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Abstract

Semantic maps are world representations that permit a robot to understand not only
the spatial aspects of its workspace, but also the meaning of the existing elements
(objects, rooms, etc.) and how humans interact with them (e.g. functionalities, events,
and relations). To achieve this, a semantic map enhances purely spatial represen-
tations, like geometric or topological maps, with meta-information concerning the
types of elements and relations to be found in the working environment. This meta-
information, called semantic or common-sense knowledge, is typically codified into
Knowledge Bases (KBs).

An example of a piece of semantic knowledge stored in a KB could be: “refrig-
erators are big, box-shaped objects normally located in kitchens, which contain pill
boxes and perishable food”. Encoding and managing this semantic knowledge en-
ables the robot to reason about the information gathered from a given workspace, as
well as to infer new one in order to efficiently accomplish high-level tasks like “hey
robot! take the pills to grandma, please”.

This thesis contributes the usage of probabilistic techniques to build and main-
tain semantic maps, providing three main advantages in comparison with traditional
approaches:

i) to handle uncertainty (coming from inaccurate robot sensors and models),

ii) to provide coherent environment interpretations by exploiting contextual rela-
tions among the observed elements (e.g. fridges are usually in kitchens) in a
holistic fashion, and

iii) to yield certainty values that reflect the correctness in the robot understanding of
its surroundings.

Specifically, the included contributions can be grouped into two major topics.
The first set of contributions focuses on the scene object and/or room recognition
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problems, since semantic mapping systems must reckon on reliable recognition al-
gorithms for building proper representations. For that, we explore the utilization of
Probabilistic Graphical Models (PGMs) for exploiting contextual relations among
objects and/or rooms dealing with uncertainty, and the utilization of KBs to enhance
their performance in different ways, e.g. detecting incoherent results, providing prior
information, reducing the complexity of the probabilistic inference, generating syn-
thetic training samples, enabling the learning from experience, etc.

The second group of contributions accommodates the probabilistic outcome of the
developed recognition algorithms into a novel semantic map representation, coined
Multiversal Semantic Map (MvSmap). This map manages multiple interpretations
of the robot workspace, called universes, which are annotated with the probability
of being the true ones according to the current knowledge of the robot. Thus, this
approach gives a grounded belief about the understanding of the environment, which
enables a more coherent and efficient robotic operation.

The proposed probabilistic algorithms have been thoroughly tested against other
cutting-edge approaches employing state-of-the-art datasets. Additionally, this thesis
also contributes: two datasets, UMA-Offices and Robot@Home, containing diverse
ground truth information and sensory data from different types of devices covering
office and home environments, and two software tools, the Undirected Probabilistic
Graphical Models in C++ (UPGMpp) library, and the Object Labeling Toolkit (OLT),
for working with PGMs and processing datasets respectively.
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Resumen

Introduccién

El invierno se acerca. Un robot sirviente detecta que la temperatura esta disminu-
yendo y decide llevarle una manta a una adorable abuela. En el mismo edificio, otro
robot encargado de patrullar una planta de oficinas se alerta al detectar una luz encen-
dida en una habitacidn; rdpidamente se percata de que es el compafiero del drea de
investigacion, Bob, trabajando hasta tarde por tercera noche en esta semana. Mien-
tras tanto, su hija Alice esta triste por la ausencia de sus padres, y su colega robético,
apodado cariflosamente Roboto, busca su oso de peluche favorito. Sophie, la madre
de Alice, también estd contando las horas para verla, y ordena a un robot limpiar las
mesas una vez que su restaurante ha cerrado al ptiblico.

Estos escenarios son ejemplos donde los robots mdviles de hoy en dia, en mayor
o menor medida, pueden proveer una serie de servicios para mejorar el nivel de
vida de la sociedad. Cada vez se vislumbra mds claramente que los robots estdn lle-
gando para quedarse, como se ve en su exitosa aplicacién a diversas tareas como
vigilancia, cuidado de la salud, compafiia, entretenimiento, mantenimiento del hogar,
etcétera [97]], donde colaboran con humanos o los reemplazan en tediosos o peli-
grosos quehaceres. Algo comuin a todas las aplicaciones anteriores es la necesidad de
construir representaciones del entorno de trabajo, cominmente llamadas mapas, las
cuales permiten a un robot mévil alcanzar un cierto grado de consciencia respecto a
sus alrededores para poder, por ejemplo, navegar evitando obsticulos, localizarse a si
mismo con respecto a un sistema de referencia dado, almacenar informacién relevante
sobre los elementos a su alrededor, etc.

Las representaciones tradicionales del entorno de trabajo del robot, como es el
caso de mapas geométricos [23| [140], topoldégicos [110} [109]], o hibridos [139} [13]],
atn son intensivamente usadas gracias a las habilidades bdsicas con las que dotan



al robot (navegacion y localizacién). A pesar de ello, la ejecucién de tareas de alto
nivel como las mencionadas en los escenarios anteriores requiere representaciones
mads sofisticadas, cercanas al modo en el que los humanos interpretan su entorno. Los
mapas semanticos (semantic maps en inglés) aparecieron para cubrir esta necesidad,
permitiendo a un robot no sélo comprender los aspectos espaciales de su entorno, sino
ademads el significado de sus elementos (objetos y habitaciones) y cémo los humanos
interactian con ellos, por ejemplo funcionalidades, eventos, y relaciones. Para ello se
considera meta-informacién, comdnmente conocida como Conocimiento Semdntico
(Semantic Knowledge o SK en inglés'), sobre los tipos de elementos que se pueden
encontrar en el drea de trabajo del robot, incluyendo sus relaciones. Esbozos de dicha
informacidn, tipicamente codificada en una base de conocimiento (Knowledge Base
o KB en inglés), pueden ser: las mantas se encuentran habitualmente almacenadas en
armarios; las luces de la oficina deben estar apagadas tras la jornada laboral; los osos
de peluche mejoran el estado de d4nimo; la vajilla fragil debe lavarse en el lavavajillas.

Motivacién

Tipicamente, los mapas seménticos son poblados> con informacién exacta, por ejem-
plo un objeto es una manta o no lo es. Esto se debe a la incapacidad de las representa-
ciones semadnticas tradicionales para tratar con resultados inciertos, lo que fuerza la
utilizacién de algoritmos de reconocimiento que provean informacién exacta, habi-
tualmente mediante la aplicacion de umbrales a resultados probabilisticos. Por ejem-
plo, un algoritmo de reconocimientc? indicando que un objeto puede ser una manta
con una probabilidad de 0.52, y una alfombra con 0.48, podria proveer un tinico resul-
tado considerando el objeto como una manta y desechando la otra hipétesis, aunque
esta es también altamente probable. Este enfoque exacto claramente compromete la
operacion del robot: la incertidumbre, proveniente de fuentes como el propio sis-
tema de percepcion del robot o los modelos empleados para tratar el problema, se
ignora al almacenar los resultados de reconocimiento en el mapa semdntico. De este
modo, aunque los resultados del ejemplo claramente muestran que el reconocimiento
es ambiguo, nuestra querida abuela podria terminar con una dspera alfombra encima
suya. Este es un escenario de entre los muchos posibles que ponen de manifiesto la
necesidad de utilizar técnicas capaces de proveer mediciones de incertidumbre sobre
sus resultados para poblar y mantener mapas semdnticos — para lo cual la literatura
recurre comtinmente a técnicas probabilisticas [[141} [65] —, asi como de adaptar las
representaciones semdanticas actuales para poder manejar informacién incierta. Esto
resultarfa en una operacién mas coherente y eficiente por parte del robot movil.

!Cuando sea posible, a lo largo de este resumen se utilizaran los acrénimos en inglés de las herramientas
utilizadas, por ser su uso mas comiin en la comunidad cientifica.

2 Poblar un mapa semdntico se refiere al proceso de introduccién de los elementos espaciales en el
entorno del robot en dicho mapa, cominmente objetos y habitaciones, percibidos mediante su sistema
sensorial.

3Para simplificar la explicacién se considera que existen s6lo dos tipos de objetos, mantas y alfombras.
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Tratando de evidenciar atin mds la conveniencia de trabajar con informacién
incierta, supongamos un escenario donde a un robot sirviente, recién aterrizado en
su nueva casa desde el laboratorio, se le encomienda el traer las zapatillas a la abuela
adorable. En ausencia de informacién espacial, el robot puede inferir (de acuerdo con
la informacidn cargada en su KB) que la localizacién mds probable de las zapatillas es
un dormitorio. Durante el mapeo inicial de la casa por parte del robot, este reconocié
un dormitorio correspondiente a la habitacion mds lejana con respecto a la posicion
actual de la abuela con una probabilidad de 0.45, y 0.43 de ser una cocina®. Otra
habitacién cercana a la posicién del robot ha sido reconocida como cocina con una
probabilidad de 0.48, y como dormitorio con 0.47. La utilizacion de la interpretacion
mads probable, el modus operandi usual cuando se trabaja con mapas semanticos tradi-
cionales, darfa lugar a la exploracién de la habitacién mads lejana, con un 45% de
probabilidades de ser el lugar correcto, mientras que el considerar ambas interpreta-
ciones produciria un plan mds l6gico: echar primero un vistazo a la habitaciéon mas
cercana.

Aunque existen numerosos algoritmos para el reconocimiento de objetos y/o habi-
taciones que proveen mediciones de incertidumbre sobre sus resultados, estos usual-
mente trabajan mediante el procesamiento individual de cada elemento espacial de
acuerdo con sus caracteristicas geométricas (forma, tamafio, orientacidn, etc.) o de
apariencia (color, textura, brillo, etc.). En otras palabras, si el tipo mas probable para
un objeto es manta, este es considerado una manta sin tener en cuenta que otros
objetos hay a su alrededor ni su localizacién. Este enfoque ignora la rica informa-
cién contextual presente en los entornos humanos: la distribucion de las habitaciones
sigue un cierto orden, y los objetos no estan colocados aleatoriamente, sino siguiendo
una cierta configuracién acorde a su funcionalidad (por ejemplo, un mando a dis-
tancia suele estar en el entorno de una television, un pasillo conecta habitaciones,
0 una baflera suele encontrarse en el cuarto de bano) 113} |73} [117]. El1 modelado
y aprovechamiento de esta informacion contextual puede ser itil, por ejemplo, para
clarificar resultados inciertos: siguiendo con el ejemplo anterior, si el objeto se en-
cuentra en un armario, este pertenecerd mas probablemente al tipo manta que al tipo
alfombra, el cual se encuentra usualmente sobre el suelo. Este tipo de informacién
puede codificarse de manera natural en las bases de conocimiento, no obstante, su
explotacion para el reconocimiento contextual de objetos/habitaciones manejando in-
certidumbre no es simple.

Los Modelos Grdficos Probabilisticos (Probabilistic Graphical Models o PGMs
en inglés) [165] son una herramienta ampliamente utilizada para el modelado y la ex-
plotacién de relaciones de contexto tratando con incertidumbre. Estos modelos traba-
jan con una representacion en forma de grafo, donde los nodos representan variables
aleatorias y los arcos conectan variables que tienen algun tipo de relacion. Por ejem-
plo, en el caso del reconocimiento de objetos, cada objeto en la escena es representado
como una variable aleatoria que toma valores de entre los tipos de objetos posibles

4Noétese que la suma de ambas probabilidades es de 0.88. El resto, hasta sumar 1, se corresponde con
las probabilidades de pertenecer a otro tipo de habitacidn, e.g. pasillo, cuarto de bafio, saldn, etc.
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(mesa, sof4, libro, etc.), mientras que los arcos conectan variables cuyos objetos aso-
ciados estdn situados cerca en la escena. Esta representacion soporta la ejecucion
de algoritmos de inferencia probabilistica, los cuales son capaces de proveer los re-
sultados de reconocimiento deseados, junto con mediciones de incertidumbre sobre
dichos resultados. Los PGMs han sido aplicados con éxito a tareas como elimina-
cién de ruido en imédgenes, procesamiento de lenguaje natural, reconocimiento de la
actividad en una escena, prediccion meteoroldgica, etc. A pesar de ello, estos mode-
los muestran una serie de limitaciones que deben ser tratadas antes de ser utilizados
para poblar mapas semdnticos, a saber: son computacionalmente intratables cuando
la complejidad del problema a modelar incrementa (en este caso, cuando el nimero
de objetos/habitaciones en el entorno y sus posibles tipos crece), necesitan una con-
siderable cantidad de datos de entrenamiento para ajustar modelos exitosos, y son
incapaces de detectar resultados incoherentes asi como de aprender de experiencias
pasadas.

Contribuciones

Las contribuciones de la presente tesis tratan de solucionar las limitaciones de los ma-
pas semanticos tradicionales anteriormente comentadas mediante el uso de técnicas
probabilisticas. Concretamente, los objetivos de la tesis, que tuvieron como fruto el
desarrollo de dichas técnicas, fueron definidos como:

* Desarrollo de un sistema de reconocimiento completo: Proveer algoritmos
probabilisticos para el reconocimiento de objetos y/o habitaciones manejando
informacidn tanto de contexto como incierta, en los cuales también se considere
conocimiento semdntico, con el objetivo de presentar una serie de caracteris-
ticas deseables como escalabilidad, deteccién de resultados erréneos, apren-
dizaje de experiencias pasadas, etc.

¢ Mejora de los mapas semanticos para el manejo incertidumbre: Acomodar
los resultados probabilisticos de dichos algoritmos en una novedosa represen-
tacién de mapas semdnticos, de tal modo que un robot pueda explotarlos para
conseguir una nocién de la certeza del mismo sobre su comprension del entorno
de trabajo, permitiéndole operar de un modo mas coherente.

De este modo, las contribuciones de esta tesis pueden agruparse en dos temas
principales: comprension contextual de la escena, y mapeo semdntico de la misma.

Contribuciones a la comprension contextual de la escena

El primer grupo de contribuciones, presentadas en los articulos [114} 116} 119} 117,
1150 1122}, [121]], se centra en el problema del reconocimiento de objetos y/o habita-
ciones empleando informacion contextual. Los PGMs en general, y los Campos Aleato-
rios Condicionales (Conditional Random Fields o CRFs en inglés) en particular, son
usados para modelar este problema desde un punto de vista holistico, considerando las
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relaciones de contexto entre objetos y/o habitaciones, y tratando de manera formal la
incertidumbre inherente al proceso de reconocimiento. Su aplicabilidad al problema
tratado ha sido verificada tras una exhaustiva evaluacién de los algoritmos mas popu-
lares tanto de entrenamiento como de inferencia probabilistica sobre dichos modelos.

Estos CRF's trabajan en conjuncién con KBs, 1o que permite mantener sus ventajas
cuando trabajan por separado a la vez que se mitigan sus limitaciones:

* Las KBs dotan a los CRFs con capacidades para: reducir su complejidad, ex-
plotar informacién a priori sobre el dominio del problema, verbalizar sus re-
sultados, generar un numero aleatorio de ejemplos de entrenamiento sintéticos
para su ajuste, detectar resultados incoherentes, y aprender de la experiencia
del robot.

* Los CRFs permiten a las KBs manejar informacién incierta y explotar rela-
ciones de contexto de acuerdo con una base tedrica fundamentada.

Los resultados devueltos durante la evaluacién de los métodos desarrollados han
sido comparados con los de otras soluciones punteras empleando conjuntos de datos
del estado del arte. Ademas, se ha reunido y hecho publico un nuevo repositorio
de datos, llamado UMA-Offices, consistente en observaciones tridimensionales de 25
habitaciones de nuestro entorno de oficinas. También se ha implementado la libre-
rfa software de cédigo abierto Undirected Probabilistic Graphical Models in C++>
(UPGMpp) con el fin de manejar eficientemente los PGMs.

Contribuciones al mapeo semantico

El objetivo del segundo grupo de contribuciones, presentadas en los articulos [120]
118) [123]], es el de acomodar los resultados probabilisticos provenientes de las téc-
nicas anteriores en una representacion semdantica del entorno. Para ello se ha de-
sarrollado la representaciéon Multiversal Semantic Map (MvSmap), la cual permite
considerar diferentes interpretaciones del entorno de trabajo del robot en forma de
universos, también almacenando informacién sobre la probabilidad de que sean las
interpretaciones correctas. Esto permite al robot tener en cuenta no sélo el universo
m4s probable, sino otros que también muestran una alta probabilidad de ser vélidos.
Este novedoso mapa se acompaiia de técnicas para mantener tratable el nimero de
universos considerados, de tal manera que sea aplicable a entornos complejos con
numerosos objetos y habitaciones.

La idoneidad de los MvSmaps, asi como su capacidad para manejar datos incier-
tos de una manera eficiente, se ha comprobado empleando el novedoso conjunto de
datos Robot@ Home, acumulado por un robot mévil al explorar una serie de entornos
domésticos. Ademads, el conjunto de herramientas Object Labeling Toolkit® (OLT),
disponible publicamente para la comunidad investigadora, ha sido desarrollado para

Shttp://mapir.isa.uma.es/work/upgmpp-library
Shttp://mapir.isa.uma.es/work/object-labeling-toolkit
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procesar de manera fécil y rdpida conjuntos de datos formados por secuencias de
informacion sensorial, como es el caso de Robot@ Home.

Publicaciones

La presente tesis ha dado lugar a las siguientes publicaciones:

Revistas

Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. Build-
ing Multiversal Semantic Maps for Mobile Robot Operation. Enviado a
Knowledge-Based Systems (2016).

Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. A
Survey on Learning Approaches for Undirected Graphical Models. Appli-
cation to Scene Object Recognition. En International Journal of Approximate
Resoning, (aceptado, por aparecer) (2016).

Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez.
Robot@Home, a Robotic Dataset for Semantic Mapping of Home Envi-
ronments. Enviado a International Journal of Robotics Research (2016).

Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. Scene
Object Recognition for Mobile Robots Through Semantic Knowledge and
Probabilistic Graphical Models. En Expert Systems with Applications, vol.
42, no. 22, pp. 8805-8816, (2015).

Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. EX-
ploiting Semantic Knowledge for Robot Object Recognition. En Knowledge-
Based Systems, vol. 86, pp. 131-142, (2015).

Conferencias

Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. Prob-
ability and Common-Sense: Tandem Towards Robust Robotic Object Recog-
nition in Ambient Assisted Living. En 10th International Conference on Ubiq-
uitous Computing & Ambient Intelligence, Las Palmas de Gran Canaria, Spain,
(2016).

Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. Joint
Categorization of Objects and Rooms for Mobile Robots. En IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), Hamburg,
Germany, (2015).

Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. OLT:
A Toolkit for Object Labeling Applied to Robotic RGB-D Datasets. En Eu-
ropean Conference on Mobile Robots (ECMR), Lincoln, UK, (2015).
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» Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez.
UPGMpp: a Software Library for Contextual Object Recognition. En 3rd.
Workshop on Recognition and Action for Scene Understanding (REACTS),
Valletta, Malta, (2015).

e Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. Mo-
bile Robot Object Recognition through the Synergy of Probabilistic Graph-
ical Models and Semantic Knowledge. En European Conference on Artificial
Intelligence, Workshop on Cognitive Robotics (CogRob), Prague, Czech Re-
public, (2014).

Marco de la tesis

Esta tesis es el resultado de 5 afios de trabajo del autor como miembro del grupo
Machine Perception and Intelligent Robotics’ (MAPIR), el cual se encuentra den-
tro del departamento de Ingenieria de Sistemas y Automdtica de la Universidad de
Madlaga. La investigacion realizada ha sido principalmente financiada por el programa
de ayudas Formacion de Profesorado Universitario (FPU), promovido por el Minis-
terio de Educacion.

Durante este periodo, el autor completé con éxito el programa doctoral en In-
genieria Mecatronica, coordinado por el mismo departamento del que es miembro,
donde obtuvo un conocimiento sélido sobre los pilares fundamentales de la robética:
sistemas de control, sistemas electrénicos, sistemas mecdnicos, y ordenadores. Esta
educacién académica fue completada con distintos cursos, como es el caso de Writ-
ing in the sciences, impartido por la Universidad de Stanford, y la participacién en
la Primera Orebro Winter School en Artificial Intelligence and Robotics, 1a cual pre-
tende acercar dos campos estrechamente relacionados como son los de la Inteligencia
Artificial y la Robética. Esta escuela también hizo posible el conocer otros investi-
gadores en el mismo campo de estudio, relaciones que se mantienen a dia de hoy.

El autor también completé una estancia de tres meses en el Knowledge-Based
Systems Research Group®, en la Universidad de Osnabriick en Alemania, durante el
afio 2014, bajo la supervisién de Prof. Dr. Joachim Hertzberg. Durante este tiempo
la investigacién realizada se centr6 en el andlisis y la implementacién de diferentes
algoritmos para el manejo eficiente de PGMs, asi como de su aplicacién para el re-
conocimiento online de objetos en robots méviles. En esta gran experiencia también
se establecieron colaboraciones con distintos miembros del grupo receptor.

Ademds, también cabe destacar que el autor ha estado activo en el proceso de re-
visién de articulos de conferencias y revistas prestigiosas, como es el caso de las con-
ferencias International Conference on Robotics and Automation (ICRA, 2014, 2015,
2016), e International Conference on Intelligent Robots and Systems (IROS, 2015),
o las revistas Association for the Advancement of Artificial Intelligence e Intelligent
Service Robotics.

