
Departamento de Arquitectura de Computadores

TESIS DOCTORAL

High Performance Computing
in the Cloud

Óscar Torreño Tirado

Julio de 2017

Dirigida por:
Oswaldo Trelles

AUTOR: Óscar Torreño Tirado

 http://orcid.org/0000-0001-8513-3109

EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga

Esta obra está bajo una licencia de Creative Commons Reconocimiento-
NoComercial-SinObraDerivada 4.0 Internacional:
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
Cualquier parte de esta obra se puede reproducir sin autorización
pero con el reconocimiento y atribución de los autores.
No se puede hacer uso comercial de la obra y no se puede alterar, transformar o
hacer obras derivadas.

Esta Tesis Doctoral está depositada en el Repositorio Institucional de la
Universidad de Málaga (RIUMA): riuma.uma.es

http://orcid.org/0000-0001-8513-3109
http://orcid.org/0000-0001-8513-3109
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Dr. D. Oswaldo Trelles Salazar.
Profesor Titular del Departamento de
Arquitectura de Computadores de la
Universidad de Málaga.

CERTIFICA:

Que la memoria titulada “High Performance Computing in the Cloud”, ha
sido realizada por D. Óscar Torreño Tirado bajo mi dirección en el Departamento
de Arquitectura de Computadores de la Universidad de Málaga y constituye la
Tesis que presenta para optar al grado de Doctor en Ingenieŕıa Informática.

Málaga, Julio de 2017

Dr. D. Oswaldo Trelles Salazar
Director de la tesis.

.

A mis padres, pareja y familiares

.

Agradecimientos

Esta tesis es el producto de la colaboración directa e indirecta de multitud
de personas a las que quisiera dirigir unas breves palabras de agradecimiento con
estas ĺıneas.

En primer lugar, quiero dar las gracias a mi director, Oswaldo Trelles por
acogerme en su grupo de investigación ya antes de terminar la licenciatura y por
sus consejos y bien hacer en la dirección de la tesis, sin la cual el contenido de
esta tesis hubiera sido de menor calidad. Me gustaŕıa resaltar el clima de trabajo
que ha predominado en el grupo de investigación, con un trato de igual a igual.
He de dar las gracias también a Oswaldo por la dirección de los trabajos de fin
de carrera y fin de máster.

Me gustaŕıa extender este agradecimiento a todas las personas que integran el
Departamento de Arquitectura de Computadores de la Universidad de Málaga, y
en especial a los técnicos y a la secretaria, Carmen, cuyo trabajo y ayuda ha sido
indispensable para que esto llegara a buen fin. Me han brindado un gran apoyo
en momentos personales dif́ıciles y me gustaŕıa agradecérselo de corazón.

Debo agradecer la financiación recibida por parte del Instituto de Salud Carlos
III a cargo de los proyectos de investigación “Instituto Nacional de Bioinformáti-
ca” (INB-GN5), RIRAAF (RD07/0064/0017 y RD12/0013/0006) y Plataforma
tecnológica de Recursos Biomoleculares y Bioinformáticos (PT13/0001/0012), y
a la Junta de Andalućıa a través del proyecto Plataforma computacional de alto
rendimiento para la gestión y análisis de datos cĺınico-genéticos (P10-TIC-6108).

I must thank the European Commision funded project Mr.Symbiomath, under
the 7th framework programme grant agreement no. 324554, whose funds made
me enjoy a two year investigation stay at RISC Software GmbH company part
of the Johannes Kepler University, with the group of my host, Mag. Michael T.
Krieger, formed by Bashar Ahmad, Paul Heinzlreiter and Iris Leitner. Thank
you for your kind support.

ii AGRADECIMIENTOS

I would also like to thank the whole company and the secretaries for their
invaluable help and support. Without the cloud resources provided by RISC it
would have been much harder to develop the work described in this thesis.

Por último, quisiera agradecer encarecidamente el soporte ańımico y afectivo
que me ha brindado toda la gente de mi entorno. A mis antiguos compañeros
de grupo Maxi Garćıa, Alfredo Mart́ınez, Victoria Mart́ın, Javier Ŕıos y Antonio
Muñoz, sin su ayuda no habŕıa sido posible la fácil adaptación al grupo. A mis
compañeros actuales del grupo Jose Antonio Arjona, Sergio Dı́az, Esteban Pérez y
Eugenia Ulzurrun con los cuales he tenido buenas discusiones de trabajo. Al resto
de compañeros de laboratorio que han creado un ambiente de trabajo inigualable,
Ricardo Quislant, Alberto Sanz, Antonio J. Dios, Miguel Ángel González, Manolo
R. Cervilla, Manolo Pedrero, Antonio Vilches, Alejandro Villegas, Jose Manuel
Herruzo y a todos aquellos que haya podido olvidar. A mis amigos de Ronda,
Málaga y Austria, que han supuesto un gran apoyo en momentos dif́ıciles y una
ineludible válvula de escape para el estrés. A Cristina, que ha sido un apoyo
incondicional y ha estado a mi lado en todo momento, aguantando todos mis
altibajos. Y a mis padres y familiares, especialmente a mi madre porque aunque
no esté ya con nosotros se sentirá orgullosa de mı́ allá donde esté.

Abstract

The numerous technological advances in data acquisition techniques allow the
massive production of enormous amounts of data in diverse fields such as astron-
omy, health and social networks. Nowadays, only a small part of this data can
be analysed because of the lack of computational resources. High Performance
Computing (HPC) strategies represent the single choice to analyse such over-
whelming amount of data. However, in general, HPC techniques require the use
of big and expensive computing and storage infrastructures, usually not a↵ord-
able or available for most users.

Cloud computing, where users pay for the resources they need and when they
actually need them, appears as an interesting alternative. Besides the savings in
hardware infrastructure, cloud computing o↵ers further advantages such as the
removal of installation, administration and supplying requirements. In addition,
it enables users to use better hardware than the one they can usually a↵ord, scale
the resources depending on their needs, and a greater fault-tolerance, amongst
others. The e�cient utilisation of HPC resources becomes a fundamental task,
particularly in cloud computing. We need to consider the cost of using HPC
resources, specially in the case of cloud-based infrastructures, where users have to
pay for storing, transferring and analysing data. Therefore, it is really important
the usage of generic tasks scheduling and auto-scaling techniques to e�ciently
exploit the computational resources. It is equally important to make these tasks
user-friendly through the development of tools/applications (software clients),
which act as interface between the user and the infrastructure.

In recent years, the interest in both scientific and business workflows has in-
creased. A workflow is composed of a series of tools, which should be executed
in a predefined order to perform an analysis. Traditionally, these workflows were
executed in a manual way, sending the output of one tool to the next one in
the analysis process. Many applications to execute workflows automatically, ap-
peared recently. These applications ease the work of the users while executing

iv ABSTRACT

their analyses. In addition, from the computational point of view, some work-
flows require a significant amount of resources. Consequently, workflow execu-
tion moved from single workstations to distributed environments such as Grids
or Clouds. Data management and tasks scheduling are required to execute work-
flows in an e�cient way in such environments.

In this thesis, we propose a cloud-based HPC environment, focusing on tasks
scheduling, resources auto-scaling, data management and simplifying the access
to the resources with software clients. First, the cloud computing infrastructure is
devised, which includes the base software (i.e. OpenStack) plus several additional
modules aimed at improving authentication (i.e. LDAP) and data management
(i.e. GridFTP, Globus Online and CloudFuse). Second, built on top of the men-
tioned infrastructure, the TORQUE distributed resources manager and the Maui
scheduler have been configured to schedule and distribute tasks to the cloud-based
workers. To reduce the number of idle nodes and the incurred cost of the active
cloud resources, we also propose a configurable auto-scaling technique, which is
able to scale the execution cluster depending on the workload. Additionally, in
order to simplify tasks submission to the TORQUE execution cluster, we have
interconnected the Galaxy workflows management system with it, therefore users
benefit from a simple way to execute their tasks. Finally, we conducted an ex-
perimental evaluation, composed by a number of di↵erent studies with synthetic
and real-world applications, to show the behaviour of the auto-scaled execution
cluster managed by TORQUE and Maui.

All experiments have been performed by using an OpenStack cloud computing
environment and the benchmarked applications correspond to the benchmarking
suite, which is specially designed for workflows scheduling in the cloud computing
environment. Cybershake, Ligo and Montage have been the selected synthetic
applications from the benchmarking suite. GECKO and a GWAS pipeline rep-
resent the real-world test use cases, both having a diverse and heterogeneous set
of tasks.

Contents

Agradecimientos I

Abstract III

Contents V

List of Figures XI

List of Tables XV

List of Abbreviations XVII

1.- Introduction 1

1.1. Motivation and Contributions . 1

1.2. Research objectives . 3

1.3. Contributions . 3

1.4. Scope and limitations . 5

1.5. Outline of the Thesis . 6

2.- Background and Related Work 7

2.1. Cloud computing . 7

v

vi CONTENTS

2.1.1. Cloud computing service models 9

Infrastructure-as-a-Service 11

Platform-as-a-Service . 11

Software-as-a-Service . 11

2.1.2. Cloud computing deployment models 11

Public cloud . 12

Private cloud . 12

Community cloud . 13

Hybrid cloud . 13

2.2. Scheduling . 13

2.2.1. Overview of tasks scheduling 13

2.2.2. Scheduling algorithms . 14

Multilevel queue scheduling 15

Priority-based scheduling 15

2.2.3. Distributed resource managers 15

2.3. Workflows . 18

2.3.1. Workflow management systems and software clients 19

Workflow management systems 19

Software clients . 22

2.4. Application Domain . 23

2.4.1. Pairwise sequence comparison 23

2.4.2. Genome-wide association studies 24

2.5. Auto-scaling strategies . 25

2.6. Workflows scheduling in the cloud 34

3.- Infrastructure 37

3.1. Cloud computing solution: OpenStack 37

3.2. Authentication . 39

CONTENTS vii

3.3. Data management . 42

3.3.1. Underlying file system (Ceph) 42

3.3.2. Globus Online . 43

3.3.3. Endpoint Setup . 44

GridFTP User authentication 44

Object Storage Integration 45

Endpoint Registration . 46

Architecture and Workflow 47

3.4. Computation . 47

3.4.1. TORQUE distributed resources manager 48

3.4.2. RESTful Web Services front-end 49

3.4.3. Galaxy workflows management system 51

Galaxy deployment . 54

3.5. Networking . 55

3.6. OpenStack Horizon . 58

3.7. Interconnection between components 58

4.- Scheduling and auto-scaling 63

4.1. Scheduling . 63

4.1.1. Built-in TORQUE FCFS scheduler 64

4.1.2. Maui scheduler . 64

Job priority parameters . 64

Node allocation policy . 65

Backfill . 67

4.2. Auto-scaling strategy . 70

4.2.1. Configuration parameters 71

4.2.2. Scaling decision mechanism 72

4.2.3. The deployment scenario 74

viii CONTENTS

5.- Experimental Evaluation 75

5.1. Workflow applications . 75

5.1.1. Synthetic workflows . 75

5.1.2. Real-world workflows . 79

Pairwise genome comparison workflow 80

Multiple genome comparison parallel workflow 81

Genome-Wide Association Study workflow 83

5.2. Evaluation metrics . 83

5.3. Experiment results . 84

5.3.1. Results of the performance metrics 85

Queued time . 85

Makespan . 87

Throughput . 89

Resource utilisation . 89

5.3.2. System behaviour using the auto-scaling strategy 90

Multiple genome comparison sequential workflow 91

Multiple genome comparison parallel workflow 91

Genome-Wide Association Study workflow 96

5.4. Main factors a↵ecting the scheduling and auto-scaling mechanisms 96

5.4.1. Task duration distribution 97

5.4.2. Inaccuracies in the task runtime estimates 99

5.4.3. Provisioning delays . 105

6.- Conclusions and Future Work 109

Appendices 117

A.- Cloud computing features 117

CONTENTS ix

A.1. On-demand . 117

A.2. Pay-per-use . 117

A.3. Rapid elasticity . 118

A.4. Maintenance and upgrading . 119

B.- Scheduling 121

B.1. Types of processes . 121

B.2. Scheduling level . 122

B.2.1. Short-term . 122

B.2.2. Medium-term . 122

B.2.3. Long-term . 123

B.3. Types of scheduling algorithms (static and dynamic) 124

B.4. Traditional scheduling algorithms 126

B.4.1. FIFO . 126

B.4.2. Shortest Job First . 127

B.4.3. Round-robin scheduling . 127

C.- Resumen en español 129

C.1. Introducción . 129

C.2. Estado actual de desarrollo . 132

C.2.1. Computación en la nube . 132

C.2.2. Planificación de tareas . 133

C.2.3. Flujos de trabajo . 134

C.2.4. Dominios de aplicación . 135

C.2.5. Trabajos relacionados . 135

C.3. Infraestructura . 136

C.3.1. OpenStack . 136

C.3.2. Autenticación . 136

C.3.3. Gestión de datos . 137

x CONTENTS

C.3.4. Cómputo . 138

C.3.5. Infrastructura de red . 139

C.3.6. Horizon . 139

C.3.7. Interconexión entre componentes 139

C.4. Planificación y auto-escalado . 140

C.4.1. Planificación de tareas . 140

C.4.2. Auto-escalado . 141

C.5. Evaluación experimental . 141

C.5.1. Factores que afectan la planificación y el auto-escalado . . . 142

C.6. Conclusiones y trabajo futuro . 143

Bibliography 147

List of Figures

2.1. Cloud computing service models. 10

2.2. Comparison of what users and what cloud providers control in the
di↵erent models. 10

2.3. Workflow example. 18

2.4. Architecture of the Amazon Web Services cloud auto-scaling strat-
egy. 26

2.5. Architecture of the IBM cloud auto-scaling strategy. 27

2.6. Architecture of the OpenStack cloud auto-scaling strategy. 27

2.7. Architecture of the OpenNebula cloud auto-scaling strategy. 28

2.8. Architecture of the Microsoft Azure cloud auto-scaling strategy. . . 28

2.9. Current architecture of the “Distributed Infrastructure with Re-
mote Agent Control” (DIRAC) distributed infrastructure. 30

2.10. Architecture of the Cloud Scheduler auto-scaling strategy. 31

2.11. Architecture of the Cloud Scheduler auto-scaling strategy. 32

2.12. Architecture of the Dynamic Terascale Open-source Resource and
QUEue Manager (TORQUE) auto-scaling strategy working in ac-
tive mode. 33

2.13. Architecture of the Dynamic TORQUE auto-scaling strategy work-
ing in passive mode. 33

3.1. OpenStack components. 39

3.2. Ceph Object Gateway. 43

xi

xii LIST OF FIGURES

3.3. Interaction of all components to mount the users corresponding
containers of the object storage. 46

3.4. Architecture of the Endpoint Setup including the object storage
integration. 47

3.5. RESTful Web Services front-end. 50

3.6. Invoking a REpresentational State Transfer (REST)ful Web Service. 51

3.7. GECKO workflow in Galaxy. 52

3.8. Parameters of GECKO workflow in Galaxy. 53

3.9. GECKO workflow running in Galaxy. 54

3.10. Physical architecture of the networking component of the devised
cloud environment. 56

3.11. Virtual architecture of the networking component of the devised
cloud environment. 57

3.12. Overview page in Horizon . 58

3.13. Overview of the system architecture. 60

4.1. Example scenario of job delays caused by backfill. 68

4.2. Best-fit backfill algorithm. 70

4.3. Overview of Dynamic TORQUE running in active mode. 71

4.4. Deployment of Dynamic TORQUE in the described cloud infras-
tructure. 74

5.1. Overview of the Ligo workflow. 76

5.2. Overview of the Montage workflow. 77

5.3. Overview of the Cybershake workflow. 78

5.4. The pairwise genome comparison workflow. 80

5.5. The parallelization levels applied to the multiple genome compar-
ison workflow. 82

5.6. The GWAS workflow. 83

5.7. Average queued time of the di↵erent workflows scheduled by the
two compared scheduling algorithms. 86

LIST OF FIGURES xiii

5.8. Makespan of the di↵erent workflows scheduled by the two com-
pared scheduling algorithms. 88

5.9. Performance of the scheduling algorithms for an unbalanced set of
long tasks. 88

5.10. Throughput of the di↵erent workflows scheduled by the two com-
pared scheduling algorithms. 89

5.11. Resources utilisation of the di↵erent workflows scheduled by the
two compared scheduling algorithms. 90

5.12. Speedup of the first parallelization level of the multiple genome
comparison workflow. 93

5.13. Speedup of the modules composing the GECKO workflow. 95

5.14. Histogram of tasks duration for the di↵erent workflows. 98

5.15. Barchart of tasks duration for the di↵erent workflows. 99

5.16. Histogram of tasks duration for the di↵erent workflows including
an extra random time. 101

5.17. Barchart of tasks duration for the di↵erent workflows including a
random extra time. 102

5.18. Average queued time of the di↵erent workflows scheduled by the
two compared scheduling algorithms including a random extra time.103

5.19. Makespan of the di↵erent workflows scheduled by the two com-
pared scheduling algorithms including a random extra time. 104

5.20. Influence of the inaccuracies in the tasks runtime estimates to the
makespan metric. 105

5.21. Provisioning delay of the OpenStack instance types. 107

B.1. Illustration of in what part of a computing system a short-term,
medium-term or long-term scheduler acts. 124

B.2. Taxonomical classification of task scheduling algorithms [17]. . . . 125

List of Tables

2.1. Limitations of related workflows scheduling algorithms. 36

5.1. Dataset used to evaluate the performance of GECKO. 81

xv

List of Abbreviations

AMQP Advanced Message Queuing Protocol. 48

API Application Programming Interface. 5, 26–28, 43, 48, 49, 74, 111, 116

CA Certification Authority. 44, 47, 137

CAPEX Capital Expenses. 9, 117

CAR Computación de Alto Rendimiento. 129–131, 133, 143–145

CLI Command Line Interface. 26, 27

CPU Central Processing Unit. 5, 14, 25, 28, 29, 34, 36, 48, 66, 96, 113, 121,
122, 127, 135, 136

CSS Custom Style Sheets. 54

DBaaS Database-as-as-Service. 59, 61

DHCP Dynamic Host Configuration Protocol. 57

DIRAC “Distributed Infrastructure with Remote Agent Control”. 29, 30

DNAT Destination Network Address Translation. 56

DNS Domain Name System. 61

E/S Entrada/Salida. 135

EaaS Everything-as-a-Service. 9

EC2 Elastic Compute Cloud. 29, 49, 106

xvii

xviii LIST OF ABBREVIATIONS

FCFS First-Come First-Served. 4, 39, 63, 64, 79, 84–86, 88–90, 97, 102, 126

FIFO First-In First-Out. 126, 140, 142, 143

FIM Federated Identity Management. 40

FP7 Seventh Framework Programme. 116

FPGA Field Programmable Gate Array. 122

GO Globus Online. 43, 44, 137, 138

GPU Graphical Processing Unit. 122

GRE Generic Routing Encapsulation. 55, 57

GWAS Genome-wide association studies. 24, 135

HPC High Performance Computing. 1, 2, 15–17, 23, 25, 38, 59, 65, 109, 110,
113–116, 123

HPSs High-scoring Segment Pairs. 80

HTC High Throughput Computing. 48

HTTP Hypertext Transfer Protocol. 43, 60

I/O Input/Output. 5, 36, 76, 78, 82, 93, 94, 109, 113, 121, 122

IaaS Infrastructure-as-a-Service. 3–5, 9, 11, 35, 37, 38, 41, 49, 59, 109, 110, 115,
133, 136

ISI Institute for Scientific Information. 5, 132

JCR Journal Citation Reports. 5, 132

KVM Kernel-based Virtual Machine. 48, 138

LDAP Lightweight Directory Access Protocol. 3, 37, 40, 41, 45, 110, 137, 144

MAPI Modular API. 22, 23, 50, 51

MIT Massachusetts Institute of Technology. 31

ML2 Modular Layer 2. 55

LIST OF ABBREVIATIONS xix

MOM Machine Oriented Mini-server. 32, 74

NFS Network File System. 60, 61, 74, 141

OPEX Operational Expenses. 9, 118

PaaS Platform-as-a-Service. 9, 11, 38, 109, 133

PAM Pluggable Authentication Module. 45, 47

PBS Portable Batch System. 32, 48, 74

POSIX Portable Operating System Intefarce. 44

QoS Quality of Service. 8

RAM Random Access Memory. 34, 48, 96

REST REpresentational State Transfer. 4, 37, 39, 49, 51, 113, 138

S3 Simple Storage Service. 43

SA scheduling algorithm. 13, 14

SaaS Software-as-a-Service. 9, 11, 109, 133

SDKs software development kits. 11

SDN Software-Defined Networking. 55

SFTP SSH File Transfer Protocol. 113

SGE Sun Grid Engine. 31

SJF Shortest Job First. 15

SLA Service Level Agreement. 8, 12, 118, 119

SLURM Simple Linux Utility for Resource Management. 49

SNAT Source Network Address Translation. 56

SNPs Single Nucleotide Polymorphisms. 24, 83

SSH Secure Shell. 41

xx LIST OF ABBREVIATIONS

SSL Secure Sockets Layer. 41

TCP Transmission Control Protocol. 43

TORQUE Terascale Open-source Resource and QUEue Manager. 4–6, 18, 32,
33, 37, 41, 48, 49, 61, 63, 64, 66, 70–72, 74, 84, 100, 110–112, 114, 115,
138–141, 144

URL Uniform Resource Locator. 4, 50

VCF Variant Call Format. 83, 96

VM Virtual Machine. 4, 5, 28–32, 34, 36, 41, 49, 55, 57, 60, 61, 71, 72, 74, 96,
97, 106, 112, 114, 115

VOs Virtual Organisations. 40, 41

WMSs Workflow Management Systems. 19–22

xinetd Extended Internet Daemon. 45

1
Introduction

This chapter provides a high-level overview of the work presented in this
thesis. It starts o↵ by providing the motivation behind data intensive appli-
cations and workflow management systems in the context of cloud computing
(Section 1.1). Then it provides the research objectives set at the beginning of
this thesis summarising and explaining their achievement (Section 1.2). The
chapter also describes the contributions of the presented work to the scientific
community (Section 1.3). It finally concludes with the scope of the presented
work, its limitations, how they could be enhanced in future work (Section 1.4),
and provides an outline of the thesis chapters (Section 1.5).

1.1. Motivation and Contributions

The large number of technological advances in data acquisition techniques
allow the massive production of enormous amounts of data in diverse research
fields such as astronomy, health and social networks. This data o↵ers unprece-
dented opportunities in research to research groups and companies. However,
at present only a small part of this data –the top of the iceberg– can be syn-
thesized, managed and processed, providing just a partial understanding of the
involved processes [62, 87]. The poor availability of computational resources and
approaches to e�ciently exploit them are the major bottlenecks in results acqui-
sition.

An interesting and increasingly important alternative to face the current pace
of data acquisition is the use of High Performance Computing (HPC) strategies
due to their long story of success dealing with large datasets and computational
demanding applications. These strategies cover data management techniques,

1

2 Chapter 1. Introduction

how to access the data, as well as the scheduling and distribution of tasks
analysing the previously mentioned data. In general, HPC techniques require
the use of big and expensive computing and storage infrastructures, usually not
a↵ordable for most of the research groups requiring these resources [67].

Cloud computing appears as an interesting alternative where users pay for the
resources they need and when they actually need them. Besides the savings in
infrastructure, cloud computing o↵ers further advantages such as the removal of
installation, administration and supplying requirements. In addition, it allows to
use better hardware than the one users can usually a↵ord buying, the flexibility
for resources scaling depending on user needs and a greater fault-tolerance, among
others.

Given the enormous amount of data being generated and the associated com-
putational load to manage and process it, the e�cient utilisation of HPC re-
sources becomes a fundamental task, not easy at all if we want to obtain the
highest possible performance. Without forgetting the incurred costs for storing
and transferring data, in cloud computing is especially important the e�cient use
of the resources we have asked for, because this will later determine the response
time until final results acquisition and the monetary costs to be covered [75].
Therefore, it is really important to use generic tasks scheduling techniques, which
should allow to extract a better e�ciency from the computational resources.

Additionally, one of the greatest drawbacks to adopt these new technologies is
their di�cult installation, configuration and use [8]. Therefore, it is equally im-
portant to make these tasks easier through the development of tools/applications
(software clients), which allow the use of the low-level developed tools, acting as
interface between the parties (i.e. the end-user and the actual infrastructure).

Comparative genomics, related to biomedicine, does not escape from the
trends of massive data production and the high-demand of processing power
and associated costs. Many comparative genomics applications work with in-
put and/or output data in the range of gigabytes, terabytes and exceptionally
petabytes.

Besides, the tasks arisen from comparative genomics analyses are complex,
heterogeneous, and with data dependencies between them, usually executed in
what is known as workflows. These characteristics make them appropriated to
be used as a validation set for data transfer and storage techniques, and also for
tasks scheduling in the proposed cloud-based HPC computing environment.

