensors

Optoelectronics Research Centre

- Largest photonics institute in the UK (over 350 staff/PhD)
- £70M of secured research funding
- 90 photonics laboratories
- £100m purpose-built materials and nanofabrication facility, with over 2000m² of state-of-the-art clean rooms
- 20 patents per year
- A cluster of 12 start-up companies
- Fibres, amplifiers, lasers, planar photonics,
 sensors, quantum photonics, silicon photonics

Optoelectronics Research Centre

Labs and cleanroom

- Sources and detectors from UV to MIR.
- In-plane and out of plane coupling setups
- Optical and electrical testing (up to 64 GHz)
- Contact, e-beam and DUV lithography
- Dry (RIE, ICP, DRIE) and wet etching
- Deposition (PECVD, LPCVD, HWCVD, ALD) –
 a-Si, poly-Si, a-Ge, SiN, SiGe
- Deposition of many other materials (ZnSe, Ta2O5, GeTe, GLS etc)
- Evaporators, sputterers
- Annealers, furnaces
- Dicing
- Wire and flip-chip bonding (40 GHz demonstrated)
- SEM, AFM, XRD, surface profilers, FIB etc

g.mashanovich@soton.ac.uk www.siliconphotonics.co.uk

Information technology: a growing problem

Global Data Center Traffic Growth Data Center Traffic More Than Triples from 2015 to 2020

>6B hours of video uploaded every month

For every 400 smart phones – 1 server

For every 25 medical wearable devices – 1 server¹

Source: Cisco

More datacentres required (and also higher capacity optical fibres for longer distances)

Google increased number of servers from 25,000 to 2,500,000 in the last 18 years²

Photos: Facebook datacentre

Datacentres are used for telecommunication: application hosting, data processing, routing and storage; 75% of the data traffic is inside the data centres¹

Mentimeter

- Mentimeter app
- www.mentimeter.com

Datacentres: huge energy and environmental costs

Datacentres require a huge amount of energy

- Datacentres use ~3% of global electricity
- Citadel (USA, Nevada): 670,000 m² (130 football pitches), 650 MW;
 Kolos (Norway, Arctic Circle): 600,000 m², 1000 MW of computing power
- Electricity is expensive the lifetime cost of datacentres is now dominated by the cost of electricity (Tianhe 2: no. 1 supercomputer in the world; 3.1M Intel cores, 1.4PB of memory, 125 cabinets; consumes 17.8MW; \$1M/year for 1MW; 30% of the cost is in cabling (I/O) and rises)
- Detacentres contributes by 2% to the global carbon emissions*;
 ICT sector: 4 % of the global carbon emissions and 8-10% of the European energy consumption ¹

*as much as than the entire airline industry!

The growth of datacentres is not sustainable

¹ https://ictfootprint.eu

"Interconnect bottleneck"

(B. Jalali, Nature Photonics, April 2007)

So use optical interconnect!!

Moore's law

Scaling + wafer size + high volume = lower cost

According to Moore's Law, the number of transistors on a chip doubles every 18 to 24 months.

Why Silicon Photonics?

- The prospect of integrating CMOS electronics and photonics on the same substrate:
 - ➤ Greater functionality.
 - > Improved performance.
 - > Cost reductions.
- Mature processing derived from years of development in the electronics industry.
- High refractive index contrast (compact components).
- Lower power interconnects.
- Massive interconnect density (WDM).
- Low cost for mass markets.
- One of the most buoyant photonics fields.
- Many academic and industrial research groups.

18" silicon wafer

[IEEE Spectrum, September 2016]

Spiral waveguides: 0.5 m on ~1 mm² area

Silicon Photonics: Applications

Interconnects

Fibre to the home

Point-of-care diagnostics & preventive medicine

LIDAR

Chemical / biological sensing

Silicon

Photonics

Military applications

Free space optical communications

Silicon Photonics - Companies

POWERED BY HUAWEI

*Company list is not exhaustive.

Optoelectronics Research Centre

Active optical cables

Images: Intel

Single-Chip Microprocessor with Integrated Photonic I/O

Chen Sun*^{1,2}, Mark Wade*³, Yunsup Lee*¹, Jason Orcutt^{2†}, Luca Alloatti², Michael Georgas², Andrew Waterman¹, Jeff Shainline^{3‡}, Rimas Avizienis¹, Sen Lin¹, Benjamin Moss², Rajesh Kumar³, Fabio Pavanello³, Amir Atabaki², Henry Cook¹, Albert Ou¹, Jonathan Leu², Yu-Hsin Chen², Krste Asanović¹, Rajeev Ram², Miloš Popović³ & Vladimir Stojanović¹

Microsoft (5 years ago)

Microsoft (now)

Microsoft (future)

Software Servers Components

FTTH: Future network architecture

[Optics & Photonics News, March 2016]

Southampton LIDAR: Light Detection And Ranging

[IEEE Spectrum, September 2016]

- https://www.youtube.com/watch?v=EBgdskiWIO8
- https://www.youtube.com/watch?v=nXlqv k4P8Q

Car sensors

- Long-range radar
- Ultrasound
- Short/medium range radar
- Optical cameras
- Lidar

Applications of Mid-IR photonics

- Mid-infrared wavelengths are interesting because:
 - Many gases have fundamental vibrations in the 3-14μm wavelength range.
 - Chemical and biological molecules have strong absorption lines in MIR.
 - Atmospheric transmission windows: 3-5μm and 8-14μm.

Possible applications:

- Trace gas analysis
- Environmental sensing
- Medical diagnostics
- Defense and security

- Chemical-biological sensing
- Industrial process control
- Communications (fibre & free space)
- Astronomy

www.daylightsolutions.com

Environmental sensing

- QCL emission
- Long pathways
- Reflection
- Detection of reflected signal
- Detection of gases and their concentrations

Sensor - animation

Are there any drawbacks?