7http://mapir.isa.uma.es/
8www.inf.uos.de/kbs/
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La beca FPU también ofreci6 al autor la oportunidad de colaborar como profesor
asistente con el departamento del que es miembro. Concretamente, impartié docencia
en la asignatura de Robdtica en la Escuela Técnica Superior de Ingenieria Infor-
mdtica, en la Universidad de Mdlaga. También supervisé el trabajo fin de grado de
un estudiante, David Zuddiga, titulado Visual SLAM with RGB-D Cameras Based on
Pose Graph Optimization.

Ademds de la investigacion presentada en esta tesis, el autor también ha partici-
pado en otros proyectos dentro del grupo MAPIR, algunos de ellos de tematica rela-
cionada:

¢ TCS: Tunnel Continuous Setout (Nov’08 — Jul’11): Este proyecto se centrd
en el desarrollo de un sistema para el replanteo automatico de secciones de
tineles a ser perforadas. El prototipo del sistema, que toma el mismo nom-
bre que el proyecto, combina una unidad de escaneo que realiza mediciones
sobre el frente de excavacion y un ldser proyector que continuamente muestra
la seccidn del tinel a perforar. La parte més desafiante del proyecto fue la im-
plementacién de las técnicas de calibracion para localizar con exactitud todos
los componentes del sistema dentro de un marco de referencia global.

¢ ExCITE: Enabling SoCial Interaction Through Embodiment (Jul’10 —
Jun’13): El rol del autor en este proyecto estuvo relacionado con el desarrollo
de mejoras técnicas para la plataforma robdtica de telepresencia Giraff: un
manejo mds simple y seguro, deteccion de obstdculos, y visualizacién de la
posicién del robot en un mapa esquematico del lugar visitado. Una arquitectura
de control, llamada Navigation Assistant (NAS), fue desarrollada para cumplir
con estas necesidades especiales.

e Taroth: New developments toward a Robot at Home (Ene’12 — Dic’15):
Este proyecto persigui6 tres objetivos principales: i) aumentar la independen-
cia del robot en cuanto a su movimiento, ii) integrar y explotar informacién
semdntica para mejorar la autonomia del robot y permitirle interactuar con hu-
manos, y iii) desarrollar una arquitectura de control robdtica para el manejo de
servicios de la llamada Ambient Assisted Living, como son el entretenimiento,
la domética, las relaciones sociales, la seguridad, etc.

¢ TRO: Improvement of the sensorial and autonomous capability of Robots
through Olfaction (Ene’14 — Feb’19): La investigacién en este proyecto se
orienta al estudio de mecanismos para usar informacidn olfativa en problemas
como el reconocimiento de objetos y la interpretacion de la actividad en una
escena. Dicho estudio presta especial atencion al rol de la informacién seman-
tica en los procesos de percepcion por parte del robot y toma de decisiones,
persiguiéndose una mejora en términos de eficiencia, autonomia y utilidad.

Del trabajo del autor en estos proyectos se desprendieron una serie de publica-
ciones adicionales:
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Revistas

Javier Gonzalez-Jimenez, Vicente Arévalo, Cipriano Galindo, y Jose-Raul Ruiz-
Sarmiento. An Automated Surveying and Marking System for Continuous
Setting-out of Tunnels. En Computer-Aided Civil and Infrastructure Engineer-
ing, vol. 31, no. 3, pp. 219-228, (2016).

Conferencias

David Zuiiiga-Noél, Jose-Raul Ruiz-Sarmiento, y Javier Gonzalez-Jimenez. De-
teccion de Lugares con Camaras RGB-D. Aplicacion a Cierre de Bucles en
SLAM. En XXXVII Jornadas de Automatica, Madrid, Spain, (2016).

Javier Gonzalez-Jimenez, Jose-Raul Ruiz-Sarmiento, y Cipriano Galindo. Im-
proving 2D Reactive Navigators with Kinect. En 10th International Confer-
ence on Informatics in Control, Automation and Robotics (ICINCO), Reyk-
javic, (Iceland, 2013).

Javier Gonzalez-Jimenez, Cipriano Galindo, Francisco Melendez-Fernandez,
y Jose-Raul Ruiz-Sarmiento. Building and Exploiting Maps in a Telepres-
ence Robotic Application. En 10th International Conference on Informatics
in Control, Automation and Robotics (ICINCO), Reykjavic, Iceland, (2013).

Javier Gonzalez-Jimenez, Cipriano Galindo, y Jose-Raul Ruiz-Sarmiento. Tech-
nical Improvements of the Giraff Telepresence Robot Based on Users’
Evaluation. En The 21st IEEE International Symposium on Robot and Hu-
man Interactive Communication (RO-MAN), Paris, France, (2012).

Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. Ca-
maras basadas en tiempo de vuelo. Uso en la mejora de métodos de detec-
cion de caras. En XXXII Jornadas de Automatica, Sevilla, Spain, (2011).

Informes técnicos

L]

Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. EX-
perimental Study of the Performance of the Kinect Range Camera for Mo-
bile Robotics. Universidad de Malaga, Andalucia Tech, Departamento de In-
genieria de Sistemas y Automatica, (2013).

Estructura de la tesis

Mas alla del capitulo introductorio (Chapter 1: Introduction) el resto de capitulos
en la primera parte de esta tesis (Part I: Thesis description) estin organizados como
sigue:
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Chapter 2: Theoretical background provee nociones basicas sobre la teorfa detras
de dos herramientas intensivamente empleadas en esta tesis: PGMs y KBs, de
tal modo que el lector no experto en estas materias pueda obtener un conocimiento
basico para una mejor comprension de los siguientes capitulos. El autor ha
tratado que sea una lectura lo mas amena posible.

Chapter 3: Contextual scene understanding describe los enfoques tradicional-
mente seguidos para el reconocimiento de objetos y habitaciones por parte
de un robot mévil, y de que modo estdn relacionados con las contribuciones
presentadas. También se dan detalles sobre la sinergia entre PGMs y SK codi-
ficado en KBs persiguiendo el entendimiento de escenas. Este capitulo también
discute los repositorios de datos empleados para evaluar las técnicas desarrolla-
das, incluyendo UMA-Offices, asi como el software implementado para mane-
jar PGMs.

Chapter 4: Semantic Mapping esboza las representaciones de mapas semanticos
comuinmente empleadas en robética mévil, y describe las contribuciones de
esta tesis en relacion a una representacion capaz de manejar informacién incierta:
el Multiversal Semantic Map. Las virtudes de dicho mapa han sido compro-
badas empleando un novedoso dataset, Robot@Home, cuyas caracteristicas
son descritas en este capitulo, junto con las del software usado para su proce-
samiento: Object Labeling Toolkit.

Chapter 5: Summary of included papers lista los articulos que conforman la se-
gunda parte de esta tesis, Part II: Included papers, describiendo brevemente
su contenido y el papel del autor en los mismos.

Chapter 6: Conclusions and future work discute las conclusiones que se pueden
extraer del trabajo realizado, asi como las lineas de investigacién que quedan
abiertas e interesantes extensiones a dicho trabajo.

Publicaciones incluidas en la Tesis

Esta seccidn realiza un esbozo de los articulos incluidos en la segunda parte de la
tesis, asi como las contribuciones del autor a cada uno de ellos.

Articulo A: Aprendiendo Conditional Random Fields con
datos provenientes de Semantic Knowledge

Descripcion: Este trabajo estudia la aplicabilidad de CRF's entrenados con datos
sintéticos, generados a partir de SK, al problema del reconocimiento de objetos ex-
plotando su contexto. El objetivo de este enfoque para el entrenamiento es el de evitar
la recopilacién de datos reales para ajustar sistemas de reconocimiento. Dicha recopi-
lacién es una tarea pesada que requiere de una alta dedicacién temporal, ademds de
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no ser realizable en ciertos entornos, ya que los datos recogidos deben ser suficiente-
mente representativos del dominio del problema. Para solucionar esta cuestion se co-
difica SK en una Ontologia, la cual define las clases (o tipos) de objetos del dominio
de discurso (por ejemplo, en el dominio del hogar, ejemplos de estos tipos serian
horno, microondas, salon, o cocina), sus propiedades y sus relaciones, y es usado
para generar ejemplos de entrenamiento sintéticos. La conveniencia del método de
aprendizaje propuesto debe ser comprobada empleando conjuntos de datos reales,
por lo que UMA-Offices y NYUv2 [[131] formaron el banco de pruebas necesario
para responder a preguntas como: ; Cudnto contribuyen las relaciones de contexto al
éxito del método?, ; Como afecta el tamario del conjunto de datos de entrenamiento
al rendimiento?, o ;Capturan los datos sintéticos generados caracteristicas y rela-
ciones reales?.

Contribucion del autor: Estudi6 el estado del arte sobre PGMs y KBs abordando
el problema del reconocimiento de los objetos de una escena. Diseid el modo de
codificar informacién relevante en la Ontologia para su posterior aprovechamiento.
Implement6 el algoritmo para la generacién automdtica de un nimero arbitrario de
ejemplos de entrenamiento. Procesé el conjunto de datos UMA-Offices, y realiz6 los
experimentos necesarios para demostrar la validez de la propuesta.

Articulo B: Categorizacion conjunta de objetos y
habitaciones

Descripcion: En este articulo se extienden los métodos desarrollados en el anterior
trabajo para también considerar las habitaciones del entorno. Motivado por estudios
recientes que destacan la conveniencia de modelar conjuntamente los problemas de
reconocimiento de objetos y habitaciones (dada la influencia mutua que tienen los
tipos de los objetos reconocidos y los tipos de las habitaciones), la Ontologia definida
en el Articulo A es aumentada para también incluir tipos de habitaciones, sus atribu-
tos, y relaciones entre ellas asi como entre objetos y habitaciones. Un ejemplo de esta
informacidn seria que los dormitorios estdn usualmente conectados con pasillos y
suelen contener camas. Los CRFs también son convenientemente adaptados para tra-
bajar con diferentes tipos de variables aleatorias (representando categorias de objetos
o habitaciones) y relaciones de contexto. Para validar el método se emplean escenas
ilustrando entornos domésticos dentro del conjunto de datos NYUv2.

Contribucion del autor: Estudi6 las técnicas en el estado del arte para modelar con-
juntamente los problemas de reconocimiento de objetos y habitaciones. Disefi6 la ex-
pansion de la Ontologia en el articulo anterior, asi como de los CRF’s y el algoritmo
implementado para la generacién de ejemplos sintéticos. Realiz6 los experimentos
que soportan las afirmaciones del trabajo.
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Articulo C: Empleando Semantic Knowledge para un
reconocimiento eficiente y coherente

Descripcion: La complejidad de los CRFs aumenta considerablemente cuando se
aplican a escenarios repletos de objetos. Esto implica la utilizacién de técnicas de in-
ferencia aproximada para obtener los resultados de reconocimiento, lo que en algunos
casos compromete el éxito del método en comparacion con el uso de soluciones de
inferencia exacta. Este articulo propone la utilizacién de SK para reducir la com-
plejidad del proceso de inferencia. Dicho conocimiento, codificado de nuevo en una
Ontologia, se aprovecha para generar hipétesis sobre los tipos mds probables a los que
pueden pertenecer los objetos en la escena, empleando para ello sus caracteristicas.
Estas hipdtesis son consideradas por el CRF como las Unicas categorias candidatas
posibles, reduciendo de este modo la complejidad del proceso de inferencia, incluso
habilitando en ciertos casos la inferencia exacta. Adicionalmente, también se codifica
en la Ontologia informacién a priori sobre la frecuencia de aparicién de los distintos
tipos de objetos. Esta informacién muestra que, por ejemplo, en un entorno de oficinas
es mds probable encontrar un ordenador a un sofd, mientras que es bastante impro-
bable encontrar una tabla de planchar. El articulo también propone una modificacién
a la formulacién usual de los CRF's para el aprovechamiento de dicha informacién.
La ganancia en cuanto a la eficiencia y coherencia proporcionada por esta solucién es
medida con los conjuntos de datos UMA-Offices y NYUv2.

Contribucion del autor: Disefié el marco para, empleando las hipétesis generadas
mediante inferencia 16gica sobre la Ontologia, reducir la complejidad del modelo
probabilistico. Adapté la formulacién de los CRFs para también considerar informa-
cién previa sobre la frecuencia de aparicion de los diferentes tipos de objetos desde la
Ontologia. Evalu6 la reduccion de complejidad conseguida y la mejora en cuanto a la
coherencia de los resultados devueltos empleando dos repositorios de datos distintos.

Articulo D: Liberia UPGMpp para manejar Conditional
Random Fields

Descripcion: Este trabajo presenta la libreria Undirected Probabilistic Graphical
Models in C++ (UPGMpp), un paquete software para trabajar con este tipo de mo-
delos probabilisticos. La libreria estd especialmente disefiada e implementada para
ser eficiente a la hora de tratar el problema del reconocimiento de objetos y/o habita-
ciones. El articulo describe como usar el software para modelar este problema, y pre-
senta sus tres partes fundamentales: base (implementa la funcionalidad para construir
y manipular modelos gréficos), training (permite la definicién de conjuntos de datos
para entrenar los modelos), e inferencia (implementa algoritmos de inferencia proba-
bilistica). Para mostrar la flexibilidad y usabilidad de la librerfa, este trabajo ilustra
los procesos necesarios para entrenar y testear — realizar inferencia sobre — PGMs, in-
cluyendo ejemplos de codigo. También se reportan los resultados de reconocimiento
devueltos por distintos métodos de inferencia al tratar con escenas del conjunto de
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datos NYUv2, asf como el tiempo de ejecucion requerido por dichos métodos.

Contribucion del autor: Estudio la teoria detras de los PGMs no dirigidos, asi como
otras librerias relacionadas para tratar con los mismos. Diseié e implementd las partes
de la libreria, con el objetivo de que fueran eficientes, versétiles, extensibles, y faciles
de usar. Hizo la libreria puiblica, ejemplific6 su uso, y realizé las mediciones sobre
tiempos de ejecucion y éxito del reconocimiento.

Articulo E: Conjunto de herramientas para el tratamiento
de repositorios de datos con informacion RGB-D

Descripcion: En este trabajo se presenta el conjunto de herramientas software Object
Labeling Toolkit (OLT), desarrollado para el procesamiento eficiente de repositorios
de datos compuestos de secuencias de observaciones RGB-D (intensidad, RGB, mas
profundidad, D), capturadas por un nimero arbitrario de sensores de este tipo. Para
ello, OLT construye una reconstrucciéon 3D de cada secuencia de observaciones y
permite al usuario, mediante una interfaz grafica, anotar los objetos y habitaciones
en dicha reconstruccién con el tipo al que pertenecen (cama, mesa, ldmpara, cocina,
etc.). El articulo describe sus componentes principales, a saber: pre-procesamiento
del conjunto de datos, construccién de mapa 2D, localizacién de las poses de las
observaciones, visualizacidn secuencial, etiquetado de la escena, y propagacién auto-
matica de etiquetas a cada observacion individual, de los cuales sélo el etiquetado de
la escena requiere la intervencion de un operador humano. También se ejemplifica
el uso de OLT para el etiquetado facil y rapido de dos secuencias de observaciones
RGB-D, analizando sus virtudes con respecto a una técnica de etiquetado tradicional.

Contribucién del autor: Disefi6 el conjunto de herramientas. Estudié e implement6/
adapté las técnicas necesarias para los procedimientos de: procesado de imagenes
tanto RGB como de profundidad, construccién de mapas geométricos 2D, recons-
truccién de escenas 3D, visualizacién e interaccidn con las reconstrucciones, y propa-
gacion automdtica de las anotaciones a través de las secuencias de observaciones.
Comparo el tiempo ahorrado empleando OLT con respecto al uso de una técnica de
etiquetado tipica.

Articulo F: Mapa semantico capaz de manejar incertidumbre

Descripcion: En este articulo se propone un mapa semantico novedoso que permite
la manipulacién de incertidumbre, también aprovechando las relaciones contextuales
de los elementos espaciales en el entorno del robot (objetos y habitaciones). Esta re-
presentacién adopta el nombre de Multiversal Semantic Map (MvSmap). El articulo
proporciona un estudio completo sobre otros enfoques para realizar un mapeo seméan-
tico del entorno, asi como de técnicas para poblar dichos mapas. Los MvSmaps son
descritos en detalle y definidos formalmente, incluyendo los algoritmos necesarios
para su construccién, donde las técnicas de reconocimiento desarrolladas en trabajos
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previos tienen un rol principal. Ademads, este trabajo estudia algoritmos para tratar
eficientemente la incertidumbre modelada en estos mapas. Finalmente, el conjunto
de datos Robot@Home [123] es el elegido para evaluar el rendimiento de los distin-
tos sistemas envueltos en la construccién de MvSmaps.

Contribucién del autor: Disefi6 la representacion Multiversal Semantic Map para
el almacenamiento y tratamiento de informacion incierta. Integrd las técnicas de re-
conocimiento de objetos y habitaciones anteriormente desarrolladas en un sistema
para poblar dichas representaciones. Disefié e implement6 el proceso para la cons-
truccién de MvSmaps de acuerdo a la informacidn percibida por un robot movil.
Procesé el conjunto de datos Robot@Home para que fuera util durante el testeo de
los sistemas en este trabajo.

Conclusiones y lineas futuras

Esta tesis ha explorado y hecho contribuciones al fascinante mundo del mapeo seman-
tico del entorno por medio de un robot mévil. Este tipo de mapas dotan al robot de
herramientas para comprender cuales son los elementos y espacios que tiene a su
alrededor, asi como sus propiedades, lo cual sienta las bases para una operacion in-
teligente, auténoma y eficiente. En la investigacion llevada a cabo se ha prestado
especial atencién a la poblacién de mapas semanticos con informacién sobre los ele-
mentos espaciales en el entorno de trabajo del robot, es decir objetos y habitaciones,
a través de la combinacién de técnicas de los campos del Aprendizaje Automdtico
y la Inteligencia Artificial. Estos campos se encuentran actualmente en un momento
dulce, donde los estudios y aplicaciones en las que son utilizados sigue creciendo, tal
y como apuntd en una reciente entrevista uno de los directivos de Amazon, Ralf Her-
brich, afirmando que “Estamos en una edad dorada para el aprendizaje automdtico y
la inteligencia artificial. Nos encontramos aiin lejos de hacer cosas del mismo modo
en el que los humanos las hacen, pero estamos solventando problemas increiblemente
complejos cada dia y consiguiendo un progreso increiblemente rdpido”. En opinién
del autor, la investigacién de sistemas que aprovechen la sinergia de sendos campos,
potenciando sus ventajas y mitigando sus limitaciones, puede llevar a avances no-
tables en la comunidad robdtica. Este es el caso de las técnicas desarrolladas en la
presente tesis.

Para que un robot mévil alcance un cierto grado de consciencia del entorno en
el que se desenvuelve, este debe ser capaz de reconocer los elementos espaciales ob-
servados a través de su sistema sensorial. El primer grupo de contribuciones de esta
tesis trata este tema, centrandose en la combinacion de Conditional Random Fields
(CRFs), una variante discriminativa no dirigida de los Probabilic Graphical Models
(PGMs), y Semantic Knowledge (SK) del dominio de discurso codificado en una On-
tologia. Ambos enfoques han alcanzado un éxito notable en distintos problemas de
clasificacion.

Por un lado, los CRF's permiten el modelado de relaciones de contexto entre ele-
mentos espaciales, al mismo tiempo que maneja la incertidumbre proveniente del
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sistema sensorial del robot y de los modelos empleados para definir el problema.
Estos modelos también permiten la ejecucion de métodos de inferencia probabilis-
tica. Precisamente, una de las primeras contribuciones de esta tesis fue la librerfa
Undirected Probabilistic Graphical Models in C++ (UPGMpp), desarrollada como
consecuencia de la ausencia de herramientas software para manejar PGM:s no dirigi-
dos en general, y CRF’s en particular, proveyendo las caracteristicas que demanda un
sistema de reconocimiento ejecutdndose en un robot movil (e.g. eficiencia, flexibili-
dad, o facilidad de integracion). Esta libreria, disponible ptiblicamente, implementa
algoritmos populares para la construccion, aprendizaje e inferencia sobre modelos
graficos. Las posibles combinaciones de métodos para entrenar e inferir informacion
sobre CRFs motivo el estudio de diferentes estrategias de aprendizaje, el cual reportd
valiosas conclusiones no sélo para la correcta utilizacioén de estos modelos en el resto
de contribuciones, sino para su empleo por parte de cualquier miembro de la comu-
nidad robética que desee configurar rdpidamente un sistema de reconocimiento tan
exitoso como sea posible.

A pesar de su notoria utilizacién en distintos campos, los CRFs muestran una
serie de limitaciones a la hora de ser aplicados al problema de reconocimiento. En
primer lugar, para ser correctamente entrenados requieren una considerable cantidad
de ejemplos (datos) que, ademads, cubran por completo los elementos dentro del do-
minio de trabajo. La recogida de dichos conjuntos de datos es una tarea tediosa y que
requiere una alta dedicacién temporal, ademds de ser irrealizable en algunos domi-
nios, tal y como experimentd el autor al procesar el repositorio UMA-Offices. Dicho
conjunto de datos contiene 25 escenas capturadas por un robot mévil en entornos de
oficinas de la Universidad de Mdlaga, y se recogié con el fin de evaluar las técni-
cas de reconocimiento desarrolladas — de manera conjunta con otros repositorios del
estado del arte. Para evitar la dependencia de conjuntos de datos conteniendo informa-
cidn real, se mostré como SK, convenientemente codificado en una Ontologia, puede
usarse para generar sin esfuerzo una cantidad arbitraria de datos de entrenamiento
representativos del dominio de discurso. Las Ontologias suponen una manera natural
de codificar SK, ademads de ser compactas, leibles por un humano, y directamente uti-
lizables en tareas de razonamiento de alto nivel. No obstante, son incapaces de mane-
jar incertidumbre, y es complejo dar el salto de informacion sensorial de bajo nivel
a informacién codificada sin emplear procesos ad-hoc. Su combinacién con CRFs
elimina estas limitaciones, sentando las bases de una relacion de beneficio mutuo.