The research in solutions to the challenge of processing big datasets coming
from biomedicine and bioinformatics in a cloud computing environment, is of

1.2. Research objectives 3

direct interest in life sciences, medicine and in particular, health care. From
the technological point of view, this work addresses challenges in data transfer
and storage, as well as tasks scheduling and easing the use of cloud computing
resources to end-users.

1.2. Research objectives

The research objectives of the performed work are (in chronological order):

Infrastructure selection: types of cloud computing o↵ers with their advan-
tages and disadvantages. Evaluation of the most significant cloud comput-
ing providers.

Identification of the tasks to be performed in the cloud computing environ-
ment (e.g. data transfer, browsing of available services/tools, navigation
through the hierarchy of available services, execution of tasks, etc.).

Strategies for tasks scheduling, distribution and load-balancing.

Software clients: design/implementation of data uploading/downloading
software for the cloud environment. Moreover, software to execute tasks in
the cloud (including monitoring, results retrieval, etc.).

Use case in the comparative genomics field (multiple genome comparison)
and in the biomedical domain (genotype calling).

Benchmarking the performance and quality of the devised strategies.

1.3. Contributions

The main contributions of this work are the following:

The use of an Infrastructure-as-a-Service (IaaS) cloud computing infras-
tructure, which includes the base software (i.e. OpenStack) plus several
additional modules aimed at improving authentication (i.e. Lightweight
Directory Access Protocol (LDAP)) and data management (i.e. GridFTP,
GlobusOnline and CloudFuse).

4 Chapter 1. Introduction

The configuration, installation and deployment of a TORQUE1 and Maui2-
managed execution cluster built on top of the previously mentioned cloud
computing infrastructure. The configuration and start-up of the execution
cluster has been fully automated using OpenStack instance snapshots and
Heat templates to define start-up installation scripts.

The design and implementation of an auto-scaling technique independent
from the used IaaS cloud computing solution, although it has been only
tested with the mentioned OpenStack cloud infrastructure. The imple-
mented mechanism has been tested with the TORQUE distributed re-
sources manager, with its default First-Come First-Served (FCFS) sched-
uler and with the Maui scheduler. The auto-scaling technique o↵ers many
configuration possibilities such as the minimum number of static worker
nodes and the maximum number of dynamic ones. Other configurable pa-
rameters are the polling interval to check for idle nodes and the number of
jobs required to be waiting in the queue for running in order to instantiate
a new Virtual Machine (VM).

The design and development of a generic RESTful Web Services front-end
to allow the execution of tools in a cloud computing environment. The
simple REST interface allows job submission (returning a job id), progress
monitoring and intermediate and final results retrieval. Independently from
the given tool, the interface shares the endpoints of the mentioned oper-
ations, changing only the base Uniform Resource Locator (URL), which
points to the specific tool.

The interconnection of the mentioned auto-scaled execution cluster with
existing software clients (i.e. jORCA, mORCA) and workflow manage-
ment system (i.e. Galaxy) in order to simplify browsing the available ser-
vices/workflows, and interconnecting and executing them via graphical user
interfaces.

The development of two pairwise and multiple genome comparison applica-
tions (i.e. GECKO and GECKO in parallel), which are not only two good
use cases to evaluate the system. In addition, they represent an important
contribution to the bioinformatics domain since they remove the limitation
on input sequence length and execution time faced by equivalent software.
The results of GECKO are of comparable or higher quality compared to
the output produced by similar tools (as demonstrated in the publication).

1http://www.adaptivecomputing.com/products/open-source/torque/
2http://www.adaptivecomputing.com/products/open-source/maui/

http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/maui/

1.4. Scope and limitations 5

An experimental evaluation is carried out to compare our proposals with the
available solutions in the presence of tasks of di↵erent nature (Central Pro-
cessing Unit (CPU)-bounded and Input/Output (I/O)-bounded, and with
regular and irregular computational patterns) and with di↵erent cloud envi-
ronment configurations (i.e. instance types). A thorough analysis and sim-
ulation of the developed auto-scaling technique is also performed, including
the configuration parameters of the TORQUE distributed resources man-
ager using benchmarking applications used widespread in the literature,
and additionally comparative genomics and biomedicine workflows.

The aforementioned contributions have been published in international peer-
reviewed conferences [40, 81, 85] and journals [84, 52] ranked by the Institute
for Scientific Information (ISI) Journal Citation Reports (JCR) as required in
the rules of the PhD programme. Additional contributions have helped in the
achievement of this thesis and in the training of writing scientific papers [82, 83].

1.4. Scope and limitations

The main contributions of this work have been listed in the previous section,
however we would like to further clarify the scope and main limitations. First, as
cloud computing infrastructure, the devised work uses OpenStack. Although the-
oretically prepared to be used with any other IaaS cloud solution, it has not been
tested in such infrastructures. In principle, when the cloud management Appli-
cation Programming Interface (API) is not fully compatible with the OpenStack
API, a simple adaptation of the cloud management API component would be
required. Second, the chosen distributed resources manager has been TORQUE
alongside the Maui job scheduler. Again, these tools can be replaced requiring in
the first place the configuration of VM instances with the new tools installed, and
in second place, new Heat deployment templates for the automatic instantiation
of the nodes. Third, the configuration parameters of the scheduler have been
selected in order to improve the system behaviour within the devised cloud com-
puting infrastructure and for the synthetic and real-world workflows presented in
Chapter 5. There is not a clear limitation in this point, the set of tasks used to
test the system has been big and heterogeneous enough, and actually any kind
of application can be used in the system. However, further tests with more real-
world workflows would reinforce the performance of the system. In summary, all
the developed components could be easily replaced, given the designed architec-
ture, where all the components have been interconnected through clearly defined
interfaces.

6 Chapter 1. Introduction

1.5. Outline of the Thesis

The remainder of the thesis is structured in 5 additional chapters as follows:

Chapter 2 provides the necessary background to understand the starting
point of the performed work in addition to the related work alternatives
present in the state of the art. More concretely, the chapter provides back-
ground on cloud computing, scheduling, workflows, workflow management
systems and distributed resource managers.

Chapter 3 describes the used cloud computing infrastructure including in-
formation about data management, authentication and computation. The
infrastructure and the components comprising it were selected taking into
account previous studies on the available cloud solutions (both public and
private). This chapter concludes with the explanation of how the di↵erent
parts of the system are interconnected.

Chapter 4 presents the scheduler to be used in conjunction with the TORQUE
distributed resource manager and its corresponding parameters. Addition-
ally, the cloud computing resources auto-scaling technique is described.

Chapter 5 presents first the selected evaluation metrics to benchmark the
scheduling algorithm and the auto-scaling technique. Secondly, the work-
flows, representing both simulated and real workloads, are described. Thirdly
and finalising this chapter, the results obtained for the di↵erent evaluation
metrics in the various workflows are presented and discussed.

Chapter 6 outlines the conclusions extracted from this work and sets pos-
sible new future research directions.

2 Background and Related

Work

This chapter presents a background on cloud computing starting from several
definitions of the term and mentioning its unique features and the di↵erent avail-
able service and deployment models in Section 2.1. Appendix A describes in more
detail the unique features of cloud computing listed in this chapter. Section 2.2
provides the background on tasks scheduling related to the scheduling mecha-
nism designed in this thesis. Appendix B includes a more detailed background
of the categorisation of the traditional scheduling algorithms. Next, Section 2.3
include an overview of workflows, workflow management systems and software
clients and their usage in the cloud computing environment. A brief background
of the application domains for the real-world workflows developed and used in
this thesis is contained in Section 2.4. A more detailed background of the appli-
cation domains of such tools can be consulted in [88, 86]. Finally, this chapter
presents the related work on auto-scaling techniques and workflows scheduling in
the cloud in Sections 4.2 and 2.6.

2.1. Cloud computing

Nowadays, even some years after the appearance of cloud computing, there
is not a clear common definition about what cloud computing is. There is no
consensus between end-users and cloud providers what exactly this term means.
Taking a look at the existing definitions of cloud computing, we may find common
parts of what this term involves or might involve. Here we quote three definitions
for cloud computing:

(1) Cloud computing is a model for enabling convenient, on-
demand network access to a shared pool of configurable computing

7

8 Chapter 2. Background and Related Work

resources (e.g. networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal manage-
ment e↵ort or service provider interaction. – U.S. National Institute
of Standards and Technology [64].

(2) A computing Cloud is a set of network enabled services, pro-
viding scalable, Quality of Service (QoS) guaranteed, normally per-
sonalised, inexpensive computing infrastructures on demand, which
could be accessed in a simple and pervasive way. – Lizhe WANG et
al. [95].

(3) Clouds are a large pool of easily usable and accessible vir-
tualized resources (such as hardware, development platforms and/or
services). These resources can be dynamically reconfigured to adjust
to a variable load (scale), allowing also for an optimum resource util-
isation. This pool of resources is typically exploited by a pay-per-use
model in which guarantees are o↵ered by the Infrastructure Provider
by means of customised Service Level Agreement (SLA)s. – Luis M.
Vaquero et al. [91].

As it can be extracted from the previous definitions, the term cloud computing
comprise di↵erent types of services. These services include storage and processing
power available as a service over the network. Although there are di↵erences
in the previously written definitions, it is possible to extract several common
features. These features are described in more detail in Appendix A.

Finally, before moving to explain its main features, it is worth noting that
cloud computing does not consist on an entirely new technology, instead is a
mixture of two main already available solutions: virtualization and grid comput-
ing. The former provides virtual simulated versions of computing, storage and
network resources, among others. The latter, grid computing, uses several com-
puters interconnected over the network to solve a given problem. Grid computing
has its origins in the nineties when Foster and Kesselman introduced it and later
formalise it in 1999 [30]. Typically it is used to solve scientific problems requiring
a big number of processing units and/or involving large amounts of data. Grid
systems are architected in a way that a single user can request a large part of
the whole infrastructure. In contrast, the main focus of public cloud computing
providers is the provision of small portions of the infrastructure to end-users,
maximising the concurrent number of users. However, cloud computing in itself
does not limit users to request large parts of the infrastructure if they can a↵ord
it.

2.1. Cloud computing 9

On-demand is one of the basic features defining cloud computing. In cloud
computing, computing and storage resources can be started/terminated whenever
the users need them. This capability removes the necessity of planning ahead the
amount of required resources, thus reducing the cost of unused resources. An
additional important feature of the cloud environment is its billing model. It
translates the Capital Expenses (CAPEX) of buying the required infrastructure,
into Operational Expenses (OPEX) measured as the time cloud resources have
been used. Despite having several types of resources to meet user requirements,
these requirements frequently vary along time. Cloud providers o↵er automatic
techniques to either up-/down-scale the resources depending on the workload,
what is commonly referred as elasticity. They maintain the underlying physi-
cal computing resources, this turns into an e↵ective outsourcing of maintenance
tasks (either hardware or software). For instances, in case of hardware failures
or scheduled maintenance tasks, virtual machines are migrated to di↵erent com-
puting resources, thus not a↵ecting customers’ experience.

2.1.1. Cloud computing service models

Cloud computing has o↵ered three di↵erent service models since its appear-
ance. These models are usually denominated in the service-oriented architec-
ture domain as Everything-as-a-Service (EaaS). The taxonomy is organised in a
stack (see Figure 2.1), from a higher abstraction level to a lower one, being “E”
Software, Platform or Infrastructure [64]. It is worth noting that the di↵erent
models are not completely independent, instead Software-as-a-Service (SaaS) is
built on Platform-as-a-Service (PaaS), and so does the latter on IaaS. Each of
the mentioned levels are explained in detail in next subsections. Although these
are the main models present in the cloud computing environment, some authors
di↵erentiate even further the models, for example talking about Workflows-as-
a-Service [94], Database-as-a-Service or Hardware-as-a-Service [74]. Figure 2.2
summarises the di↵erences.

10 Chapter 2. Background and Related Work

SaaS

PaaS

IaaS

end users

developers
sysadm

ins

Amazon, IBM

Force.com, Azure

Google docs
Google drive
Gmail
Office365

Figure 2.1: Cloud computing service models.

Applications

Runtimes

Security

Databases

Servers

Virtualization

Storage

Networking

Applications

Runtimes

Security

Databases

Servers

Virtualization

Storage

Networking

Applications

Runtimes

Security

Databases

Servers

Virtualization

Storage

Networking

User managed

Vendor managed

IaaS PaaS SaaS

Figure 2.2: Comparison of what users and what cloud providers control in the
di↵erent models.

2.1. Cloud computing 11

Infrastructure-as-a-Service

IaaS is the delivery of a computing infrastructure as a service. In this cloud
model users receive raw computing, storage and network resources where they
can run any operating system or application of their choice. In simple words,
IaaS provides a higher flexibility from the point of view of the user (compared
to PaaS and SaaS). This higher flexibility resides mainly in the software the user
can install after instantiating a machine. Despite the higher flexibility, users
are not able to decide a specific hardware platform or change parameters of the
underlying infrastructure. They can only choose which of the data centers or
availability zones of the cloud provider they would like to use.

Platform-as-a-Service

In this model, cloud providers go beyond providing the hardware and virtual
machines running on top of them. They are providing software development
kits (SDKs) with support for di↵erent programming languages. The goal of this
model is to provide a higher abstraction level to the users while building their
applications. PaaS is typically used by developers looking for an easy way to
implement their software, which does not require special configurations to be
run.

Software-as-a-Service

In this last model, cloud providers o↵er either one or a set of final applications
running on-demand on a cloud infrastructure. The target customers of this model
are mainly end-users, who are usually only interested in using the software and
not in what is behind the scenes to support it. The applications following this
model are typically accessed through a simple client interface, such as a Web
browser. This is the simplest model from the point of view of the end-user.
However, in this case configuration capabilities are strongly limited to those of
the served application.

2.1.2. Cloud computing deployment models

Cloud environments can also be classified depending on the underlying infras-
tructure deployment model as Public, Private, Community or Hybrid. Each of
these deployment models can be distinguished by several factors. A first factor

12 Chapter 2. Background and Related Work

is the targeted users (whole community, company workers, etc.). Another factors
defining the deployment model are the architecture and location of the physical
data center where the cloud is constructed. And last but not least are the needs
of the customers (usually related to legal concerns).

Public cloud

A public cloud consists on a publicly available infrastructure owned by a cloud
service provider. In this deployment model there are no restrictions in the users
able to use it, neither on the applications they can run on it. In this model, users
pay for their resource utilisation in a pay-per-use way as explained in Section A.2
of Appendix A.

Private cloud

A private cloud is built for the exclusive use of one customer (either a single
individual or a company). The customer owns and has full control of the cloud
environment, what turns into the distinguishing characteristic of a private cloud.
However, there are di↵erent private cloud environments depending on how they
are operated.

Although a private cloud is usually owned by a single individual or a company,
it can be built, installed and managed by a third party company. Similarly, the
physical servers hosting the environment can be located at the facilities of the
customer or elsewhere within a shared hosting facility.

Building a private cloud is obviously more expensive in terms of equipment,
installation and maintenance compared to using a public cloud. The di↵erence in
cost is even higher if you are buying, hosting and maintaining the physical servers.
As a consequence, customers requiring the use of a private cloud, sometimes ask
cloud providers to supply them a private cloud environment hosted within the
same facilities of the public cloud servers. Undoubtedly the SLAs and legal
concerns of this kind of private cloud would be di↵erent to the one of the regular
public cloud o↵erings. The main reasons are that in private clouds resources are
used by far less people compared to public clouds, thus the SLAs play a less
important role. In the case of legal concerns, private cloud users know that their
data does not leave the security borders defined by their company or organisation,
thus they do not need special legal contracts in this matter.

2.2. Scheduling 13

Community cloud

Because of the higher cost of private clouds, and also as a result of several cus-
tomers having similar requirements, community clouds appeared. In this model,
customers share the infrastructure with the consequent reduction in the opera-
tional costs (i.e. installation, configuration and management). Therefore, there
is not a single owner of the infrastructure but a community (i.e. a group of
companies/customers) owning it (e.g. Salesforce community cloud1).

Hybrid cloud

A hybrid cloud is made out of any composition of the previously mentioned
deployment models. The most typical scenario is the mixture of the private and
public deployment models. In this scenario users store and manage their sensible
data within the private part of the environment, whereas less sensible data is
stored and processed in the public part. This is typically done to alleviate the
use of the possibly smaller private part. Although this is the most typical hybrid
scenario, any other combination is also considered a hybrid cloud.

2.2. Scheduling

2.2.1. Overview of tasks scheduling

Nowadays, scheduling happens in many facets of our lives. Scheduling is
needed because physical resources (e.g. time, computers, etc.) are limited, and
typically people want to extract the best possible performance out of their re-
sources. In computer science, scheduling refers to the method of assigning work
to be done to computing resources. Depending what we need to schedule and at
what level, the work may be threads, processes, tasks or workflows (defined as
a group of tasks with a given set of dependencies, thus executed in a predefined
order).

A scheduling algorithm (SA) performs the scheduling activity. The goal of
each SA usually di↵ers. For example, some SAs pay attention to the load bal-
ancing, acting as a fair judge distributing the work between all the computing
resources. While other SAs concentrate on providing a fair usage of the resources
to users belonging to a multi-user system. Scheduling is a fundamental piece of a

1https://www.salesforce.com/editions-pricing/community-cloud/

https://www.salesforce.com/editions-pricing/community-cloud/

14 Chapter 2. Background and Related Work

computing system. It happens at many levels ranging from the operating system
within a regular computer, to distributed computing environments.

SAs typically aim at one or several goals. Frequent goals are for example, max-
imising throughput (amount of work finished per time unit), reducing makespan
or latency (the elapsed time between a task entering the system for execution and
its subsequent completion), minimising the response time (defined as the elapsed
time from submission to the start of the execution), and maximising fairness (ap-
propriate CPU time for each process/user in concordance with the user defined
priority values). In practice, these objectives often conflict, therefore schedulers
find a compromise between them based on user preference.

In some situations, SAs must ensure that processes meet user-defined dead-
lines. A typical scenario where this is of vital importance is in real-time environ-
ments. In such scenario, if processes do not comply with the defined deadlines
there could be unacceptable consequences. Not meeting deadlines may risk hu-
man lives in embedded systems in automotive or airplanes, or waste a lot of
money in embedded systems designed to control production lines in industry.
Similarly in a scientific environment, not complying to deadlines may cause a
waste of resources while executing a set of tasks. In particular, in multiple steps
analyses the results produced by intermediate tasks might become useless if the
deadline is surpassed.

In a cloud computing environment a new variable to be optimised enters the
game. This variable is the incurred cost of executing a set of tasks. It is not
that in former systems there is no cost, but the cost in such systems is the
indirect one of not making an e�cient use of the resources. For example, in grid
computing there was a lot of research optimising tasks scheduling to maximise the
throughput [103, 14]. However, nowadays in public cloud environments there is
a direct cost when using resources. As a consequence, new scheduling algorithms
for the cloud environment [90, 59] aim to minimise the cost of executing a set of
tasks.

2.2.2. Scheduling algorithms

Tasks scheduling has been a research field with a significant amount of work
since the first years of computing. Bad scheduling decisions might compromise
the e�ciency of single-core systems and particularly the behaviour of distributed
systems. As a consequence, a number of schedulers have been developed in
the field. Next subsections describe the concept of the scheduling algorithm
applied in this thesis. Common and basic knowledge about tasks scheduling has

2.2. Scheduling 15

been included as an Appendix (see Appendix B). This appendix describes the
traditional scheduling algorithms developed over the years for Operating Systems,
on which most of the current state-of-the-art algorithms are inspired.

Multilevel queue scheduling

This kind of schedulers is used in systems where processes can be easily di-
vided into groups. Traditionally, the most common division has been interactive
and batch processes, but nowadays this division has evolved to more than two
levels/queues in certain environments. In any case, the idea is to separate pro-
cesses in di↵erent queues paying attention to the specific features of each type of
process. By doing this, it is possible to implement di↵erent methods for each of
the queues trying to optimise the system behaviour.

Priority-based scheduling

Although the Shortest Job First (SJF) scheduler is somehow basing its deci-
sions in a priority value calculated as the shortest execution time, there exist a
series of algorithms with di↵erent ways of calculating the job priority. For ex-
ample, there are algorithms calculating the job priorities based on the estimated
execution time of the tasks. Others calculate the tasks priorities based on other
factors such as the time the job has been queued in the system, the amount of
dependencies they resolve upon termination, etc.

Regardless of the factors the scheduler uses to calculate the priority, priority-
based schedulers can be categorised in dynamic and static priority algorithms.
The di↵erence resides in if the job priority is updated as the system evolves
(dynamic) or if it does not change since the job enters the system (static).

Independently of the factors used to calculate the job priority and also of its
dynamic/static value, most priority-based algorithms work in a similar way. This
kind of algorithms keeps the ready queue sorted by job priority, dispatching each
scheduling cycle the job with highest priority. Similarly to the SJF algorithm, in
case of a preemptive scheme, low-priority jobs (analogous to long jobs in SJF)
might enter into starvation if higher priority jobs enter continuously the system.

2.2.3. Distributed resource managers

In distributed computing environments such as HPC clusters, grids and clouds
the presence of an entity to manage the set of available resources is required. The

16 Chapter 2. Background and Related Work

price reduction in commodity o↵-the-shell hardware and the good scalability of
the cluster architecture made it feasible to build large scale clusters with thou-
sands of processors.

An essential component that is needed to manage such large-scale distributed
computing infrastructures is a resource management system. The main aim of
resource management in distributed environments is to make sure that users can
use such systems as easy as they can access local resources. However, the func-
tionality required by a distributed resource manager is wider in scope. Typically,
the main competences of such a system are:

Checking nodes’ health and status: in distributed systems it is particularly
important for both administrators and end-users to know the status of
the di↵erent nodes composing the system. Administrators will need to fix
failing nodes, whereas end-users will know the number of available nodes
working properly.

Task scheduling: HPC environments are typically very expensive to build
and maintain, therefore, they are simultaneously used by di↵erent people.
As in any other shared system, an independent and fair entity is required
to control the use of the resources. The main aims of task scheduling al-
gorithms in distributed computing environments are: minimisation of the
average job waiting time in the queue, and throughput and resources utili-
sation maximisation. Other optimisation objectives could be targeted, but
the previous three are the most common. Distributed resource managers
typically allow configuring di↵erent schedulers, but the most used is the
priority-based scheduler.

Matching tasks to physical resources: once a given task has been selected
by the tasks scheduler to be executed, the next step is deciding on which
node(s) it will be executed. The decision at this point will later determine
the system behaviour. For instance, if we have a distributed system with
2 nodes, the first with 4 cores and the second with 8, if both are free and
a job asking for 4 nodes enters the system, it is better to assign it to the
node with 4 cores. This action allows for a later assignment of jobs asking
for more than 4 cores to be executed in the second node. This is just an
artificial and dummy example, but it illustrates that wrong resources allo-
cation would increase the waiting time of upcoming jobs and compromise
e�cient resources utilisation.

The previous points represent the main competences of a distributed resource
management system. An ideal resource manager should be provided following a

2.2. Scheduling 17

series of design goals:

Simplicity: the distributed resource management system should have a suf-
ficient and simple set of features to allow users to work in a distributed
environment similarly to how they work on their local computers.

Portability: it should be written in a general purpose programming lan-
guage, which can be deployed in most operating systems and hardware
architectures. This facilitates porting of applications between distributed
systems controlled by the same manager.

Scalability: a distributed resource manager should be constructed to allow
handling clusters with up to thousands of nodes. Similarly, the number of
simultaneous jobs it is able to handle should be equally high. Nowadays, big
HPC clusters (e.g. TOP500 supercomputers2) are composed of thousands of
nodes, allowing many users to work simultaneously. Therefore, the number
of jobs in such systems is very high, thus requiring an e�cient and scalable
management.

Configurability: it should provide as many configuration possibilities as
possible. For instance, what schedulers can be used, or how the scheduler
calculates the job priority, how jobs are assigned to physical hosts, etc. This
is important to allow users configuring the system to their specific needs in
order to extract the best possible performance.

Extensibility: ideally the resource manager should provide a way to incor-
porate new functionality without the need of modifying the base source
code (e.g. via plug-ins). For example, not supported architectures could be
easily included by developing a plug-in.

Robustness: hardware or software failures are somewhat frequent, partic-
ularly in systems composed of a big number of nodes. Resource managers
should handle di↵erent failures by resuming the work from the last valid
point (i.e. a checkpoint) or at least informing the user that his execution has
failed. Typical failures handled by resource managers are node problems
(if a node becomes unresponsive) and file system issues.

Security: distributed resource managers should provide a secure authenti-
cation mechanism to authenticate users within the system. Additionally,
they should control which nodes can communicate and interact with each
other. Especially in distributed systems, foreign malicious nodes could
compromise the security of the whole system.

2https://www.top500.org/

https://www.top500.org/

18 Chapter 2. Background and Related Work

System administrator friendly: it should be configured with as few con-
figuration files as possible, and ideally from a single node. Distributed
configuration files would make the configuration process more di�cult. It
should be possible to change the system configuration without a↵ecting the
running jobs. A complete set of tools should be provided to facilitate the
system monitoring and administration.