Indirect bandgap – No light emision

Hybrid III-V/Si laser

Are there any drawbacks?

- Indirect bandgap No light emision
- Transparent @ telecoms wavelengths No detection in Si
 - → so what can we use?

Ge detectors

- <u>Normal incidence</u> for direct fibre coupling:
 - Responsivity is a function of Ge layer thickness.
- <u>Waveguide coupled</u> devices can have a *vertical* or *lateral* junction:
 - Vertical junctions can use in-situ doped Ge growth.
 - Lateral junctions can define device width independently of Ge thickness.

Kim et al.: 45 GHz, 0.4 A/W.

Liao et al.: 36 GHz, 0.95 A/W. Vivien et al.: 120 GHz, 0.8 A/W.

 Boron implant: 60keV, 10¹³/cm², introduced through etched oxide window

Ec

- Avalanche mode, reverse bias > 20V
- Max speed > 20 Gb/s @ λ~2μm
- \blacksquare R = 0.3 A/W

Si mid-IR detector

- The introduction of defect states by low-dose inert ions, within the bandgap permit the absorption of sub-bandgap photons
- Compatible with standard silicon processing

[J. J. Ackert et al., *Nat. Photon.* **9**, 393 (2015)]

Are there any drawbacks?

- Indirect bandgap No light emision
- Transparent @ telecoms wavelengths No detection
- Centro-symmetric crystal No Pockels effect for modulation

Optoelectronics

Optical modulation in silicon

- Silicon does not exhibit a strong electro-optic effect as used in traditional photonic materials
- Other methods to produce modulation in silicon have therefore been sought:
 - Thermo-optic effect
 - Strain induced Pockels effect
 - Hybridisation (e.g. SiGe, polymers, III-Vs, graphene)
 - Plasma dispersion effect

Modulation in Silicon – animation

[G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nat. Photon. 4, 518 (2010)]

Are there any drawbacks?

- Indirect bandgap No light emision
- Transparent @ telecoms wavelengths No detection
- Centro-symmetric crystal No Pockels effect for modulation
- Thermo-optic effect can be a problem for temperature stability
- High index contrast coupling difficult

The problem

- efficient coupling between a submicrometre waveguide and a fiber
- spot-size converter needed :
 - in plane (horizontal)
 - out-of-plane (vertical): more difficult
- the polarization problem

Silicon Photonics –PhD course prepared within FP7-224312 Helios project

Tapers: inverted or 3D

Grating coupler

Taillaert et al, JQE 38(7), p.949 (2002)

Silicon Photonics –PhD course prepared within FP7-224312 Helios project

Testing and packaging

[H. Rong, PGC, Singapore, 2012]

Wafer scale testing animation

All-optical spatial light modulator for reconfigurable silicon photonic circuits

Photonic programmable circuit – up to 100 different circuits (30 demonstrated)

Collaboration with the University of Malaga

- Photonics devices for the mid-infrared wavelength range
- Potential applications in sensing
 - environmental sensing
 - point-of-care diagnostics in medicine

Group-IV waveguide platforms

Suspended Si waveguides

Parameter	Value
$l_{gap}(nm)$	450
l _{Si} (nm)	100
W_{wg} (μm)	1.3
$W_{\rm clad}(\mu m)$	2.5
$\alpha_{\rm 2nd\ mode}$ (dB/cm)	50

Fabrication constraints

- Subwavelength grating period
- Wider holes (I_{gap}) for liquid hydrofluoric (HF) acid etching

Mechanical Stability

- Smaller W_{wq} , smaller W_{clad}
- Wider Si supports

Electromagnetic constraints

- Single-mode and low loss propagation
- Larger W_{wg} , larger W_{clad}
- Narrower Ši supports

Fabrication:

- e-beam lithography
- ICP etching
- HF etching

Characterisation:

■ λ=3.8μm

Suspended Si fabricated devices

Waveguide loss: 0.8 dB/cm

S-bend loss: 0.005 dB/bend

MZI: 1 dB IL

90 bend loss: 0.014 dB/bend

MMI insertion loss < 0.5 dB

> 15 dB ER

Bends:

S-Bends:

Mach-Zehnders:

Directional couplers:

Multimode interferometers:

Southampton

[J. Soler Penades et al. Opt. Express 2016]

Suspended Si fabricated waveguides at 7.7 µm

1.4 μm Si, 3 μm BOX

 $W_{clad} = 3 \mu m$, $l_{gap} = 900 \text{ nm}$, $l_{Si} = 250 \text{ nm}$

Waveguide loss: 3.1 dB/cm

Intrinsic absorption loss = 2.1 dB/cm

S-bend loss: 0.06 dB/bend

90 bend loss: 0.08 dB/bend

Propagation loss with present BOX

Propagation loss with BOX etched

Current work: development of a library of passive Si suspended devices for $\lambda \sim 8 \ \mu m$ and Ge suspended devices for $\lambda \sim 12 \ \mu m$

[J. Soler Penades et al., Opt. Lett. 2018]

Optoelectronics Research Centre

Final messages

• To students:

- You study at a great institution, take advantage of that
- Work with your highly motivated and knowledgeable lecturers
- Widen your horizons
- Prepare for future multidisciplinary jobs (demand is high)
- Fabless companies (design houses)
- Enjoy!

To researchers:

- Our research is becoming more multidisciplinary
- We need to learn different 'languages' and to work in large teams
- Competition is huge, collaborations are necessary

• To lecturers/departments:

- We need to change the way we teach (dynamic lectures and syllabuses)
- We can implement both innovative and research led teaching
- Both students and lecturers can benefit from this