En esta tesis se ha mostrado como las Ontologias que codifican SK tienen mucho
mas que ofrecer en su matrimonio con CRFs. Por ejemplo, se han empleado para
generar hipétesis sobre los posibles tipos de objetos/habitaciones en una escena, re-
duciendo drésticamente la complejidad de los CRFs cuando modelan dicha escena.
Esto incrementa la eficiencia de los métodos de inferencia aproximada sobre CRFs,
asi como amplia el abanico de escenarios donde es posible realizar una inferencia
exacta. Nétese que la eficiencia del método de reconocimiento es fundamental para
el apropiado funcionamiento del robot, ya que este debe compartir los (usualmente li-
mitados) recursos del robot con otros algoritmos en ejecucion, como puedan ser los de
navegacion o localizacién. Ademds, las Ontologias pueden codificar distintos tipos de
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informacidn sobre los elementos del dominio, lo cual se ha aprovechado para definir
la frecuencia de aparicién de los distintos tipos de objetos. La usual formulacién de
los CRFs ha sido consecuentemente adaptada para explotar esta fuente de informa-
cién, permitiendo a estos modelos alcanzar unos resultados de reconocimiento mas
coherentes. El SK también se ha empleado para la detecciéon de incoherencias en los
resultados, y para aprender de las mismas en colaboracién con un humano. Este en-
foque soluciona la incapacidad de los CRF's para aprender de experiencias pasadas,
y les permite mejorar su rendimiento y robustez a largo plazo en su aplicacién a en-
tornos humanos.

Una vez desarrolladas las técnicas para el reconocimiento, estas fueron integradas
en un sistema de mapeo semdntico. Para ello se disefié una novedosa representacion
del entorno llamada Multiversal Semantic Map (MvSmap), la cual es capaz de aco-
modar y aprovechar los resultados probabilisticos de los métodos de reconocimiento.
Dicho mapa considera diferentes interpretaciones de los elementos espaciales, o uni-
versos, como instancias de Ontologias, credndose un multiverso. Estas Ontologias
son ademds automdticamente anotadas con las probabilidades devueltas por el sis-
tema de reconocimiento, asi como con su probabilidad de ser las interpretaciones
correctas. De este modo, el desempefio del robot no se limita a la utilizacién del uni-
verso mas probable, modus operandi de los mapas semanticos tradicionales, sino que
también puede considerar otras posibles explicaciones con diferentes interpretaciones
semdnticas. Ademads se discuti una estrategia para mantener tratable el nimero de
universos considerados, clave para la eficiencia de esta representacién semadntica.

También se han hecho publicos dos recursos relacionados con las técnicas de
mapeo semantico. El primero se corresponde con el conjunto de datos Robot@ Home,
el cual contiene, entre otros: 87,000+ observaciones recogidas en distintas casas por
un robot mévil dotado de un aparejo con 4 cdmaras RGB-D y un escaner laser 2D,
reconstrucciones tanto en 2D como en 3D de las escenas exploradas, informacién
topoldgica sobre la conectividad de las habitaciones, y anotaciones sobre los tipos
de los objetos y habitaciones percibidos. El repositorio de datos es rico en informa-
cién contextual de los elementos espaciales antes mencionados, una caracteristica
que no se encuentra en la mayoria de los repositorios actuales, lo cual puede ser
aprovechado por sistemas de mapeo semdntico. La segunda contribucién a este res-
pecto es el conjunto de herramientas denominado Object Labeling Toolkit (OLT), dis-
eflado para procesar eficientemente repositorios de datos compuestos de secuencias
de observaciones RGB-D. Estas herramientas son altamente customizables y expan-
sibles, facilitando la integracién de algoritmos ya desarrollados, y han mostrado su
utilidad para reducir drasticamente el tiempo y esfuerzo necesarios para procesar re-
positorios conteniendo ese tipo de informacién. Por ejemplo, OLT fue usado para el
procesamiento de Robot@Home.

Como observacion final, cabe destacar que aunque las técnicas descritas en esta
tesis han sido evaluadas con conjuntos de datos provenientes de entornos domésticos
y de oficinas, su utilizacién no se limita a esos dominios, sino que pueden ser em-
pleadas en cualquier escenario que exhiba informacién semantica como pueda ser el
caso de hospitales o centros comerciales. También es interesante afiadir que su uso no
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estd restringido al campo de la robética mévil, sino que podrian ser exportadas a otros
campos que se pudieran beneficiar de la explotacién de mapas semanticos tales como
asistencia a invidentes o personas mayores, realidad aumentada, y otras aplicaciones
por venir en la era de los dispositivos portdtiles con gran capacidad de computo. Hoy
en dia, de hecho, nuestros teléfonos méviles son casi tan potentes como los orde-
nadores de sobremesa. Los esfuerzos en la investigacion en mapeo semdntico, junto
con los avances tecnolégicos, nos aseguran la aparicion de apasionantes y rompedoras
aplicaciones. {Manténgase atento!.

Trabajos futuros

El trabajo realizado en la presente tesis deja abiertas una serie de lineas de investi-
gacién y expansiones. Algunas de las mds relevantes se describen a continuacion.

Generacion de hipétesis. La generacion de hipétesis empleando la informacién
codificada en la Ontologia podria ser demasiado restrictiva en algunas situaciones,
principalmente con objetos que muestran unas caracteristicas particulares. Supdn-
gase una escena con un libro en el suelo. En esta situacién el razonador 16gico no
devolveria la clase libro como hipétesis, dado que su altura desde el suelo difiere en
gran medida de la esperada. Una opcién podria ser considerar el resultado del proceso
de inferencia l6gica como una puntuacion a ser considerada en la formulacién de los
CRFss, a expensas de comprometer la opcién de inferencia exacta.

Aprovechamiento de los MvSmaps. El potencial real de los Multiversal Seman-
tic Maps (en opinién del autor) estd ain por verse. Se han disefiado y realizado di-
versas pruebas de concepto en tareas tipicamente robéticas, pero debe estudiarse en
mayor detalle el beneficio de estos mapas en problemas reales como navegacion efi-
ciente y bisqueda de objetos, localizacién del robot, planificacién de tareas con in-
formacién incierta/incompleta, etc.

Aprendiendo de experiencias. El sistema propuesto para el aprendizaje en base
a la experiencia acumulada puede ser ampliado en diferentes aspectos. Primero, debe
realizarse una evaluacién rigurosa del sistema empleando complejos CRFs y On-
tologfas, incluyendo informacion de objetos y habitaciones, a lo largo de extensos
periodos de tiempo. También podria estudiarse, dado que un humano forma parte del
bucle de aprendizaje, cdmo afectan al rendimiento del sistema posibles instrucciones
incorrectas por parte del usuario. Ademas el sistema también se podria beneficiar de
un estudio acerca de cudndo seria mds apropiado preguntar a dicho humano sobre un
resultado incoherente, de tal manera que se le moleste lo minimo posible.

Posibles desarrollos dentro de UPGMpp. Seria interesante explorar algunas
caracteristicas adicionales relacionadas con el rendimiento de UPGMpp. Por ejem-
plo, aunque las partes que requieren mas tiempo de ejecucion han sido paralelizadas
empleando OpenMP, algunas operaciones repetitivas que utilicen datos de forma ma-
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siva podrian beneficiarse de su ejecucion en nicleos GPU empleando, por ejemplo,
CUDA u OpenCL. También seria ttil el contar con herramientas gréficas para visua-
lizar y modificar los grafos de los PGMs, asi como para comprender como evolucio-
nan en tiempo de ejecucion. También se contempla la incorporacion de técnicas para
la generacion de muestras de la distribucion de probabilidad definida por un PGM
(como Markov Chain Monte Carlo). Por supuesto, es bienvenida cualquier contribu-
cion a esta librerfa por parte de la comunidad robética o de visién por computador.

Mejoras a OLT. La incorporacién de algoritmos para un registro globalmente
consistente de las observaciones RGB-D en una secuencia podria dar lugar a recons-
trucciones incluso mds precisas. La experiencia de usuario también se podria mejo-
rar considerando otras primitivas geométricas para segmentar y etiquetar escenas,
ademads de las cajas empleadas actualmente, como puedan ser esferas o cilindros. Por
ultimo, el tiempo necesario para el etiquetado también podria reducirse si se ofreciera
al usuario una segmentacién inicial de la escena, asi como etiquetas tentativas para
los objetos/habitaciones apareciendo en la misma.

Punto y aparte

Esta seccién concluye el resumen de la presente tesis, Probabilistic Techniques in
Semantic Mapping for Mobile Robotics. El lector puede continuar con los siguientes
capitulos, en el idioma inglés, donde se describen en mayor detalle las contribuciones
de la misma.
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Introduction

Winter is coming. A servant robot senses that the temperature is decreasing and takes
a blanket to a lovely grandma. In the same building, another robot patrolling an of-
fices’ floor is alerted by a light turned on in a room; rapidly it notices that the research
fellow, Bob, is working late in the night, the third time that week. Meanwhile, baby
Alice, Bob’s daughter, is sad because of the absence of her daddy, and her robotic
colleague warmly nicknamed as Roboto looks for her favorite teddy. Sophie, Alice’s
mom, is also counting the hours to see her, and commands a robot to clean the tables
once the restaurant she runs is closed to the public.

These scenarios are some examples where mobile robots, to a greater or lesser ex-
tent, can provide a number of services for raising the standards of living. Nowadays,
it becomes clear that robots are coming to stay, as it is shown by their remarkable
application to an increasing number of tasks where they collaborate with humans
or release them from tedious or hazardous chores, such as surveillance, health care,
companion, entertainment, household maintenance, etcetera [97]. Figure 1.1 depicts
some examples of modern robots aimed at performing some of these tasks. Common
to all these robotic applications is the necessity of building representations of the
working environment, commonly referred to as maps, which permit a mobile robot
to be aware of its surroundings in order to navigate avoiding obstacles, localize it-
self with respect to a given reference frame, store relevant information about spatial
elements for accomplishing its goals, etc.

Traditional spatial representations, like geometric, topological, or hybrid maps,
are extensively used due to the core skills they provide, i.e. navigation and local-
ization. Nevertheless, the execution of high-level tasks, like the ones involved in the
aforementioned scenarios, calls for more sophisticated representations closer to the
way in which humans interpret and behave within their environments. Semantic maps
came out to cope with this need, permitting a robot to understand not only the spatial
aspects of its workspace, but also the meaning of its elements (objects and rooms)
and how humans interact with them, e.g. functionalities, events, and relations. This is



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of state-of-the-art robots successfully applied to different tasks. From
left to right: the educational robot Zowi, the companion and entertainment robot Zenbo, the
security patrol robot S5, and the Giraff robot employed in telehealth-care applications.

achieved by considering meta-information, commonly referred to as common-sense
or Semantic Knowledge (SK), concerning the types of elements (and their relations) to
be found in the robot workspace. Pieces of this information, typically encoded into a
Knowledge Base (KB), could be: blankets are often stored in cupboards; lights must
be switched off after the working day; teddies make kids happier; fragile crockery
should not be cleaned in the dishwasher.

1.1 Motivation

Typically, semantic maps are populated with crispy information, e.g. an object is a
blanket or not. This is due to the weakness of traditional semantic representations to
handle uncertainty, which forces the use of recognition algorithms providing a crispy
outcome, probably by thresholding a probabilistic result. For example, a recognition
algorithm' stating that an object can be a blanket with a probability of 0.52, and a
carpet with 0.48, might yield a unique outcome by considering the object as a blan-
ket and neglecting the other, high probable, hypothesis. This crispy stance clearly
compromises the robot operation: the uncertainty coming from sources like the robot
sensory system and the employed models is being disregarded when the recognition
results are stored in the semantic map. So, despite the results clamor for a disambigua-
tion, our lovely grandma could end up with a rugged carpet on top of her. Therefore,
it becomes clear the necessity of levering probabilistic techniques for populating and

!For the sake of simplicity only two possible object types are considered at this point.



1.1. MOTIVATION 5

maintaining semantic maps, as well as to adapt semantic representations for manag-
ing uncertain information, which would permit a mobile robot to operate in a more
coherent and efficient way.

As an illustrative example of the convenience of dealing with uncertain informa-
tion, let’s suppose an scenario where a servant robot right landed from the lab into
its new home is commanded to bring the slippers to the grandma. In the absence of
spatial information, the robot could infer (according to the loaded KB) that the most
probable location for slippers is a bedroom. During the preliminary setup, the robot
initially recognized a bedroom corresponding to the farthest room from the current
grandma location with a probability of 0.45, and 0.43 of being a kitchen?. Another
room, close to the robot location, has been recognized as a kitchen with a probability
of 0.48, and as a bedroom with 0.47. The utilization of only the most probable in-
terpretation, modus operandi of traditional, crispy semantic maps, would lead to the
exploration of the farthest room having a 45% of being the correct place, while the
consideration of both interpretations would produce the more logical plan (for the
robot battery and the grandma patience) of taking a look at the closer room first.

Although there exist numerous algorithms for the recognition of objects and/or
rooms that provide uncertainty measurements about their results, they usually work
by individually processing each spatial element according to its geometric/appearance
features. In other words, if the most probable type of an object is blanket, it is con-
sidered a blanket no matter other objects placed nearby nor its location. Nevertheless,
human-made environments are rich in contextual information worth to exploit, i.e. the
room’s layout follows a certain order, and objects are not placed randomly but fol-
lowing certain configurations according to their functionality: e.g. a remote control is
usually found close to a tv, a corridor connects rooms, or bathtubs are (as indicated by
its name) placed at bathrooms. Modeling and leveraging context is useful, for exam-
ple, to disambiguate uncertain results: following the previous example, if the object
is found into a wardrobe it would be more probably a blanket than a carpet, which
are usually lying on the floor. This kind of information can be naturally encoded in
KBs, however, its exploitation for contextual object/room recognition, also managing
uncertainties, is not straightforward.

Probabilistic Graphical Models (PGMs) have been a widely resorted tool for
modeling and exploiting contextual relations, while dealing with uncertainty. They
work with a graph-based representation, where nodes stand for random variables and
edges link variables showing some type of relation. For example, in the case of the
object recognition problem, each object in the scene is represented by a random vari-
able that takes values from the set of possible object types (table, book, couch, etc.),
and nodes whose associated objects are close to each other in the scene are linked
by an edge. This representation supports the efficient execution of probabilistic infer-
ence methods, which permit us to retrieve the scene object recognition results along
with a measure of their uncertainty. PGMs have been successfully applied to tasks

2Notice that the sum of both probabilities is 0.88. The remaining probabilities, up to a total of 1,
correspond to other possible room types: corridor, bedroom, living room. etc.
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like image denoising, natural language processing, activity recognition, etc. However,
they exhibit a number of limitations that could prevent their utilization for populat-
ing semantic maps: they become computationally intractable when the complexity of
the problem increases, i.e. the number of objects/rooms in the environment and their
types augments, they need a considerable amount of training data to tune success-
ful models, and they are unable to detect incoherent results as well as to learn from
experience.

1.2 Contributions

This thesis contributes to overcome some of the aforementioned limitations of tradi-
tional semantic maps by resorting to probabilistic techniques. Concretely, the goals
of the thesis, which resulted in the development of those techniques, were stated as:

* Development of reliable recognition methods: To provide contextual ob-
ject/room recognition algorithms able to exploit contextual relations and han-
dle uncertainty, in close synergy with KBs, also offering a number of desirable
features like scalability, efficiency, detection of wrong results, learning from
experience, etc.

* Enhancement of traditional representations to manage uncertainty: To ac-
commodate the probabilistic outcomes of such algorithms into a novel seman-
tic map representation, in such a way that a robot could have a grounded belief
about the certainty of its understanding of the surroundings, hence operating in
a coherent fashion.

Thereby, the contributions of this thesis can be grouped into two major topics:
contextual scene understanding, and semantic mapping.

1.2.1 Contributions to contextual scene understanding

The first set of contributions, presented in the papers 114} 121} 122} 1151116} (119}
117]] focuses on the scene object and/or room recognition problems. To overcome
these problems is crucial for the proper building of the semantic representations
sought. Probabilistic Graphical Models, concretely Conditional Random Fields (CRF),
are used to model those issues from a holistic stance, considering the contextual re-
lations among objects and/or rooms, and to natively deal with uncertainty. Their suit-
ability for the problem at hand has been verified through a comprehensive evaluation
of PGMs trained and exploited by the most popular learning and probabilistic infer-
ence algorithms.

These CRFs work in synergy with KBs, a mutually beneficial relationship which
permits to keep their advantages and mitigate their limitations:

* KBs provide CRFs with the capabilities to: reduce their complexity, exploit
prior information, verbalize their outcome, generate an arbitrary number of
training samples, detect incoherent results, and learn from experience.
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* CRFs enables KBs to handle uncertainty and exploit contextual relations in a
holistic and principled manner.

The developed algorithms have been compared with other cutting-edge solutions
employing state-of-the-art datasets. Additionally, a dataset consisting of 25 rooms
from our facilities, called UMA-Offices, has been collected and made public. An open-
source library, called Undirected Probabilistic Graphical Models in C++ (UPGMpp),
has been also implemented for working with PGMs paying attention to the special
requirements of software targeted at robotic applications.

1.2.2 Contributions to semantic mapping

The goal of the second group of contributions, presented in the papers [123} 118} [120],
is to accommodate the probabilistic outcome of the previous techniques into a seman-
tic map representation. For that, the so-called Multiversal Semantic Map (MvSmap)
representation has been developed. This map turns such outcome into different inter-
pretations of the robot workspace, coined universes, which are annotated with their
probability of being the true ones. This permits the robot to consider not only the most
probable universe, but other ones also showing a high probability, hence unlocking
a more coherent and efficient operation. Techniques to keep the number of possible
universes tractable in complex environments, crowded of objects and rooms, has been
also studied.

The suitability of this map as well as its capacity to efficiently handle uncertain in-
formation have been tested with a novel dataset, Robot@ Home, collected by a mobile
robot surveying a number of apartments. The Object Labeling Toolkit (OLT), publicly
available for the researcher community, has been developed to effortlessly process
datasets compounded of sequences of sensory information, such as Robot@ Home.

1.2.3 Publications

The present thesis encompasses the following publications:

Journals

e Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Building Multiversal Semantic Maps for Mobile Robot Operation. Sub-
mitted to Knowledge-Based Systems (2016).

e Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez. A
Survey on Learning Approaches for Undirected Graphical Models. Appli-
cation to Scene Object Recognition. In International Journal of Approximate
Reasoning, accepted (2016).

e Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Robot@Home, a Robotic Dataset for Semantic Mapping of Home Envi-
ronments. Submitted to International Journal of Robotics Research (2016).
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* Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Scene Object Recognition for Mobile Robots Through Semantic Knowl-
edge and Probabilistic Graphical Models. In Expert Systems with Applica-
tions, vol. 42, no. 22, pp. 8805-8816, (2015).

e Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Exploiting Semantic Knowledge for Robot Object Recognition. In Knowledge-
Based Systems, vol. 86, pp. 131-142, (2015).

Conference proceedings

e Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Probability and Common-Sense: Tandem Towards Robust Robotic Object
Recognition in Ambient Assisted Living. In 10th International Conference on
Ubiquitous Computing & Ambient Intelligence, Las Palmas de Gran Canaria,
Spain, (2016).

» Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Joint Categorization of Objects and Rooms for Mobile Robots. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Hamburg,
Germany, (2015).

e Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
OLT: A Toolkit for Object Labeling Applied to Robotic RGB-D Datasets.
In European Conference on Mobile Robots (ECMR), Lincoln, UK, (2015).

* Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
UPGMpp: a Software Library for Contextual Object Recognition. In 3rd.
Workshop on Recognition and Action for Scene Understanding (REACTS),
Valletta, Malta, (2015).

e Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Mobile Robot Object Recognition through the Synergy of Probabilistic
Graphical Models and Semantic Knowledge. In European Conference on
Artificial Intelligence, Workshop on Cognitive Robotics (CogRob), Prague,
Czech Republic, (2014).

1.3 Thesis framework

This thesis is the result of 5 years of work by the author as a member of the Machine
Perception and intelligent Robotics (MAPIR) research group?, part of the Department
of System Engineering and Automation of the University of Mdlaga. This research
has been mainly funded by the FPU (Formacion de Profesorado Universitario) grant
program, supported by the Spanish Education Ministry.

3http://mapir.isa.uma.es/
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During this period, the author successfully completed the doctoral program in Me-
chatronics Engineering, coordinated by the Department of System Engineering and
Automation, where he obtained a strong background knowledge concerning the four
fundamental pillars of robotics: control systems, electronic systems, mechanical sys-
tems, and computers. This academic education was completed with different courses,
like the “Writing in the sciences” course imparted by the Stanford University, and
with the participation in the First Orebro Winter School on “Artificial Intelligence and
Robotics”, which aimed to bring closer two fields strongly correlated like Artificial
Intelligence and Robotics. This school also made possible to meet other researchers
in the same and other related fields.