In this thesis, we have selected the open source distributed resource manager
TORQUE, which implements the three mentioned competences of a resource
management system, following the design goals contained above.

2.3. Workflows

The complexity of nowadays analyses in various research disciplines motivate
the interconnection of several data analysis steps to analyse the data following
a divide-and-conquer manner. Typically there exists a su�cient number of tools
to analyse the input data, it is just required to execute them in the correct order
to produce the desired output. The orchestrated execution of several analysis
tools is commonly referred as workflows. Figure 2.3 contains a simple workflow
example.

Figure 2.3: Workflow example containing two independent branches and a final
common step. Each of the boxes represent a di↵erent tool (i.e. Words, Sort
Words, Sequence Dictionary and Hits). The pipes connecting the tools symbolise
data dependencies between the tools.

In recent years, interest in workflows has raised, both in the business and
scientific domains. The way workflow management systems handle workflows
appear as a nice way to automatically execute a set of applications relieving the
users of the technical impediments that such task could arise, such as the transfer

2.3. Workflows 19

and translation of data from one tool to another. Whilst this can be performed
manually, it is more practical to automate this process.

Some tools part of workflows require a large amount of computational power,
which is usually not available within a single workstation. Consequently, the
execution of workflows was moved to distributed execution environments such as
grids or clouds. For an e�cient usage of such environments, the execution should
be conveniently planned and scheduled. For this purpose, scheduling techniques
have been studied in the grid computing environment over many years [103, 22],
a trend that can be also observed nowadays in the cloud computing environ-
ment [27, 58].

Another important problem to be addressed is to ensure that experts on a
number of di↵erent fields, in some cases with limited knowledge in computing,
can process their data in a reproducible and portable manner via user-friendly
solutions.

2.3.1. Workflow management systems and software clients

Workflow management systems

Workflow Management Systems (WMSs) appeared as a way to execute work-
flows easier in a reproducible and portable way, not only in regular worksta-
tions but also in distributed computing environments. WMSs have experienced
a year-over-year increase in their popularity and availability. The main objective
of WMSs is allowing the composition and deployment of workflows, which piece
together separate analysis steps often carried out by di↵erent software packages.
However, the functionality implemented in current WMSs is wider.

WMSs’ tasks include workflow definition, execution and management driven
by the representation of the workflow logic [53]. These systems facilitate creating
the representation of the workflow logic, entering the input data of the analysis
process, monitoring its execution and results retrieval. When the user enacts
a workflow, WMSs invoke the tools forming the workflow in the predefined or-
der, managing the data dependencies between these. The software component
responsible for enacting the workflow is called a Workflow Enactor [36].

The main reason of using WMSs is the advantages they provide to the re-
searcher. In first place, WMSs remove the necessity of manually executing a
multi-step analysis. Additionally, features such as fault tolerance, data prove-
nance recording, tools meta-data, visual creation of workflows, results explo-
ration, storage of intermediate results, user profiles and sharing of resources com-

20 Chapter 2. Background and Related Work

plete the advantages of using WMSs. Further details of the mentioned advantages
are described below.

Automated execution: the removal of manual operations, such as copying,
editing and pasting data between tasks greatly speeds up the time taken to
perform an analysis [28]. In addition, this frees up time for the researcher
to carry out other analyses in parallel.

Automated task-level parallelisation: many WMSs such as Swift [100] pro-
vides automatic task-level parallelisation in order to automatically execute
in parallel tasks without dependencies in the underlying infrastructure.

Fault tolerance: software and hardware failures are unfortunately a com-
mon occurrence. Some WMSs help mitigating such failures by automati-
cally restarting the execution of the failed step or resuming the workflow
execution from the last valid analysis step.

Data provenance recording: WMSs typically keep a comprehensive record
of every task performed, including the used software, the version, input
data and the selected parameters [7]. This allows the user to keep track of
the di↵erent performed analyses, and enhances the reproducible property
of the analysis that have been carried out.

Tools meta-data: workflows can be complex especially when they are com-
posed of many services. In addition, the analysis services could be rather
sophisticated requiring extensive parameterisation in their use. WMSs are
able to store and later retrieve used values of the mentioned parameters as
well as other meta-data.

Visual creation of workflows: most recent WMSs allow the construction of
workflows through a graphical canvas with drag and drop tools, thereby re-
moving the need to manually write the workflow definition, which is usually
stored in markup languages such as XML. This feature greatly reduces the
required users’ expertise to construct the analysis pipeline of their interest.

Results exploration: once the workflow execution has come to an end,
WMSs allow users retrieving and exploring the results. Both, text and
graphical representations of the most commonly known formats are typi-
cally included in the majority of the WMSs to enable further post-analysis.

Storage of intermediate results: data generated by the internal analysis
steps is stored. This allows first to explore and determine if the internal
steps are being correctly executed, and second, to perform thorough or

2.3. Workflows 21

parameter-sensitive analyses by slightly changing the execution parameters
of the tool(s) of interest.

User profiles: some WMSs are provided as traditional desktop applications
where there is only one user profile typically stored in the user hard disk.
However, modern web-based WMSs implement user accounting systems,
providing users a secure environment in which to store and analyse their
data.

Reproducible research: achieving reproducible research is one of the aspects
most of the funding agencies, journals and scientific entities aim for. Data
provenance recording alone is not su�cient, resources (data and analysis
tools) sharing is an indispensable feature if we want to achieve reproducible
research. One way or another, traditionally workflows and data have been
shared but requiring the use of multiple tools. Current WMSs allow to share
workflows and data with the user community allowing a given analysis to
be easily repeated. Additionally, sharing workflows and data with the user
community within a single tool undoubtedly reduces the required time to
perform an analysis, because users do not need to learn two di↵erent tools
and neither they have to move information from one tool to the other.

It should be noted that whilst it is undeniably clear that WMSs o↵er a great
number of benefits to the researcher, they come at a price and there are some
disadvantages associated with their use. These are the following:

Lack of portability: although most WMSs allow sharing data and work-
flows between researchers, this is not the case for researchers using di↵erent
WMSs. As di↵erent research groups might potentially use di↵erent WMSs
based on their preference, this presents an issue as adapting workflows to
run on di↵erent environments can be a complex and tedious process. Addi-
tionally, if a research group decides migrating to a new system, the process
of adapting existing workflows to the new system becomes a problem.

Public WMSs oversubscribed: the popularity of publicly available WMSs
over the net translates them into not viable solutions for many reasons.
Long waiting times for workflows to be executed, quotas for the number
of jobs and the amount of data that can be stored, bottlenecks and lim-
itations uploading and downloading data especially under a slow internet
connection, toolset not containing the required tools for the dataset of in-
terest, and in general depending on a third party to have the system always
available for the users’ needs.

22 Chapter 2. Background and Related Work

Data privacy concerns: some research fields such as biomedicine work with
sensitive data, which in some situations can not leave the context of a given
research group or organisation, otherwise they would be violating national
or international laws. Public WMSs typically implement security and data
privacy mechanisms, but there is always the concern of what is happening
with the data after leaving my organisation. Most public WMSs o↵er the
possibility of installing their system in a trusted server, thus alleviating
such concern.

Lack of pre-existing components or wrapped tools: whilst a number of
workflows and tools are typically available for various WMSs, it might occur
that a particular analysis may need a tool, which is not available. This
would require including the missing tool by writing some code, for which
detailed knowledge of the WMSs underlying architecture is required. The
previous would be only possible in the case that the WMSs allows including
new tools, but not all of them have such functionality.

There exist several freely available WMSs, whilst there are also commercial
ones. Although commercial WMSs may o↵er a viable paid alternative such as
KNIME [11], and Pipeline Pilot [96], in this thesis we focus in the freely accessible,
multidisciplinary and popular WMSs Galaxy [1].

Software clients

Many research fields rely on the universal availability of web resources to
analyse the data. These web resources represent important sources of informa-
tion (databases) and numerous Web Services to perform di↵erent tasks. Web
Services became really popular, but there was a need to facilitate services dis-
covery, invocation, input standardisation and output visualisation. As a result,
several clients to meet such requirements were developed, but nowadays with the
appearance of new protocols and new required functionality there is a need to
extend them.

jORCA [61] is one of the mentioned clients, designed to be used with bioinfor-
matics and biomedicine Web Services. The application was specifically designed
to help users take advantage of computational resources made available as Web
Services, i.e. discover them, display available parameters, request information
and finally execute the service. To enable all these activities, jORCA uses meta-
data repositories (i.e. containers of meta-information), with information about
available services and data types. The unification of meta-data information is
provided by the Modular API (MAPI) library [71, 48]. By using this library, it is

2.4. Application Domain 23

possible to extend the execution functionality of jORCA with components called
workers.

Within this thesis, we have enabled jORCA (and other MAPI-based clients
such as MOWServ [72] and mORCA [25]) invoking Web Services deployed in
cloud computing environments. These services can be provided by di↵erent in-
stitutes and their meta-data is stored in catalogues of services.

2.4. Application Domain

In this section a brief introduction to two particular applications of the bioin-
formatics and biomedicine research fields is provided. Only basic information to
allow understanding the thesis is included, a more detailed description of the two
particular applications explained in the two following subsections can be con-
sulted in [88, 86]. Additionally, the mentioned material contain other related
background, which might be of interest for the reader to better understand the
use cases.

2.4.1. Pairwise sequence comparison

Pairwise sequence comparison is used to reveal functional, structural or evo-
lutionary similarities between sequences. In the literature there exist several
algorithms to perform the pairwise alignment. Such algorithms face limitations
in the length of the input sequences they can deal with, because they report mem-
ory consumption and computational space issues. Even for linear algorithms, the
analysis of long sequences such as the human genome makes the problem unap-
proachable in regular workstations, turning HPC environments in the only viable
solution to address the alignment. However, from the biological point of view,
their comparison models were designed for genes and proteins, thus they do not
aim at finding translocations or inversions in the sequences under comparison.

The dot matrix is a simple way to understand pairwise sequence comparison.
It consists in a two-dimensional array where the query sequence is arranged in
one dimension and the reference sequence in the other. A dot is plotted in a given
matrix entry if the residues of both sequences in that position are the same. Users
can easily identify similar regions by locating that contiguous dots along the same
diagonal.

The previous approach is valid for short sequences, but when the sequence
length increased more specific algorithms were required to have a better overview

24 Chapter 2. Background and Related Work

of the similarity shared by the input sequences. As a consequence, first the
Needleman & Wunsch [65] global alignment, and second the Smith & Water-
man [78] local alignment were developed. Both algorithms implement dynamic
programming approaches with quadratic memory consumption and execution
time.

On one hand, the global alignment is aimed at calculating an alignment, which
involves all the residues present at the input sequences. In case the length of the
sequences di↵er, the necessary gaps to continue the alignment are included. The
alignment score typically depends on the number of inserted gaps, and on the sum
of matches/mismatches using a value obtained from a scoring matrix. On the
other hand, the local alignment determines similar regions of the input sequences,
not necessarily being the entirety of the input sequences. Typically several local
alignments are reported in the comparison of two sequences.

The previous algorithms allowed obtaining similarity measures of the input
sequences, however, their complexity and the increasing length of the sequenced
species required new implementations. As a result, a new family of algorithms
appeared, not only targeting pairwise sequence comparisons, but also database
searches given a query sequence and a database composed of a set of sequences.
These algorithms (e.g. FASTA [56, 68], BLAST [5], BLAT [50]) calculate in a
first step a set of word matches. These word matches or seeds are later used as
starting points to calculate the alignment. The word length parameter determines
both the algorithm sensitivity, and the execution time.

The mentioned tools represent an heterogeneous set of tasks with di↵erent
computation patterns. Typically such applications have I/O intensive parts, such
as loading the ever growing input data size, whereas they also contain pure CPU
parts such as the calculation of the sequence alignment and its quality measures.
This irregular set of tasks represents a good real-world use case to test scheduling
mechanisms for distributed systems.

2.4.2. Genome-wide association studies

Genome-wide association studies (GWAS) are a relatively new way for scien-
tist to identify genomic variations involved in human disease. Such studies aim
to find small variations, called Single Nucleotide Polymorphisms (SNPs), that oc-
cur more frequently in individuals with a particular disease compared to people
without the disease. Researchers analyse the results of the mentioned studies to
determine genes that might contribute to a person’s risk of developing a certain
disease. GWAS examine SNPs along the genome, looking for single or groups of

2.5. Auto-scaling strategies 25

variations that may contribute to a person developing a disease.

The typical size of the input data (i.e. a whole genome sequencing file) could
be of 100GB per individual. The task to extract the genotypes or genetic varia-
tions out of these files can take around a week and will use approximately 1TB of
temporary hard disk size per individual. As this task is completely independent
for each individual, it represents an embarrassingly parallel problem and as such
very suitable for a data-parallel execution. These tools often require an amount
of computational resources greater than what is typically available in a moderate
size hospital, which is a typical environment where such an analysis takes place.
This combined with the varying amount of resources depending on the number of
individuals to analyse make these tools particularly well suited to HPC environ-
ments. In addition, such analyses are usually performed by medical doctors or
people from their research laboratories, therefore it is really important to make
as easy as possible their execution, since they typically have a limited knowledge
of the command-line, scripting, and programming languages.

2.5. Auto-scaling strategies

As the popularity of cloud computing has grown so have the e↵orts to make
an e�cient use of the provided resources. There exist several active develop-
ments, some provided in a native way by the public cloud vendors, in the private
cloud solutions, and others non-native solutions developed to target specific cloud
environments and distributed resource managers.

The native auto-scaling techniques provided by the public cloud providers
and also in the private cloud solutions are somewhat similar. The similarity
is particularly significant amongst the auto-scaling strategies provided in the
Amazon, IBM, OpenStack and OpenNebula cloud solutions as can be observed
in the Figures 2.4, 2.5, 2.6, 2.7. In the mentioned solutions, a set of instances
are grouped together and treated as a logical unit. In these solutions alarms can
be set up to be triggered on CPU and memory usage, and on specific points in
time. These alarms are defined to decide under what situations the group should
be scaled (either up or down). In the case of Microsoft Azure the alarm can only
be set to the CPU usage or the number of messages present in specific internal
communication queues as illustrated in Figure 2.8.

26 Chapter 2. Background and Related Work

Figure 2.4: Architecture of the Amazon Web Services cloud auto-scaling strat-
egy. ‘Auto-scaling API’ provides programmatic access to the auto-scaling func-
tionality to the Command Line Interface (CLI) and Web tools. ‘Amazon Cloud-
Watch’ monitors the specified metrics for all the instances in the auto-scaling
group. The ‘Watch alarms’ define when the scale-in or the scale-out policy should
be contacted. After the policy receives the action, ‘Auto-scaling group’ performs
the scaling activity.

2.5. Auto-scaling strategies 27

Figure 2.5: Architecture of the IBM cloud auto-scaling strategy. The auto-scaling
policy could be defined via the ‘IBM Management Portal’ or using a provided
API. Usage-based and schedule-based triggers could be defined to scale the sys-
tem. Depending on these triggers or alarms, the scale-in or scale-out policy is
invoked. One policy or the other, uses the ‘Auto-scaling Group’ component to
perform the scaling.

Figure 2.6: Architecture of the OpenStack cloud auto-scaling strategy. ‘Heat
API’ provides programmatic access to the auto-scaling functionality to the CLI
and Web (Horizon Dashboard) tools. ‘CloudWatch API’ receives samples from all
the instances in the auto-scaling group or ‘Stack’. The ‘Watcher Task’ contacts
the scale-in or the scale-out policy depending on the triggered alarm. After the
policy receives the action, ‘Auto-scaling group’ performs the scaling activity.

28 Chapter 2. Background and Related Work

Figure 2.7: Architecture of the OpenNebula cloud auto-scaling strategy. The
‘OpenNebula API’ centralises the access to the OpenNebula auto-scaling mecha-
nism. The ‘OneGate Server’ collects VM information such as CPU, memory and
network usage. This information flows to the ‘Watcher task’, which scales the
system depending on the configured alarms. The system can be scaled in three
ways: change in the number of resources; setting a given cardinality; and per-
centage changes in the number of resources. Additionally schedule-based triggers
could be configured.

Figure 2.8: Architecture of the Microsoft Azure cloud auto-scaling strategy. The
management of the auto-scaling policies is done through the Azure portal. In
such portal, usage-based (CPU and length of message queues) or schedule-based
alarms could be defined. VMs report their CPU usage and the aggregated value
(average of the last 45 minutes) is compared with the user-defined alarms. If such
value is above or below the thresholds, then the resources are scaled accordingly.

These native auto-scaling strategies are usually enough for some given services

2.5. Auto-scaling strategies 29

but they are not su�cient for a cloud-based scientific computing environment.
They have limitations with regards to the watching points to trigger alarms,
and even there are solutions charging extra money apart from the cost of the
cloud instances (such as IBM). However, the most significant limitation for a
scientific computing environment is that the existing auto-scaling techniques are
not aware of the number of processes neither of the resources the jobs are asking
for. For instance, in an execution cluster with medium CPU usage, if a new
CPU-bounded application enters the system, the performance of the rest of the
applications could seriously degrade. In addition, if a new job requiring more
cores than the available ones enters the system, the cluster will not be up-scaled,
thus in the best case the application would execute slower and in the worst case its
execution will just fail because of not having the required number of resources.
Because of these limitations, a number of custom auto-scaling strategies have
been developed. The most relevant ones related with the work presented in this
thesis are explained in the following paragraphs.

The grid-middleware project: DIRAC [26] extended its pilot software agents
to submit jobs to Amazon Elastic Compute Cloud (EC2)-compatible clouds.
Upon VMs start, agents (pre-installed in the VMs) contact the central server
requesting payload jobs. In order to control the used resources, DIRAC devel-
oped 3 additional services: A VM scheduler which monitors the task queues and
instantiate new VMs when needed; a VM monitor, placed on each VM, which
reports activity and shuts down the VM when no longer needed; and a VM man-
ager, which preserves information about the VMs being used. It also provides
usage monitoring through an extended version of the DIRAC web interface. This
solution was used to control a collection of VMs with a total number of 800
cores located in the Amazon EC2 cloud [6]. The most recent architecture of the
infrastructure is shown in Figure 2.9.

30 Chapter 2. Background and Related Work

Figure 2.9: Current architecture of the DIRAC distributed infrastructure.

Another solution is Cloud Scheduler [9], which consists of a suite of Python
scripts running alongside the Condor [80] resource manager. Similarly to the
previous solution, Cloud Scheduler monitors the job queue and (if required) in-
stantiates new VMs adding them to the Condor worker nodes pool (up to a
certain limit). It also monitors the worker nodes, shutting them down as soon as
the assigned jobs are done and no more jobs are suitable to be executed on them.
This solution has been tested in the NeCTAR project of the Australian federal
government to analyse data collected at the Large Hadron Collider at CERN [18].
Figure 2.10 illustrates the architecture of Cloud Scheduler.

2.5. Auto-scaling strategies 31

Figure 2.10: Architecture of the Cloud Scheduler auto-scaling strategy.

StarCluster [63] is an open source cluster manager developed by the Mas-
sachusetts Institute of Technology (MIT) for the Amazon cloud (see Figure 2.11).
Its aim is the automation and simplification of managing clusters of VMs. Cur-
rently, it has support for a multiple number of applications, including the Sun
Grid Engine (SGE) [35] and Condor distributed resource managers, and also
many other software such as MySQL and Hadoop [99]. It configures a set of VMs
grouped together as a cluster composed by one head node and a specific number
of worker nodes. The head node exposes a shared file system which in turn can
be accessed by the worker nodes. Once the resource manager is installed in all
the VMs, the user just needs to access the head node in order to submit jobs,
which will be later executed in the worker nodes.

32 Chapter 2. Background and Related Work

Figure 2.11: Architecture of the Cloud Scheduler auto-scaling strategy.

Dynamic TORQUE [104] is also a suite of Python scripts but this time running
alongside TORQUE resource manager and being integrated with an OpenStack
cloud infrastructure. It has two operation modes: active mode (see Figure 2.12)
and passive mode (see Figure 2.13). In the active mode, the Python scripts ac-
tively query the TORQUE job queue, creating new instances when having idle
jobs in the queue, and deleting them when no longer required or under “not
responding” status reported by the TORQUE manager. In the passive mode,
instead of instantiating new nodes and adding them to TORQUE, TORQUE is
configured to interact with a special worker node consisting on a fixed-size pool
of VMs. The worker node controlling the pool of VMs uses a custom implementa-
tion of the Portable Batch System (PBS) Machine Oriented Mini-server (MOM)
service, which apart from communicating with the PBS server, manages the set
of VMs being used.

2.5. Auto-scaling strategies 33

Figure 2.12: Architecture of the Dynamic TORQUE auto-scaling strategy work-
ing in active mode.

Figure 2.13: Architecture of the Dynamic TORQUE auto-scaling strategy work-
ing in passive mode.

In general, the described existing solutions lack flexibility in terms of both
the possible cloud solutions and distributed resource managers, they can be used
with. Additionally, in StarCluster the number of worker nodes does not vary
based on the workload, what in some circumstances will lead to an ine�cient
use of the resources and in other occasions to undesirable waiting time of the
jobs in the queue. The e�cient way Dynamic TORQUE is managing OpenStack
cloud resources, attracted our interest in using it as the base of our auto-scaling
strategy (see Section 4.2), improving it.

34 Chapter 2. Background and Related Work

2.6. Workflows scheduling in the cloud

The workflow paradigm appeared long before the birth of cloud computing. As
mentioned, since the appearance of cloud computing, several workflow scheduling
techniques have been proposed. Most of them based on ideas adopted from the
techniques developed for the grid computing environment, but of course taking
into account the specifics of the cloud environment such as the higher flexibility to
adapt the infrastructure to the faced workload. Although there exists a significant
number of techniques, there are still some common open issues which need to be
corrected. For example, most of the techniques are working in a simulated cloud
environment (i.e. cloudsim [16]) instead of a real one. This fact, first does not
provide the users with a real infrastructure where to run their workflows; and
second, reduces the complexity of the cloud environment to a given number of
simulated features, what can in turn produce di↵erences with a real environment.
Another common problem is that some techniques are taking into account only
one type of flavour (i.e. number of CPUs, amount of Random Access Memory
(RAM), etc.) for the instantiated virtual machines.

The following summarises the most representative solutions of the state-of-
the-art culminating in a table containing the common and specific limitations of
the to be described approaches (see Table 2.1). More detailed analyses of current
workflow scheduling techniques in the cloud can be found in [77, 101, 2].

The BAR scheduling algorithm [46] performs the scheduling based on three
factors, namely the data locality, network status and computational load of the
system. The scheduling is split in two phases: an initial assignation and a later
iterative refinement by reassigning tasks.

In [38] the authors designed a scheduling algorithm making use not only of
cloud resources but also of other computing platforms. The scheduling in this
case is also performed in two steps. The first step consists on an a priori analysis
of the tasks a�nity to the di↵erent platforms, whereas the second one performs
an heuristic-based scheduling to assign the platform. In turn, the platform assig-
nation could be either static, using the task a�nity analysis, or dynamic with
di↵erent configurable criteria.

The scheduling technique described in [27] follows a two-level tasks scheduling
mechanism, which balance the workload based on VM utilisation. In addition, it
considers the VM assignation to physical resources. If during execution a physical
host is overloaded, the VM is moved to another one.

[43] describes a deadline-based scheduling algorithm split in two phases. The

2.6. Workflows scheduling in the cloud 35

first stage determines the latest time each of the tasks should start in order to
meet the deadline. In the second step, a reasoner module calculates the amount
of required resources based on historical data of previous executions.

The work described in [57] considers cost and deadline constraints to dynam-
ically provision resources in IaaS clouds for scientific inter-related sets of work-
flows. This work proposes 3 di↵erent scheduling strategies: a static one based
on the estimated execution time, considering the time and cost constraints; a
dynamic one without admission, where the cost constraint could be violated; and
a dynamic one with admission, which checks if the cost constraint will be violated
before executing the workflow.

In [94] the authors propose 4 di↵erent scheduling strategies: 2 static and 2
dynamic. The first static algorithm adds a new worker if a user-defined threshold
is not surpassed, if surpassed it assigns the job to the first worker expected
to be free. Instead, the second static algorithm does not consider limitations
on the number of workers. The third algorithm –and first dynamic one– takes
into account the execution history and also predicts the workload based on the
workflow specification. The last algorithm consists of a dynamic assignation of
tasks to the workers with the better performance/cost ratio.

In the last considered algorithm in this document [70], the aim of the au-
thors is to provide a robust scheduling by modelling possible system failures and
performance di↵erences. In addition to robustness, they are also considering the
performance and cost metrics. Based on the three mentioned metrics, the au-
thors propose 3 di↵erent strategies. The first one maximises the robustness while
reducing the cost and execution time, in the mentioned order. The second one
interchanges the last two metrics prioritising the time more than the cost. The
last one corresponds to a weighting system where the end-users can weight on
their preference the 3 previously mentioned factors.

36 Chapter 2. Background and Related Work

Algorithm

Problem [46] [38] [27] [43] [57] [94] [70]

Consider only tasks of the same dura-
tion

Set of uniform tasks (CPU, I/O),
translating into idle CPUs in the case
of I/O intensive applications

Simulated environment (cloudsim)

One VM per task (deleted after the
task is finished)

Deadline-based scheduling (not taking
into account performance or cost)

Only one type of instance flavour

New machines instantiated based on
historical data (not specified what
happens when historical data is not
available)

Limited to a fixed set of programs

Only one task per VM can be run

New VM even if the task is small

Only executes one workflow at a time

VMs could be used by tasks coming
from the same workflow but not from
others

Scheduling algorithm complexity

Table 2.1: Limitations of the mentioned workflows scheduling algorithms. A
black cell indicates that the algorithm of the given column is facing the problem
given row.

3
Infrastructure

In this chapter the devised cloud computing based solution is described. The
di↵erent components of the infrastructure are explained in separated sections.
Section 3.1 outlines the used IaaS cloud computing middleware. The user au-
thentication mechanism, which extends the basic authentication of OpenStack
using LDAP is described in Section 3.2. Section 3.3 first describes the data
management components of OpenStack for virtual machine images, volumes and
object containers. Second, it outlines the underlying distributed file system of
the whole infrastructure, which sets no single-point of failure. In addition, the
mentioned section describes the grid computing technologies used to extend the
original functionality of OpenStack (i.e. GridFTP and Globus Online). The com-
puting part of the setup is described in Section 3.4. This section includes basic
information about the used virtualization technology and it additionally describes
how the TORQUE distributed resources manager, a RESTful Web Services front-
end and the Galaxy workflows management system have been integrated into the
system. Section 3.5 describes the network setup of the solution. The Horizon
web-based management portal of OpenStack is briefly described in Section 3.6.
This chapter concludes with the explanation of how the di↵erent parts of the
system have been interconnected in Section 3.7.

3.1. Cloud computing solution: OpenStack

A core target of this work is the e�cient computation of scientific applica-
tions on top of cloud infrastructures, addressing the related problems. From the
range of available cloud service models, IaaS represents the most suitable one
due to its broad range of configuration possibilities. In addition, results of a

37

38 Chapter 3. Infrastructure

performed analysis [49] comparing di↵erent PaaS and IaaS solutions suggest that
IaaS solutions have a better performance for HPC applications.

From the wide range of available IaaS solutions (e.g. Amazon Web Services,
Microsoft Azure, OpenNebula), we chose an already available OpenStack cloud
computing middleware due to its uptake and flexibility [69]. OpenStack has
received a significant amount of uptake and development over the last years
compared to existing solutions such as OpenNebula. Additionally, regarding
performance OpenStack represents the most stable solution [93]. Even being an
open source project enjoys significant industry support of companies like IBM1.
As the rest of the IaaS o↵erings, OpenStack is composed by several components
that can be separately deployed. These components are (see Figure 3.1):

Authentication

Compute

Data Storage

Imaging service

Networking

Dashboard

1http://www-03.ibm.com/press/us/en/pressrelease/43892.wss

http://www-03.ibm.com/press/us/en/pressrelease/43892.wss

3.2. Authentication 39

Figure 3.1: OpenStack components.

The di↵erent components of OpenStack could be accessed through RESTful
web service calls. These calls may originate from the Horizon Dashboard inter-
face of OpenStack or from command-line tools depending on the use case and
user preference. Horizon represents the main interface to the cloud computing
middleware. It is a user-friendly web-based graphical user interface, which is
described in more detail in Section 3.6.

Besides the external Web Service calls, OpenStack components communicate
through the RabbitMQ2 queuing system. The queuing nature of RabbitMQ
enables OpenStack to process in order rapidly arriving requests even when the
arrival rate surpass the processing capabilities, a situation where RabbitMQ uses
a queue served in FCFS order.

3.2. Authentication

The authentication component of OpenStack is called Keystone. The regular
way to access it is calling a web service, which authenticates the user given a pair
of username and password. After a successful authentication, the user receives a

2http://www.rabbitmq.com

http://www.rabbitmq.com

40 Chapter 3. Infrastructure

token from the Keystone component, which is subsequently used to authenticate
requests to the rest of components.

Similarly to UNIX systems, OpenStack has also the concept of user groups.
These groups, termed tenants in OpenStack, typically represent organisations.
This arrangement of users into tenants enables OpenStack-based cloud infras-
tructure providers to o↵er resources to separated sets of users, who are not aware
of using the same physical resources. This follows a similar line to the public
cloud o↵erings.

The Keystone component provides di↵erent options for storing the user cre-
dentials as well as tenants. The default option is a database backend, but it can
also work with a LDAP-based backend. Our OpenStack deployment has been
configured to work with the LDAP-backend. Alternative federated authentica-
tion and authorisation methods such as OpenID and OAuth were considered in
the initial design stages of the system. However, LDAP was selected due its better
integration with the di↵erent system components, its simpler configuration and
yet su�cient number of authentication features for this thesis. This has limited
the Federated Identity Management (FIM) brought by OpenID and OAuth.

Several components developed/used in this thesis require authentication mech-
anisms, such as the Galaxy workflow management system. Therefore, a core
functionality for managing the security of the system is a central authentication
mechanism. LDAP-based authentication mechanisms were already implemented
in Grid computing infrastructures [31] to enable secure and coordinated resource
sharing between di↵erent groups. Also in grids, users of the same organisation are
grouped together conforming what is known as Virtual Organisations (VOs) [32].
In VOs access rights associated with the membership within specific VOs are
of a coarse granularity. Within OpenStack, VOs are mapped onto the tenants,
thus enabling the participants of one project to easily share resources among
themselves.

However, although grid computing already implements LDAP-based authen-
tication mechanisms, easy and flexible user management was still a problem. To
overcome this issue, we are using DirGrid, a LDAP-based grid/cloud account
management developed at the RISC Software GmbH company. DirGrid enables
a more flexible and easier management of users and their access rights via a
graphical interface compared to a manual modification using the command-line.
This system is being applied to manage the access rights to resources like the
cloud infrastructure, but also to the workflow manager and applications beyond
the presented in this work.

The grid computing concept of VOs is used to assign the users to specific

3.2. Authentication 41

OpenStack tenants, therefore facilitating the management of access rights. A
good example is given by the access to the local GridFTP [3] server, enabling
users to access the service and to use Globus Online to transfer data to the local
OpenStack containers. All the access rights based on the VOs are represented
within the central LDAP tree of the installation, which is subsequently queried
by the di↵erent services during user authentication. It is worth mentioning that
DirGrid stores the access privileges in multiple LDAP trees, which are fully con-
trolled by their owners, thus allowing a distributed management.

The user LDAP tree holds references to the resources, which are accessible to
the user group which maintains it, while the LDAP trees holding the information
about the resources maintain a list of authorised users in order to enforce access
control locally. These two types of LDAP trees as well as the references be-
tween them are maintained by the DirGrid module to ensure that flexible ad hoc
resource sharing can be o↵ered without relying on some type of centralised man-
agement. When changes in access rights are performed by authorised resource
owners the updates of the access rights as well as the notification of a↵ected users
takes place immediately, thus a user is able to see which resources have available
at any point in time.

DirGrid was built using LDAP, X.509 certificates as well as Secure Sockets
Layer (SSL) [33] for encryption. The security of the DirGrid system is maintained
through SSL encryption of all network connections and by having all users as well
as servers authenticating themselves through their X.509 certificates.

As already mentioned, we use DirGrid to manage users and tenants (being
equivalent to user groups or projects) to which they belong. The access rights
to the di↵erent services implemented in this thesis are also maintained by the
DirGrid middleware and represented in a local LDAP tree from where the user
authentication is queried, when a user logs in to a system.

Using a Web browser, users can access a web-based interface which enables
them to handle the modification of access rights stored in the LDAP tree in a
user-friendly manner. Depending on his role the user can either modify the access
rights of users to the local resources (as admin) or manage ones private contacts
and their information which they have been sharing with him, as an ordinary
user.

Secure Shell (SSH) keys have been used to provide user authentication to the
VMs hosting the di↵erent components of the system. In addition, they have been
used to enable password-less secure authentication between the VMs taking part
of the TORQUE execution cluster. OpenStack, similarly to other IaaS solutions,
enable the creation of SSH keys and their assignment to specific cloud instances.

42 Chapter 3. Infrastructure

3.3. Data management

OpenStack separates its storage system into di↵erent services:

Glance for managing the images

Cinder for storage volumes

Swift for object containers

Glance provides the core functionality for starting new instances. The images
or templates these instances are based on can be configured beforehand by the
OpenStack system administrator or also by non-administrative users. Glance is
not considered a pure storage component because it is not storing the images, it
just stores meta-data about such images. On the other hand, Cinder provides
storage volumes, which are typically attached to already running instances. These
volumes appear to the guest operating system of the instance as additional block
devices. They need to be partitioned and formatted before they can serve as
persistent data storage to instances. Once this process is terminated, the volume
can be reattached to a new instance.

Glance and Cinder address the management of block storage including virtual
machine images and storage volumes. Instead, Swift is used to access object
stores, enabling the storage of files independent of a specific running instance. As
other components of OpenStack, Swift containers can be accessed either through
the Horizon web dashboard or through Web Service calls. In this work, we have
integrated Swift with GridFTP enabling direct mass data transfers to/from the
Swift containers as described in Section 3.3.3.

3.3.1. Underlying file system (Ceph)

The underlying storage system of the used cloud setup is Ceph [97]. Ceph
is a distributed file system able to run on commodity hardware and running on
top of the Linux operating system. Its pseudo-random data distribution mecha-
nism (CRUSH [98]) determines data locations of Ceph clients without querying a
central node. As a consequence, Ceph does not contain a centralised meta-data
server, therefore it does not have a single point of failure. We decided on Ceph,
based on the better fault tolerance and the limited speed and high latency of the
Swift default built-in OpenStack file system.

When data needs to be read or written, Ceph groups data blocks into the
so-called placement groups. These placement groups are internally represented

3.3. Data management 43

in a hash table, where the object name is hashed, resulting in a placement group
identifier. This placement group identifier points to a primary storage server in
the Ceph ecosystem. The location of this server can be found by calling the
CRUSH function on the client side. Clients then connect to the identified server
and stores its objects there. Any replication of the object is done within the Ceph
storage nodes, without requiring intervention of the client. In fact clients ignore
where their objects have been replicated, they just call the CRUSH function to
obtain the endpoint where the data is stored.

On top of the distributed object storage service o↵ered by Ceph runs a service
called RADOS Gateway3. This gateway enables users to interface with Ceph
objects via Hypertext Transfer Protocol (HTTP) commands. Additionally, it
allows users to use the Swift [79] as well as the Amazon Simple Storage Service
(S3) APIs4 by linking the RADOS Gateway with the OpenStack installation as
performed within the presented solution (see Figure 3.2).

S3 compatible API Swift compatible API

radosgw

librados

Object Storage Daemons Monitors

Figure 3.2: Ceph Object Gateway. The Amazon S3 and OpenStack Swift APIs
running on top of the RADOS Gateway daemon.

3.3.2. Globus Online

The potentially large input and output data sizes to be managed in the de-
vised cloud infrastructure make it essential to use a well-established protocol
for reliably and securely transferring large datasets. For this purpose, GridFTP
was configured, which in turn enables the usage of the data transfer mecha-
nism of the Globus Online (GO) initiative [4, 29]. Compared to FTP or SFTP,
GridFTP provides a public key security mechanism, parallel Transmission Con-

3http://eu.ceph.com/docs/wip-3060/radosgw/
4http://aws.amazon.com/s3/

http://eu.ceph.com/docs/wip-3060/radosgw/
http://aws.amazon.com/s3/

44 Chapter 3. Infrastructure

trol Protocol (TCP) streams, striping, partial file transfers, and with GO easy
to install software for client-side, long-running and asynchronous data transfers.
GO only monitors and controls the transfer, while GridFTP manages the actual
data transfer between two GridFTP servers registered as GO endpoints. The
GridFTP endpoint present in the cloud environment of this thesis can access
the Swift object storage through Portable Operating System Intefarce (POSIX)
calls. This is possible because the Swift containers are mounted into the local file
system of the endpoint via a CloudFuse5 daemon.

3.3.3. Endpoint Setup

GridFTP User authentication

To provide direct access to the OpenStack storage system through GridFTP,
a certain server setup is required. The core modules used in this setup consist of
several Globus Toolkit services depending on the use of short-lived or long-lived
credentials and the integration to Globus Online:

GridFTP: the GridFTP service implementation facilitates fast and reliable
data transfers between GridFTP endpoints. To ensure the security of the
data transfers, the GridFTP and MyProxy [66] components are used to
enable secure authentication towards the system as GridFTP is based on
authentication through proxy certificates. The advantage of using proxy
certificates is that an entity is allowed to act securely on behalf of another
entity, as long as the proxy certificate is valid [89].

MyProxy: if a user is accessing the server through a GridFTP transfer
agent, the transfer agent receives the proxy certificate. This proxy cer-
tificate can either be created for long-lived or short-lived credentials. In
the case of a long-lived credential, the user becomes a personal certificate
signed by a national certification authority. In case of a short-lived cre-
dential, MyProxy generates a temporary certificate, which authorises the
transfer agent on behalf of the user to manage his or her data transfers.

Simple Certification Authority (CA): These temporary certificates allows
the GridFTP transfer agent to take care of data transfers between servers as
long as they are valid, without the need of storing the user password. The
proxy certificates are generated by MyProxy, which instructs the Simple
CA6 to generate and sign the proxy certificates.

5https://github.com/redbo/cloudfuse
6http://simpleauthority.com/

https://github.com/redbo/cloudfuse
http://simpleauthority.com/

3.3. Data management 45

Extended Internet Daemon (xinetd): acts as a open source super-server
daemon to automatically start the GridFTP and MyProxy servers. Var-
ious configuration parameters of such servers are defined in their start-
up scripts7. These parameters include listening ports, port ranges, and
application-specific values such as user certificates directory.

The previously described authentication mechanism has been integrated into
the cloud environment used in this work. The first step to achieve this integration
was the replacement of the OpenStack standard keystone user directory by LDAP
as explained in Section 3.2. The virtual machine hosting the GridFTP endpoint
for the object storage system looks up for users and passwords using standard
Pluggable Authentication Module (PAM) [76] mechanisms and connecting to the
central service. As MyProxy is using PAM for user authentication, the integration
of LDAP for enabling short-lived credentials is trivial.

Object Storage Integration

After successfully integrating the LDAP and MyProxy authentication mecha-
nisms with the used cloud environment, the next step is the interconnection of the
storage system. To allow GridFTP managing data, the Swift-compatible object
storage of OpenStack should be made directly accessible. Since the GridFTP
service is only able to operate with a local file system, the cloud-based object
storage needs to be mounted into the local file system.

A daemon using CloudFuse8 is used to perform this task. This daemon run-
ning in background manages the CloudFuse processes required to mount the
storage. To simplify the mounting process from the user point of view, as soon
as a user has authenticated successfully on the system, a LDAP script module
communicates with the daemon through a UNIX domain socket. The daemon
reacts on the socket input and starts a script to mount all the object containers
the user is able to access into its home directory, if no CloudFuse processes are
running for the user so far. A separate background thread of the daemon stops
the CloudFuse processes after a defined timeout. Figure 3.3 shows the workflow
starting at the endpoint activation up to the object storage mount.

7http://wordpress.risc-software.at/en-austriangrid/?page_id=422#xinetdkonfig
8https://github.com/redbo/cloudfuse

http://wordpress.risc-software.at/en-austriangrid/?page_id=422#xinetdkonfig
https://github.com/redbo/cloudfuse

46 Chapter 3. Infrastructure

Figure 3.3: Interaction of all components to mount the users corresponding con-
tainers of the object storage.

Endpoint Registration

To allow data transfer using the Globus initiative tools, the GridFTP and
MyProxy services have to be registered as endpoints at the Globus Online file
transfer agent. This can be done with the web service provided by Globus Online
or with the mobile client GOTransfer9.

The information required for such registration is the address of the GridFTP
server as well as the address of the MyProxy server. Additionally, the subject’s
Distinguished Name of the certificates is required to communicate with both ser-
vices. After this registration, the endpoint can be activated and used to transfer
data through the Globus Online file transfer agent.

9http://www.risc-software.at/de/aktuelles/newsaevents/

179-advanced-computing-technologies/841-android-app-gotransfer

http://www.risc-software.at/de/aktuelles/newsaevents/179-advanced-computing-technologies/841-android-app-gotransfer
http://www.risc-software.at/de/aktuelles/newsaevents/179-advanced-computing-technologies/841-android-app-gotransfer

3.4. Computation 47

Architecture and Workflow

With the described setup the architecture shown in Figure 3.4 is established.
Whenever the user activates an endpoint, a username and password have to be
provided. These credentials are sent within an authentication request to the
endpoint server to activate. The MyProxy component is contacted, later it sends
an authentication request to PAM, and finally as soon as the authentication
was successful, the object storage corresponding to the user is mounted by the
CloudFuse daemon, as explained in detail in Section 3.3.3. MyProxy also sends
a certificate request to the CA and returns the created proxy certificate to the
GridFTP transfer agent using short-lived credentials. This certificate is needed
for data transfers to or from the endpoint. After verifying the proxy certificate,
the data can be transferred from or to the endpoint using GridFTP.

Figure 3.4: Architecture of the Endpoint Setup including the object storage
integration.

3.4. Computation

Nova is the main part of OpenStack representing its compute service com-
ponent. This component manages and automates pools of computing resources
and is able to work with di↵erent virtualization technologies. Nova is able to

48 Chapter 3. Infrastructure

work with Kernel-based Virtual Machine (KVM)10, VMware11 or Xen12 as un-
derlying virtualization technology. As many other OpenStack components, it is
written in Python and uses several external libraries such as Eventlet for con-
current programming, Kombu for Advanced Message Queuing Protocol (AMQP)
communication and SQLAlchemy for database access. The architecture of Nova
is designed to allow the easy horizontal scaling on commodity hardware without
specific requirements on proprietary software.

Glance is another important compute component of OpenStack. This compo-
nent represents the OpenStack Image Service providing discovery, registration,
and delivery for disk and server images. It can be used to store and catalogue
an unlimited number of images and backups, which might be in turn used as
templates. Glance could be seen both as a compute and as a storage module, as
it does not store the images, instead it stores the associated meta-data indepen-
dently of the used storage backend. The default storage backend of OpenStack
is Swift, however any other backend able to communicate using the Glance API
could be used. In fact, in this thesis the Ceph distributed file system is used to
store the server images as explained in Section 3.3.1.

Working together, the Nova and Glance components manage the execution
of virtual machines also commonly referred as instances in the cloud computing
field. When the Nova compute service receives a request for starting a new
instance it also receives the specification of the flavour to be used (i.e. number
of CPUs, RAM and disk size) as well as the image to be started for that request.
The image contains the file system to be used as the root partition. The service
subsequently invokes the underlying virtualization infrastructure (KVM in our
case) to boot up the virtual instance.

3.4.1. TORQUE distributed resources manager

A number of distributed resource managers exist, being TORQUE13 a popu-
lar and widely used open source solution to manage High Throughput Computing
(HTC) clusters. From the usability point of view, both end-users and administra-
tors are familiar with its job submission language and configuration respectively,
which are very similar to the PBS [41], what make it adoption easier. From the
computational point of view, TORQUE is able to handle large clusters with tens
of thousands of nodes and jobs, and large jobs eventually spanning hundreds of

10http://www.linux-kvm.org
11http://www.vmware.com/
12http://www.xenproject.org
13http://www.clusterresources.com/products/torque/

http://www.linux-kvm.org
http://www.vmware.com/
http://www.xenproject.org
http://www.clusterresources.com/products/torque/

3.4. Computation 49

thousands of processors. Besides, TORQUE has built-in scheduling algorithms
and it is also able to communicate with external schedulers such as Maui (i.e. the
one used in this work) and Moab through a clearly defined scheduling interface.
We considered Simple Linux Utility for Resource Management (SLURM) [102] in
the initial stages, but it uses a fixed scheduler, which although allows changing
some parameters, it does not allow to change job priorities and therefore the
tasks’ execution order.

However, TORQUE has currently no o�cial built-in mechanisms or plugins to
interact with any cloud computing solution. Dynamic TORQUE (see Section 4.2)
was introduced as an approach to overcome this limitation by having an external
component running alongside TORQUE and communicating with the OpenStack
API to manage the instantiation and deletion of VMs. Although other solutions
targeting specific cloud infrastructures exist in the state-of-the-art (see Section
4.2), the scalability and configuration possibilities of TORQUE as well as its
popularity, attracted our attention to integrate it with the described OpenStack
cloud installation.

3.4.2. RESTful Web Services front-end

A common RESTful Web Services front-end has been designed to allow ex-
ecuting tools in di↵erent cloud computing platforms. This common interface
simplifies invoking diverse services and interconnecting them to conform a workl-
fow. The designed front-end has been implemented in di↵erent programming
languages: C# (for Windows Azure) and Java (for other IaaS type of clouds
such as Amazon EC2, OpenStack, etc.). This interface provides operations to
submit new jobs, cancel previous ones, poll for status, and retrieve intermediate
and final results (see Figure 3.5).

50 Chapter 3. Infrastructure

Figure 3.5: Overview of the operations implemented in the designed RESTful
Web Services front-end.

To submit a new job the user has to fill the required parameters and data
references to files already uploaded to the cloud storage. Once the front-end re-
ceives the job submission, it contacts the job scheduler (located within the same
instance) to schedule and dispatch the new task. The scheduler and its accom-
panying auto-scaling strategy will decide whether new instances are required or
not as explained in the next chapter, Section 4.2.

At the end of the job submission, the front-end will return a new resource
to the user (addressable via a unique URL). This resource can be cancelled, and
polled for status, intermediate and final results upon termination. The interme-
diate and final results will be data references to the actual data present in the
cloud storage following the same approach as for the input data. At this point
in time, the user can choose either to download the data from the storage or
submit the resulting data references as input to another tools. Therefore, these
call-by-reference invocations greatly facilitate invocation of a series of services
because the data is already available on the cloud infrastructure for a subsequent
service without requiring to download and upload it again.

A client-side component has been developed to invoke services implement-
ing the designed front-end. This component has been included as an execution
worker in MAPI. The main target of MAPI is harmonising the di↵erent Web Ser-
vices meta-data stored in di↵erent catalogues. Besides Web Services meta-data
unification, MAPI allows invoking services implementing di↵erent communica-

3.4. Computation 51

tion protocols. To achieve this point, MAPI includes an expandable execution
module, which includes various workers, each in charge of executing a given ser-
vice type. The previously mentioned worker extends the already available ones.
The developed worker enables all the software clients built on top of MAPI such
as jORCA or mORCA to invoke the new type of services. An overview of the
di↵erent components involved in the execution of services following the designed
front-end is provided in Figure 3.6.

Figure 3.6: Overview of the components involved in the execution of a RESTful
Web Service.

3.4.3. Galaxy workflows management system

Galaxy [1] is a workflow management system that enables the definition and
sharing of scientific workflows. It was originally developed to deal with biological
data, however it is currently used in a number of di↵erent public servers14 of dif-
ferent research domains. One of its main objectives is making the management of
workflows easier to scientists, which not necessarily have computer programming
experience.

It is a web-based application, which implements the core functionality of work-
flows management systems explained in the background chapter, Section 2.3.1.
The main feature is the creation of workflows out of existing or custom mod-
ules which are defined by their functionality as well as by input and output

14https://wiki.galaxyproject.org/PublicGalaxyServers

https://wiki.galaxyproject.org/PublicGalaxyServers

52 Chapter 3. Infrastructure

parameters. Users can interactively combine these modules into workflows by
interconnecting them on a graphical canvas. These workflows can subsequently
be stored for reuse and shared with other researchers, what partially addresses
the issue of reproducible research.

Before choosing Galaxy, we also considered other workflow management sys-
tems (i.e. e-Science Central [42] and jBPM [34]). However, in e-Science central
the infrastructure management should be done manually and the workflows def-
inition could be only performed via the e-Science Central web application. In
the case of jBPM, there is not a direct cloud support for such manager, the in-
frastructure management should be done manually as well, and the workflows
definition should be performed with external frameworks/tools such as Eclipse
or jBPM designer.

Figure 3.7 shows part of the setup of workflow representing the real-world
application GECKO, which is described in Section 5.3. The workflow takes two
biological sequences as input. In the first part of the workflow a dictionary of
words of a given length is calculated. The second part of the workflow calculates
the sequences alignment based on the previously calculated dictionaries.

Figure 3.7: Part of the GECKO workflow shown in the Galaxy workflow editing
canvas.

Figure 3.8 shows the setup of the workflow, which enables to set specific

3.4. Computation 53

parameters for the modules such as files for the input channels of the initial
modules in the workflow.

Figure 3.8: Invoking interface of GECKO workflow in Galaxy, showing the re-
quired parameters to run it.