The author also completed a three months research stay at the Knowledge-Based
Systems Research Group*, of the University of Osnabriick, in 2014, under the su-
pervision of Prof. Dr. Joachim Hertzberg. During this time, research focused on the
analysis and implementation of different algorithms for efficiently handling PGMs,
as well as in their application to online object recognition in mobile robots. In this
great experience, cooperations with researchers of the group were also established.

Besides, it is also worth to mention that the author has been active in the review
process of papers/articles from prestigious conferences and journals, like in the case
of the International Conference on Robotics and Automation (ICRA, 2014, 2015,
2016), the International Conference on Intelligent Robots and Systems (IROS, 2015),
or the Association for the Advancement of Artificial Intelligence and the Intelligent
Service Robotics journals.

The FPU grant also offered the opportunity to collaborate as an assistant lecturer
with the Department of System Engineering and Automation. Concretely, the author
taught on ‘Robotics” at the faculty of Computer Science, in the University of Malaga.
He also co-supervised the bachelor thesis of a student, David Zufiga Noél, entitled
“Visual SLAM with RGB-D Cameras Based on Pose Graph Optimization”.

In addition to the research concerning this thesis, the author has been also in-
volved in other projects within the MAPIR group, some of them with related topics:

¢ TCS: Tunnel Continuous Setout (Nov’08 — Jul’11): this project focuses on
the development of a system for the automatic setting-out of tunnel sections to
be perforated. The system prototype, which takes the same name as the project,
combines a scanning device that surveys the excavation front and a laser projec-
tor that continuously displays the actual tunnel section. The most challenging
part of the project was the implementation of calibration techniques for retriev-
ing the accurate location of all the system components.

¢ ExCITE: Enabling SoCial Interaction Through Embodiment (Jul’10 —
Jun’13): The author’s role in this project was related to the development of
technical improvements for the Giraff telepresence platform: a safer and eas-
ier driving, including auto-docking to the recharging station, obstacle detection,
and displaying the robot position in a sketch map of the visited place. A robotic

4www.inf.uos.de/kbs/
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architecture called Navigation Assistant (NAS) was also implemented to fulfill
these particular needs.

e Taroth: New developments toward a Robot at Home (Jan’12 — Dec’15):
this project pursuits the three following targets: 1) improving dependability
of the robot motion, 2) integrating and exploiting semantics to improve robot
autonomy and interaction with humans, and 3) developing a robot software
architecture that can manage Ambient Assisted Living services related to en-
tertainment, domotics, social networking, safety, etc.

¢ IRO: Improvement of the sensorial and autonomous capability of Robots
through Olfaction (Jan’14 — Feb’19): the research in this project is targeted
at the investigation of mechanisms to use odor information in problems such
as object recognition and scene-activity understanding, paying special atten-
tion to the role of semantics within the robot perception and decision-making
processes, aiming to improve the robot capabilities in terms of efficiency, au-
tonomy and usefulness.

From the author’s work in these projects arose a number of additional publica-
tions:

Journals

* Javier Gonzalez-Jimenez, Vicente Arévalo, Cipriano Galindo, and Jose-Raul
Ruiz-Sarmiento. An Automated Surveying and Marking System for Con-
tinuous Setting-out of Tunnels. In Computer-Aided Civil and Infrastructure
Engineering, vol. 31, no. 3, pp. 219-228, (2016).

Conference proceedings

e David Zuiiiga-Noél, Jose-Raul Ruiz-Sarmiento, and Javier Gonzalez-Jimenez.
Deteccion de Lugares con Camaras RGB-D. Aplicacion a Cierre de Bucles
en SLAM. In XXXVII Jornadas de Automadtica, Madrid, Spain, (2016).

* Javier Gonzalez-Jimenez, Jose-Raul Ruiz-Sarmiento, and Cipriano Galindo.
Improving 2D Reactive Navigators with Kinect. In 10th International Con-
ference on Informatics in Control, Automation and Robotics (ICINCO), Reyk-
javic, (Iceland, 2013).

* Javier Gonzalez-Jimenez, Cipriano Galindo, Francisco Melendez-Fernandez,
and Jose-Raul Ruiz-Sarmiento. Building and Exploiting Maps in a Telepres-
ence Robotic Application. In 10th International Conference on Informatics in
Control, Automation and Robotics (ICINCO), Reykjavic, Iceland, (2013).

* Javier Gonzalez-Jimenez, Cipriano Galindo, and Jose-Raul Ruiz-Sarmiento.
Technical Improvements of the Giraff Telepresence Robot Based on Users’
Evaluation. In The 21st IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN), Paris, France, (2012).



1.4. THESIS OUTLINE 11

» Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Camaras basadas en tiempo de vuelo. Uso en la mejora de métodos de
deteccion de caras. In XXXII Jornadas de Automatica, Sevilla, Spain, (2011).

Technical reports

» Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Experimental Study of the Performance of the Kinect Range Camera for
Mobile Robotics. Universidad de Malaga, Andalucia Tech, Departamento de
Ingenieria de Sistemas y Automatica, (2013).

1.4 Thesis outline

Besides the introductory chapter, the remaining ones in the first part of this thesis,
Part I: Thesis description, are organized as follows:

Chapter 2: Theoretical background gives brief notions of the theory behind two
frameworks constantly resorted in this thesis: Probabilistic Graphical Models
and Knowledge Base representations, so the non-expert readers in this field
can get the basic background for a proper understanding of the next chapters.
The author has tried his best to make the reading of this chapter as pleasant as
possible.

Chapter 3: Contextual scene understanding describes the traditional approaches
followed for the recognition of objects and rooms by a mobile robot, and how
they are related to the presented contributions exploiting contextual informa-
tion. Details about the synergy of PGMs and Semantic Knowledge for scene
understanding are provided. This chapter also discusses the datasets used to
test the developed techniques, including the UMA-Offices one, as well as the
implemented software in this respect: the Undirected Probabilistic Graphical
Models in C++ library.

Chapter 4: Semantic Mapping outlines the semantic map representations tradition-
ally used in mobile robotics, and describes the thesis contribution for a repre-
sentation handling uncertain information: the Multiversal Semantic Map. The
virtues of this map have been checked against a novel dataset, Robot@ Home,
whose features are described in this chapter along with those of the software
used for its processing: the Object Labeling Toolkit.

Chapter 5: Summary of included papers lists the papers that make up the second
part of the thesis, Part II: Included papers, giving a brief description of their
content and contributions.

Chapter 6: Conclusions and future work discusses the conclusions drawn from the
work done in this thesis, as well as the research lines still open an possible ex-
tensions.
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Theoretical background

This chapter briefly covers the theory behind two frameworks that
have been essential for the research in this thesis. The first one is
Probabilistic Graphical Models, used to holistically model the ob-
Jject and/or room recognition problems from a probabilistic stance.
The second framework is Knowledge Bases, employed to encode Se-
mantic Knowledge of the domain at hand for its posterior exploita-
tion with different purposes. The synergy between both frameworks
enables the design of sophisticated techniques to manage semantic
maps.

2.1 Probabilistic Graphical Models

Probabilistic Graphical Models (PGMs) [63} [12] suppose a widespread framework
from the Machine Learning field to efficiently model and exploit contextual relations,
aiming to predict multiple, somehow dependent, random variables. These models
are usually employed to deal with complex systems that involve uncertainty, which
mainly arises from the limitations on the motion and sensory systems of the robot.

PGMs rely on a graph representation G = (V, E), where the set V represents the
random variables of the problem as nodes, while the edges E C V x V relate variables
that are dependent in some way. This graph-based representation permit PGMs to
compactly encode complex distributions over high-dimensional spaces, and to sup-
port the execution of probabilistic inference techniques for the prediction of the vari-
able values. Thus, PGMs are strongly based on principles from graph theory and
probability theory.

13
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Figure 2.1: a) Graph representation of the MRF happiness model. b) Factors defined over such
a graph. ¢) CRF representation including measures about different aspects.

PGMs have been successfully applied to a variety of domains like medicine, com-
puter vision, robotics, etc. Depending on the types of edges, PGMs can be grouped
on Directed or Undirected models. On the one hand, Directed Graphical Models, also
called Bayesian Networks (BNs) [98]], model the dependencies among nodes through
directed edges, encoding causality relations. These models have been utilized with
notable success in problems like medical diagnosis [84], biology [159], weather fore-
casting [1]], or robotic localization and map building [[14]. On the other hand, Undi-
rected Graphical Models (UGMs), also called Markov Random Fields (MRFs) [63]],
employ undirected edges to define symmetric relations among random variables. This
approach has reached a remarkable success in computer vision [S0].

The choice between BNs and MRFs largely depends on the target application,
since they are able to encode different types of dependencies (e.g. BNs can define
induced dependencies, while MRFs are able to represent cyclic dependencies). In the
case of the object/room recognition problem, the more suitable framework is such of
MRFs, since the nature of the relations among objects and rooms is symmetric, and
they can also exhibit loops, which are non trivial to model within the BNs frame-
work. In its turn, the discriminative variant of MRFs, called Conditional Random
Fields (CRFs) [70]], are more appropriate in classification problems where the ran-
dom variables are conditioned to observed data [59, 169]]. The next section shows an
example to illustrate the differences among these models.

2.1.1 The happiness example

Let’s suppose the family formed by Bob, Sophie, and Alice presented in the intro-
ductory chapter, and a mobile robot with the goal of modeling their happiness state
through a MRF. As human beings, we empathize with each other, and we are di-
rectly affected and affect the well-being and emotional state of our relatives, so it
makes sense to take into account these relationships when trying to predict the hap-
piness state of a person. PGMs model this in a principled way. Figure 2.1-a) shows
the graph representation exemplifying the relations among the happiness state of each
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family member, also including our lovely grandma, called Tess, who have nice con-
versations with Bob in the elevator. From this representation it can be inferred that
the happiness of Alice, Bob, or Sophie directly influences the feelings of the other
family members, while Tess has only influence and is influenced by Bob.

At this point, instead of modeling the whole probability distribution P(y) (with
y = [A,B,S,T]), MRFs break it down into smaller pieces through the utilization of
factors, i.e. functions defined over different parts of the graph. The first row of Fig-
ure 2.1-b) shows factors defined over the nodes of the graph, which are commonly
called unary factors, stating the likelihood of these nodes to take certain values. Let’s
simplify the happiness of a person to two possible states, unhappy (0) and happy (1).
Having a closer look at these factors, we can see for example that Alice is more prob-
able to be happy than Tess. In its turn, the second row shows factors defined over pair
of nodes, called pairwise factors, that set the likelihood about those nodes taking a
certain values combination. The defined factors tell us that Bob, Alice and Sophie are
prone to share their happiness, and although Bob and Tess are also inclined to have
the same state, this influence is weaker. The values defined in a factor have not to sum
up 1, since they are not probabilities.

Exhaustively defining P(y) in this toy example requires the codification of 2* = 16
probabilities. In this case, the MRF codification through factors does not save so
much work, however, in more realistic scenarios with dozens, hundreds or thousands
of random variables their utilization becomes crucial to keep the problem tractable.
For example, a scenario with 20 binary random variables entails the definition of
220 ~ 10° probabilities.

Thus, according to the Hammersley-Clifford theorem [48]], the probability P(y)
can be factorized over the graph G as a product of factors ¢ (-):

p(y) = %Hmm @n
ceC
where C is the set of maximal cliques' of the graph G, and Z(-) is the so-called
partition function that plays a normalization role so Y¢y) p(y) = 1, being &(y) a
possible assignment to the variables in y. Therefore, the computation of the partition
function is needed for computing the probability of a given assignment.

This way to define factors is rigid and naive: the happiness of a person can hardly
be modeled by writing in stone his tendency to be happy, and it is additionally influ-
enced by a number of (hopefully measurable) daily aspects: the sleeping hours, the
success at work, hours spent with family and friends, etc. These aspects could be also
included in the MRF graph as additional random variables, although the modeling of
their probabilities and relations tend to be needlessly complex. Conditional Random
Fields (CRF) [70] avoid the need to model them by conditioning the probability dis-
tribution over y to the values of these aspects, referred to as features. Thus, a CRF

'A maximal clique is a fully-connected subgraph that can not be enlarged by including an adjacent
node.
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works directly with the distribution p(y | x), where x is the vector of observed fea-
tures. Figure 2.1-c) shows the graph representation of a CRF considering this infor-
mation. Additionally, instead of defining by hand the factors for each possible content
of x, they are parametrized through a vector of weights 0 that are learned during the
training phase of the CRF. Thus, the probability p(y | X) can be retrieved by:

1

Py I%:0) = 71 gy L1000 22)
The parametrized factors can be formulated in different ways depending on the
application. For example, in recognition problems, unary factors are often defined as
Ou(yi,xi,0) = Y1 6(yi = 1)0;f(xi), where f(x;) computes a vector of features that
characterizes the object x; (e.g. size, shape, color, etc.), 6; is the vector of weights
for the class ! obtained during the training phase, and d(y; = [) is the Kronecker
delta function, which takes value 1 when y; = [ and O otherwise. Pairwise factors
are defined in a similar way, but considering a function that computes a vector of

contextual features (e.g. difference of color, difference of orientation, etc.).

2.1.2 Learning the models

Training a CRF model for a given domain requires estimating the parameters 6, in
such a way that they maximize the likelihood in Eq.2.2 with respect to a certain i.i.d.
training dataset D = [d',...d"], that is:

meaxL[,(G :D) = mglxgp(yi |x';0) (2.3)

where each training sample d' = (y,x’) consists of a number of observed features
from the elements of the problem at hand (x), the people whose happiness is to be
estimated in our example, and the corresponding ground truth information about their
classification (y’), i.e. if they are happy (1) or not (0).

The optimization in Eq.2.3 is also known as Maximum Likelihood Estimation
(MLE), and requires the computation of the partition function Z(-), which in practice
is NP-hard, hence an intractable problem. Two major approaches stand out to over-
come this concern: (i) the definition of alternative, tractable objective functions, or (ii)
the estimation of the likelihood by approximate inference algorithms [68. 66, 96]. The
performance of methods from both options highly differs depending on the domain
of the problem at hand, i.e. the nature and internal structure of the data to work with.
Therefore, for a certain application, a thorough study is needed in order to obtain a
successful model, which motivates the analysis described in Chapter 3.

2.1.3 Probabilistic inference

Once a CRF is trained, and its graph representation modeling a given problem is built,
it can be exploited by probabilistic inference methods to perform different probability
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queries. At this point, two types of queries are specially relevant: the Maximum a
Posteriori (MAP) query, and the Marginal query. The goal of the MAP query is to
find the most probable assignment ¥ to the variables iny, i.e. :

¥ =argmaxp(y | x;0) (2.4)
y

Once again, the computation of the partition function Z(-) is needed, but since
given a certain CRF graph its value remains constant, this expression can be simplified
by:

§ = argmax I;exp(<¢(xc,yc),9>) (2.5)
Nevertheless, this task checks every possible assignment to the variables in y, so
it is still unfeasible for real applications. An usual way to address this issue is the uti-
lization of approximate methods, like the max-product version of Loopy Belief Prop-
agation (LBP) [[150], Iterated Conditional Models (ICM) [[L1], or Graph Cuts [15].
On the other hand, the Marginal query, which can be performed by, for example,
the sum-product version of LBP [155]], provides us beliefs about the possible assig-
nations to the variables y. In other words, this query yields the marginal probabilities
for each element taking different values, as well as the compatibility of these assign-
ments with respect to the values of contextually related elements. Notice that the most
probable MAP assignment to a random variable can differ from the highest marginal
probability. Additionally, with this query is also possible to estimate the probability
of a certain assignment to the variables in y.

2.2 Knowledge bases

Knowledge base (KBs) is the term used in Artificial intelligence (Al) to describe one
of the two parts of a knowledge-based system, which is in charge of encoding seman-
tic or common-sense knowledge about a particular domain in a computer-readable
fashion. The other system part is a reasoning engine able to infer new information or
detect inconsistencies in the KB. In the happiness example, a KB could encode the
types of relations among persons, the different factors that affect their happiness, etc.
(see Section 2.2.2), which are typically modeled through Ontologies. Knowledge-
based systems have been a pivotal component for semantic mapping, as they permit
a mobile robot to perform efficiently according to the information collected from the
environment.

2.2.1 Ontologies

An Ontology is commonly defined as a representation of a conceptualization related
to a knowledge domain, which accounts for a number of concepts arranged hier-
archically, relations among them, and instances of such concepts, also called indi-
viduals [144]]. Example of concepts could be Person or Happiness, while Person
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Figure 2.2: Hierarchy of concepts for the happiness domain.

hasState Happiness could be a relation stating the happiness of a person. Thus,
the happiness of Bob, an individual of the concept Person, could be codified by Bob
hasState Happy.

The process of obtaining and codifying Semantic Knowledge can be tackled in
different ways. For example, web mining knowledge acquisition systems can be used
as mechanisms to obtain information about the domain of discourse [[158]]. Available
common-sense Knowledge Bases, like ConceptNet [[134] or Open Mind Indoor Com-
mon Sense [46], can be also analyzed to retrieve this information. Another valuable
option is the utilization of internet search engines, like Google’s image search [29]],
or image repositories like Flickr [99], for extracting knowledge from user-uploaded
information. Semantic Knowledge can be also codified through an human elicitation
process, which supposes a truly and effortless encoding of a large number of concepts
and relations between them. In contrast to online search or web mining-engine based
methodologies, this source of semantic information (a person or a group of people) is
trustworthy, so the uncertain about the validity of the information is reduced [119].

2.2.2 Happiness from an Ontological stance

Figure 2.2 shows an example of hierarchy of concepts from an Ontology modeling
the happiness domain. The root concept is Thing, with 5 children codifying infor-
mation about: the possible states of happiness, the person concept itself, different
types of relationships among people, possible aspects that affect happiness, and mea-
surements of those aspects. Using this Ontology, one can define, for example, that a
happy person has a Good SleepTime, Success at work, and LeisureTime. Thus, if
a Person shows these properties, a logical reasoner, like Pellet [[133]], FaCT++ [[143]],
or Racer [47]], can be used to automatically infer that such a person is happy.
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Contextual relations among concepts or instances can be also defined. For ex-
ample, Bob hasFamilyRealtion Alice sets that Bob and Alice are relatives. This
way of inferring crispy information and defining crispy relations and properties, al-
though useful in some domains, has limitations. The major one is the lack of mech-
anisms to manage uncertainty or providing beliefs about the inference results, which
prevent its application to problems where their consideration is a must.
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Contextual scene understanding

This section deals with the developed techniques for contextually
recognizing objects and rooms. After an introduction, it discusses
the related work that can be found in the literature, describes the
datasets used as a testbed to evaluate such techniques, and con-
cludes with the description of the contributions done in this regard.

3.1 Introduction

The ability to be aware of the objects and rooms in the robot surroundings, as well
as of their types, is vital for a successful robot operation. Object/room recognition
techniques are core components of semantic mapping systems, which are in charge
of yielding the type of the spatial elements captured by the robot sensory system. As
a consequence of this, a number of recognition approaches have been proposed for
populating semantic maps.

Recognition methods often rely on RGB, and more recently on RGB-D informa-
tion to perceive the robot environment and process the spatial elements therein. For
that, the captured images are segmented into such spatial elements, which are indi-
vidually processed in order to retrieve their type, e.g. counter, cabinet, microwave,
kitchen, bathroom, etc., through a number of appearance and/or geometric features.
The utilization of RGB and depth information entail a number of challenges as chang-
ing lighting conditions, cluttered room layouts, occlusions, or changing viewpoints,
which can produce ambiguous recognition results. Recognition techniques also face
other sources of uncertainty, like those coming from the own sensory system (e.g. sen-
sor noise) or from the defined models. Given the effect that ambiguous recognition
results stored in a semantic map may have on the robot operation (recall the lovely

21
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grandma and the carpet), recognition techniques integrated into these systems have to
tackle them.

In the works that conform this thesis a number of recognition techniques that
address this uncertainty issues have been proposed, also striving to decrease the am-
biguity of the recognition results by exploiting contextual relations. PGMs are em-
ployed for that, in close cooperation with KBs in the form of Ontologies in order to
enhance their performance. These techniques are also able to provide a measure about
the uncertainty of their results, which is crucial for the semantic mapping framework
presented in the next chapter.

3.2 Related work

A vast literature exists around the recognition of objects and/or rooms. This section
starts by briefly discussing traditional approaches addressing this issue, and the good
reasons for contextually modeling these problems. Then, popular works exploiting
context through PGMs are presented, as well as some alternatives exploring the uti-
lization of Semantic Knowledge. Finally, the datasets applicable to the evaluation of
the proposed recognition techniques are reviewed, as well as related software appli-
cations.

Traditional scene object/room recognition

Scene object recognition is a widely studied topic in computer vision and robotics.
Recognition systems have traditionally relied on the features of the objects/room like
their geometry or appearance due to their acceptable performance. Regarding ob-
ject recognition, a popular example is the work by Viola and Jones [146], where an
integral image representation is used to encode the appearance of a certain object cat-
egory, and is exploited by a cascade classifier over a sliding window to detect the oc-
currences of such object type in intensity images. Another well known approach is the
utilization of image descriptors, like Scale-Invariant Feature Transform (SIFT) [[74]],
Speeded-Up Robust Features (SURF) [64]], or Local Binary Pattern (LBP) [20], to
capture the appearance of objects, and its posterior exploitation by classifiers like
Supported Vector Machines (SVMs) [100] or Bag-of-Words [85, [52]]. Other works
study the automatic learning of low level features, e.g. using neuronal networks, as is
the case of Bai et al. [8]. The work by Zhang et al. [157] provides a comprehensive
review of methods following this approach.