Figure 3.9 shows a view during the execution of the workflow. After the
execution has finished the user can access the intermediate and final results using
the history column on the right side.

54 Chapter 3. Infrastructure

Figure 3.9: GECKO workflow running in Galaxy, already finished tools are shown
in green in the right panel, running tools in yellow and waiting tasks in grey.

Galaxy deployment

The current Galaxy deployment is made using OpenStack Heat templates for
the virtual machine configuration15. This template defines the required Open-
Stack parameters to instantiate a machine with Galaxy automatically installed
and ready to be used. The template is performing the following steps:

1. Package prerequisites installation and basic instance configuration.

2. Download and placement of the latest stable release of Galaxy from its Git
repository.

3. Galaxy configuration files modification.

4. Download Galaxy custom Custom Style Sheets (CSS) files replacing the
original ones.

5. Adding Galaxy to be run during the machine start up.

6. Making Galaxy available by modifying the nginx server configuration.

15https://svn.mrsymbiomath.eu/svn/infrastructure/trunk/OpenStack/Heat/galaxy_

nginx_postgres_2_servers.yaml

https://svn.mrsymbiomath.eu/svn/infrastructure/trunk/OpenStack/Heat/galaxy_nginx_postgres_2_servers.yaml
https://svn.mrsymbiomath.eu/svn/infrastructure/trunk/OpenStack/Heat/galaxy_nginx_postgres_2_servers.yaml

3.5. Networking 55

Since new analysis tools can be developed and it would be interesting to
include them in Galaxy, it is important to separate the tools repository from the
Galaxy application itself in order to avoid the re-installation of such tools in case
of an instance failure or with the use of a new one. To overcome this problem,
we use what is called Galaxy ToolShed, where the admins can define software
packages that can be later on included and installed in several Galaxy instances
with almost no e↵ort.

3.5. Networking

The networking aspects of virtual machine management are addressed by the
Neutron component, which is highly configurable to allow integrating virtual ma-
chines into a given organisational networking setup. While internal IP addresses
are assigned automatically, OpenStack allows the user to assign floating public
IPs to running instances.

Neutron consists also of a database for persistent storage. It can be extended
with any number of plug-in agents to provide other services such as interfacing
with Linux networking mechanisms, external devices, or Software-Defined Net-
working (SDN) controllers. OpenStack Networking is entirely standalone and
can be deployed to a dedicated host. In the presented cloud environment, the
Neutron component has been deployed to a centralised management host.

The performed networking deployment uses the Modular Layer 2 (ML2) plug-
in of OpenStack to communicate with Linux bridges. This allows regular (non-
privileged) users to manage virtual networks within a project and additionally
includes the following components:

Project (tenant) networks. Project networks provide connectivity to in-
stances for a particular project. Non-privileged users can manage project
networks based on the user privileges an administrator defines for them.
Project networks use Generic Routing Encapsulation (GRE)-tunnels [39]
and VM tagging to allow having multiple separate networks generally using
private IP address ranges [73]. These internal networks lack connectivity
to external networks such as the Internet.

External networks. This component provides connectivity to external net-
works such as the Internet. Only administrators or operators can manage
external networks because they interface with the physical network infras-
tructure. From the point of view of non-privileged users, they just have a

56 Chapter 3. Infrastructure

list of available public IP addresses with Internet access.

Routers. Routers connect project and external networks. Only privileged
users can create new routers to interconnect di↵erent projects or to pro-
vide access to an external network to a particular project. By default they
implement Source Network Address Translation (SNAT) to provide out-
bound external connectivity and Destination Network Address Translation
(DNAT) to provide inbound connectivity on project networks.

Figure 3.10 shows the physical networking architecture of the performed de-
ployment in the used cloud environment. The virtual architecture of the network
is shown in Figure 3.11.

Figure 3.10: Physical architecture of the networking component of the used cloud
environment. First there is a physical firewall interfacing with the Internet. Sec-
ond, this firewall is redundantly connected to two BNC switches. Finally, all the
blades of the IBM BladeCenter H have one physical connection to each of the
switches.

3.5. Networking 57

Figure 3.11: Virtual architecture of the networking component of the used cloud
environment. There is a virtual central gateway, which runs three Open vSwitch
bridges corresponding to each of the networks of the setup (i.e. external, internal
and management). Besides, for every network defined in the neutron compo-
nent, a virtual router, Dynamic Host Configuration Protocol (DHCP) server and
firewall are running. The VMs running on each physical host are tagged to a
network, and following the same three-bridges structure, their network tra�c is
tunnelled to the corresponding network bridge using GRE tunnels.

58 Chapter 3. Infrastructure

3.6. OpenStack Horizon

The OpenStack system o↵ers the web-based user interface Horizon (see Fig-
ure 3.12) for administrative tasks as well as self-service management of their
virtual machines for ordinary users. It supports operations on virtual instances
such as launching, stopping, terminating as well as creating snapshots of them
for later use. In addition, volumes can be created, subsequently mounted into the
virtual machines and will persist after the virtual machine has been terminated.
Other features include the assignment of dynamic (floating) public IP addresses
to running virtual instances.

Figure 3.12: Overview page in Horizon

3.7. Interconnection between components

The deployment of a cloud computing-based infrastructure, containing tools
ranging from command-line to web-based applications, could be performed fol-
lowing di↵erent strategies. Traditional deployment approaches of web applica-
tions follow a monolithic scheme with one or two servers, which are typically a
web and a database server. However, to take benefit from the cloud computing
features and to achieve scalability and robustness, more distributed deployment
approaches should be used [20].

3.7. Interconnection between components 59

In the following, we describe how the di↵erent components used and developed
in this work have been deployed to conform a scalable system architecture running
on top of an OpenStack cloud environment. In a first step, to decide the scaling
needs of the di↵erent components, we categorise them either as asynchronous or
synchronous services based on usage properties and expected response time.

Interactive or synchronous services should provide an immediate response to
incoming connections. In our case, such services are the ones provided by Galaxy:
user login, data analysis, workflows creation/edition, etc. Thus, the main require-
ment for the user interface is short response time to any of these requests. In a
high utilisation scenario, dynamic and swift scale-out of the involved components
has to be provided to maintain the response time in the desirable range.

Asynchronous services are services of which users do not expect an immedi-
ate response time. In our cloud-based HPC infrastructure these services include
computationally-intensive applications and long-lasting data transfers. Addition-
ally, workflows typically represent asynchronous services. Although the infras-
tructure components belonging to this category: the workflow engine, the job
manager, and the GridFTP server; do not need immediate scaling, they are
scaled under given circumstances as explained in next chapter.

In a second step we define di↵erent storage categories with diverse access
patterns and speed requirements. These features influence the data management
in the system, and what scaling strategies can be applied in each case. Elements
of the used OpenStack cloud environment enables managing data storage, access
and the scaling of the devised infrastructure. The di↵erent storage categories are
the following:

An in-Memory storage is used for data objects which have to be delivered
with little response time. For instance, we are using a caching strategy
for the static content of the web front-end. This reduces disk access and
therefore the response time when users are accessing the system.

A database is used for storing diverse small dynamic data objects describ-
ing workflows, execution histories, or user data. A traditional PostgreSQL
database management system is used in this case. However, for e�cient
scaling in other cloud environments, automatically redundant and scaled
Database-as-as-Service (DBaaS) o↵erings, which are included in several
IaaS solutions, should be used.

A temporary file storage is used where random access to files is necessary
and for applications working with files too large to be stored in the main
memory. In the presented architecture, this temporary file storage is used

60 Chapter 3. Infrastructure

for data which is currently being processed or transferred to/from the sys-
tem.

A persistent file storage is used for the rest of the files, storing them in
the cloud specific object store. The object store is used as persistent and
scalable data storage without the need for scaling or adding virtual hard
disks.

The setup guidelines of Galaxy describes the possibility of deploying it on
a single computer. However, as identified in previous paragraphs, a distributed
deployment is required in order to take profit of the scaling feature of the un-
derlying platform. The performed deployment (see Figure 3.13) interconnects
the system components with six virtual machines as starting point, later on this
group of VMs is automatically scaled:

Figure 3.13: Overview of how the di↵erent components used in the infrastruc-
ture relate with each other. A gateway and several Galaxy application servers
as synchronous services, a distributed execution cluster and a GridFTP server
as asynchronous services, and a database server (PostgreSQL), a Network File
System (NFS) share and an object store as storage services.

A gateway server represents the primary contact point between users and
the infrastructure. In the performed setup the nginx16 HTTP/HTTPS
proxy is serving as both load-balancer and web server. Additionally, it is
responsible for the in-memory storage for serving static content. Scaling this

16http://nginx.org/

http://nginx.org/

3.7. Interconnection between components 61

server is only possible in combination with further load-balancing in front
of this service or using Domain Name System (DNS) load-balancing [15].

A galaxy server provides the user interface of the workflow management
system as well as a Galaxy ToolShed. When required, new Galaxy VMs
are included to continue providing synchronous replies. In such scenario,
the load-balancing between VMs is performed by nginx, data is shared
through a common NFS share, and concurrent access to the database is
managed by PostgreSQL.

A database server, required by Galaxy, is installed on a separate machine.
This separation enables multiple Galaxy instances using the same server in
a high utilisation scenario. On cloud solutions with DBaaS solutions, they
should replace this server.

A machine containing a NFS server and the TORQUE master node is in-
cluded. The NFS server coordinates the temporary file storage, whilst
the TORQUE master node performs the task scheduling and distribution.
This machine is the central node for asynchronous services and therefore
the weakest point of the current setup as it represents a single point of
failure.

A GridFTP server is installed in another VM. Data delivered to the end-
point served by this GridFTP server is stored on the temporary storage
provided by the machine hosting the NFS server. Users can migrate files
uploaded with GridFTP to the persistent file storage via the Galaxy web
interface. Although GridFTP scaling strategies are well documented in [3],
in our current setup they are not considered.

TORQUE worker node(s) represent the last part of the infrastructure. One
or several VMs corresponding with the worker nodes subsequently queried
by the TORQUE master conform this group. It is worth noting that the
number of active virtual machines in the setup is dynamically changed by
the presented auto-scaling strategy, which is explained in more detail in the
next chapter, Section 4.2.

The integration of the di↵erent components has been described and automated
using an OpenStack Heat template17. Such template for deployment automation
defines the required OpenStack parameters to instantiate a set of VMs and installs
the described system within minutes. In addition, the deployment task could

17https://svn.mrsymbiomath.eu/svn/infrastructure/trunk/OpenStack/Heat/galaxy_

nginx_postgres_2_servers.yaml

https://svn.mrsymbiomath.eu/svn/infrastructure/trunk/OpenStack/Heat/galaxy_nginx_postgres_2_servers.yaml
https://svn.mrsymbiomath.eu/svn/infrastructure/trunk/OpenStack/Heat/galaxy_nginx_postgres_2_servers.yaml

62 Chapter 3. Infrastructure

be performed also using other automation tools like like Chef18, puppet19 or
ansible20.

18https://www.chef.io/
19https://puppetlabs.com/
20https://www.ansible.com/

https://www.chef.io/
https://puppetlabs.com/
https://www.ansible.com/

4 Scheduling and

auto-scaling

In this chapter the schedulers used in conjunction with the TORQUE dis-
tributed resources manager are described in Section 4.1 (a basic background on
tasks scheduling is available in Appendix B). First, the mentioned section ex-
plains the built-in FCFS scheduler of TORQUE, and second, it describes the
configuration of the Maui scheduler, how the job priorities are calculated based
on di↵erent factors, and the nodes allocation policy for such jobs, which is not
part of the scheduling itself but of the process management. Section 4.2 describes
the developed auto-scaling strategy, its configuration parameters and the imple-
mented scaling decision mechanisms. The section and chapter finalise with the
description of the deployment scenario.

4.1. Scheduling

The default TORQUE scheduler implements a variety of common scheduling
algorithms including round-robin, FCFS, and fair-share. Each of these can be
further configured to indicate what class of job should be run first as for example
shortest or largest walltime. Nevertheless, these default schedulers become use-
less in big infrastructures because of their performance and little configuration
possibilities. TORQUE o↵ers a clearly-defined scheduling interface to allow in-
tegrating custom schedulers such as Maui or Moab, which might provide greater
configuration options and performance compared to the built-in scheduling algo-
rithms.

63

64 Chapter 4. Scheduling and auto-scaling

4.1.1. Built-in TORQUE FCFS scheduler

Although several schedulers are included by default in TORQUE, FCFS is
the default out-of-the-box scheduler configured. This algorithm, as its own name
indicates, schedules tasks as they enter the system. Making an analogy with a
priority-based scheduler, this algorithm only prioritises the time a job has been in
the waiting queue. The rest of possible job priority parameters (see Section 4.1.2)
are not considered. Therefore, the scheduling decision is very simple, what could
compromise the performance of the system. In general terms, its performance is
enough for small distributed environments with simple workloads. However, for
bigger environments with more complex workloads more sophisticated schedulers
such as Maui are required.

4.1.2. Maui scheduler

The Maui scheduler appears as a reasonable alternative to tackle the lim-
itations of the built-in TORQUE schedulers. The limitations are reduced by
allowing a fine-grained configuration of the job priority to decide the next job
to run. In addition, the node allocation parameters to decide in which node(s)
the job will run can be configured. The scheduler behaviour depending on these
parameters is evaluated in Section 5.3.

Job priority parameters

Maui permits to dynamically calculate the job priority at each scheduler it-
eration based on the weighting of a number of factors1. These factors are broken
down into a two-level hierarchy of priority factors and sub-factors each of which
can be independently assigned a certain weight. The first-level parameters have
been assigned to zero when not interested in such group of factors and to one
when interested. The previous balances the importance of the groups of factors,
and propagates the actual priority calculation to the sub-factors. The sub-factors
or parameters we are considering in this thesis are:

the total requested walltime, which defines a hard clock-time limit2 between
a task is entering to execute till its completion (this time does not include
the waiting time in the queue since it is a priori unknown by the user).
This user-defined value indicates approximately for how long the job will

1http://docs.adaptivecomputing.com/maui/5.1.2priorityfactors.php
2jobs reaching this hard limit will be removed from execution

http://docs.adaptivecomputing.com/maui/5.1.2priorityfactors.php

4.1. Scheduling 65

be executing. Typically in batch systems, long-running jobs are assigned
a lower priority, since a little bit longer waiting time in the queue will not
be significant compared to the actual execution time and its e↵ect in other
jobs is notable, reducing their average waiting time in the queue.

the queue time representing the time the job has been queued. This dy-
namic value, periodically updated by the scheduler, provides a measure of
the system fairness. In a fair system the standard deviation of the waiting
times of the di↵erent jobs should not be too high.

the expansion factor, calculated as the division of the time in the queue by
the walltime. It has a similar e↵ect to the queue time factor but favours
shorter jobs based on their requested walltime. To prevent this factor to
grow inordinately, a configuration parameter determines the minimal wall-
time value to be used in the denominator of the fraction.

the number of nodes, cores and amount of memory (i.e. the requested job
resources). These three sub-factors will determine whether jobs asking for a
large amount of resources would obtain a higher priority or if such priority
would be for jobs asking for a small amount of resources.

Equation 4.1 shows how the job priority is calculated. The values of the dif-
ferent weighting factors have been set up to prioritise jobs in the following order:
short jobs (giving w a negative value); jobs queued for a long time (providing a
small positive value to q); short-medium-sized jobs waiting for a long period of
time (giving e a positive value bigger than q). In case of equal job priority values
at this point, the job requesting less resources will have a higher priority (giving
small negative values to the n, c and m factors).

job priority = w ⇤ walltime+ q ⇤ queue time+ e ⇤ expansion factor

+n ⇤ nodes+ c ⇤ cores+m ⇤memory
(4.1)

Node allocation policy

At a second stage, after deciding which job to run, the node or nodes where
this job will actually run should be selected. In the presented infrastructure
(see Chapter 3), this decision is even of higher importance than in conventional
HPC environments. In a cloud-based computing environment, this decision will
determine the cost of the execution. First, the amount of money to be paid
depends on the selected type of machine, which has a given instance flavour.

66 Chapter 4. Scheduling and auto-scaling

Second, the decision will determine the machines that can be freed up because
of not being used anymore.

In the original scheduler of TORQUE the node allocation policy is not config-
urable, instead, Maui provides several options to choose based on user preference.
It has a set of predefined configuration choices such as CPU load, first available,
fastest nodes, nodes with the minimal number of resources, etc. Additionally, it
provides a fully configurable allocation policy, which enables selecting the execu-
tion node(s) based on a range of factors.

The allocation policy used in this thesis prioritises nodes at several levels
aiming to reduce the cost by deleting as soon as possible dynamic nodes and
using the nodes with the best-fitting amount of resources. Considering this, we
have devised the following three-level nodes priority calculation:

the first level prioritises static nodes over dynamic nodes. TORQUE, nei-
ther Maui, are aware of the type of nodes. However, a given priority value
could be assigned to a node while instantiating it. In our case, we have
assigned a higher priority to static nodes. The reason is that static nodes
are always running, what produces a given cost, and therefore the system
should use them before dynamic ones.

the second level prioritises the nodes based on the amount of resources
they have. This level is relevant when two given dynamic nodes have the
same priority in the first level. In such situation, we prioritise the node
with a lower number of resources but still fitting the job. This will later
allow the auto-scaling strategy deleting dynamic nodes with a big amount
of resources, for which usually a larger amount of money should be paid.

the third level assigns a higher priority to the nodes most historically used.
This level is important when the second level has selected dynamic nodes.
In such scenario, selecting the most historically used dynamic nodes will
leave free the less used dynamic nodes, which will possibly be removed
later on by the auto-scaling strategy.

In summary, the node allocation policy is aiming at having a compact yet
e↵ective set of computing nodes. Keeping it compact with the help of the auto-
scaling policy will reduce the cost and make the system management easier.

4.1. Scheduling 67

Backfill

Backfill is a scheduling optimisation which allows making a better use of the
available resources by an out-of-order execution of the jobs. Maui orders the
jobs into a ‘high priority first’ sorted list based on the priority factors explained
in Section 4.1.2. Then it starts distributing jobs one by one until it reaches a
job that cannot be started. All jobs have a walltime limit, therefore Maui can
determine the latest completion time of all jobs. Consequently, Maui can also
determine the earliest the needed resources will become available for the highest
priority job.

Backfill uses this information to calculate what is known as backfill windows.
These windows represent time frames a given set of nodes are idle between the
finishing time of the currently running job and the ‘earliest job start’ of the higher
priority job. Enabling backfill allows the scheduler to start other lower-priority
jobs in such windows as long as they do not delay the highest priority job. In
any case, Maui creates a job reservation of the required resources for the highest
priority job at the appropriate time.

Backfill o↵ers significant scheduler improvement. In a typical large system,
the system utilisation could be increased by 20% [45], and the job turnaround
time, defined as the time between a job enters the system until its execution is
finalised, by an even greater amount. Because of the way it works, backfill tends
to clearly improve small and short jobs, and moderately improve larger ones.

The performance improvement of backfill comes at a price. There exist several
minor drawbacks. In first place, it diminishes the job prioritisation a site has
chosen, because short lower-priority jobs might enter execution before higher
priority tasks. Secondly, only the start time of the n highest priority job is
protected by a reservation, therefore tasks from the n + 1 highest priority one
onward could be delayed. The third problem is that backfill assumes users are
performing a good estimation of how long their tasks will be running. In negative
cases, such as the example provided in the next paragraph, the start of some high
priority jobs could be delayed.

Consider a scenario involving a two-processor cluster. Job A has a 4 hour
walltime and requires 1 processor. It started 1 hour ago and will reach its walltime
in 3 more hours. Job B is the highest priority idle job and requires 2 processors
for 1 hour. Job C is the next highest priority job and requires 1 processor for 2
hours. Maui examines the jobs and correctly determines that job A must finish in
3 hours and thus, the earliest job B can start is in 3 hours. Maui also determines
that job C can start and finish in less than this amount of time. Consequently,

68 Chapter 4. Scheduling and auto-scaling

Maui starts job C on the idle processor. One hour later, job A completes early.
Apparently, the user overestimated the amount of time his job would need by a
few hours. Since job B is now the highest priority job, it should be able to run.
However, job C, a lower priority job was started an hour ago and the resources
needed for job B are not available. This results in a higher priority job being
delayed. The described scenario is illustrated in Figure 4.1.

Figure 4.1: Example scenario of job delays caused by backfill.

Although there do exist some minor drawbacks with backfill, its net perfor-
mance impact on the workload of a site is very positive. Even though a few of
the highest priority jobs may get temporarily delayed, studies have shown that
only a very small fraction of jobs are truly delayed and when they are, it is only
by a small fraction of their total queue time. At the same time, many jobs are
started significantly earlier than would have occurred without backfill.

If backfill is enabled, Maui allows using three di↵erent algorithms: first-fit,
best-fit and greedy. In this thesis we have chosen the best-fit mechanism which
is defined in Algorithm 1 and illustrated in Figure 4.2. The best-fit algorithm
increases resources utilisation compared to first-fit. The greedy algorithm has
been discarded because it may induce delays of higher priority jobs.

4.1. Scheduling 69

Algorithm 1 Best-fit backfill algorithm

1: repeat
2: filteredJobs filter(jobs, backfillWindow)
3: for all job in filteredJobs do
4: job.degreeOfFit job.numberOfProcessors

5: sortedJobs sortByDegreeOfFit(filteredJobs)
6: start(sortedJobs[1]) . Start the best fitting job
7: until length(filteredJobs) = 0klength(idleResources) = 0

70 Chapter 4. Scheduling and auto-scaling

Figure 4.2: Example of the best-fit backfill algorithm in an artificial scenario.
Jobs A and B are running, and there is a reservation for Job C after Job B
finishes its execution. The highest priority job in the queue (Job F) needs 3
nodes to run, this creates a backfill window in nodes 4 and 5. This backfill
window is filled with the job with the highest number of nodes fitting in such
window in number of request nodes and wall time (in this case Job G).

4.2. Auto-scaling strategy

The developed auto-scaling strategy is based in the Dynamic TORQUE [104]
solution, which consists on a suite of Python scripts running alongside the TORQUE

4.2. Auto-scaling strategy 71

resource manager and being integrated with an OpenStack cloud infrastructure.
Dynamic TORQUE has two operational modes: active mode and passive mode.
In the active mode (i.e. the one being used), Dynamic TORQUE keeps a fixed
specified number of static worker nodes, a group that can be extended later
by adding dynamic nodes until a user-specified value. Figure 4.3 provides an
overview of Dynamic TORQUE running in active mode.

O
penS

tack N
ova A

P
I

Main node TORQUE execution cluster

...

Dynamic
TORQUE

pbs_sched pbs_server

VM
(pbs_mom)

VM
(pbs_mom)

VM
(pbs_mom)

VM
(pbs_mom)

VMs
managing

job dispatching

Figure 4.3: Overview of Dynamic TORQUE running in active mode. VMs/nodes
are represented in purple rectangles, running services in green rectangles and the
yellow rectangle indicates the nodes belonging to the TORQUE execution cluster.
All VMs/nodes are running inside the described OpenStack cloud infrastructure.

4.2.1. Configuration parameters

The devised auto-scaling strategy can be easily configured by modifying a
single configuration file. This file contains a wide range of parameters, being
the following the most representative ones (the first three were already available
in the original implementation and the last three have been developed in this
thesis):

Number of static instances: This parameter refers to the number of
worker nodes that will be instantiated and continuously available overtime
while the system is running.

Number of dynamic instances: This second value indicates how many
workers can be dynamically added or removed depending on the faced work-
load. The addition of this and the previous parameter determines the max-
imum number of running instances. It is worth noting that a machine that
was initially supposed to be static can finish its execution much earlier than
a dynamic one created afterwards. In this situation, the static instance is
deleted and the dynamic one becomes static in order to preserve the correct

72 Chapter 4. Scheduling and auto-scaling

number of static instances (see more details about this in the Algorithm 3).
This is done with the aim of maintaining each time the minimum number
of required resources.

Max idle time of a worker: This configuration parameter refers to the
maximum amount of time that a worker can be without executing tasks, or
in other words, idle. The value of this parameter will not only change the
number of active instances, but will also possibly a↵ect the amount of time
required to execute a task or group of tasks.

List of flavours: This parameter indicates the set of instance types that
can be used. In the original Dynamic TORQUE implementation, it was
only possible to specify one flavour, which in turn is used to instantiate
new workers. The original implementation did not take into account the
amount of required resources specified during job submission. In our mod-
ified implementation we add the possibility to configure a list of possible
flavours. One of the flavours will be used as base flavour for jobs not spec-
ifying the required amount of resources, whereas the rest will be used in
accordance with the job requirements.

Billing period: This configuration parameter indicates the granularity
of the billing period of the cloud provider (whether it is per minute or
per hour). This value is not particularly significant in private cloud envi-
ronments, however it is important for public cloud environments. In such
environments, the parameter will determine when the node is deleted in
order to take the best possible benefit out of the VM until its billing period
is reached.

Provisioning delays: This last value indicates the average time each
of the flavours take to be provisioned since requested. This parameter
will determine whether the strategy decides to add a new worker or not
depending on the duration of the task. If the task duration is shorter than
the provisioning delay it does not start a new worker node.

4.2.2. Scaling decision mechanism

The developed auto-scaling strategy queries the TORQUE server about the
status of the worker nodes in order to determine, either if additional nodes are
required, or if idle nodes might be removed. For up-scaling the cluster of workers,
the presented strategy follows Algorithm 2. Briefly, the strategy evaluates if it

4.2. Auto-scaling strategy 73

compensates to add a new node by comparing the addition of the estimated du-
ration of the waiting tasks with the provisioning delay of the required flavour. A
new worker is only added in case the estimated duration is greater than the delay
(assuming the maximum number of workers has not been reached). Algorithm 3
is followed to down-scale the cluster. Shortly, in this scenario, the presented
strategy retrieves a list of idle workers. When a worker of this list has been idle
for more than an specified time interval then it is marked to be deleted. It is not
directly deleted because the system keeps using it for short tasks until the billing
period of such worker is reached.

Algorithm 2 Up-scaling algorithm

1: tasks waitingTasks(queue)
2: for all task in tasks do d d+ t.duration

3: f requiredF lavour(tasks) . Minimum required flavour based on the
specification of the tasks

4: if d > f.provisioningDelay then
5: addWorker(f)

Algorithm 3 Down-scaling algorithm

1: procedure Down-scaling

2: . First, we need to delete the nodes already marked to be deleted
3: tbdNodes toBeDeleted()
4: for all node in tbdNodes do
5: if currentT ime� node.billingPeriod < 60 then . 60 seconds
6: deleteWorker(node)

7: . Second, we iterate over the list of nodes and mark new nodes to be
deleted

8: idleNodes idleNodes(nodes)
9: for all node in idleNodes do

10: if node.idleT ime > conf.maxIdleT ime then
11: if isStatic(node) then
12: dNode dynamicNode(nodes)
13: dynamicToStatic(dNode)

14: markItToBeDeleted(node)

15: node.idleT ime node.idleT ime+ conf.pollingInterval

74 Chapter 4. Scheduling and auto-scaling

4.2.3. The deployment scenario

The described auto-scaling strategy has been deployed in the cloud infrastruc-
ture described in Chapter 3. The presented deployment contrasts with the one
reported in [104], where they allocate the key components in physical machines
o↵ the cloud, whereas in our case we are running all the services inside the cloud.

Worker
node

O
penS

tack N
ova A

P
I

Worker
node

Submission
node

Submission
node

Maui

Services in the head node

TORQUE

NFS Storage

Worker
node

Dynamic TORQUE

Figure 4.4: Deployment of Dynamic TORQUE in the described cloud infrastruc-
ture. In the head node the PBS and NFS servers are running. Additionally,
there are two logically separated groups: First, the worker nodes which are used
to execute jobs; second, the submission node from where the users send jobs to
the TORQUE queue.

Although everything is running inside the cloud, we make an abstract sep-
aration in two main groups (see Figure 4.4), one of them composed by the key
services (TORQUE and NFS), and the other composed by the worker nodes. The
Maui scheduler is deployed to the head node together with TORQUE in order to
schedule the jobs present in the TORQUE waiting queue. Additionally, there are
some submission nodes from where new jobs are added to the TORQUE queue.

The Dynamic TORQUE service, running in the logical group of the key in-
stances, manages the worker nodes using the Openstack API. It monitors the
health of the worker nodes, shutting down inaccessible nodes and firing up new
ones to replace them. Dynamic TORQUE also supports to have worker nodes
out of the cloud or inside the cloud but not necessarily under its control.

All the worker nodes are launched from a pre-configured VM image specified in
the configuration file. This image has the minimum amount of services required to
work in the mentioned environment. Since NFS is used as the shared file system,
the image has a NFS-client installed and configured to mount the NFS export of
the key server. In addition, a PBS MOM service is configured to communicate
with the TORQUE server, which will then dispatch it jobs to run.

5 Experimental Evaluation

In this chapter we present the evaluation of the system. First we introduce
the synthetic and real-world workflows used to evaluate the system designed in
this thesis (see Section 5.1). Second, Section 5.2 provides an overview of the
metrics used to evaluate the performance of the system. Third, this chapter
contains the results and discussion of evaluating the system using the selected
set of workflows based on the chosen evaluation metrics (see Section 5.3). Finally,
the chapter concludes with a summary of the main factors a↵ecting the system
behaviour in terms of the scheduling and auto-scaling decisions in Section 5.4.

5.1. Workflow applications

We are considering two kinds of workflows to evaluate the devised system:
synthetic workflows already used in similar recent works [54, 58, 92] obtained
from the workflow generator gallery [19, 21], as well as three illustrative synthetic
examples, which have been designed to point out the benefits and limitations
of the scheduling strategy. The second type of workflows corresponds to three
real-world applications, two of them developed in this work, and the other one
coming from our collaborations with the bioinformatics and biomedicine domains
scientists of the Mr.Symbiomath project.

5.1.1. Synthetic workflows

As previously stated, in order to evaluate the algorithms on a standard set of
workflows, we downloaded workflows from the workflow generator gallery. Such
gallery contains synthetic workflows derived from structures and parameters of

75

76 Chapter 5. Experimental Evaluation

real-world applications. From all the available workflows we have selected three
di↵erent ones: Ligo [23], Montage [10] and CyberShake [37] (see Figures 5.1,
5.2 and 5.3 respectively). The selected subset represents a heterogeneous set of
synthetic workflows in terms of task duration and computation pattern, including
50 tasks in the Ligo and Cybershake workflows and 100 tasks in Montage. Each
of the tasks composing the available workflows has its corresponding execution
time extracted from real execution traces. In addition to the execution time, the
workflow specification also contains the input and output data sizes so that the
I/O load can be at some extent simulated.

Figure 5.1: Overview of the Ligo workflow. This workflow is composed of 4
di↵erent tasks. The first n tasks of the entry level read the input data and
perform some initial simple calculations. Each of the tasks of this level triggers
the execution of a task belonging to the second level. In the third level, several
reduce tasks concatenate part of the n partial results generated. Additionally,
this task triggers the execution of m tasks following a similar scenario compared
to the first two levels. Once this second group of tasks is correctly executed, the
partial results are reduced by several tasks.

5.1. Workflow applications 77

Figure 5.2: Overview of the Montage workflow. This workflow is composed of 9
di↵erent applications. The first n tasks at the workflow entry level read the input
data and trigger at their end three tasks at the second level. Once all the tasks of
the second level are executed, a reduce task concatenates the partial results. The
next task performs some calculation over the concatenated file and splits again
the file to be processed by several independent tasks. To finalise, a pipeline of 4
tasks first concatenates the partial results and then performs some calculations
until obtaining the final result.

78 Chapter 5. Experimental Evaluation

Figure 5.3: Overview of the Cybershake workflow. This workflow is composed
of 5 di↵erent applications. The first two applications read and split the input
data in several chunks to be processed in the second level of the workflow. The
finalisation of each of the tasks of the second level triggers the execution of a task
in the third level. Once all the tasks of the second and third level finalise their
execution, two respective reduce tasks are executed.

Since the binaries nor the input files of the mentioned workflows are avail-
able (to the best of our knowledge), we are just simulating their execution in
our deployed infrastructure. The simulation covers two aspects: execution time
and data reading/writing. For this purpose each of the programs conforming a
workflow is wrapped and simulated using the stress command available in the
ubuntu software repositories. This command impose load on a given number of
cores, during a specific time and performing a given number of I/O operations
(specified in number of bytes to be read and written). Within our simulation, the
stress command will: first, execute for the time specified in the task description
inside the workflow trace file; and second, will read/write the same amount of
bytes as also stated in the trace file. To overcome the simulated execution using
the stress command, we are additionally evaluating the system with real-world
workflows.

The 3 selected synthetic workflows represent typical computational patterns/
schemes with data splitting/distribution tasks and partial results reduction or
synchronisation tasks. For instance, the Ligo synthetic workflow is somewhat
similar to the real-world workflow GECKO (see Section 5.1.2), which has two
branches to calculate a dictionary of words for the input sequences, and then

5.1. Workflow applications 79

a pipeline of 4 tasks to calculate the seed points of the sequence alignment,
sort them, filter them, and finally produce the set of shared segments. It is
important to note that synchronisation tasks would a↵ect the e�ciency of the
system with regards to resources utilisation. For that reason, the auto-scaling
strategy presented in the previous chapter, scales automatically the number of
nodes to the faced workload.

In addition to the workflows obtained from the workflow generator gallery,
a small set of illustrative examples has been used to point out the benefits and
limitations of the devised scheduling strategy. These examples contain a set of
independent tasks with di↵erent duration ranging from seconds to a couple of
minutes. The first workload (test-1) contains an unbalanced set of tasks for
the available resources in the testing infrastructure (see first paragraph of Sec-
tion 5.3.1 for more details about the infrastructure). In this situation, the devised
scheduling strategy is expected to behave di↵erently to the FCFS algorithm as
will be discussed later on in Section 5.3. The second example (test-2) contains a
diverse set of tasks in terms of duration as well (see Section 5.4.1 for the duration
distribution of this and the rest of the examples). In this case, all the long-running
tasks are concentrated at the beginning, where the devised scheduling strategy
is expected to produce a lower waiting time in the queue compared to the FCFS
algorithm because it schedules the execution of the short tasks to the beginning,
whilst the FCFS preserves the submission order. The third and final illustrative
example (test-3) contains a set of tasks with a similar distribution to the second
example, but in this case with the longest running tasks concentrated at the end
of the workflow. In this scenario, the waiting time in the queue is expected to be
similar for both scheduling algorithms (i.e. FCFS as the baseline, and the strat-
egy devised in this work) because the sorting based on priority performed by the
priority-based scheduler would not significantly change the execution order.

5.1.2. Real-world workflows

To contrast that the obtained results in the simulation of the synthetic work-
flows are also valid in non-simulated executions, we selected three real-world
workflows coming from the bioinformatics and biomedicine fields. These real-
world workflows have been executed using large input data in terms of size and
cardinality in order to illustrate the improvements of executing them in the de-
signed auto-scaled execution cluster.

80 Chapter 5. Experimental Evaluation

Pairwise genome comparison workflow

The first real-world workflow corresponds to GECKO [84], which is a pairwise
sequence comparison software developed in this thesis. GECKO is a modular
application aimed at identifying the similarities shared by a pair of genomes. The
final output of this workflow is a collection of High-scoring Segment Pairs (HPSs),
which contain the coordinates and quality measures of the genome segments with
a certain similarity. The modular design of GECKO allows further comparisons
to be performed without the need to recalculate intermediate results, which are
stored on disk, and thus without sacrificing performance. The modular design is
the following (see also Figure 5.4):

1. One-o↵ creation of a dictionary of words of length K (commonly referred as
K-mers) for each genome or sequence. This dictionary contains the words
and their occurrence positions along the sequence.

2. K-mer dictionaries are then used to calculate the starting points (or hits)
of possible alignments. These seed points correspond to all possible word
matches produced between dictionary words (di↵erent K values can be used
at this point to optimise the sensitivity or execution time of the application).

3. To finalise, the application produces the set of HPSs based on the calculated
starting points.

Dictionary

Dictionary

Hits

...
..

...

SortHits

...
..

...

FilterHits

..
.

..
FragHits

.
.

.

Sequence X

Sequence Y

Figure 5.4: The pairwise genome comparison workflow.

Although originally designed for pairwise comparisons, GECKO is also able
to e�ciently compute multiple genome comparisons given the avoidance of in-
termediate results recalculation. These massive exercises are especially suitable
for this kind of auto-scaled infrastructures, where the amount of resources can
be scaled in accordance to the faced workload. Although GECKO is faster than
equivalent software, its execution time for comparing two long sequences, and

5.1. Workflow applications 81

Species Chromosome Accession number Length

Homo sapiens chromosome X GenBank:NC 000023.9 154.91
Pan troglodytes chromosome X GenBank:NC 006491.3 156.85
Macaca mulata chromosome X GenBank:CM002997.1 148.78
Mus musculus chromosome X GenBank:NC 000086.7 171.03
Rattus norvegicus chromosome X GenBank:NC 005120.4 159.97
Bos taurus breed Hereford chromosome X GenBank:NC 007331.4 88.65
Canis lupus familiaris breed Boxer chromosome X GenBank:NC 006621.3 123.87

Table 5.1: Information of the used dataset to evaluate the performance of
GECKO. From left to right: species name, chromosome of origin, GenBank ac-
cession number and length in Mbp.

in multiple genome comparisons where several independent pairwise comparisons
are typically performed sequentially, attracted our interest to develop a parallel
strategy resulting in the workflow presented in the next section.

With the aim of testing the above contained workflow in the devised cloud-
based infrastructure, we performed a massive exercise consisting on the compar-
ison of the chromosome X of several mammalian species. Detailed information
about the species, accession numbers and sequence length is contained in Ta-
ble 5.1. The results and analysis of the performed benchmarking to the GECKO
software are contained in Section 5.3.2.

Multiple genome comparison parallel workflow

The GECKO workflow represented the starting point of this second imple-
mented workflow. After a careful study of the internal data dependencies of the
GECKO modules, we noticed that most of them were subject to an easy and
e�cient parallelization. As a result a two-level parallel approach to accelerate
multiple genome comparisons was proposed. The first level is aimed at paralleliz-
ing each independent pairwise genome comparison of a multiple comparison study
to a di↵erent core. This level is application-independent, we are using GECKO
but any other equivalent software can be used. The second level consists on
the internal parallelization of GECKO modules with evident enhancements in
performance while results remain invariant.

In the first parallelization level, a master-slave tasks distribution approach to
perform each pairwise genome comparison of a multiple genome comparison study
in a di↵erent core (see Figure 5.5.A) has been applied. The second level follows
a master-slave approach as well, where the slaves calculate the partial result of
the modules composing GECKO (see Figure 5.5.B). This approach considers at

82 Chapter 5. Experimental Evaluation

both levels as many slave processes as cores being used. The master process reads
the set of tasks from a workload file, which is generated by a previous mapping
process. Later the master distributes the tasks, assigning the cores more tasks
as soon as they become idle.

Figure 5.5: The parallelization levels applied to the multiple genome comparison
workflow. Sub-figure A outlines how the strategy starting from a list of genomes
ends performing each independent pairwise genome comparison in a separate
worker. Sub-figure B shows the performed parallelization within the internal
modules of GECKO.

Considering the high number of I/O operations performed by GECKO mod-
ules, the master is assigning more than one task per core in order to overlap I/O
and computation. Additionally, this is done to reduce the overhead introduced
by sending tasks in separated messages. Depending on the number of cores and
the selected prefix size, the tasks per core value is either 2 (for number of cores
power of 2) or 4 (for number of cores power of 4) in order to always have more
than 1 task per core. For example, if we use 2 cores and a prefix size of 1, the A

and C letters will be assigned to one core and the G and T to the other, resulting
in 2 tasks per core.

5.2. Evaluation metrics 83

Genome-Wide Association Study workflow

The third real-world application consists of a Genome-Wide Association Study
pipeline/workflow, which is not an individual development of this thesis as the
previous two real-world workflows, but a participation in a collaborative work
with multidisciplinary research groups. The workflow is composed of a set of
interconnected tools (an overview of the workflow is given in Figure 5.6). Before
starting the computation, all the CEL files (i.e. input files) to be analysed should
be uploaded to the file system. A CEL file contains the raw data generated from
a SNPs microarray analysis for a single patient containing details of its genotype.
The first tool being executed is the birdseed algorithm [51], which is implemented
in the A↵ymetrix Power Tools package. This tool produces a table of genotype
calls for each of the di↵erent probes/SNPs on the microarray. A second tool filters
the previous table removing SNPs that do not vary across di↵erent patients.
Using the filtered table, a third tool converts the birdseed algorithm output,
which is A↵ymetrix specific, into the standard Variant Call Format (VCF) file.
This last tool is called once per CEL file, therefore it represents an embarrassingly
parallel problem suitable for data-parallel execution. The system has been tested
using as input data 8 CEL files of 66 MB each. The result of such execution is
presented in Section 5.3.2.

Figure 5.6: The GWAS workflow.

5.2. Evaluation metrics

The devised scheduling mechanism was designed considering four performance
criteria: jobs queued time, makespan, throughput, and resources utilisation. The
aim is minimising the average jobs queued time and makespan, and maximising
the system throughput and resources utilisation (in the mentioned order). It is
important to note that there exists a trade-o↵ between the metrics. For instance,

84 Chapter 5. Experimental Evaluation

if the average jobs queued time is reduced but there is a long-running task, which
is queued for a long time, the makespan could be a↵ected. This and other a↵ecting
factors are discussed in next sections. With some more detail, the definition of
each of the metrics is the following:

Queued time: this criterion represents the time a job –ready to run– has
been waiting to be executed. It indicates the e↵ectiveness of the system
with regards to the sharing of the computing resources. In this work, we
are evaluating the average and also the standard deviation. It is important
to note that with a FCFS algorithm if the longer jobs are concentrated at
the beginning the average queued time increases rapidly. With the devised
algorithm the average queued time is expected to be reduced, long jobs
are a little bit postponed but they never enter into starvation since their
priority is dynamically increased with the queued time.

Makespan: a metric calculated as the time since the first task of the work-
flow enters the batch system until the last task is reported to be finished.

Throughput: this metric represents the number of jobs finishing per time
unit. It is calculated as the number of jobs of the workload divided by the
makespan.

Resources utilisation: this metric indicates the average percentage of
the system that is used during the workload execution. This time is cal-
culated as the sum of the execution time of all the tasks divided by the
makespan and the available number of nodes. It indicates if the scheduling
is e�cient enough in terms of taking profit of the instantiated machines,
what is particularly important in pay-per-use environments such as cloud
computing is.

5.3. Experiment results

In this section we evaluate first the di↵erent mentioned evaluation metrics (see
Section 5.2) using the configuration parameters of both the job priority and node
allocation policy of TORQUE (as described in Section 4.1.2) in Section 5.3.1.
The results of each of the metrics have been separated into di↵erent subsections.
Secondly, the overall system behaviour using an auto-scaled cluster following the
strategy defined in Section 4.2 is evaluated in Section 5.3.2 using the 3 previously
explained real-world workflows.

5.3. Experiment results 85

5.3.1. Results of the performance metrics

A small testing static infrastructure composed of two computing nodes has
been used. The rationale is to reduce the external influence to the scheduling
decision of several factors such as the auto-scaling strategy. Thus, the base FCFS
scheduling algorithm and the one devised in this thesis can be compared in a
controlled environment. Next subsections, ordered by how important they have
been for the devised scheduling strategy, show the evaluation results.

Queued time

Figure 5.7 illustrates the average queued time of the jobs composing the dif-
ferent workloads together with the standard deviation. The results obtained with
the priority-based scheduler outperform the ones of the FCFS scheduler in all the
tested workflows, having both lower average and standard deviation values. This
proves that the values of the configuration parameters for the priority calcula-
tion were correctly selected, considering the queued time as the first metric to
be optimised (minimised in this case). Nevertheless, taking a closer look at the
mentioned figure, we can observe that di↵erences between FCFS and the priority-
based scheduler di↵ers from one workflow to another. Next paragraphs discuss
the possible reasons of these di↵erences.

On the one hand, the sets of independent tasks of the workloads test-1, test-2
and test-3 are composed of more small tasks than long-running tasks. In addition,
the majority of the small tasks represent the final tasks of the workload. Given
this two patterns of the mentioned workloads, it is expected that the FCFS
algorithm will behave worse because of the high number of small tasks of the
end. These tasks will have a longer waiting time in the queue proportional to the
execution time of the long-running tasks present at the beginning of the workload.
In contrast, the devised priority-based scheduler will assign a higher priority to
the small tasks of the end, therefore they will execute before the long-running
tasks thus reducing the average queued time.

On the other hand, the workloads of the 3 synthetic workflows Cybershake,
Ligo and Montage have internal data dependencies between the tasks. These
dependencies reduce the number of waiting tasks in the queue ready for execu-
tion, therefore the e↵ect of the scheduling strategy is lower compared to sets of
independent tasks. In scheduling cycles with a big number of tasks waiting in the
queue, the distribution of tasks duration plays a more important role (Figure 5.15
in Section 5.4.1 contains the tasks duration distribution):

86 Chapter 5. Experimental Evaluation

1. The more homogeneous the tasks duration are, the more similar the per-
formance of the FCFS and the priority-based schedulers is (this is the case
of the Ligo and Montage workflows). Although at first glance the tasks
duration distribution of the Ligo workflow could look like heterogeneous,
it is homogeneous in its period with more independent tasks, therefore the
scenario is similar to the Montage workflow.

2. The queued time is lower in the priority-based scheduler when the tasks
duration distribution is not homogeneous and there are more small tasks
than long-running tasks without dependencies (as it can be observed in the
tasks duration distribution of the Cybershake workflow).

Figure 5.7: Average queued time of the di↵erent workflows scheduled by the two
compared scheduling algorithms. The ‘light grey’ bars represent the time for the
FCFS algorithm, whereas the ‘dark grey’ bars represent the time for the priority-
based scheduler. The ‘error bars’ indicate the standard deviation of the queued
time (in the Ligo.50 bars the standard deviation is not represented to limit the
size of the Y axis, the error bars of such case reach approximately 1500 seconds).
Lines connecting the bar values have been included to make it easier to interpret
it.

5.3. Experiment results 87

Makespan

The makespan of the di↵erent workloads is represented in Figure 5.8. As it can
be observed the makespan has been reduced with the devised scheduling strategy
in 3 out of the 6 workflows (i.e. test-3, Ligo and Montage). However, it has
been increased in the other 3 cases. These are the expected results, because we
aimed at pointing out the advantages and limitations of the designed scheduling
mechanism. Next paragraphs provide the explanation of the obtained results.

In order to determine the reasons why some workflows reported a higher
makespan, they are going to be inspected in more detail considering the included
tasks and its duration (please refer to Section 5.4.1 for tasks duration). The
first workload with higher makespan (test-1) is composed of 3 long-running tasks
at the beginning, which in the case of FCFS are scheduled to be run at the
beginning. Since the test infrastructure has 2 execution nodes, the first 2 long-
running tasks enter the system for execution. After these 2 tasks finish their
execution, the third one starts executing in one of the nodes. The other node
executes the rest of small tasks present at the end of the workflow. In contrast, in
the devised priority-based scheduling strategy first the small jobs are executed,
therefore reducing their queued time, whilst the execution of the long running
jobs is postponed. This is not necessarily bad if the number of long-running jobs
is balanced with regards to the number of available computing nodes, but this is
not the case of the mentioned workload. In the mentioned workload, the long-
running jobs are unbalanced, thus reporting worse performance. A schematic
representation of the previous discussion can be observed in Figure 5.9.

Similarly, the set of tasks test-2 was designed to reinforce the previous analy-
sis. In this case, more small tasks were included, but still keeping the unbalanced
set of long-running tasks. The result is a similar situation as reported for test-1
(i.e. higher makespan caused by the last long-running tasks executed at the end).

The scenario for the Cybershake workflow obtained from the workflow genera-
tor gallery is di↵erent. In this case, there exist data dependencies between tasks,
therefore the priority value is only considered for tasks having all their depen-
dencies satisfied. In the case of this workflow, there are only 2 long-running tasks
without dependencies at the beginning (as illustrated in Figure 5.3). The di↵er-
ence in execution time of this 2 tasks unbalances the start of part of the tasks
of the second level, which depend on them. This unbalance compromises the
system performance with regards to the makespan, in particular for the devised
priority-based scheduler, which postpones the long-running tasks.

88 Chapter 5. Experimental Evaluation

Figure 5.8: Makespan of the di↵erent workflows scheduled by the two compared
scheduling algorithms. The ‘light grey’ bars represent the time for the FCFS
algorithm, whereas the ‘dark grey’ bars represent the time for the priority-based
scheduler. The Y axis is in logarithmic scale and lines connecting the bar values
have been included to make it easier to interpret it.

Figure 5.9: Performance of the scheduling algorithms for the unbalanced set of
long-running tasks of test-1. The plot is divided into two parts. The upper half
of the plot represents the behaviour of the FCFS algorithm, whilst the bottom
half of the plot shows the performance of the priority-based scheduling algorithm
designed in this thesis. It can be observed how the higher priority of the small
tasks together with the unbalanced set of long-running tasks make the priority-
based scheduler performs worse compared to the FCFS scheduler.

5.3. Experiment results 89

Throughput

Figure 5.10 contains the system throughput for the di↵erent synthetic work-
flows considering only one workflow at a time being submitted to the system.
It is important to note that throughput value is inversely proportional to the
makespan value, and since the number of tasks for each workflow is fixed, it
would depend only on the makespan. That said, it is obvious to notice that the
throughput value would be higher (i.e. better) for smaller values of makespan.
This was the case in 3 out of the 6 workflows as reported in the previous sec-
tion. The reasons of the di↵erent makespan values contained in the previously
mentioned section are also valid for the di↵erent reported throughput values.