On the other hand, a considerable number of works also tackle the room catego-
rization problem through the exploitation of their geometry or appearance, like the
one by Mozos et al. [80] which employs range data to classify spaces according to
a set of geometric features. Also popular are works resorting to global descriptors
of intensity images, like the gist of the scene proposed by Oliva and Torralba [91]],
those resorting to local descriptors like the aforementioned SIFT and SURF [6} 81],
or the works combining both types of cues, global and local, pursuing a more robust
performance [149, 101].
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Despite the success of local recognition systems for certain applications, their
integration into mobile robots arises a number of additional issues to be tackled
[[L19L193]]. One of the most significant ones is the fact that they can lead to ambiguous
recognitions, i.e. they are prone to fail in identifying classes with similar features, as
analyzed in [92, (19, [38} [115]]. This is mainly due to only relying on features of the
objects/rooms themselves, disregarding valuable contextual information that is also
available. Therefore, a significant, growing body of current research aiming to over-
come this issue is considering contextual information of the scene objects in addition
to their usually employed individual features. Some works have attempted to exploit
this information by providing ad-hoc or preliminary solutions, like in [78], where
the co-occurrence of objects appearing in distinct types of rooms are implicitly mod-
eled. However, these works lack a consistent theoretical background, compromising,
among others, their comparison, generalization, re-usability, or scalability. Moreover,
their output consists of a set of objects’ labels, which do not carry any semantic infor-
mation profitable by high-level Al robotic components. Well grounded alternatives
for modeling/exploiting contextual relations are Probabilistic Graphical Models and
Semantic Knowledge, whose combination is exploited in this thesis with the goal of
mitigating their drawbacks and boosting their virtues.

Contextual Recognition through PGMs

Probabilistic Graphical Models (PGMs) in general, and Undirected Graphical Models
(UGMs) in particular, have became popular frameworks to model and exploit contex-
tual relations in combination with probabilistic inference methods [65]. Contextual
relations can be of different nature, involving objects and/or rooms. On the one hand,
objects are not placed randomly within the robot workspace, but following config-
urations that make sense from a human point of view, e.g. carpets are on the floor,
remote controls can be found close to televisions, and pillows are normally placed on
beds. The earliest works using this information were based on intensity information
of the scene, like [[152]], where the context between pixels in a given RGB image is
modeled by a discriminative Conditional Random Field (CRF). Another work, also
relying on intensity images, is the presented in [106] that proposes a CRF framework
that incorporates hidden variables for part-based object recognition. The work in [[79]]
also builds part-based models of objects, and represents their interrelations with a
PGM. More recent is the work presented in [33] which employs stereo intensity im-
ages in a CRF formulation. Three-dimensional information from stereo enables the
exploitation of meaningful geometric properties of objects and relations. However,
stereo systems are unable to perform on surfaces/objects showing an uniform inten-
sity, which can negatively affect the recognition performance.

With the emergence of inexpensive 3D sensors, like Kinect, a new batch of ap-
proaches have appeared leveraging the dense and relatively accurate data provided by
these devices. For example, the work presented in [4] builds a model isomorphic to a
Markov Random Field (MRF) according to the segmented regions from a scene point
cloud and their relations. The authors did the tedious work of gathering information
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from 24 office and 28 home environments, and manually labeled the different object
classes. Interestingly, it is shown in [111] that the accuracy of a MRF in charge of
assigning object classes to a set of superpixels increases as the amount of available
training data augments. In [145] a meshed representation of the scene is built on the
basis of a number of depth estimates, and a CRF is defined to classify mesh faces.
CREFs are also used in [60] and [[154], where Decision Tree Fields [87] and Regres-
sion Tree Fields [56] are studied as a source of potentials for the PGM. The CRF
structure for representing the scenes in [[154] is similar but less expressive than the
one presented here. In that work, a CRF is used to classify the main components of a
facility, namely clutters, walls, floors and ceilings.

On the other hand, object-room relations also supposes a useful source of infor-
mation: objects are located in rooms according to their functionality, so the presence
of an object of a certain type is a hint for the categorization of the room and, like-
wise, the category of a room is a good indicator of the object categories that can
be found therein. Thus, recent works have explored the joint categorization of ob-
jects and rooms leveraging both, object—object and object—room contextual relations.
CRFs have proven to be a suitable choice for modeling this holistic approach, as it
has been shown in the works by Rogers and Christensen [113]] or Lin et al. [73].

Despite their virtues, PGMs shows a number of drawbacks, like the necessity of
large and comprehensive datasets for training, their high complexity when modeling
real world problems, or their inability to detect incoherent results and learn from
experience. The contributions in this section aim to mitigate those issues with the
utilization of Semantic Knowledge.

Semantic Knowledge for modeling context

A different trend in the literature resorts to Semantic Knowledge for both recogniz-
ing objects and exploiting their contextual information. For example, the work de-
scribed in Giinter et al. [45]] codifies contextual information in an Ontology, combined
with a set of rules defined with the Semantic Web Rule Language [53]], to generate
objects’ candidate classes. These hypotheses are subsequently validated through a
matching process with CAD models. Another example is presented in Niichter and
Hertzberg [88], which defines a constraint network in Prolog to classify the main
structural surfaces of buildings, i.e. walls, floors, ceiling and doors, using contextual
relations like orthogonal, parallel, above, etc. In Galindo et al. [33]], data codified
into an Ontology about scene objects and their relations are used to infer new high-
level information. The work introduced by Durand et al. [21] recognizes segmented
regions that have been previously characterized through a set of features in RGB
images. These features are defined in an Ontology, and their usual values for the dif-
ferent object types are learned by symbolic supervised machine learning tools. In this
case, a specific procedure matches characterized regions with semantically defined
concepts, but although the authors propose the use of contextual relations, they are
neither defined nor exploited. An Ontology is also used in Maillot ef al. [25]] for the
recognition of isolated objects and their subparts, which manually establishes the as-
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sociation between geometric features and numeric values. This Ontology is populated
through machine learning techniques like Perceptrons and Support Vector Machines.

A common characteristic of these approaches based on Semantic Knowledge is
that they show limitations in quantifying the uncertainty of their results, and in ex-
ploiting the encoded contextual relations. The presented contributions face these is-
sues through collaboration with a CRF, which provides the mobile robot with a recog-
nition system endowed with a probabilistic inference mechanism, able to manage
uncertainty and adequately exploit contextual relations.

Related software applications

Most contextual-based object recognition works rely on an ad-hoc implementations
of both the PGMs framework and inference algorithms [4} 111,145 154]]. This makes
it difficult to conduct a fair comparison between state-of-the-art works, even when
they report results resorting to the same dataset. There are some publicly available
software libraries implementing this framework [89] [129], but they are not suited
for the contextual object recognition problem (e.g. they only handle chain-structured
models), or their applicability to this issue is limited. Regarding Semantic Knowl-
edge related applications, there exist a number of mature software for codifying and
managing this information in Ontologies, as is the case of Protége [43] or Fluent Ed-
itor [[17], as well as logical reasoners like Pellet [[133]], HermiT [41], FaCT++ [143]],
or Racer [47].

Applicable RGB-D datasets

The irruption of proposals exploiting RGB-D information has been accompanied
with public datasets that offer common benchmarking resources for comparing these
works. Among them we can find Berkely-3D [S7]], Cornell-RGBD [5], NYUv1 [[130],
NYUv2 [131], TUW [3], SUN3D [153], or ViDRILO [/5]. Specially popular are
Cornell-RGBD, which is employed in several works aforementioned [4} 60, 54]], and
NYUvV2 used in [151, 1191116, [117]. The next section reports the datasets employed
in this thesis.

3.3 Testbed

Three datasets containing RGB-D information have been used to assess the perfor-
mance of the contributions in this chapter: UMA-Offices [[119], NYUv2 [131] and
Cornell-RGBD [5]. This section briefly describe the last two datasets, while details
about UMA-Offices are provided in Section 3.4.1.

NYUv2 contains a total of 1,449 labeled pairs of both intensity and depth images,
and has been extensively used in the literature (e.g. [151L 1119, 116l |117]) due to its
challenging, cluttered scenes from commercial and residential buildings. Although
the number and type of objects and rooms we have considered differs from one work
to other, typically 208 scenes corresponding to home facilities have been employed,
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as well as 24 object categories appearing in such environments, e.g: bottle, cabinet,
counter, faucet, floor, mirror, sink, toilet, towel, table, sofa, book, etc. It is worth to
mention that the provided images only capture a portion of the scene, so the contained
contextual relations are somehow limited. An evidence of this is given by the total
number of extracted relations, 1,345, when compared with the number of objects,
1,295. This is an average of 6.25 objects and 6.47 relations per scene.

The Cornell-RGBD repository has 24 labeled office scenes and 28 home labeled
scenes built from the registration of RGB-D images. As opposed to NYUv2, the pro-
vided data inspect a larger portion of the scene, resulting in a richer set of available
contextual information. This feature has motivated its utilization in a variety of works
(e.g [4,160,154])). As before, the home scenes have been selected, which sum up a total
of 764 object instances and 2,911 contextual relations among them, averaging 27.29
objects and 103.96 relations per scene. We have used the same 17 categories as in the
work that presented this dataset [4]].

3.4 Contributions

This section describes the developed techniques for an object/room recognition frame-
work through the synergy of PGMs and Semantic Knowledge. It starts with the de-
scription of the UMA-Offices dataset, specially collected for testing such techniques,
and continues with an overview of the Undirected Probabilistic Graphical Models in
C++ library, implemented for efficiently handling PGMs in robotic applications, as
well as an analysis of PGM learning strategies. Then, a brief review of those tech-
niques is provided, along with references to papers and online resources with further
information.

3.4.1 UMA-Offices dataset

Office facilities are one of the typical application domains for mobile robots. To
test the developed techniques in such environments, the UMA-Offices dataset, com-
pounded of 25 office scenes from the University of Mdlaga, has been collected. Sen-
sory data included in this dataset was acquired by Rhodon, a mobile robot endowed
with an RGB-D device mounted on a Pan-Tilt unit, which permits it to perceive the
world from a human-like point of view (see Figure 3.1-left). In this repository, the
plane-based mapping algorithm by Fernandez-Moral et al. [31] was used to build a
3D representation of the scenes (see Figure 3.1-right), as well as to extract planar
patches characterized through a number of features (e.g. size, orientation, position or
contextual relations). In total, 170 object instances were labeled from the following
categories: floor, wall, table top, table side, chair back rest, chair seat, and computer
screen. Table 3.1 lists the features of this and the other two datasets used as testbeds.
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RGBD camera

Figure 3.1: Left Rhodon robot from the MAPIR Group capturing RGB-D images from an
office. Right, two point clouds from the UMA-Offices dataset.

Table 3.1: Principal characteristics of the three discussed datasets, UMA-Offices, NYUv2 and
Cornell-RGBD.

Properties Dataset UMA-Offices NYUv2 Cornell-RGBD
#scenes 25 208 24
#obj. categories 7 24 17
#objects 170 1,345 764
#relations 305 1,295 2911
mean #objects 6.8 6.25 27.29
mean #relations 12.2 6.47 103.96
type of objects planar surfaces  arbitrary shapes arbitrary shapes

3.4.2 The UPGMpp library

The study of the software used by state-of-the-art recognition methods employing
CRFs arose the lack of public solutions especially focused and optimized for that
goal. The utilization of efficient software is a must, since the computational resources
in typical robotic platforms are limited given the different modules of the robotic
architecture (navigation, localization, etc.) that compete for them.

For that reason, the Undirected Probabilistic Graphical Models in C++ library
(UPGMpp, see Figure 3.2) has been developed as open-source ! for the efficient build-
ing, training and managing of undirected PGMs. Its main features are:

¢ It works with discrete random variables.

* Handles first order (local or unary) and second order (pairwise) relations.

Thttp://mapir.isa.uma.es/work/upgmpp-library
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1 1PGMpp

Figure 3.2: UPGMpp logo.

* Nodes (random variables) of different types can appear and interact in the same
PGM (for example, nodes representing objects, rooms, facilities, etc.).

¢ If the value of a random variable is known, such an evidence can be considered.

* It supports PGMs with an arbitrary structure (including graphs with loops).

UPGMpp is fully implemented in C++, and resorts to the also open-source project
libLBFGS [82] for performing numerical optimization, and to the Eigen library [44]
for fast matrix operations. Boost library [128]] is used to avoid unnecessary re-copy
of data across the implemented methods by means of shared smart pointers. This
library is also employed for serialization purposes, which adds the possibility of stor-
ing/loading graphs from/to files, enabling the long-term life of PGMs beyond exe-
cution time. Additionally, the Open Multi-Processing API (OpenMP) [94] was em-
ployed to speed-up the execution of a number of algorithms through parallelization
techniques. Further implementation information and other details can be found in the
work by Ruiz-Sarmiento et al. [115]], which is included in this thesis.

The methods currently available for managing Undirected PGMs are:

Maximum a Posteriori (MAP) inference: Iterated Conditional Modes (ICM) [11]],
Greedy ICM, Exact Inference, Loopy Belief Propagation (LBP) [150], Tree
Reparametrization Belief Propagation (TRBP) [148]], Residual Belief Propaga-
tion (RBP) [24], a-expansions and ¢¢-f8 Swaps Graph Cuts [15].

Marginal inference: (sum-prduct) Loopy Belief Propagation [155], Tree Reparametriza-
tion Belief Propagation [148]], Residual Belief Propagation [24].

Learning objective functions: Pseudo-likelihood [11]], Score-matching [S5]], Piecewise-
likelihood [[136}[135]], Marginal-based approximation [68]], MAP-based approx-
imation [65]].

Learning optimization methods: Stochastic Gradient Descent (SGD) [83]], quasi-
Newton Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [86].

As a proof of the efficiency achieved by the library, and as reported in [115], dif-
ferent inference methods were executed on scenes from the NYUv2 dataset, which av-
erages 6.25 objects and 6.47 contextual relations per scenario (see Table 3.1), reach-
ing the ICM inference method a mean execution time of 0.46ms, the LBP one 2.16ms,
and the o-expansions method 7.78ms.
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3.4.3 Testing CRF learning approaches

The learning and probabilistic inference methods implemented in UPGMpp have
been successfully applied to a variety of problems, however, their performance highly
depends on the peculiarities of the application domain [68,166,96,132]]. A study of this
for the scene object recognition result was missing in the literature, so this gap was
covered through an empirical analysis of the most popular strategies. Concretely, two
families of objective functions have been explored: pseudo-likelihood, and approxi-
mate inference algorithms, including Marginal and Maximum a Posteriori methods:
sum-product and max-product LBP, ICM, and Graph-cuts. Two approaches for the
optimization of such objectives are also considered: SGD, and L-BFGS.

As a testbed for the conducted analysis the indoor home scenes from the NYUv2
and Cornell-RGBD were employed, with particular features worth to explore: while
NYUv2 comprises a high number of labeled images (we have used 208 from home
environments) that capture the objects and relations from portions of scenes, Cornell-
RGBD provides a lower number of scenes (28 from homes) but fully covering the
inspected place, similarly to the contributed UMA-Offices dataset, which results in a
considerably larger number of perceived objects and relations.

The conducted study focused on two facets of the learning methods: the recogni-
tion performance of the trained CRFs, and the required computational time. To mea-
sure the CRFs performance different MAP inference methods were executed over
the learned models, and their recognition results compared with the ground-truth in-
formation provided by the datasets. The computational time needed by each learning
method to converge was also analyzed, studying the advantage of parallelization tech-
niques. Finally, the scalability of the learning methods according to different factors
was also studied.

Briefly, the conducted study yielded the following conclusions, which greatly help
in deciding the learning strategy to be chosen and the configuration according to the
target application (for a complete conclusions’ list, please refer to [121]]):

* CRF models learned from Cornell-RGBD data were more prone to over-fit
their parameters than those working with NYUv2. This is due to the higher
complexity of the scenes from the Cornell-RGBD.

¢ The Marginal inference — SGD strategy yielded the highest recognition perfor-
mance in both datasets: 79.85% in NYUv2 and 67.27% in Cornell-RGBD.

e The PL — L-BFGS strategy was the most robust, providing acceptable results
in all the CRF configurations studied.

* LBP was the winning method for testing, reaching the best results when dealing
with CRFs with edges and normalized features.

e In general, the computational time is reduced, ranging from the 24.43s. (on
average) with the PL — SGD strategy, up to the 71.03s. with the Marginal infer-
ence — SGD one.
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* L-BFGS and SGD benefited from parallelization techniques in OpenMP, achiev-
ing a speed-up factor of ~ 3.5 for PL — L-BFGS, and ~ 5 for Marginal inference
-— SGD using 8 CPU-cores.

Concerning the scalability of the studied strategies, it has been analyzed how the
utilization of different number of training samples and object categories affect their
performance. These experiments reported that the computational time required for
learning scales considerably better in both cases when PL — L-BFGS was used, being
its growth even sub-linear in some cases. Regarding recognition success, the Marginal
inference — SGD option achieved the best outcome.

3.4.4 Exploiting Semantic Knowledge for CRF learning

PGMs in general, and CRFs in particular, need a vast amount of training data in or-
der to reliably encode the gist of the domain at hand. However, the collection of that
information is an arduous, time-consuming, and — in some domains — an intractable
task that consists of moving the robot from one scene to another, gathering the data,
and post-processing it accordingly to the type of information expected by the training
algorithms. To face this issue, a framework to codify Semantic Knowledge through
human elicitation in an Ontology has been developed, defining the domain object
classes, their properties, and their relations. The result is used to generate an arbitrary
number of training samples for tuning CRFs. These training samples reify prototypal
scenarios where objects are represented by a set of geometric primitives, e.g., planar
patches or bounding boxes, that fulfill certain geometric properties and relations, like
proximity, difference of orientation, etc. This approach exhibit a number of advan-
tages:

e It eliminates the usually complex and high resource-consuming task of col-
lecting the large number of training samples required to tune an accurate and
comprehensive model of the domain.

* Ontologies are compact and human-readable knowledge representations. In
that way, extending the problem with additional object classes is just reduced
to codify the knowledge about the new classes into the Ontology, generate
synthetic samples considering the updated semantic information, and train the
CREF. This process can be completed in a few minutes, in contrast to the time
needed for gathering and processing real data.

* The recognized objects are anchored to semantically defined concepts, they
hence can be straightforwardly incorporated to a semantic map for performing
high-level tasks [36, 34} 18].

Thus, the proposed framework follows a top-down methodology (see Figure 3.3).
The design starts with the definition of an Ontology for the knowledge domain at
hand, e.g. an office environment, through human elicitation, stating the typical ob-
jects, their geometrical features, and relations. Then, the encoded Semantic Knowl-
edge is used for generating sets of synthetic samples, which replace the real datasets
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Figure 3.3: Overview of the developed framework for object recognition. The shadowed area
delimits the proposed components for the generation of training samples. Boxes represent pro-
cesses, whereas ovals are generated/consumed data (taken from [116]).

required for training through an algorithm that performs an arbitrary number of times
the following steps:

1. Inclusion of objects in the scene. The set of objects that appears in the syn-
thetic scene is selected according to their frequency of occurrence codified
within the Ontology.

2. Object characterization. The geometrical features of the objects included in
the previous step, e.g. area, centroid height, elongation, orientation, etc. are
reified according to their concepts’ definitions in the Ontology.

3. Context creation. The contextual relations between the included objects are
established.

4. Context characterization. Different features of those relations are computed,
adding valuable contextual information. Examples of these features are: dif-
ference between centroid heights, perpendicularity, difference between areas,
areas ratio, difference between elongations, etc.

Once the CRF is trained (recall Section 2.1.2), it is integrated into an object recog-
nition framework that works following a bottom-up stance (see Figure 3.3). During
the robot operation, a plane-based mapping algorithm [31]] extracts planar patches,
which are characterized through a number of features, e.g., size, orientation, posi-
tion or contextual relations. These characterized planar patches feed a probabilistic
inference process that yields the recognition results (recall Section 2.1.3).

The results obtained in the conducted evaluations achieved a recognition success
of ~ 90% within the UMA-Offices dataset (see Figure 3.4), and of ~ 81% and 69.5%
using office and home scenes from the NYUv2 dataset respectively, revealing that
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Figure 3.4: Examples of scene object recognitions performed by the proposed framework.
Left column, observed scenes from th UMA-Offices dataset with the detected planar patches
delimited by yellow lines. Right column, recognition results of such scenes (see [[116]).

Semantic Knowledge can be exploited for the suitable training of recognition systems.
This approach was also compared with other state-of-the-art approaches based on
CREFs, like [[154], yielding a substantial improvement.

A number of additional, related issues were also addressed:

» The discriminant capability of different sets of contextual features was studied,
showing their positive effect on the system performance.

* The relation between the size of the training datasets and the system perfor-
mance was analyzed, obtaining the expected conclusions [[L11]]: the larger and
the more comprehensive the dataset is, the better the system outcomes are.

* It was also reckoned the computational efficiency, evidencing the suitability of
the proposed system for real time robotic applications.
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* It was analyzed the time saving gained with the use of human elicitation plus
synthetic samples generation processes, resulting 20 times lower than the time
spent in collecting real data from the UMA-Offices dataset.