Figure 5.10: Throughput of the di↵erent workflows scheduled by the two com-
pared scheduling algorithms. The ‘light grey’ bars represent the time for the
FCFS algorithm, whereas the ‘dark grey’ bars represent the time for the priority-
based scheduler. Lines connecting the bar values have been included to make it
easier to interpret it.

Resource utilisation

The percentage of resource utilisation for each of the workflows using the
two di↵erent scheduling strategies is represented in Figure 5.11. Similarly to
the throughput value, the resources utilisation also depends on the makespan
value. In this case, the resources utilisation is directly proportional to the total

90 Chapter 5. Experimental Evaluation

execution time of the tasks (which is practically the same in di↵erent executions),
and inversely proportional to the makespan value. Consequently, the resources
utilisation value is better for the priority-based scheduler in 3 workflows. The
reasons of the di↵erent makespan values are again valid to explain the resources
utilisation values.

Figure 5.11: Resources utilisation of the di↵erent workflows scheduled by the
two compared scheduling algorithms. The ‘light grey’ bars represent the time
for the FCFS algorithm, whereas the ‘dark grey’ bars represent the time for the
priority-based scheduler. Lines connecting the bar values have been included to
make it easier to interpret it.

5.3.2. System behaviour using the auto-scaling strategy

This section is aimed at studying the system behaviour while using the devel-
oped auto-scaling strategy described in Section 4.2, whilst the previous perfor-
mance evaluation sections were using a fixed-size execution cluster. An additional
di↵erence is that in this section the evaluation metrics are not considered any-
more, instead the time reduction and application speedup are evaluated. Previous
sections highlighted the performance of the priority-based scheduler of this thesis
compared to the FCFS, both in synthetic and real-world workflows. In this section
the aim is at evaluating the auto-scaling strategy, thus only the priority-based
scheduler is used to remove the influence of having di↵erent schedulers. Next
subsections show the evaluation results for the sequential and parallel versions

5.3. Experiment results 91

of the GECKO software for multiple genome comparisons, and for the GWAS
workflow.

Multiple genome comparison sequential workflow

This section reports the performance of the system while executing a multiple
genome comparison study using the sequential version of the GECKO software
and the mammalian sequences dataset described in Section 5.1.2. This dataset
generates 21 pairwise genome comparisons following what is known as an all-
versus-all study.

The overall sequential (1 core) execution time of the all-versus-all multiple
genome comparison of the mentioned dataset is of 33.83 hours. But this time
includes calculating the dictionary of input sequences for each comparison, what
is not required as stated previously in Section 5.1.2. Therefore, calculating the
dictionary just once for each sequence, the execution time is reduced to 16.5
hours.

Nevertheless, since each pairwise comparison inside the multiple genome com-
parison is independent, they can be executed in parallel in separate cores. The 21
tasks or pairwise genome comparisons were submitted to an auto-scaled cluster of
up to 10 nodes. The auto-scaling strategy managed to up-scale the system thus
reducing the execution time to a total of 2.33 hours with an e�ciency of 70.82%
compared to the optimal theoretical speedup (an acceptable speedup given the
small number of tasks). After finalising the execution, the cluster was again
down-scaled to the minimum number of instances (i.e. just the static instances).

Multiple genome comparison parallel workflow

The previous section reported the experienced time reduction, due to the
auto-scaling strategy, while executing a multiple genome comparison using the
sequential original version of GECKO. As already mentioned, after studying the
parallelization possibilities of GECKO, it was observed that some internal mod-
ules were subject to be parallelized in an e�cient way. These modules include the
sequences dictionary calculation, the determination of hits, the sorting of such
hits and the calculation of the final alignment. All of them report a significant
amount of execution time to benefit from a parallel strategy given the possibil-
ity of splitting the input data in smaller chunks. Therefore, such modules were
adapted to run in parallel in the kind of infrastructures as the presented in this
work. In this case, the execution cluster was auto-scaled before executing the

92 Chapter 5. Experimental Evaluation

experiments in order to measure separately the benefits of the devised parallel
strategy.

In this use case two di↵erent types of datasets were used. The first one
composed of two sets of 30 and 40 bacterial sequences respectively to be used
for testing the first parallelization level described in Section 5.1.2. The aim of
this two sets is to generate a su�cient number of tasks in order to have a good
application speedup. It is important to note that an all-versus-all study generates
n ⇤ (n � 1)/2 tasks, what accounts for 435 tasks in the case of the 30 sequences
set, and for 780 tasks in the 40 sequences set. Figure 5.12 shows the application
speedup for the mentioned set of sequences. The second dataset is composed of
sequences with notorious di↵erences in size, ranging from approximately 5Mbp
to 420Mbp. The aim is to benchmark the parallel strategy in the experimental
condition of heterogeneous workloads.

5.3. Experiment results 93

1

2

4

8

16

32

64

128

1 2 4 8 1 6 3 2 6 4 1 2 8

SP
EE

DU
P

T(
1)

/T
(P

E)

NUMBER OF PROCESSORS (PE)

Optimal 30 genomes 40 genomes

Figure 5.12: Speedup of the first parallelization level of the multiple genome
comparison workflow. The X-axis represents the number of used cores, whereas
the Y-axis shows the application speedup calculated as the sequential execution
time with one core divided by the running time for the given number of cores.

The speedup of the first parallelization level (see Figure 5.12) suggests that
the application is scalable. The reported speedup is good until 16 cores having
a speedup close to the theoretical one or even superlinear because of the overlap
between I/O and computation while executing several comparisons at the same
time. From this number of cores onwards, the number of tasks is not su�cient
in the 30 genomes series, thus its speedup starts to degrade. This is not the case
of the 40 genomes series, which generates a higher number of tasks.

Figure 5.13 shows the speedup for the di↵erent modules composing the GECKO
software. It is worth mentioning the e↵ect of the size of the input sequences be-

94 Chapter 5. Experimental Evaluation

fore analysing the speedup. The length of the input sequences is one of the main
factors a↵ecting the execution time of GECKO. Additionally, other components
influencing the execution time are the similarity shared by the input sequences
and the parameters selection, particularly the word or K-mer size chosen to cal-
culate the hits or seed points from where to start the alignment (see Section 5.1.2
for more details).

Two interesting aspects can be observed in the sub-figures from A to D of Fig-
ure 5.13. First, the super-linear speedup achieved in some cases. This is caused
by the fact of having simultaneous executions on each node overlapping compu-
tation and I/O operations. The second aspect is the reduction of the speedup.
There are two possible reasons to explain this behaviour. The first reason is that
particularly for the shortest sequence (i.e. E.coli series) the amount of work to
be performed is not big enough to take profit of a parallel strategy. The second
reason is the amount of I/O load the application has. The computation itself
is parallelized but not the I/O, therefore all the time spent reading/writing the
big input/output files seriously reduces the obtained speedup. A more detailed
discussion of the speedup can be found at [85].

5.3. Experiment results 95

1

2

4

8

16

32

1

2

4

8

16

32

NUMBER OF PROCESSORS (PE)

Optimal E.coli HS-chr1 HS-chr1+2
SP

EE
DU

P
T(

1)
/T

(P
E)

1 2 4 8 1 6 3 21 2 4 8 1 6 3 2

A B

C D

Figure 5.13: Speedup of the modules composing the GECKO workflow. A: Dic-
tionary step speedup; B: Hits step speedup; C: Sort hits step speedup; D: FragHits
step speedup. The X-axis represents the number of used cores, whereas the Y-
axis shows the application speedup calculated as the execution time in sequential
fashion using one core divided by the running time for the given number of cores.

An attractive point that can be extracted from the obtained speedups is that
since the di↵erent modules report good e�ciency levels until di↵erent number
of cores, this means that the workflow is particularly suitable for dynamically
scalable environments such as the presented cloud computing infrastructure. Ex-
tracting the best number of cores for each of the modules, during task submission
such values can be used to improve the e�ciency and to reduce the execution
cost.

96 Chapter 5. Experimental Evaluation

Genome-Wide Association Study workflow

The Genome-Wide Association Study workflow was executed via the Galaxy
workflow management system connected to the auto-scaled cloud-based execution
cluster designed in this thesis. The input dataset is composed of 8 input files of
66MB each, which generate 8 independent tasks. For the sequential part of the
workflow consisting of the birdseed algorithm and data filtering, a longer runtime
compared to the execution time of the original publication [40] was obtained. The
cause resides in that these tasks were mapped to the node hosting the Galaxy web
server with the consequent overlap and influence of the Galaxy processes to the
execution time of the tasks. However, in the VCF conversion step a significant
di↵erence to the original publication can be seen. This step is memory-bounded,
therefore the ratio of CPU cores (or simultaneous tasks) to GB of RAM has a
large performance impact.

This can be observed comparing the mean runtime of the original publication,
which was of 4970 seconds in the same cloud environment of this experiment, to
the execution time in the di↵erent machines of the auto-scaled cluster. First, the
task scheduled to the Galaxy main node reported a mean execution runtime for a
single VCF conversion of 1190 seconds. Second, the 4 VCF conversions executed
in parallel by the permanent compute node, resulted in an execution time of
1416 second on average per conversion and a memory consumption of 2 GB each.
Third, the rest of the conversions (3 in this case) were scheduled in a dynamically
started VM with 8 vCPUs and 8 GB of RAM reporting a mean runtime of 569
seconds in this machine. In summary, all the conversions took an average of 1756
seconds including the overhead introduced by the Galaxy workflows management
system. The 4970 seconds of the original implementation have been reduced to
1756 seconds using 3 nodes, what gives an e�ciency value of 94.34%. These times
exclude the time required to upload the data to the cloud environment, which in
any case is not too big for approximately 500MB.

5.4. Main factors a↵ecting the scheduling and
auto-scaling mechanisms

In this section, the main factors a↵ecting the system behaviour are discussed
in di↵erent subsections:

First, the influence of the task duration distribution, particularly the
point in time when the long-running tasks are submitted and the balance

5.4. Main factors a↵ecting the scheduling and auto-scaling mechanisms 97

between the number of tasks and computing nodes are discussed.

Second, the next section discusses how the system behaves when the ac-
curacy of the tasks’ walltime or runtime estimates is not good. In this
second part, the same configuration parameters as in the first evaluation
will be used.

To finalise this section, the alteration produced by the provisioning de-
lays of VMs within the cloud environment is discussed.

5.4.1. Task duration distribution

One of the main factors a↵ecting the system behaviour is the distribution of
the tasks duration of the faced workload. First, the combination of short and
long-running tasks is important. In workloads including a lot of long-running
tasks, the average queued time of the short ones could be a↵ected. But not only
the number of each of the tasks groups with regards to duration as shown in the
histograms of Figure 5.14 is important. Second, it is also equally important when
each of task types are submitted as illustrated in Figure 5.15. This can influence
the performance of schedulers depending on the tasks submission order such as
the FCFS algorithm.

For instance, if the tasks distribution concentrates most of the long-running
tasks at the beginning, the average time that a task spends in the queue will
be increased (this is the case of the workloads test-1 and test-3 as reported in
Section 5.3.1). Additionally, if the number of long-running tasks is not balanced
to the number of available compute nodes, the makespan could be increased and
thus the throughput and resources utilisation e�ciency reduced (as reported for
the workloads test-1 and test-2 in Section 5.3.1).

98 Chapter 5. Experimental Evaluation

Figure 5.14: Histogram of tasks duration for the di↵erent workflows. The X-axis
represents the tasks duration from 0 till the longest running time. The Y-axis
shows the number of tasks of the given duration.

5.4. Main factors a↵ecting the scheduling and auto-scaling mechanisms 99

Figure 5.15: Barchart of tasks duration for the di↵erent workflows. In this case
the tasks are arranged in the X-axis by submission order. The Y-axis accounts
the specific task duration of the given task.

In [58] the authors already noticed that for the synthetic workflows described
in previous sections, especially for Montage and CyberShake, the short runtimes
of their tasks made their dynamic algorithms perform better relative to their
static one. They demonstrated this assumption by adjusting the runtime of each
task multiplying it by a fixed scaling factor.

5.4.2. Inaccuracies in the task runtime estimates

Another important component a↵ecting the scheduling performance is the
accuracy of the tasks’ walltime or runtime estimates provided by the user. In
order to assess how this fact a↵ects the scheduling decisions performed by the
scheduler strategy, we are following the same evaluation approach to measure
again all the evaluation metrics.

100 Chapter 5. Experimental Evaluation

It is important to note that the job priority and therefore the job scheduling
performed by the priority-based scheduler relies on estimates of tasks runtimes.
Typically, the more accurate the task runtime is, the better the scheduling and
provisioning decisions are. In [58] the authors claim that such assumption is of-
ten reasonable, since it is possible to obtain workflow performance characteristics
from preliminary runs [12, 24, 47]. Some workflow management systems, such as
Galaxy [13] and Swift [100], include data provenance techniques, which gather
task runtime estimates among other values related to the workload. Workflow
descriptions may in turn be a priori annotated with these estimates, and a pos-
teriori with the real execution time. In practice, however, these estimates can
not be easily extrapolated to other input data, particularly when input parame-
ters have strong e↵ect in the runtime. Consequently, in this section we examine
how these inaccuracies a↵ect, in a parametric study that varies the execution
time from the real runtimes known in advance to this time plus an extra time
following a random distribution from 0 to the task duration. Underestimates are
not evaluated in this study since in such a situation TORQUE would remove the
job from execution in the current configuration. However, this behaviour can be
easily changed to be more permissive, allowing a certain percentage of inaccuracy
per job.

Figures 5.16 and 5.17 show the tasks duration histogram and bar chart re-
spectively including the random extra time added to the original walltime. Next
paragraph discusses how these changes in the runtimes a↵ect the average tasks
queued time and makespan of the scheduling strategies for the workloads eval-
uated in Section 5.3.1. The rest of the evaluation criteria (i.e. throughput and
resources utilisation) are not included in this section because they are propor-
tional to the makespan.

5.4. Main factors a↵ecting the scheduling and auto-scaling mechanisms 101

Figure 5.16: Histogram of tasks duration for the di↵erent workflows including a
variable extra random time. The X-axis represents the tasks duration from 0 till
the longest running time. The Y-axis shows the number of tasks of the given
duration.

102 Chapter 5. Experimental Evaluation

Figure 5.17: Barchart of tasks duration for the di↵erent workflows including a
random extra time. In this case the tasks are arranged in the X-axis by submission
order. The Y-axis accounts the specific task duration of the given task. The grey
part of the bar represents the original time, whilst the black part accounts for
the extra random time added to the original walltime.

The average tasks queued time of the di↵erent workloads with the modified
walltime can be seen in Figure 5.18. The queued time for the priority-based
scheduler was shorter in all the di↵erent workloads compared to the FCFS algo-
rithm in the original benchmark. Therefore, Figure 5.18 only displays the queued
time of the priority based scheduler for the original workloads compared to the
modified one including the walltime inaccuracies. As it can be observed, surpris-
ingly except for one workload (test-2), the rest of them report on average either
a similar or shorter waiting time in the queue. The test-2 workload changed
its task duration distribution significantly from having more small tasks than
long-running tasks, to having a small number of short tasks and a big amount of
medium and long-running tasks. This made the priority-based scheduler to select
the short tasks without any doubt, but this was not the case for the bigger ones

5.4. Main factors a↵ecting the scheduling and auto-scaling mechanisms 103

thus increasing the average waiting time in the queue. For workloads with simi-
lar queued times (test-1, test-3, Cybershake.50 and Ligo.50), the tasks duration
distribution has not significantly changed therefore the scheduler makes the same
decisions. However, for the Montage workflow, whose task duration distribution
was similar along the di↵erent task sizes, modifying the walltime has contributed
to help the scheduler performing a better decision, reducing the average queued
time, in the situations where the runtime estimates were pretty similar.

Figure 5.18: Average queued time of the di↵erent workflows scheduled by the
two compared scheduling algorithms including a random extra time. The ‘light
grey’ bars represent the time for the priority-based scheduler with the original
walltimes, whereas the ‘dark grey’ bars represent the time for the same scheduler
with the inaccurate walltime. Lines connecting the bar values have been included
to make it easier to interpret it.

With regards to the makespan metric, Figure 5.19 shows the comparison of the
makespan for the di↵erent workloads using the priority-based scheduler with the
original (accurate) and the inaccurate walltimes. As it can be observed, for most
of the workloads the makespan value has not significantly changed. In 4 workloads
it has been slightly increased. In these cases the execution order of some short
tasks scheduled to be executed at the beginning was shifted to later periods thus
unbalancing the workload in the compute nodes (this scenario is illustrated in the
Unfavourable part of Figure 5.20). This is happening because the priority value
of such tasks was very similar to the one of other medium or long-running tasks

104 Chapter 5. Experimental Evaluation

with the original walltime, therefore adding some extra time changed the priority
and in consequence the order. In contrast, the makespan has been reduced for 2
workloads. In these scenarios, the extra walltime assigned to the short running
tasks moved their execution to the end, what fills the ‘idle’ gaps left by the long-
running tasks at the computing nodes (a similar situation is represented in the
Favourable part of Figure 5.20). The behaviour for the throughput and resources
utilisation metrics can be extrapolated from this case, since they are inversely
and directly proportional to this criterion respectively.

Figure 5.19: Makespan of the di↵erent workflows scheduled by the two compared
scheduling algorithms including a random extra time. The ‘light grey’ bars repre-
sent the time for the priority-based scheduler with the original walltimes, whereas
the ‘dark grey’ bars represent the time for the same scheduler with the inaccurate
walltime. In the Ligo.50 bars the standard deviation is not represented to limit
the size of the Y axis. Lines connecting the bar values have been included to
make it easier to interpret it.

5.4. Main factors a↵ecting the scheduling and auto-scaling mechanisms 105

Figure 5.20: Influence of the inaccuracies in the tasks runtime estimates to the
makespan metric. The figure is split into two parts (upper and bottom). The
upper part represents a favourable situation where inaccurate runtime estimates
reduce the makespan. The bottom part outlines an unfavourable case where the
makespan has been increased. For each of the parts, two scenarios have been
represented: accurate and inaccurate runtime estimates. It is important to note
that the priority value of the tasks depends on the runtime estimates (E) and not
in the actual execution time (R).

5.4.3. Provisioning delays

The delay of cloud resources provisioning is one additional point to consider
in the process of making the decision of either adding or deleting resources. This
time refers to the period between a resource is requested until it is finally available.
Typically most of the public cloud providers bill the resources from the instant
they are requested by the user until they are released, including the provisioning

106 Chapter 5. Experimental Evaluation

and releasing delays in the cost the user should cover.

The provisioning delay depends, to a greater or lesser extent, on multiple fac-
tors. Usually the considered factors (as studied in [60]) are the cloud provider,
the time of the day the resources are requested, the VM operating system image
size, the VM instance type, the availability zone, the number of simultaneous
requested resources and if they are spot instances or not (spot instances enable
users to bid on unused instances to reduce costs. The price of such instances
fluctuates based on their supply and demand. The big variability of the provi-
sioning delay has made cloud simulators such as CloudSim and adaptive resources
provisioning models such as [44, 55] to consider it.

In [58] the authors reported that in cases of delays of more than one minute,
the incurred cost of a significant number of their simulations was increased some-
times by up to a factor of 2, exceeding the budget constraints they are considering.
In contrast, the cost of their dynamic algorithms vary, but never exceeding the
imposed cost constraints. Considering this important issue, we are dynamically
studying when it compensates to include a new instance to the execution cluster.
Briefly, the devised auto-scaling strategy adds a new instance to the cluster when
the runtime of waiting tasks in the queue is higher than the provisioning delay
of the instance type required by the task of highest priority.

In order to estimate the provisioning delay of the di↵erent instance types
available in the used OpenStack cloud infrastructure, we performed a simple
study to calculate the average delay and its standard deviation. The study was
performed requesting resources at di↵erent times of the day in order to avoid
biases on the system faced workload. The results shown in Figure 5.21 follow a
similar distribution of provisioning delay per flavour as reported for EC2 in [60].

5.4. Main factors a↵ecting the scheduling and auto-scaling mechanisms 107

Figure 5.21: Provisioning delay of the di↵erent instance types of the used Open-
Stack cloud infrastructure. The X-axis contains the di↵erent instance types,
whereas the Y-axis reflects the average time in seconds to provision the instance.

6 Conclusions and Future

Work

HPC and cloud computing

In the Big Data era, the massive production of vast amounts of data in nu-
merous fields such as astronomy, health, Smart Cities, the Internet of Things and
social networks has shifted the bottleneck from data acquisition to data analysis
and interpretation. E�ciently analysing the tremendous amount of data that
we have available has turned out to be a very complex issue. High Performance
Computing strategies represents an interesting alternative due to their proven
success while dealing with large datasets. However, in general such techniques
require the use of large and expensive computing infrastructures, which are typi-
cally shared between di↵erent groups. This produces some consequences such as
the overload of resources (in number of tasks and their duration); the necessity
of the batch execution mode; a big amount of users; a high I/O load due to the
data volume; etc. Cloud computing with its scalability and pay-per-use proper-
ties represents an interesting alternative to build HPC infrastructures. Obviously,
since cloud computing is not particularly targeting such purpose, some research
is being performed to evaluate it as a di↵erent HPC infrastructure.

In the context of cloud computing used as a HPC infrastructure, we have
first evaluated the cloud computing services models (i.e. IaaS, PaaS and SaaS).
IaaS has been chosen as the base model due to its higher performance for HPC
applications, and its wider number of configuration possibilities, which allow a
more direct access to the underlying infrastructure. Secondly, we have identified
the tasks to be performed in the cloud environment: data transfer, browsing of

109

110 Chapter 6. Conclusions and Future Work

available services/tools, navigation through the hierarchy of available services,
services composition, execution of services, process scheduling, and resources
auto-scaling. Either state-of-the-art open source software has been used or we
have developed additional software to enable us evaluating our contributions for
the mentioned tasks. Thirdly, a priority-based tasks scheduling strategy has been
proposed optimising a number of di↵erent metrics. Fourthly, the use of the de-
vised cloud-based infrastructure has been made easier by interconnecting it with
existing software clients and workflows management systems, which exploit the
underlying infrastructure. Finally, we have selected several use cases to bench-
mark the performance of the devised strategies.

Base software for the cloud computing environment

After evaluating di↵erent cloud computing service models and di↵erent providers,
the OpenStack middleware was selected as the base IaaS cloud computing solu-
tion. Several modules (most of them already available and some developed in
this work) have been included to improve the authentication mechanisms (LDAP
and DirGrid), data storage and transfers (Ceph file system, GridFTP, GlobusOn-
line and CloudFuse), computation (TORQUE, Maui and Dynamic TORQUE),
and user-friendliness (jORCA, mORCA and Galaxy). The result is a seamlessly
integrated infrastructure, which allows end-users performing their analyses on a
cloud-based HPC infrastructure via user-friendly interfaces.

User authentication

The used authentication mechanisms (LDAP and DirGrid) ensure the system
is correctly secured, allowing only authenticated users to interact with it. Au-
thentication is required in several system components. For instance, it is used to
access the data storage and to perform data transfers, to access the cloud com-
puting web-based management interface, and also to execute scientific analyses
via the software clients. Having a centralised location for storing the informa-
tion of user accounts and their corresponding permission simplifies on one hand
the tasks of system administrators, which have a single point to modify user
rights. On the other hand, from the point of view of the users, they just need to
remember one key-pair of user and password for the di↵erent services provided.

111

Tasks scheduling and resources auto-scaling

Regarding computation, we contribute to allow TORQUE working with a dy-
namical number of worker nodes allocated in an OpenStack cloud. It is really
important to maintain a dynamic execution cluster since it is not e�cient to main-
tain an underutilised big cluster, and neither we want our jobs to be waiting too
much time when new workers to execute them can be dynamically instantiated.
With the workflow use cases used in this work, we have demonstrated that the
auto-scaling feature of cloud computing would help extracting a good e�ciency in
applications with a varying demand on the number of resources during execution.
The importance of such point can be observed in the amount of research carried
out using di↵erent distributed resources managers as stated in the related work
section. The auto-scaling strategy removes the limitations of equivalent software
(see Table 2.1), which mainly work with simulated environments.

Although Dynamic TORQUE conforms the base of the reported auto-scaling
strategy, it has been modified to map the devised infrastructure. Besides, we are
not using the monitoring part included in the original implementation. The main
changes reside in the auto-scaling decision mechanism and also in the scheduling
strategy as described in Chapter 4. The first improvement is that the amount of
required resources specified during the job submission is considered, instantiating
worker nodes with enough resources. This contrasts with the assumption that all
the jobs require the same number of resources made by the original implementa-
tion. With the previous assumption, the submitted job could not fit the resources
of the new worker, what could lead to inconsistencies. The worker would be ini-
tiated, but at the end it will not be used because TORQUE realises that the job
it was created for, is actually not fitting there. An additional improvement is
the way the idle workers are deleted. The original version of Dynamic TORQUE
just considered the time a worker had been idle, deleting it immediately. Such
behaviour has been modified, triggering the worker deletion at the same point as
the original implementation, but not actually deleting until its billing period is
reached. The billing period is a parameter provided by the cloud vendor, which
can be specified in the configuration file of the auto-scaling strategy.