Please refer to [[116]] for further information about the developed framework, its
evaluation, and the reached conclusions.

3.4.5 Including rooms into the equation

The spatial awareness needed by the robot to accomplish high-level tasks must ac-
count for the existing close relations among not only objects, but also their typical
locations. Thus, the robot should not only tackle the object recognition problem, but
also the room recognition one, i.e. to infer the type of space where it is.

Recent publications (e.g. [73} [113]]) have shown that the joint modeling of these
problems can outperform other methods that address them separately [28 [16} (90,
107, [105]]. Holistic approaches exploit the fact that objects are located in rooms ac-
cording to their functionality, so the presence of an object of a certain type is a hint
for the recognition of the room [[147} [102} 26]. Likewise, the category of a room is
a good indicator of the object types that can be found inside [142]. Besides, objects
are not placed randomly, but following configurations that make sense from a hu-
man perspective [114} 4} [154]. Thereby, the exploitation of these object-object and
object-room contextual clues provides recognition methods with useful information.

For leveraging this information, the framework presented in the previous sec-
tion has been extended to also consider rooms, recognizing them through the ex-
ploitation of their contextual relations. For that, Semantic Knowledge about rooms
was codified into the Ontology through human elicitation (see Figure 3.5-top). Fig-
ure 3.5-bottom shows the definition of the concept Microwave within such Ontology,
where we can see, for example, that their orientation is usually horizontal, or that they
can be found in kitchens. This Ontology and other resources are available online at:
http://mapir.isa.uma.es/work/objects-rooms-categorization.

The CRFs employed were also modified in order to consider random variables of
different types, e.g. taking values from different object types, or from a set of room
types, as well as contextual relations of different nature: object-object and object-
room relations.

Thereby, two new steps were added to the four-steps algorithm described in the
previous section to also generate room-related data. Concretely the new algorithm is:

1. Room characterization. The first step is the computation of the room features
which, in the used Ontology, includes its volume (m3) and color hue variation.

2-5. The same four steps as in the original algorithm, but taking into account the
type of the room being synthetically generated.

6. Object-room context characterization. The relation between the room and
its objects is characterized by a fixed value, as it is the training process of the
CRF which learns automatically the likelihood of finding an object of a certain
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Figure 3.5: Top, excerpt of the Ontology used for the codification of Semantic Knowledge
about the home domain. Bottom, definition of the concept Microwave.

type into a kitchen. Notice that the appearance of an object of a certain type in
the room depends on previous steps.

In summary, the above six steps yield the objects, room and contextual features
needed to feed the unary and pairwise factors during the training of the CRF. The avid
reader can find more information about this process in [117].

The approach has been validated against home scenes from the NYUv2 dataset,
reaching a categorization success of ~ 70% for both objects and rooms. The work
by Lin et al. [73] also employs CRFs and NYUv2 for validation, and although a
fair comparison is not possible since the authors consider a different set of object
categories and room types, it permits us to qualitatively confirm the promising per-
formance of the proposed approach, since they achieve a success of ~ 60.5% and
~ 58.7% recognizing objects and rooms respectively.

It is worth to mention that the applicability of the framework is not limited to
robots working at home environments, but it is suitable to perform in other domains
which properties and semantics can be defined by human elicitation, e.g. office facil-
ities or hospitals.
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Figure 3.6: Example of hypotheses generation for a given region. New instances are inserted
into the Ontology using the OWL language.

3.4.6 Further enhancing CRFs performance: coherence
and efficiency

Approximate inference methods executed over CRFs are able to handle complex
models and operate in impressive short times, at the expense of a (hopefully) tiny
sacrifice in terms of recognition success. Obviously, the utilization of exact infer-
ence algorithms is preferable, but the complexity of real models prevents their use.
This contribution proposes the exploitation of the Semantic Knowledge encoded in
an Ontology to reduce the CRF inference complexity.

Concretely, the Semantic Knowledge is used to generate hypotheses about the
most probable belonging classes of the objects according to their features. For exam-
ple, a horizontal surface with a medium height from the floor could be hypothesized
as belonging to the Chair_seat, Table or Counter concepts, but not to Wall or
Computer_screen. These hypotheses are then taken by the CRF as the only possi-
ble candidates. This leads to a considerable reduction in the number of combinations,
i.e. assignments to the random variables, hence decreasing the inference complexity
and even enabling, in some cases, exact inference. Moreover, the generation of these
hypothesis ensures that the results will be coherent with the information in the Ontol-
ogy, and consequently, with the Semantic Knowledge that the human encoded about
the domain.

The process shown in Figure 3.6 help us to illustrate how hypotheses are gener-
ated. First, the object (in this case a chair back) is characterized through a number
of features, and a new instance derived from the Object concept is inserted into the
Ontology, e.g. object-1, also including a number of properties, or relations, stating
such features, e.g. object-1 hasCentroidHeight MM_AroundO6. This informa-
tion is encoded in the Ontology employing the OWL language [[10]]. Then, a logical
reasoner, Pellet [[133] in this case, infers a set of concepts that are consistent with
the instance definition: Wall, Computer_screen and Chair_backRest in the ex-
ample. In this way, the CRF only considers that concepts as possible categories for
that object, hence decreasing the problem complexity.

Additionally, prior information about the frequency of occurrence of the different
object types was also encoded into the Ontology. This type of information permits us
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to model that, for example, it is more likely to find a computer than a couch in an
office environment, while it is quite unlikely to find an ironing table. This new source
of information comes together with a modification to the usual CRF formulation,
which can be checked in [114, [119]], so it is able to exploit this prior information
from the Ontology. This approach enhances even more the expected coherence of the
recognition results.

The claimed virtues of these contributions have been thoroughly validated con-
sidering the NYUv2 and UMA-Offices datasets. Regarding the recognition success,
the evaluation provided the performance of a local object recognition approach as a
baseline, which was of ~ 79% and ~ 54% for UMA-Offices and NYUv2 respectively,
and revealed the progressive increment in the performance and robustness as long as
additional information is exploited: contextual information (~ 84% and ~ 59%), hy-
potheses of objects’ types (~ 93% and ~ 61%), and prior information about object
category occurrences (~ 94% and ~ %065).

Moreover, an analysis of the complexity reduction of the probabilistic inference
process was carried out by considering the most promising object belonging types,
including the feasibility of exact inference for the considered datasets. The yielded
results are promising, allowing the system to rely on exact inference in all the sce-
narios within the UMA-Offices dataset, and in a wider variety of them in NYUv2.
Further details in this regard can be found in [114} [119].

3.4.7 Learning from experience

Typically, mobile robots employ CRFs that are pre-tuned with a certain dataset in or-
der to recognize a fixed range of object categories. However, this configuration lacks
of the flexibility demanded by robots performing in human-like environments, e.g.
it is (of course) unable to recognize new types of objects not appearing in the train-
ing dataset, or instances of learned ones showing peculiar features, which can lead to
an incoherent performance [93]]. This section proposes a recognition framework that
relies on (surprise) Semantic Knowledge to detect and learn from incoherent recog-
nition results yielded by inference over a CRFE.

For example, it can be defined the concept Fridge codifying that they are usually
high, box-shaped objects, and the Pi11_box one, stating that they are small boxes
related to fridges by Pill_box placedInto Fridge. In the proposed framework,
the recognition results yielded by probabilistic inference over the CRF are checked
for coherence against the Semantic Knowledge. If any of them is detected as incoher-
ent (for example, a middle-size object is classified as a fridge), then it is annotated
for its posterior evaluation by the user through a simple dialog. This human-robot
interaction is greatly supported by the Ontology, since its content can be verbalized
in a straightforward way. Finally, the feedback from the user is back-propagated in
order to tune the CRF and the own Ontology accordingly. It is worth to mention that
Ontologies also suppose a basic way to understand the robot workspace, enabling the
detection of object configurations that can be hazardous, e.g. the pill box found out
of the fridge.
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More concretely, the recognition pipeline of the recognition framework starts by
capturing an image of the scene to be processed to build its CRF graph representation.
This graph, along with the pre-trained CRF parameters, is exploited by a probabilis-
tic inference algorithm to provide a set of tentative object recognition results. These
results are then inserted as instances in the Ontology, which checks their consistency
with respect to the codified Semantic Knowledge by employing a logical reasoner
(Pellet). This permits the robot to detect incoherent results that are subsequently eval-
uated by the user. The evaluation of a conflicting object starts by showing him/her a
cropped image of it. Three different scenarios are then possible:

Case 1: the user determines that the recognition result is right. This means that
the CRF performed correctly, but the codified common-sense knowledge was
somehow too strict. The Ontology learns from this outcome by relaxing the
codified object property that produced the inconsistency.

Case 2: the recognition result is wrong, and:

Case 2.1: the object type is already present in the CRF/Ontology. In this case
the CRF misclassified the object. To learn from the mistake, the gathered
object information is used to re-tune the CRF parameters.

Case 2.2: the object type is new. The relevant information from the object is
used to automatically generate a new concept in the Ontology, and the
CREF is also re-trained taking into account this new object type.

To perform a proof-of-concept validation of the framework, a robot was deployed
into an apartment and commanded to perform a primary task: to check the configura-
tion of the objects in the kitchen. Concretely, during the robot operation, the RGB-D
camera was used to capture both intensity and depth images when reaching certain lo-
cations in the kitchen. In that setup, the robot detected an inconsistency, which corre-
sponded to a pill box recognized as a cereal box, since such object type was unknown
for the robot. This information was then back-propagated to both: (i) the Ontology,
where the system created a new concept Pi11l_box, inheriting from the Object one,
and described it with the information gathered from the human and from the collected
sensory data, and (ii) to the CRF model, which re-tuned its parameters according to
the new information. The learning success was evaluated in later observations of pill
boxes, where the robot was able to successfully recognize this new type of object.

3.5 Discussion

This chapter has described the thesis’ contributions to the contextual object and/or
room recognition problem. It started with the UMA-Offices dataset, a collection of
3D reconstructions of offices from the University of Mdlaga, which was necessary
for evaluating the developed algorithms. Then, the Undirected Probabilistic Graph-
ical Models in C++ (UPGMpp) library has been presented, which permits the ef-
ficient handling of Undirected PGMs when applied to robotic-related applications.
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PGMs in general, and CRFs in particular, have proven to be valuable frameworks for
the modeling of recognition problems exploiting contextual information, also dealing
with uncertainty. The effort needed for the collection and processing of UMA-Offices
and other sensory data, along with the hungry for comprehensive and large training
datasets exhibited by the learning phase of PGMs, motivated the study of alternative
training strategies. This led to the utilization of Semantic Knowledge stored within
an Ontology to remove the necessity of a real dataset. This is specially useful in do-
mains where it is difficult, or even infeasible the collection of large amounts of data.
Ontologies also provide the recognition system with an structured, human readable
representation ready-to-use for high-level robotic tasks.

Semantic knowledge has been further exploited for reducing the complexity of the
probabilistic inference processes over the CRFs, as well as to provide prior knowledge
about the frequency of occurrence of the object classes of the domain at hand. This in-
formation is incorporated into the usual CRF formulation in order to enhance its per-
formance. It has been also leveraged for detecting incoherent recognition results, by
considering a logical reasoner that checks the consistency of the CRF outcome with
respect to the encoded knowledge. This also allows the recognition system, including
an user in the loop (supervised learning), to learn from experience by automatically
adapting its internal representations.

These contributions make up a probabilistic recognition system which is able to:
(i) exploit contextual relations, (ii) handle uncertainty, (iii) leverage prior knowledge
about the domain at hand, (iv) detect incoherent results, (v) learn from experience, and
(vi) verbalize its outcome. In addition to these features, the system can also provide
a measure about the uncertainty of its results. Finally, the system has been integrated
into a semantic mapping framework specially suited for taking advantage of these
features, as shown in the next chapter.



Semantic Mapping

This chapter outlines the thesis’s contributions to the semantic
mapping field. It starts with a brief introduction to the prob-
lem and a discussion of relevant works in the literature. Then,
it describes: a toolkit for labeling sequential RGB-D datasets,
the Robot@Home repository processed by that toolkit, and finally
the Multiversal Semantic Map, a novel representation evaluated
through Robot@ Home.

4.1 Introduction

Despite the possibilities of geometric and/or topological maps when applied to mo-
bile robot applications, the planning and execution of high-level tasks like “bring me
the red cup from the kitchen’s counter” or “show the customer off-season clothing,
specially pants, please” demands more sophisticated maps. Humans share semantic
knowledge about concepts like red, cup, or off-season clothing, which must be trans-
ferred to robots in order to successfully face these tasks. Semantic maps emerged to
cope with this need, providing the robot with the capability to understand: (i) the
spatial aspects of human environments, (ii) the meaning of their elements (objects,
rooms, or facilities), and (iii) how humans interact with them (e.g. functionalities,
events, or relations).

This feature is distinctive and traversal to semantic maps, being the key differ-
ence with respect to maps that simply augment metric/topological models with labels
to state the type of recognized objects or rooms [108], 22| (76} [127]], e.g. saying that a
portion of sensory data is a cup, without any other information about the implications
of that. Contrary, semantic maps handle meta-information that models the properties

39
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and relations of relevant concepts therein the domain at hand, codified into a Know!-
edge Base (KB) and stating that, for example, cups are cylindrical-shaped objects
usually found in kitchens and useful for containing liquids. Building and maintaining
semantic maps involve the symbol grounding problem [49] [18]], i.e. linking portions
of the sensory data gathered by the robot (percepts), represented by symbols (e.g.
object-1 or room-1), to concepts in the KB by means of some recognition and
tracking method. These representations usually reckon on off-the-shelf recognition
methods to individually ground percepts to particular concepts, which disregard the
valuable contextual relations between the workspace elements: a rich source of in-
formation intrinsic to human-made environments (for example that night-stands are
usually in bedrooms and close to beds).

Semantic maps generally support the execution of reasoning engines, providing
the robot with inference capabilities for efficient navigation, object search, or pro-
activeness [36], among others. Typically, such engines are based on logical reason-
ers that work with crispy information (e.g. a percept is identified as a cup or not).
The information encoded in the KB, along with that inferred by logical reasoners,
is then available for a task planning algorithm dealing with this type of knowledge
and orchestrating the aforementioned tasks [35]]. Although crispy knowledge-based
semantic maps can be suitable in some setups, especially in small and controlled sce-
narios [[156l], they are also affected by uncertainty coming from different sources like
the robot sensory system or the inaccurate modeling of the elements within the robot
workspace.

This chapter presents the contributions done for achieving a semantic map repre-
sentation able to deal with uncertainty, also managing contextual relations, where the
techniques outlined in Chapter 3 play a pivotal role (Section 4.3.3). In addition, given
the lack of datasets for evaluating mapping systems with those features, we also de-
scribe a repository of information especially collected for that goal, the Robot@ Home
dataset (Section 4.3.2), as well as a toolkit developed for the efficient processing of
this type of repositories, the Object Labeling Toolkit (Section 4.3.1).

4.2 Related work

This section reviews the most relevant works addressing some issues related to the
semantic mapping problem, starting with a discussion about popular semantic repre-
sentations (Section 4.2), continuing with an analysis of the datasets that are suitable
as a testbed for such approaches (Section 4.2), and finishing with a discussion on
available tools for managing datasets (Section 4.2).

Semantic mapping approaches

In the last decade, a number of works have appeared in the literature contributing
different semantic map representations. One of the earliest works in this regard is the
one by Galindo et al. [37]], where a multi-hierarchical representation models, on the
one hand, the concepts of the domain of discourse through an ontology, and on the
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other hand, the elements from the current workspace in the form of a spatial hierarchy
that ranges from sensory data to abstract symbols. NeoClassic is the chosen system
for knowledge representation and reasoning through Description Logics (DL), while
the employed recognition system is limited to the classification of simple shape prim-
itives, like boxes or cylinders, as furniture, e.g. a red box represents a couch. The
potential of this representation was further explored in posterior works, e.g. for im-
proving the capabilities and efficiency of task planners [35], or for the autonomous
generation of robot goals [36]. A similar approach is proposed in Zender et al. [[156]],
where the multi-hierarchical representation is replaced by a single hierarchy rang-
ing from sensor-based maps to a conceptual abstraction, which is encoded in a Web
Ontology Language (OWL)-DL ontology defining an office domain. To categorize
objects, they rely on a SIFT-based approach, while rooms are grounded according
to the objects detected therein. In Niichter and Hertzberg [88] a constraint network
implemented in Prolog is used to both codify the properties and relations among the
different planar surfaces in a building (wall, floor, ceiling, and door) and classify
them, while two different approaches are considered for object recognition: a SVM-
based classifier relying on contour-based features, and a Viola and Jones cascade of
classifiers reckoning on range and reflectance data.

These works set out a clear road for the utilization of ontologies to codify se-
mantic knowledge, which has been further explored in more recent research. An ex-
ample of this is the work by Tenorth et al. [138]], which presents a system for the
acquisition, representation, and use of semantic maps called KnowRob-Map, where
Bayesian Logic Networks are used to predict the location of objects according to their
usual relations. The system is implemented in SWI-Prolog, and the robot’s knowledge
is represented in an OWL-DL ontology. In this case, the recognition algorithm clas-
sifies planar surfaces in kitchen environments as tables, cupboards, drawers, ovens
and dishwashers [127]. The same map type and recognition method is employed in
Pangercic et al. [95]], where the authors focus on the codification of object features
and functionalities relevant to the robot operation in such environments. The paper
by Riazuelo et al. [[112]] describes the RoboEarth cloud semantic mapping which also
uses an ontology for codifying concepts and relations, and rely on a Simultaneous
Localization and Mapping (SLAM) algorithm for representing the scene geometry
and object locations. The recognition method resorts to SURF features, and performs
by only considering the object types that are probable to appear in a given scene (the
room type is known beforehand). In Giinther et al. [45]], the authors employ an OWL-
DL ontology in combination with rules defined in the Semantic Web Rule Language
(SWRL) to categorize planar surfaces.

It has been also explored the utilization of humans for assisting during the seman-
tic map building process through a situated dialog Examples of works addressing this
are those by Bastianelli ef al. [9], Gemignani et al. [40]], or the aforementioned one
by Zender et al. [156]. The main motivation of these works is to avoid the utiliza-
tion of recognition algorithms, given the numerous challenges that they have to face.
However, they themselves argue that the more critical improvement of their propos-
als would arise from a tighter interaction with cutting-edge recognition techniques.
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The interested reader can refer to the survey by Kostavelis and Gasteratos [[67] for an
additional, comprehensive review of semantic mapping approaches for robotic tasks.

The semantic mapping techniques discussed so far rely on crispy categorizations
of the perceived spatial elements, e.g. an object is a cereal box or not, a room is a
kitchen or not, etc., which is typically exploited by (logical) reasoners and planners
for performing a variety of robotic tasks. As commented before, these approaches: (i)
can lead to an incoherent robot operation due to ambiguous recognition results, and
(i) exhibit limitations to fully exploit the contextual relations among spatial elements.
The contributions in the previous chapter propose a solution for probabilistic symbol
recognition to cope with both, the uncertainty inherent to the recognition process,
and the contextual relations among spatial elements. Perhaps the closet work to this
approach addressing semantic mapping is the one by Pronobis and Jensfelt [103],
which employs a Chain Graph (a graphical model mixing directed and undirected
relations) to model the grounding problem from a probabilistic stance, but that fails
at fully exploiting contextual relations. This thesis contributes, among others, a novel
representation called Multiversal Semantic Map (MvSmap), in order to accommodate
and further exploit the outcome of the probabilistic symbol grounding.

Suitable datasets

Datasets containing sensory data are needed for a thorough evaluation of semantic
mapping techniques, since they set a common framework for their fair comparison.
Mobile robots have traditionally resorted to intensity images to categorize objects
and/or rooms, which motivated the collection of datasets providing this kind of in-
formation [27, 125} |124]. Nowadays, the tendency is for the datasets to also include
depth information [57, 5 [72]], given the proved benefits of exploiting morphological
and spatial information in assisting recognition methods [114]. These datasets can be
roughly classified as: object-centric, view-centric, and place-centric.

Object-centric datasets, like ACCV [51], RGBD Dataset [[72, [71], KIT object
models [62], or BigBIRD [132], provide RGB-D observations in which a unique ob-
ject spans over each image. The exploitation of these images for robotic recognition
exhibits some drawbacks: (i) they are not representative of the typical images gath-
ered by a robot at a real environment, (ii) they prevent the utilization of valuable
contextual information of objects, and (iii) they are not suitable for the room recogni-
tion problem. These shortcomings also narrow their utilization by semantic mapping
benchmarks.

On the other hand, view-centric datasets as Berkeley-3D [57], Cornell-RGBD [35],
NYU [130, [131], TUW [3], or UBC VRS [77], consist of isolated RGB-D images,
or a sequence of them, which cover a partial view of the working environment. This
information permits the exploitation of contextual information but only from a local,
reduced perspective, since information of the entire scene is not collected. Therefore,
their use for contextual recognition is still limited, as well as their utilization for
semantic mapping purposes.
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Table 4.1: Summary of related datasets (CR: Collected by a robot, DT: Dataset type, EOC:
Enables object context exploitation, ERC: Enables room categorization).

Dataset CR DT EOC ERC
ACCYV [51] object-centric

Berkeley-3D [57] view-centric v (local)  v/(limited)
BigBIRD [132] object-centric

Cornell-RGBD [3] v view-centric v'(local)  v/(limited)
KIT object models [62] object-centric

Multi-sensor 3D Object Dataset [39] object-centric

NYUvl1 [[130] view-centric v'(local)  v/(limited)
NYUv2 [[131] view-centric v (local)  v/(limited)
RGBD Dataset [72] object-centric

RGBD Dataset 2 [71]] object-centric

TUW [3] v view-centric v (local)  v/(limited)
SUN3D [153] place-centric v v
UBC VRS [77] v view-centric v (local)
Robot@Home v’ place-centric v v

Finally, place-centric datasets like SUN3D [153] provide comprehensive infor-
mation from the inspected room, or even the entire work environment, typically
through the registration of RGB-D images. This type of datasets conforms the best
option as a testbed for semantic mapping taking advantage of both depth and con-
textual information, albeit, unfortunately their number is quite limited. A dataset
worth to mention at this point is ViDRILO [75]], which comprises 5 sequences of
RGB-D observations of two office buildings collected by a robot combining object
and environment-centric perspectives. This dataset annotates each observation with its
room type and the objects found within it, although this labeling is not per-pixel and
the number of object categories is reduced. Table 4.1 shows a summary of datasets
applicable to the semantic problem and their characteristics, which also includes the
one contributed by this thesis: the place-centric Robot@Home dataset.

Available dataset management tools

The tedious object labeling task within RGB-D datasets is carried out in different
ways. Some works resort to Amazon Mechanical Turk (AMT) to label their intensity
images [57, [130, [131]], usually through a labeling tool like LabelMe [[125]], but this
merely divides the workload, and the annotated information still needs to be thor-
oughly checked to fix incoherent labels. Another approach is the manual labeling of
key intensity frames from a sequence, propagating these labels to the remaining RGB-
D observations [[77} [153]], but this is only suitable for sequences with simple sensor
trajectories, and additionally shows the same limitations as the AMT option. There
are also works that reconstruct a 3D representation of the inspected scene and anno-
tate the objects appearing on it [5], but there is not a labeling feedback to the RGB-D



44 CHAPTER 4. SEMANTIC MAPPING

L S —

Object Labeling Toolkit

Figure 4.1: OLT logo.

observations’ sequence(s). In the works by Lai et al. the ground truth anno-
tations over a reconstructed scene are also propagated to the individual RGB-D ob-
servations employing an ad-hoc software which, to the best of the author knowledge,
is not publicly available. In the next section it is described an open source solution
conveniently divided into configurable components, which provides the robotic com-
munity with a number of functionalities towards an efficient labeling of arbitrarily
large collections of RGB-D data.

4.3 Contributions

Three contributions are outlined in this chapter, all of them in the scope of the se-
mantic mapping problem. First, the Object Labeling Toolkit (OLT) is described. It
consists of a set of software solutions for the labeling of sequential RGB-D datasets,
especially relevant to semantic mapping. Then, we describe a novel place-centric
dataset, named Robot@Home, which contains raw and processed data from domes-
tic settings compiled by a mobile robot. Finally, the Multiversal Semantic Map is
presented, an environment representation able to handle uncertainty and contextual
relations, in which the contributions of the previous chapter are integrated.

4.3.1 The Object Labeling Toolkit

A comprehensive dataset is a valuable benchmark tool for tuning, testing, and com-
paring robotic algorithms and systems in a convenient and fair way. Although public
datasets consisting of intensity images [27, have largely helped researchers
to push ahead the state-of-the-art in object recognition or scene interpretation, nowa-
days new particularly oriented datasets are required given the increasing number
of capabilities and applications that are demanded to a mobile robot, e.g. seman-
tic mapping [104], high-level decision making [36], or contextual object recogni-
tion [116. 114} TT5.[T19].
RGB-D cameras have become a key source of information for such robotic datasets.

Although the sensory data of these datasets may be conveniently gathered by the
mobile robot itself, human supervision is still needed to segment objects and to
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Figure 4.2: First column, reconstructed scenes from two RGB-D sequences. Second column,
labeled reconstructed scenes. Third-fifth columns, examples of individual point clouds from
RGB-D observations labeled by the propagation of the annotations within the reconstructed
scenes.

label them, i.e. to add annotations over portions of the observed data as belong-
ing to a certain object class, e.g. floor, table, lamp, etc. This is the motivation for
the development of the Object Labeling Toolkit (OLT, see Figure 4.1), i.e. to pro-
vide the robotic community with a tool to efficiently label datasets compound of
sequences of RGB-D observations, gathered from an arbitrary number of RGB-D
sensors. OLT is publicly available under a GNU General Public License at: http:
//mapir.isa.uma.es/work/object-labeling-toolkit.

For achieving such efficient labeling, the toolkit builds a 3D reconstruction of
each RGB-D sequence within a given dataset, and allows the user to graphically label
objects within that reconstruction (see the two first columns in Figure 4.2). Then, this
ground truth annotations are automatically propagated to all the RGB-D observations
without requiring human supervision, resulting in a dense labeling of both intensity
and depth data (see the three last columns of Figure 4.2). More information about this
pipeline can be found in the publication by Ruiz-Sarmiento et al. [118]].

OLT comprises a number of software components covering the following func-
tionality: i) dataset pre-processing, ii) localization of RGB-D observation poses, iii)
3D scene reconstruction, iv) labeling of the reconstructed scene, and v) automatic
propagation of annotated labels. Some of these functionalities can exploit additional
information coming from sensors usually present in a robotic platform, e.g. the robot
pose estimation computed from 2D laser scans. All the components are highly cus-
tomizable in order to fit the particularities of robotic datasets, and can be easily ex-
pandable to integrate other algorithms of interest. The toolkit resorts to the Mobile
Robot Programing Toolkit (MRPT [58]) and the Point Cloud Library (PCL [126]]) for
point cloud registration and smoothing algorithms, and for data representation and vi-
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sualization purposes. The most time-consuming components of OLT have been also
parallelized employing OpenMP.

Aiming to illustrate the toolkit suitability, it was utilized for segmenting and label-
ing a robotic dataset from a home environment (indeed, a part of the Robot@Home
dataset, see Figure 4.2) consisting of 77 RGB-D observations. Regarding the time
spent in labeling, the human operator needed 2 hours to annotate both the kitchen
and the bedroom scenes, spending on average 2 minutes per object (this has been re-
duced to 1 minute in the last toolkit version). To compare this with the labeling of all
the RGB-D observations individually, it was followed the typical intensity image la-
beling approach and they were annotated 5 non-consecutive observations from each
sequence, extrapolating the results to the whole dataset. This yielded a total of ~3
hours needed for the labeling of the kitchen sequence, and ~7 hours for the bedroom,
which clearly illustrated the benefits of the toolkit utilization. When following such a
typical approach problems appeared to accurately label the objects’ boundaries, and
with objects partially occluded and/or with an unclear belonging class, drawbacks
that are mitigated with the utilization of the proposed toolkit.

4.3.2 Robot@Home dataset

The Robot-at-Home (Robot@Home) dataset, is a collection of raw and processed
data from five domestic settings compiled by the commercial mobile robot Giraff,
equipped with 4 RGB-D cameras and a 2D laser scanner, Its main purpose is to
serve as a testbed for semantic mapping algorithms through the recognition of ob-
jects and/or rooms, so it is publicly available athttp://mapir.isa.uma.es/work/
robot-at-home-dataset. This dataset is unique in three aspects: (i) the sensory
system employed for its gathering, (ii) the diversity and amount of provided data, and
(iii) the availability of dense ground truth information.

The provided data were captured with a rig of 4 RGB-D sensors with an overall
field of view of 180° horizontally and 58° vertically, and with a 2D laser scanner
(see Fig. 4.3). In order to yield accurate information within the dataset, the sensors
mounted on the robot were calibrated both intrinsically and extrinsically [30}42}1137]].
Detailed information concerning this calibration in particular, and about the dataset
in general, can be found in the paper by Ruiz-Sarmiento et al. [123]].

This robotic platform was employed to explore 5 dwelling apartments, which
have been named as anto, alma, pare, rx2, and sarmis. In this way, a total of 36
rooms were completely inspected (some of them several times), so the dataset is rich
in contextual information of objects and rooms. This is a valuable feature, missing in
most of the state-of-the-art datasets, which can be exploited by, for instance, semantic
mapping systems that leverage relationships like pillows are usually on beds or ovens
are not in bathrooms. This information was processed by OLT, which also supposes
a mechanism to conveniently access and manage the data.

The ground-truth information provided by OLT comes in two flavors. On the one
hand, it is provided (per-point) annotations of the categories of the main objects and
rooms appearing in the scenes reconstructed from the RGB-D sequences (recall the
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Figure 4.3: Giraff robot while collecting sensory information. The basic robotic platform was
endowed with a rig of 4 RGB-D sensors mounted on the robot’s neck, and a 2D laser scanner
on its base.

second column of Figure 4.2). A total of ~1,900 objects belonging to 157 different
categories were manually labeled from the 36 visited rooms. These rooms are also
labeled as belonging to one of 8 possible types: bathroom, bedroom, kitchen, living-
room, etc. On the other hand, Robot@Home also includes (per-pixel) annotations of
the objects appearing in the 69,000+ gathered RGB-D images. The objects and rooms
are also annotated with identifiers, so they can be individually tracked along the video
sequences.

Summarizing, the content of the dataset, which comes in different formats acces-
sible by the open source Mobile Robot Programming Toolkit! (MRPT), as well as in
(human readable) plain text files and PNG images, is as follows:

» 81 sequences of observations containing ~75min. of recorded data. The total
number of observations is 87,000+ (18,000+ laser scans and 69,000+ RGB-D
images), which are saved in rawlog format as well as in plain text (see the three
first rows of Figure 4.4).

* 41 2D geometric maps saved in text files (36 for individual rooms, and 5 maps
covering each apartment, see fourth row of Figure 4.4).

e 72 3D reconstructed scenes in scene format and plain text (see fifth row of
Figure 4.4).

* 72 Labeled 3D reconstructed scenes in scene format and plain text, containing
~1,900 labeled objects (see sixth row of Figure 4.4).

* 72 Labeled RGB-D sequences in rawlog format and plain text (see seventh row
of Figure 4.4).

Thttp://www.mrpt.org
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Figure 4.4: Excerpts of information provided by Robot@Home. From top to bottom, exam-
ples of 2D laser scans, RGB images, depth images, 2D geometric maps, reconstructed rooms,
labeled reconstructed rooms, and labeled depth information. Taken from [I123)].
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Moreover, a number of particular characteristics have been intentionally included
in each scenario to provide additional data for testing different object recognition
algorithms and techniques. Concretely,

* Inclusion of distinctive objects. A number of patterns/objects have been placed
at different rooms within these houses, concretely: teddies in alma, fruits in
anto, numerical patterns in pare and geometric patterns in rx2.

¢ Varying lighting conditions. Each of the three sessions in sarmis house was
conducted at a different time of the day, which means that the objects were
visualized under different lighting conditions.

* Varying sets of objects. In these three sessions, the set of objects placed in
each room from session to session differs, with objects dis/appearing as well as
being moved.

Although its main application is the aforementioned semantic mapping, it can be
also useful for the recognition of instances of objects/rooms, object segmentation, or
data compression/transmission algorithms. Moreover, typical robotic tasks like 3D
map building, localization, or SLAM can be tested with Robot@Home, since the
robot localization can be accurately estimated from the sequence of 2D scans. Finally,
the distinctive patterns and objects placed on purpose can be used, for example, to test
object-finding algorithms.

4.3.3 Multiversal Semantic Maps

The third contribution of this chapter is a novel semantic map representation, called
Multiverse Semantic Map (MvSmap). This representation handles uncertainty by con-
sidering the different combinations of possible groundings of objects and rooms in the
robot workspace, or universes, as instances of ontologies with belief annotations on
their grounded concepts and relations. These beliefs are provided by the probabilistic
recognition techniques described in Chapter 3. According to them, it also encodes
the probability of each ontology instance being the right one. Thus, MvSmaps can be
exploited by logical reasoners performing over such ontologies, as well as by prob-
abilistic reasoners working with the CRF representation. This ability to manage dif-
ferent semantic interpretations of the robot workspace, which can be leveraged by
probabilistic conditional planners (e.g. those in [61] or [2]), is crucial for a coherent
robot operation.

The proposed MvSmap (see Figure 4.5) is inspired by the multi-hierarchical se-
mantic map presented in Galindo et al. [37]]. This map considers two separated but
tightly related hierarchical representations containing: (i) the semantic,
meta-information about the domain at hand, e.g. refrigerators keep food cold and
are usually found in kitchens, and (ii) the factual, spatial knowledge acquired by the
robot and its implemented algorithms from a certain workspace, e.g. obj-1 is per-
ceived and recognized as a refrigerator. These hierarchies are called terminological
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Figure 4.5: Example of Multiversal Semantic Map for a simple scenario.

box (see T-Box in Figure 4.5) and spatial box (see S-Box in Figure 4.5), respectively,
names borrowed from the common structure of hybrid knowledge representation sys-
tems [[7]].

MvSmaps enhance this representation by including uncertainty, in the form of
beliefs, about the groundings (recognitions) of the spatial elements in the S-Box to
concepts in the T-Box. For example, a perceived object, represented by the symbol
obj-1, could be grounded by the robot as a microwave or a nightstand with beliefs
0.65 and 0.35, respectively, or it might think that a room (room-1) is a kitchen or
a bedroom with beliefs 0.33 and 0.66. Moreover, in this representation the relations
among the spatial elements play a pivotal role, and they have also associated compat-
ibility values in the form of beliefs. To illustrate this, if obj-1 was found in room-1,
MvSmaps can state that the compatibility of obj-1 and room-1 being grounded to
microwave and kitchen respectively is 0.95, while to microwave and bedroom is 0.05.
These belief values are provided by the proposed probabilistic inference techniques.

Furthermore, MvSmaps assign a probability value to each possible set of ground-
ings, creating a multiverse, i.e. a set of universes stating different explanations of the
robot environment (see Multiverse in Figure 4.5). An universe codifies the joint prob-
ability of the observed spatial elements being grounded to certain concepts, hence
providing a global sense of certainty about the robot understanding of the environ-
ment. Thus, following the previous example, an universe can represent that obj-1
is a microwave and room-1 is a kitchen, while a parallel universe states that obj-1
is a nightstand and room-1 is a bedroom, both explanations annotated with differ-
ent probabilities. Thereby, the robot performance is not limited to the utilization of
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the most probable universe, like traditional semantic maps do, but it can also con-
sider other possible explanations with different semantic interpretations, resulting in
a more coherent robot operation.

The symbol grounding problem, i.e. linking portions of sensory data, represented
by symbols (e.g. obj-1 or room-2), to concepts in the KB (e.g. Microwave or
Kitchen), is faced by an anchoring process [18] that relies on the proposed recog-
nition techniques and a simple tracking algorithm to make the symbols and their
groundings consistent over time. In a nutshell, the result of this process is a set of
the so-called anchors, which keep geometric/appearance information about the spa-
tial elements (location, features, relations, etc.) and establish links to their symbolic
representation. Additionally, in a MvSmap, anchors are in charge of storing the be-
liefs about the grounding of their respective symbols, as well as their compatibility
with respect to the grounding of related elements.

Given the ingredients of MvSmaps previously provided, a Multiversal Seman-
tic Map can be formally defined by the quintuple .Zv."map = { %, , % ,0, M},
where:

* Z is a metric map of the environment, providing a global reference frame for
the observed spatial elements (objects and rooms).

* &/ is a set of anchors internally representing such spatial elements, and linking
them with the set of symbols in %'.

* % is the set of symbols that represent the spatial elements as instances of con-
cepts from the ontology &'.

e 0 is an ontology codifying the semantic knowledge of the domain at hand.

e ./ encodes the multiverse, containing the set of universes.

Notice that the traditional T-Box and S-Box are defined in a MvSmap by & and
{%, o/, %} respectively. Since the robot is usually provided with the ontology &
beforehand, building a MvSmap consists of creating and maintaining the remaining
elements in the map definition.

The suitability of the proposed semantic map representation was assessed with
the challenging Robot@Home dataset. On the one hand, the reported success while
grounding object and room symbols respectively without considering contextual re-
lations was of ~ 73.5% and ~ 57.5%, whereas including them these figures in-
creased up to a success of ~ 81.5% and 91.5%. They have been also evaluated
some of the most popular classifiers also resorting to individual object/room features,
namely: Supported Vector Machines, Naive Bayes, Decision Trees, Random Forests,
and Nearest Neighbors, demonstrating the reported results the higher success of CRF
approaches.

On the other hand, they were also shown two sample scenarios of different com-
plexity where it was illustrated the building of MvSmaps according to the information
gathered by a mobile robot (see Figure 4.6). For a detailed description of this results,
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as well as of the building of MvSmaps, please refer to the work by Ruiz-Sarmiento et
al. [120].

The main purpose of the proposed MvSmap is to provide a mobile robot with
a rich representation of its environment, empowering the efficient and coherent exe-
cution of high-level tasks. MvSmaps can be exploited for traditional semantic map ap-
plications by considering only an universe, albeit its potential to measure the
(un)certainty of the robot understanding can be exploited for an intelligent, more effi-
cient robotic operation. A clear example of this arises when considering the work by
Galindo and Saffiotti [36], which envisages an application of semantic maps where
they encode information about how things should be, also called norms, allowing
the robot to infer deviations from these norms and act accordingly. The typical norm
example is that "towels must be in bathrooms", so if a towel is detected, for exam-
ple, on the floor of the living room, a plan is generated to bring it to the bathroom.
This approach works with crispy information, e.g. an object is a towel or not. Instead,
the consideration of a MvSmap would permit the robot to behave more coherently,
for example gathering additional information if the belief of an object symbol being
grounded to Towel is 0.55 while to Carpet is 0.45. In this example, a crispy approach
could end up with a carpet in our bathroom, or a towel in our living room. Other appli-
cations where MvSmaps could be useful are task planning, planning with incomplete
information, navigation, object search, human-robot interaction, or robotic localiza-
tion.

4.4 Discussion

This chapter has outlined the thesis’ contributions to the semantic mapping field. A
novel semantic representation, called Multiversal Semantic Map (MvSmap), has been
described, which was designed to take advantage of the outcome for probabilistic
recognition techniques. This permits the robot to propagate the uncertainty coming
from different sources like its sensory system, or its internal models of the spatial
elements, to the recognition results. MvSmaps also allow the tracking and exploitation
of contextual relations among the elements in the robot workspace. The utilization of
the uncertainty concerning the types of recognized spatial elements enables the robot
to consider different semantic interpretations of its environment, resulting in a more
coherent operation.

Additionally, it has been also described the Robot@ Home dataset, a large repos-
itory of data collected by a mobile robot in domestic settings. The provided raw data
come from two different types of sensors: a 2D laser scan mounted on the robot base,
and a rig of 4 RGB-D cameras on the robot’s neck. The processed information in-
cludes 2D and 3D reconstructions of the fully inspected houses, as well ground truth
annotations about the type of the objects and rooms therein. Thus, this dataset is rich
in contextual relations among spatial objects given the wide coverage of the provided
data, so it is specially suitable for the evaluation of semantic mapping systems. To
evaluate the proposed MvSmaps, the recognition techniques in the previous chapter
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were integrated into a semantic mapping system building those representations, and
Robot@Home was used as a testbed.

Robot@ Home contains a huge number of observations whose processing by tradi-
tional techniques is prohibitive. Thereby, it was developed the Object Labeling Toolkit
(OLT), a set of software components that greatly minimizes the operator intervention
for processing sequential RGB-D observations. The developed/integrated algorithms
for image processing, point cloud registration, scene reconstruction, scene labeling,
and automatic propagation of labels to individual observations, really helped to keep
the effort low for processing Robot@Home. Both dataset and toolkit are publicly
available.



Summary of included papers

This chapter outlines the content of the included papers, available
at the second part of the thesis Part I1: Included papers, as well as
the author’s contributions to each of them.

5.1 Paper A: Learning CRFs with data from
Semantic Knowledge

Outline: This paper studies the applicability of CRFs trained with synthetic data, gen-
erated from Semantic Knowledge, for contextually modeling the scene object recog-
nition problem. The proposed learning approach aims at avoiding the collection of
real data for training object recognition systems, which is a highly time-consuming,
cumbersome, and even unfeasible task, since the gathered information must be rep-
resentative enough of the domain at hand. To face this issue, Semantic Knowledge
is represented by means of an Ontology, which defines the domain object classes,
their properties, and their relations, and is used to generate synthetic training samples
for tuning CRFs. The suitability of the learning approach has to be assessed through
real datasets, so UMA-Offices and NYUv2 conformed the benchmark for answer-
ing questions like: How much do the context relations contribute to the recognition
performance?, How much does the size of the training dataset affect the recognition
performance?, or Do the generated synthetic data capture actual object properties
and relations?.

Contribution by the author: Studied the state-of-the-art approaches for address-
ing the scene object recognition problem through Probabilistic Graphical Models or
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Semantic Knowledge. Designed the way in which the relevant information can be
encoded in an Ontology for its posterior exploitation. Implemented the algorithm for
the automatic generation of an arbitrary number of synthetic training samples. Pro-
cessed the UMA-Offices dataset, and performed the experiments to demonstrate the
suitability of the approach.

5.2 Paper B: Joint recognition of objects and
rooms

Outline: This work extends the previous one by including rooms in the equation.
Motivated by recent studies that highlight the convenience of jointly modeling the
object and room recognition problems (in view of the mutual influence between the
types of the recognized rooms and the the types of the objects therein), the ontology
defined in Paper A is augmented to also consider room classes, their attributes, and
relations among them as well as among objects and rooms: e.g. that bedrooms are
usually connected to corridors and beds can be found therein. The CRF models are
also conveniently adapted for dealing with different types of random variables (taking
values from object or room types) and contextual relations. To validate the approach
the paper resorts to home scenes from the NYUv2 dataset.

Contribution by the author: Studied state-of-the-art techniques for jointly modeling
the object and room recognition problems. Designed the expansion of the Ontology in
the previous paper, as well as of the CRF formulation and the algorithm implemented
for generating synthetic training samples. Performed the experiments to support the
paper claims.

5.3 Paper C: Exploiting Semantic Knowledge
for a coherent and efficient recognition

Outline: The complexity of CRF models increases considerably when applied to
cluttered scenarios. This implies the utilization of approximate inference methods
for retrieving the recognition results, which in some cases supposes a decrease in
the recognition success when compared with exact inference solutions. This paper
proposes the utilization of Semantic Knowledge to decrease the CRF inference com-
plexity. This knowledge, encoded in an Ontology, is exploited for the generation of
hypotheses about the most probable belonging classes of the objects according to
their features. For example, a planar, vertical surface could be a wall or a screen, but
not a table. Then, these hypotheses are considered by the CRF as the only possible
candidate types. The consequence of this is a considerable reduction in the number of
possible assignments, decreasing the inference complexity, even enabling exact infer-
ence in some cases. Additionally, prior information about the frequency of occurrence
of the different object classes is also encoded into the Ontology. This information re-
veals that, for example, it is more likely to encounter a computer than a couch in an
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office environment, while it is quite unlikely to find an ironing table. A modification
to the usual CRF formulation is proposed to exploit such source of prior information.
The gain in efficiency and coherence by this approach is measured against the UMA-
Offices and NYUv2 datasets.

Contribution by the author: Designed the framework for, employing the hypothe-
ses generated by logical inference over the ontology, reduce the complexity of the
CRF model. Adapted the CRF formulation to also consider prior information about
the frequency of occurrence of the different object types from the Ontology. Evalu-
ated the achieved complexity reduction and enhanced recognition coherence with two
different repositories.

5.4 Paper D: UPGMpp library for managing
PGMs

Outline: This paper presents the Undirected Probabilistic Graphical Models in C++
(UPGMpp) library, a software package for working with Undirected PGMs, as is the
case of CRFs. The library was specially designed and implemented for efficiently
tackling the object/room recognition problem. The paper describes how to apply UP-
GMpp to this issue, and overviews its three main software packages: base (imple-
ments the functionality for building and managing PGM graphs), training (permits
the definition of training datasets to tune a PGM), and inference (implements algo-
rithms to perform inference queries over PGMs). To show the flexibility and usability
of the library, the paper describes the processes needed for training and testing (per-
forming inference) CRFs, including code snippets, and reports the recognition results
yielded by the implemented inference methods dealing with information from the
NYUv2 repository. Execution time performance is also discussed.

Contribution by the author: Studied the theory behind Undirected PGMs, as well
as related libraries and software solutions for dealing with them. Designed and imple-
mented the library packages, with the goal of being efficient, versatile, extensible, and
easy to use. Made the library publicly available. Exemplified how to use the library,
and measured its success and execution time performance.

5.5 Paper E: OLT toolkit for managing
sequential RGB-D datasets

Outline: In this work it is presented the Object Labeling Toolkit (OLT), a set of
software components for the efficient labeling of datasets compound of sequences
of RGB-D observations, gathered from an arbitrary number of sensors of that type.
For that, the toolkit builds a 3D reconstruction of the scene explored in each RGB-D
sequence, and allows the user to graphically label objects within that reconstruction.
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Once the scene is labeled, such annotations are automatically propagated to each ob-
servation in the sequence. The paper describes its main components, namely: dataset
pre-processing, 2D map building, localization of observation poses, sequential vi-
sualization, scene labeling, and labels propagation, of which only scene labeling
requires a human operator. It is also depicted the toolkit usage for effortlessly label-
ing two sequences of observations, also analyzing its virtues with respect to a typical
labeling approach.

Contribution by the author: Designed the toolkit and its components. Studied and
implemented/adapted techniques for processing RGB and depth images, building 2D
geometric maps, building 3D reconstructions, visualizing and interacting with recon-
structions, and automatically propagating information through a sequence of sensory
data. Compared the time saved when employing the toolkit with respect to a typical
labeling approach.

5.6 Paper F: Semantic Map representation
handling uncertainty

Outline: This paper proposes a semantic map representation that handles uncertainty,
also taking advantage of contextual relations among spatial elements (objects and
rooms), coined Multiversal Semantic Map (MvSmap). The paper reports a compre-
hensive survey on semantic mapping approaches, as well as on grounding techniques
for populating those maps. MvSmaps are described in detail and formally defined,
along with the algorithms involved in their building, where the recognition techniques
presented in previous works play a pivotal role. Moreover, this paper includes al-
gorithms for efficiently tackling the uncertainty modeled by these maps. The novel
Robot@Home dataset is used for both, testing the symbol grounding success, as well
as illustrating the building of MvSmaps from scenarios with different complexity.

Contribution by the author: Designed the Multiversal Semantic Map representation
for storing and managing uncertain information. Integrated the previously developed
object and room recognition techniques within a symbol grounding process. Designed
and implemented the pipeline for building MvSmaps according to the information
perceived by a mobile robot. Processed the Robot@Home dataset for being useful
for testing symbol grounding algorithms, as well as for illustrating the building of
MvSmaps.



Conclusions and future work

Reaching the end of the thesis, it is time to draw conclusions and
think about the future.

This thesis has explored and made contributions to the fascinating world of se-
mantic mapping applied to mobile robots. This type of maps aims to provide a robot
with a sense of understanding of what is going on in its surroundings, which sets the
basis for an intelligent, autonomous, and efficient operation. Particular emphasis has
been placed on the population of semantic maps with information about the spatial
elements in the robot workspace, namely objects and rooms, through the combination
of techniques from Machine Learning and Artificial Intelligence. These fields are at
a great point, evidenced by a growing number of studies and successful applications,
as recently commented by Ralf Herbrich — Amazon’s director of machine learning —
“We’re in a golden age of machine learning and Al, ... , as a scientific community,
we are still a long way from being able to do things the way humans do things, but
we’re solving unbelievably complex problems every day and making incredibly rapid
progress.”. In the author’s opinion, the research of systems exploiting the synergy of
these two fields, boosting their advantages and mitigating their limitations, can lead
to remarkable advances profitable by the robotic community. That is the case of the
techniques developed in this thesis.

In order to be aware of its surroundings, a mobile robot must be able to recognize
the elements that are observed through its sensory system. The second chapter of this
thesis described the contributions done in this regard, which focused on the combi-
nation of Conditional Random Fields (CRFs), a discriminative, undirected variant of
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Probabilistic Graphical Models (PGMs), and Semantic Knowledge of the domain at
hand codified in an Ontology. These two frameworks have reached a notable success
in different classification applications.

CRFs master the modeling of contextual relations among spatial elements, also
handling the uncertainty coming from the robot sensory system and the employed
models, and supporting the execution of probabilistic inference methods. Precisely,
one of the earliest contributions of this thesis was the Undirected Probabilistic Graph-
ical Models in C++ (UPGMpp) library, developed as a consequence of the lack of
software tools for handling Undirected PGMs in general, and CRFs in particular,
providing the features demanded by a recognition system running on board of a mo-
bile robot. This library, which is publicly available, implements popular algorithms
for building, learning and performing inference over graphical models. The possible
choices of training and inference methods for CRFs motivated the thorough study
of different learning strategies, in order to find the most successful configuration
for the scene object/room recognition problem. This study provided valuable con-
clusions, not only for the appropriate utilization of these models in the remaining
contributions, but also for those in the robotic community aiming to quickly set-up a
working-system as successful as possible for such problem.

Despite their successful utilization in different fields, CRFs exhibit a number of
shortcomings when applied to recognition. First of all, to be properly tuned, they
require a considerable amount of training data comprehensively covering the ele-
ments within the domain at hand. The collection of a dataset is a tedious, heavily
time-consuming, and (in some domains) unfeasible task, as the author experienced
when processing the UMA-OYffices dataset. Such dataset, consisting of 25 scenes cap-
tured by a mobile robot from office facilities within the University of Mdlaga, was
collected to evaluate the developed recognition techniques in conjunction with other
state-of-the-art repositories containing information from the trending topic sensors,
#RGB-D_cameras. To avoid the dependency of datasets containing real data, it was
shown how Semantic Knowledge, conveniently codified in an Ontology, can be used
to effortlessly generate an arbitrary number of training samples representative of the
domain at hand. Ontologies provide a natural way to encode Semantic Knowledge,
and suppose a compact, human-readable, and ready-to-use representations in high-
level reasoning tasks. However, they are unable to handle uncertainty, and it is dif-
ficult to fill the gap between the low level sensory data and the codified information
without introducing additional ad-hoc processes. Their synergy with CRFs removes
these limitations, setting a mutual benefit relationship.

This thesis has exhibited that Ontologies have much to offer to its marriage with
CRFs. For example, they have been employed to generate hypotheses about the pos-
sible types of the objects/rooms within a scene, drastically reducing in that way the
complexity of the CRFs modeling such scene. This increases the efficiency of ap-
proximate inference methods over CRFs, also broaden the scenarios where exact in-
ference is feasible. Notice that the efficiency of the recognition method is key for the
proper robot operation, since it must share the (usually limited) robot resources with
other algorithms in execution like those performing navigation or localization. On-
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tologies may encode different types of information about the elements of the domain
of discourse, and this has been leveraged to codify the frequency of occurrence of the
different object classes. The usual CRF formulation has been accordingly adapted
to exploit this source of prior information, allowing these models to achieve more
coherent recognition results. Encoded Semantic Knowledge has been also used to de-
tect incoherences in such results, and learn from them in collaboration with a human.
This approach overcomes the CRF inability to learn from experience, and permits it
to improve its performance and robustness in the long-term operation within home
environments.

Once the mobile robot was able to recognize the elements in its surroundings
with guarantees, such recognition framework was integrated into a semantic mapping
system. For that, it was designed the Multiversal Semantic Map (MvSmap), a rep-
resentation of the robot workspace able to accommodate and take advantage of the
probabilistic outcome of the developed recognition techniques. This map considers
different interpretations of the spatial elements, called universes, as instantiations of
Ontologies, creating a multiverse. These Ontologies are further annotated with the
probabilities yielded by the recognition framework, as well as with their probability
of being the true one. Thereby, the robot performance is not limited to the utiliza-
tion of the most probable universe, like traditional semantic maps do, but it can also
consider other possible explanations with different semantic interpretations, resulting
in a more coherent robot operation. A way to keep the complexity of the multiverse
tractable has been also presented, enabling its utilization in complex environments.

Two additional resources related to semantic mapping have been also made pub-
lic. The first one is a dataset, coined Robot @ Home, containing among others: 87,000+
time-stamped observations gathered by a mobile robot endowed with arig of 4 RGB-D
cameras and a 2D laser scanner, 3D reconstructions and 2D geometric maps of fully
explored houses, topological information about the connectivity of rooms, and ground
truth annotations about the type of the surveyed rooms and objects. The dataset is rich
in contextual information of the contained spatial elements, a valuable feature missing
in most of the state-of-the-art datasets, which can be exploited by semantic mapping
systems. The second contribution in this regard is the Object Labeling Toolkit (OLT),
a set of software components to efficiently process sequences of sensory informa-
tion, including RGB-D observations. Such components are highly customizable and
expandable, facilitating the integration of already-developed algorithms, and have
proven to drastically reduce the time and effort needed for processing that type of
datasets.

As a final remark, it is worth to say that although all the techniques described in
this thesis have been assessed with data repositories from domestic and office envi-
ronments, their utilization is not restricted to these domains, but they can be exploited
in any scenario exhibiting rich semantic information as hospitals, shopping centers, or
other human-like environments. Moreover, their use is not restricted to mobile robot
applications, but they could be exported to other fields that would benefit from the
exploitation of semantic maps as assistance to visual impaired or elderly people, aug-
mented reality, and more applications to appear in the era of portable devices able
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to execute this kind of techniques. Nowadays, in fact, our smartphones are almost as
powerful as our desktop computers. The research efforts in semantic mapping, along
with the new technological advances, ensure the emergence of breakthrough and ex-
citing applications. Stay tuned!

Future work

The work done in this thesis leaves a number of research lines open. Some of the
most interesting ones are outlined below.

Hypotheses generation. The generation of hypotheses employing the informa-
tion encoded in the Ontology could be so restrictive in some situations, mainly with
objects showing unusual properties. Let’s suppose a scene with a book placed on the
floor. In that situation the logical reasoner does not yield the type Book as a hypoth-
esis, given that its height largely differs from the expected one. An option could be
to consider the result of the logical inference as a score to be introduced in the CRF
formulation, at the cost of compromising the exact inference option.

Exploitation of MvSmaps. The real potential of Multiversal Semantic Maps (in
the author’s opinion) is still to come. Several proof-of-concept applications have been
designed and tested, but it should be studied the benefits of this representation in real
world problems like efficient navigation and object search, robot localization, task
planning with uncertain/incomplete information, etc.

Learning from experience. There is significant room to explore possible im-
provements to the proposed system for learning from experience. Firstly, it should be
conducted a thorough evaluation of the system with complex CRFs and ontologies,
including information from objects and rooms, during long periods of time. Since the
human is in the learning loop, it could be also studied how possible incorrect indica-
tions by the user affect the performance. The system could also benefit from a study
of when would be more appropriate to ask the user about inconsistent results in order
to not bother him/her.

Further development of UPGMpp. Some additional features regarding the per-
formance of the UPGMpp library could be explored. For example, although the most
time-consuming parts of the library are parallelized through OpenMP, some repeti-
tive operations intensively employing data could also benefit for a parallelization at a
lower level, aiming to also take advantage of GPU cores through, for example, CUDA
or OpenCL. Visualization tools for inspecting the underlying graphs would be also
useful for understanding what is on in the code and during execution. The implemen-
tation of sampling techniques for drawing samples from the probability defined by a
PGM (like Markov Chain Monte Carlo), are also in the spotlight. Of course, any con-
tribution to UPGMpp from the computer vision or robotic communities is welcome.
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Improvements in OLT. The incorporation of algorithms for a globally consistent
alignment of the RGB-D observations used to reconstruct a scene would lead to even
more accurate models. The user experience could be also improved with the addition
of geometric primitives like spheres or cylinders to the currently used one (boxes) to
segment and label scenes. Moreover, the time needed for labeling would be reduced
if an initial segmentation of the scene as well as tentative labels for the objects/rooms
therein are provided beforehand.
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Abstract

This paper presents a novel approach that exploits semantic knowledge to en-
hance the object recognition capability of autonomous robots. Semantic knowledge
is a rich source of information, naturally gathered from humans (elicitation), which
can encode both objects’ geometrical/appearance properties and contextual relations.
This kind of information can be exploited in a variety of robotics skills, especially
for robots performing in human environments. In this paper we propose the use of
semantic knowledge to eliminate the need of collecting large datasets for the training
stages required in typical recognition approaches. Concretely, semantic knowledge
encoded in an ontology is used to synthetically and effortless generate an arbitrary
number of training samples for tuning Probabilistic Graphical Models (PGMs). We
then employ these PGMs to classify patches extracted from 3D point clouds gath-
ered from office environments within the UMA-offices dataset, achieving a ~ 90%
of recognition success, and from office and home scenes within the NYU2 dataset,
yielding a success of ~ 81% and ~ 69.5% respectively. Additionally, a comparison
with state-of-the-art recognition methods also based on graphical models has been
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carried out, revealing that our semantic-based training approach can compete with,
and even outperform, those trained with a considerable number of real samples.

B Joint Categorization of Objects and Rooms
for Mobile Robots

Authors: Jose-Raul Ruiz Sarmiento, Cipriano Galindo and Javier Gonzalez-Jimenez.
Published in: IEEE/RSJ International Conference on Intelligent Robots and Systems
Pages: 2523-2528

Year: 2015

DOI: 10.1109/IROS.2015.7353720

Abstract

In general, the problems of objects’ and rooms’ categorizations for robotic ap-
plications have been addressed separately. The current trend is, however, towards a
joint modelling of both issues in order to leverage their mutual contextual relations:
object — room (e.g. the detection of a microwave indicates that the room is likely to
be a kitchen), and room — object (e.g. if the robot is in a bathroom, it is probable
to find a toilet). Probabilistic Graphical Models (PGMs) are typically employed to
conveniently cope with such relations, relying on inference processes to hypothesize
about objects’ and rooms’ categories. In this work we present a Conditional Random
Field (CRF) model, a particular type of PGM, to jointly categorize objects and rooms
from RGBD images exploiting object-object and object-room relations. The learning
phase of the proposed CRF uses Human Knowledge (HK) to eliminate the necessity
of gathering real training data. Concretely, HK is acquired through elicitation and
codified into an ontology, which is exploited to effortless generate an arbitrary num-
ber of representative synthetic samples for training. The performance of the proposed
CRF model has been assessed using the NYU?2 dataset, achieving a success of ~ 70%
categorizing both, objects and rooms.
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Abstract

Scene object recognition is an essential requirement for intelligent mobile robots.
In addition to geometric or appearance features, modern recognition systems strive to
incorporate contextual information, normally modelled through Probabilistic Graph-
ical Models (PGMs) or Semantic Knowledge (SK). However, these approaches, sep-
arately, show some weaknesses that limit their application, e.g., the exponential com-
plexity of the probabilistic inference over PGMs or the inability of SK to handle
uncertainty. This paper presents a hybrid PGM-SK system for object recognition that
integrates both techniques reducing their individual limitations and gaining in prob-
abilistic inference efficiency, performance robustness, uncertainty handling, and pro-
viding coherent results according to domain knowledge codified by a human expert.
We support this claim with an extensive experimental evaluation according to both
recognition success and time requirements in real scenarios from two datasets (NYU2
and UMA-offices). The yielded figures support the suitability of the hybrid PGM-SK
recognition system, and its applicability to mobile robotic agents.
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Abstract

Object recognition is a cornerstone task towards the scene understanding prob-
lem. Recent works in the field boost their performance by incorporating contextual
information to the traditional use of the objects’ geometry and/or appearance. These
contextual cues are usually modeled through Conditional Random Fields (CRFs), a
particular type of undirected Probabilistic Graphical Model (PGM), and are exploited
by means of probabilistic inference methods. In this work we present the Undirected
Probabilistic Graphical Models in C++ library (UPGMpp), an open source solution
for representing, training, and performing inference over undirected PGMs in general,
and CRFs in particular. The UPGMpp library supposes a reliable and comprehensive
workbench for recognition systems exploiting contextual information, including a va-
riety of inference methods based on local search, graph cuts, and message passing
approaches. This paper illustrates the virtues of the library, i.e. it is efficient, com-
prehensive, versatile, and easy to use, by presenting a use-case applied to the object
recognition problem in home scenes from the challenging NYU2 dataset.
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Abstract

In this work we present the Object Labeling Toolkit (OLT), a set of software com-
ponents publicly available for helping in the management and labeling of sequen-
tial RGB-D observations collected by a mobile robot. Such a robot can be equipped
with an arbitrary number of RGB-D devices, possibly integrating other sensors (e.g.
odometry, 2D laser scanners, etc.). OLT first merges the robot observations to gener-
ate a 3D reconstruction of the scene from which object segmentation and labeling is
conveniently accomplished. The annotated labels are automatically propagated by the
toolkit to each RGB-D observation in the collected sequence, providing a dense label-
ing of both intensity and depth images. The resulting objects’ labels can be exploited
for many robotic oriented applications, including high-level decision making, seman-
tic mapping, or contextual object recognition. Software components within OLT are
highly customizable and expandable, facilitating the integration of already-developed
algorithms. To illustrate the toolkit suitability, we describe its application to robotic
RGB-D sequences taken in a home environment.
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Abstract

Semantic maps augment metric-topological maps with meta-information, i.e. se-
mantic knowledge aimed at the planning and execution of high-level robotic tasks. Se-
mantic knowledge typically encodes human-like concepts, like types of objects and
rooms, which are connected to sensory data when symbolic representations of per-
cepts from the robot workspace are grounded to those concepts. This symbol ground-
ing is usually carried out by algorithms that individually categorize each symbol and
provide a crispy outcome — a symbol is either a member of a category or not. Such
approach is valid for a variety of tasks, but it fails at: (i) dealing with the uncertainty
inherent to the grounding process, and (ii) jointly exploiting the contextual relations
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among concepts (e.g. microwaves are usually in kitchens). This work provides a solu-
tion for probabilistic symbol grounding that overcomes these limitations. Concretely,
we rely on Conditional Random Fields (CRFs) to model and exploit contextual rela-
tions, and to provide measurements about the uncertainty coming from the possible
groundings in the form of beliefs (e.g. an object can be categorized (grounded) as
a microwave or as a nightstand with beliefs 0.6 and 0.4, respectively). Our solution
is integrated into a novel semantic map representation called Multiversal Semantic
Map (MvSmap), which keeps the different groundings, or universes, as instances of
ontologies annotated with the obtained beliefs for their posterior exploitation. The
suitability of our proposal has been proven with the Robot@Home dataset, a reposi-
tory that contains challenging multi-modal sensory information gathered by a mobile
robot in home environments.
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