It is important to note the flexibility of the devised approach, made possible by
the designed software architecture. First, it is possible to use di↵erent distributed
resource managers by implementing parsers for the output of the commands to
query the status of the execution nodes (e.g. pbs nodes), and to retrieve the list
of jobs waiting in the queue (e.g. qstat). Second, its architecture allows to use
other cloud solutions as well. In this case, just a new class inheriting the abstract
class implementing the specific cloud API calls would be required. These API

112 Chapter 6. Conclusions and Future Work

calls are the ones for creating and deleting worker nodes, and for monitoring their
status at the lowest abstraction level.

The separated deployment of the auto-scaling strategy running alongside
TORQUE presents two major benefits regarding usability and stability. First,
it is transparent to the end-users, which submit jobs to the TORQUE queue
as if they were using a regular TORQUE execution cluster, without requiring
specific cloud computing knowledge. This removes the need of learning a new
job submission language, and of modifying already available software prepared
for o↵-the-cloud TORQUE clusters. Second, if the Python scripts managing the
auto-scaling crash, TORQUE can continue working without service interruption.
Of course the cluster would not be automatically scaled until the operation of
the auto-scaling strategy is restored, but just re-running the auto-scaling part,
the system would recover from the last stable status.

We have contributed with a priority-based scheduler which optimises a num-
ber of di↵erent performance metrics. The chosen metrics in order of importance
for our scheduling strategy have been: average jobs queued time, makespan,
throughput and resources utilisation (the definition of these metrics are con-
tained in Section 5.2). Our aim has been to reduce the average jobs queued time,
and at the same time the makespan, whilst increasing the throughput or number
of executed tasks per second, and the resources utilisation. The parameters to
calculate the priority of a given job have been chosen considering the previously
mentioned optimisation objectives for the performance metrics. In case the user
would like to optimise di↵erent metrics, a simple re-configuration of factors pro-
ducing the priority value would be enough. A backfill policy has been used to
prevent an ine�cient use of the available resources in the system in situations
with a mixture of long-running tasks requesting a big amount of resources and
short tasks consuming a small number of resources (see Section 4.1.2). This kind
of policy usually increases resources utilisation and theoretically does not a↵ect
the starting time of long-running tasks as planned by the scheduler, since only
jobs fitting backfill windows are selected. Regarding the node(s) allocation policy
to select the nodes(s) where to execute a given job, TORQUE has been config-
ured to prioritise static over dynamic nodes in a first level, and the nodes with
the least amount possible of resources (in other words a best-fit approach) in the
second level. The reasons of selecting this policy are that in a cloud environment,
firstly all VMs have an associated cost, so it is better to prioritise static nodes
over dynamic ones. Secondly, VMs with more resources usually have a higher
cost. The mentioned policy would leave sooner idle the workers with the bigger
amount of resources, which will be in turn deleted by the auto-scaling strategy.

113

Accessing the cloud: clients

Traditionally, software clients and workflows management systems have sim-
plified the exploitation of complex computing infrastructures via user-friendly
graphical user interfaces. However, already existing software clients such as
jORCA or mORCA, and workflows management systems such as Galaxy, were
designed and developed before the appearance of cloud computing thus not con-
sidering its specific properties. A priori data uploading and the call-by-reference
to analytic services were not included in the original functionality of such soft-
ware clients. We contribute aiming to remove such limitations of the mentioned
software clients. First, data management plugins have been developed for such
software clients. These plugins use existing data transfer protocols (i.e. SSH File
Transfer Protocol (SFTP) and GridFTP) and applications (i.e. GlobusOnline)
to perform reliable transfers of the user data. Second, a RESTful Web Services
front-end has been designed and implemented. Such front-end provides a uniform
standardised representation of various operations including service invocation,
monitoring and results retrieval. In addition, it allows executing services using
references to the input data instead of invoking them with the actual input values,
which could be potentially large files. Third, the Galaxy workflow management
system has been also configured to work with the mentioned data transfer plugins
and has been interconnected to the cloud-based auto-scaled execution cluster of
this thesis as well. All this e↵ort translates into a higher abstraction level and
therefore an easier use of the underlying cloud-based HPC infrastructure by the
end-users.

Validation and benchmarking: use cases

The use cases selected to demonstrate the performance of the devised strate-
gies are conformed by synthetic and real-world applications. Both, the syn-
thetic workflows (used in related works), and the real-world applications (result
of this work and derived from the collaboration with experts of the bioinfor-
matics and biomedicine fields) represent a good benchmarking suite composed of
CPU-intensive and I/O-bounded applications with regular and irregular compu-
tation patterns. In particular, the simulation of the synthetic workflows, which
have typical computational patterns, represent a generic and automatic way of
evaluating this type of developments, what we believe is a simple but significant
contribution to the field.

The pairwise and multiple genome comparison application developed in this
work (i.e. GECKO), not only represents a good heterogeneous set of tasks to

114 Chapter 6. Conclusions and Future Work

validate the system. Besides that, the two developed versions of GECKO (i.e.
sequential and parallel) have significantly contributed to the bioinformatics ap-
plication domain in several ways. First, GECKO has removed the limitation on
input sequence length faced by equivalent software given its e�cient use of the
secondary storage. Second, GECKO runs faster already in its sequential version
and much faster in the parallel version compared to existing methods, especially
for long sequences comparison. Third, the results of GECKO has been demon-
strated to be of comparable or higher quality than those reported by equivalent
software. Finally, comparative studies of long sequences, which were impossible
to be performed before GECKO, could yield new information in the field.

With regards to the experimental evaluation, the cloud-based HPC infras-
tructure has been setup in order to optimise a number of di↵erent performance
metrics. The good performance has been discussed in Chapter 5, where also
the limitations of the current configuration were introduced. Obviously, all the
metrics can not be optimised at the same time, after all it is a compromise be-
tween the di↵erent metrics. As already mentioned, the presented system has been
configured to optimise the average jobs queued time, makespan, throughput and
resources utilisation respectively. However, a simple re-configuration of the tasks
priority factors would enable optimising the metrics in a di↵erent order or even
optimise another ones.

Future work

We have proposed a cloud-based HPC infrastructure presenting solutions for
typical tasks such as user authentication, data management, tasks scheduling
and resources auto-scaling, and user-friendly exploitation of resources. However,
there is still work to be done in relation to the use of cloud resources as HPC
infrastructures. We can point out the following future work paths that we think
are worth exploring in the future:

Currently, the decision of when to launch a new VM to be included in the
TORQUE cluster is somewhat simple. It just takes into account if there
are idle jobs in the TORQUE queue and the walltime of the jobs. Ignoring
other aspects of the job such as the required amount of resources would
lead to provision new VMs later than required. This is to say, that if there
are for instance 3 nodes and 1 job requesting 4 nodes in the queue but
having a short walltime (less than the VM creation threshold), then the
system should not wait to add a new VM because it already knows that it
will be required. Future work could be focused on improving the previously

115

mentioned decision mechanism based on the amount of requested resources
and its historic values by implementing machine learning algorithms using
such data.

Similarly, the VM deletion decision has been simplified. A dynamic VM is
scheduled to be freed up after a configurable idle time period, even consid-
ering the invoicing periodicity of the cloud vendor. However, a bad decision
in this point could seriously influence the system behaviour under scenar-
ios with high variability of the workload such as periodic workloads. In
such a scenario, if the VM deletion threshold is shorter than the workload
periodicity, the auto-scaling technique will end unnecessarily deleting and
creating new VMs because of the short periods without tasks. Studies on
the probability of having more tasks in a short period of time would allow
enhancing the performance of the auto-scaling technique.

The chosen distributed resources manager has been TORQUE alongside
the Maui job scheduler. System administrators might like to use other
resources manager because of having a higher a�nity with other solutions
or if it appears a new one with remarkable performance results. The system
architecture has been designed in such a way that these tools can be replaced
requiring in the first place the configuration of VM instances with the new
tools installed, and in second place, new Heat deployment templates to
automatically instantiate the execution nodes. In addition, the auto-scaling
technique should be modified to understand the output of the commands
reporting the nodes statuses and the list of jobs waiting in the queue to be
executed.

The configuration parameters of the scheduler have been selected in order
to improve the system behaviour within the devised cloud computing in-
frastructure and for the synthetic and real-world workflows presented in
Chapter 5. There is not a clear limitation in this point, the set of tasks
used to test the system has been big and heterogeneous enough to illustrate
the advantages and limitations of the system. However, further tests with
more real-world workflows would reinforce its performance. In any case,
with a better or worse performance, the system can actually execute any
kind of application.

A last future work path could be the deployment and use of the cloud-based
HPC infrastructure in di↵erent cloud environments such as the OpenNebula
private cloud infrastructure. Although the system is theoretically prepared
to be used with any other IaaS cloud solution, it has not been tested in such

116 Chapter 6. Conclusions and Future Work

infrastructures. In principle, the developed cloud management API is com-
patible with the OpenStack and Amazon Web Services APIs. For incom-
patible APIs, a simple adaptation of the cloud management API component
would be required.

We would like to point out that all the research objectives planned at the
beginning have been achieved. These objectives were:

Tasks scheduling strategy with dynamic load distribution and auto-scaling
of the computing resources to meet the demand.

Strategy for data storage, transfer, and more generally, data management
in the cloud environment.

Set of complex and heterogeneous applications with data dependencies to
demonstrate the e↵ectiveness of the devised system.

Interconnection of the cloud-based computing infrastructure with user-
friendly software clients for the easy exploitation of the cloud resources.

From the academical point of view also all the set objectives at the beginning
have been accomplished. These academic objectives were:

Work experience with cloud computing environments.

Experience with Big Data applications using HPC computing strategies.

Acquiring know-how in tasks scheduling strategies.

Experience in the comparative genomics and biomedicine application do-
mains.

Work experience in foreign teams, acquired in the scheduled stay.

After this thesis a real, powerful, e�cient, configurable and easy-to-use cloud-
based HPC environment is available. It is worth mentioning that the implemented
strategies have been validated and are being used in the framework of the Eu-
ropean Union Seventh Framework Programme (FP7) project Mr.Symbiomath
(grant agreement number 324554), and are currently being considered in the ini-
tial implementation stages of the pan-European ELIXIR-EXCELERATE project
(INFRADEV-1-H2020 Code 676559).

Appendix A

Cloud computing features

In this appendix the most distinguishing features of the cloud computing en-
vironment are described. Next sections describe the on-demand, pay-per-use,
elasticity, and maintenance and upgrading outsourcing properties.

A.1. On-demand

One of the basic features defining cloud computing is the delivery of comput-
ing and storage resources whenever the users need them. This capability removes
the need of planning ahead, buying and installing the resources estimated to be
used in the future. This reduces the cost not only of buying the hardware infras-
tructure, but also the derived costs of hosting and maintaining unused resources.

Apart from the consequences incurred in the financial point of view, this
feature provides further advantages. For example, it allows software vendors to
develop their software without worrying beforehand about the specific number of
customers their application would have. Even in the case of having more users
than initially planned, the underlying application can be up-scaled on-demand
to fit the growth in number of users. This feature, as previously stated, avoids
having underutilised resources with low computational load.

A.2. Pay-per-use

An additional new aspect of the cloud environment is its billing model. From
the point of the customers, they pay for the amount of time they are actually
using the resources. This translates the CAPEX of buying the required hardware

118 Appendix A. Cloud computing

infrastructure, into operational expenses OPEX measured as the time cloud re-
sources have been used.

The way cloud computing is o↵ering resources is related to the idea of util-
ity computing. The similarity resides in the fact that both ideas are providing
computing resources on-demand, equivalently to how a utility company provides
electricity, gas or water. The main di↵erence with regular utility companies is
that water, gas or electricity can be somehow stored and later provided to the
customers. However, the unused computing cycles of the cloud environment can-
not be used in the future, therefore it is very important for cloud providers to
e�ciently use their resources.

Cloud providers such as Amazon, Microsoft or IBM, have di↵erent granularity
in the way the use of resources are metered. In most of the cases, the use of
resources is measured in complete-hours, but currently this fact is changing, with
some providers such as Microsoft charging at the level of minutes 1. In addition
to the “used time”, the total amount of money to be paid depends also on a fixed
price associated to the type of machine the user has asked for. Only Amazon
provides resources with dynamically changing prices (i.e. spot instances 2). Their
price will depend first on a bid (or maximum price the user is willing to pay), and
second on the available unused instances in the market. Regardless of the prices,
the billing cycle usually does not change (a monthly basis is the most common).

A.3. Rapid elasticity

Cloud providers o↵er di↵erent type of resources to meet user requirements.
The quality of the o↵ered service is ensured by a SLA, which is signed by providers
and customers at instantiating time. The SLA is important from the point of
view of the users, but it is equally important for the providers. Providers have no
infinite resources, therefore with this agreement they have a base limit with the
minimum quality they should be o↵ering. With this base limit they can make a
rough estimation of the maximum users they can host per each of the physical
machines they have. Despite having several type of resources to meet user re-
quirements, these requirements frequently vary along time. Cloud providers o↵er
automatic techniques to either up-/down-scale the resources depending on the
workload.

1https://azure.microsoft.com/en-gb/pricing/
2http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

https://azure.microsoft.com/en-gb/pricing/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

A.4. Maintenance and upgrading 119

A.4. Maintenance and upgrading

Cloud providers rather than customers maintain the underlying physical com-
puting resources. This turns into an e↵ective outsourcing of maintenance tasks
(either hardware or software). In case of hardware failures or scheduled main-
tenance tasks, virtual machines are migrated to di↵erent computing resources,
thus not a↵ecting the customers’ experience. In this case or in similar situations,
users may notice short pauses in the service but in any case they would have long
service disruptions. These maintenance tasks are also contained in the SLAs to
ensure they are not frequent.

Appendix B

Scheduling

This appendix contains a basic background on tasks scheduling. It first intro-
duces the traditional types of processes to which the di↵erent tasks of a given
system belongs. Typically, the scheduling decisions are based on the analysis
of the type of processes a system handles. Secondly, the classical three-level
categorisation of scheduling algorithms in short-term, medium-term and long-
term schedulers is presented. Next, an additional categorisation of the di↵erent
scheduling strategies according to their specific properties is included. Finally, 3
traditional scheduling algorithms are briefly described.

B.1. Types of processes

Traditionally, computing processes have been categorised as either CPU-
bound or I/O-bound. CPU-bound processes spend most of their execution time
doing calculations, and rarely perform I/O operations. In contrast, most of the
execution time of I/O-bounded processes is spent in I/O operations, with infre-
quent CPU bursts. Normally, schedulers aim to balance the two types of processes
in order to have a similar number of processes in the ready queue and in the I/O
waiting queue. Algorithms producing an unbalanced set of tasks would there-
fore report a bad performance. Consequently, scheduling algorithms available in
the state-of-the-art have been traditionally designed to have the best possible
balanced set of tasks.

Similarly, an additional categorisation separates computational processes in
regular and irregular. The parallelization and scheduling of regular applications
is somewhat easy, given their simple behaviour and significant degree of latent
parallelism. However, the situation is more di�cult for irregular applications,

122 Appendix B. Scheduling

which exhibit highly variable execution performance due to unpredictable mem-
ory access patterns and/or network transfers, and data imbalances.

The mentioned process categories have been usually the ones influencing the
scheduler decisions. Nevertheless, presently there are more types of processes
derived from the proliferation of new devices such as Graphical Processing Unit
(GPU)s and Field Programmable Gate Array (FPGA)s. Such devices were orig-
inally designed for di↵erent purposes, but currently they are being used as com-
plementary execution devices to speedup the computation. Therefore, scheduling
decisions of new algorithms depend also on the devices the processes are targeting.

B.2. Scheduling level

B.2.1. Short-term

The short-term scheduler decides which of the processes waiting in the ready
queue is executed. A scheduler iteration is executed every time the CPU receives
a signal (e.g. clock and I/O interruptions or system calls). Thus the periodicity
of the short-term scheduler is the lowest one. In case of no interruptions, it makes
a scheduling decision every time slice, which is typically very short. Typically,
is a preemptive scheduler, implying that it may remove processes from the CPU
replacing them with another process. The reasons of having a preemptive scheme
is first to enhance users’ experience because their jobs will progress faster, and
second to have a fair system where all the processes have a chance to get a CPU
slice.

B.2.2. Medium-term

The medium-term scheduler is in charge of moving processes from main mem-
ory to secondary storage (such as the hard drive). This scheduler has been tra-
ditionally very important because most systems had a little amount of main
memory. However, nowadays with the increase in the available main memory
it is becoming less important. Usually, the reasons why processes are moved to
secondary storage vary. For example, it can be because the process is consuming
a significant part of the main memory, therefore is moved out to free up memory
for other processes. Another reason could be that the process has not been active
for some time and new higher-priority processes have appeared in the system.

In addition to the systems with high amount of main memory, in modern op-

B.2. Scheduling level 123

erating systems the role of the medium-term scheduler has significantly changed.
Current operating systems manage the physical memory by using the concept of
virtual memory. This memory management technique maps the virtual addresses
used by a program to the physical addresses in the physical memory. The virtual
addresses are organised in pages, which are swapped-in and swapped-out as the
system evolves. Consequently, in the current scenario, the medium-term sched-
uler is not just swapping processes, it swaps pages possibly containing more than
one process.

B.2.3. Long-term

The long-term scheduler, also known as admission scheduler, manages the
admission of processes to the ready queue. In other words, it is the scheduler
deciding when a process execution should take place. This scheduler will therefore
determine the degree of concurrency of a given system. In addition, it will decide
the balance between the di↵erent types of processes (see Section B.1).

Long-term scheduling is especially important in clusters, supercomputers and
HPC infrastructures in general. In such systems, it is of great importance to
control the processes entering the system for execution, considering that they are
expensive infrastructures that should be e�ciently used. Figure B.1 illustrates
the parts of a computing system where each of the scheduler types act.

124 Appendix B. Scheduling

Medium-term
scheduler

New

Ready
suspend Ready

Waiting
suspend Waiting

Running

Terminated

Long-term
scheduler Long-term

scheduler

Short-term
scheduler

Figure B.1: Illustration of in what part of a computing system a short-term,
medium-term or long-term scheduler acts.

B.3. Types of scheduling algorithms (static and
dynamic)

In the literature there exist lots of scheduling algorithms with di↵erent fea-
tures each. In order to better classify the set of available algorithms, Casavant
& Kuhl [17] introduced a taxonomy with the common features the methods are
sharing. The taxonomy (shown in Figure B.2) has been kept as simple as possible
yet containing a good set of features to classify them. Next paragraphs describe
the main features, located in the backbone of the classification tree.

B.3. Types of scheduling algorithms (static and dynamic) 125

local global

static dynamic

optimal sub-optimal

approximate heuristic

physically
distributed

physically
non-distributed

cooperative non-cooperative

optimal sub-optimal

approximate heuristicenumerative graph
theory

math
prog

queuing
theory

Figure B.2: Taxonomical classification of task scheduling algorithms [17].

a) Local versus global: Local scheduling comprises the algorithms assigning
processes to time-slices in single-processor systems. Instead, global schedul-
ing includes schedulers deciding where to execute a process. To alleviate
the work of global schedulers, the task of assigning the processes to proces-
sors’ time-slices is left for the local scheduler of the operating system. This
does not mean that global schedulers are formed by a single centralised
authority, indeed they might be composed of several parts.

b) Static versus dynamic: Static and dynamic scheduling refers to the time
at which the scheduling decision is made. Static schedulers assume that
the information about the processes to be run in the system is known be-
forehand. Considering this, they create a static plan assigning tasks to
particular processors. In the case of dynamic scheduling, the algorithms
consider that not all the information is known a priori, therefore this type
of schedulers make dynamic decisions as the system evolves.

c) Optimal versus sub-optimal: In the hypothetical case that schedulers are
aware of the whole system status and the needed resources by all the pro-
cess, an optimal scheduling can be made attending to one or several opti-
misation criteria. However, typically the computational complexity of such
algorithms is very high, thus it is usual to provide sub-optimal solutions
following a best-e↵ort approach.

126 Appendix B. Scheduling

d) Approximate versus heuristic: Approximate schedulers aim to reduce the
scheduling computational space by exploring it until they find an acceptable
solution. Whether a solution is taken as acceptable or not depends on a
series of factors such as the availability of an objective function to evaluate
the solution, and the time required to evaluate a solution. The heuristic
category comprises algorithms making use of special parameters indirectly
a↵ecting the system performance. For example, grouping together processes
which heavily communicate with each other and physically separating pro-
cesses with heavy parallelism requirements.

e) Distributed versus non-distributed: Another important aspect di↵erentiat-
ing scheduler algorithms is the fact if the scheduling decisions are made by a
single processor or if it involves several physically distributed nodes. From
an abstract point of view the di↵erence resides on where the scheduling
decision is made.

f) Cooperative versus non-cooperative: Within the distributed scheduling al-
gorithms we can further categorise them into cooperative and non-cooperative
schedulers. The cooperative algorithms involve cooperation between the
di↵erent distributed components. Instead, the non-cooperative algorithms
perform the decision in an independent component. It is important to no-
tice that in cooperative algorithms the decision each distributed component
is making, a↵ects the whole system. Therefore, it is important that these
components think about their local performance, but also paying attention
to the global behaviour.

B.4. Traditional scheduling algorithms

B.4.1. FIFO

The First-In First-Out (FIFO) scheduler, also called FCFS, is the simplest
but yet e↵ective scheduling algorithm. The algorithm simply stores the processes
in a queue as they arrive, dispatching first the oldest process. Its main drawback
is that the throughput, turnaround and waiting times might be high because long
processes can hold the CPU. In addition, there is no prioritisation so there could
be problems meeting the deadline of the processes. The advantage of the lack of
prioritisation is that as long as all the processes complete their execution there
is no starvation.

B.4. Traditional scheduling algorithms 127

B.4.2. Shortest Job First

Another traditional scheduler is the Shortest Job First algorithm. It has a
queue to store the processes sorted/prioritised by their execution time. At each
scheduling cycle, the algorithm dispatches the process with the shortest execu-
tion time. This scheduler faces several problems. Perhaps the most notorious
disadvantage from the point of view of the user is the process starvation, since is
undetermined how many shorter and therefore high-priority processes may enter
the system. This is particularly problematic in the case of a preemptive scheme,
because running processes might become continuously interrupted by the arrival
of short processes. Another important problem faced by this scheduler is that the
waiting time strongly varies depending on the execution time of the processes.
The positive side of this scheduler is that the throughput is usually high in most
scenarios.

B.4.3. Round-robin scheduling

This type of schedulers assigns a fixed CPU time slice to each process. The
scheduler iterates over the ready queue moving out the process when its time
is consumed and entering the next process in the queue. The result is good
average response and waiting times, dependent on the number of processes and
not on the process length. An additional advantage in this type of schedulers is
that starvation never occurs, since there is no priority, thus every process has its
time slice sooner or later. The main disadvantage of the round-robin scheduler
is its overhead, particularly for small time slices since it causes a lot of processes
interchanges.

Ap

´

endice C

Resumen en espa

˜

nol

C.1. Introducción

Los numerosos avances tecnológicos en la adquisición de datos, permiten la
producción masiva de grandes cantidades de datos en diversos campos que van
desde la astronomı́a, la agronomı́a, la salud, hasta las redes sociales. A pesar
que estos datos ofrecen muchas posibilidades a los grupos de investigación y a
las empresas para efectuar estudios que permitan ampliar el conocimiento en
sus respectivos campos, solo una pequeña parte de ellos –la punta del proverbial
iceberg– es sintetizada, gestionada y procesada, proporcionando un conocimiento
parcial del proceso que se observa. La falta de capacidad de procesamiento es el
mayor cuello de botella en la obtención de resultados.

Una alternativa interesante y cada vez más importante por su disponibilidad,
es el uso de estrategias de Computación de Alto Rendimiento (CAR) para afrontar
el ritmo actual de generación de datos, en términos de la gestión de los mismos, la
forma de acceder a ellos, aśı como de la planificación y distribución de las tareas
que los procesan y analizan. En general, las técnicas de CAR requieren del uso
de grandes y costosas infraestructuras de cómputo y almacenamiento, lo que no
suele estar al alcance de muchos de los grupos que requieren de estos recursos.

La computación en la nube (Cloud Computing) aparece como una alternativa
sugerente en la que los usuarios pagan por el uso de los recursos que consumen
y cuando los necesitan. Aparte del ahorro en infraestructura, la computación en
la nube ofrece otras ventajas como el ahorro en instalación, mantenimiento y
suministros; la posibilidad de conseguir mejor hardware del que el usuario puede

130 Apéndice C. Resumen en español

comprar; la flexibilidad para el escalado de los recursos a usar dependiendo de
las necesidades; y una mayor tolerancia a fallos, entre otras.

Dados los grandes volúmenes de datos y la carga computacional asociada a
su gestión y procesamiento, la utilización eficiente de estos recursos se antoja
una tarea fundamental y nada sencilla si queremos obtener el mayor rendimiento
posible. Sin dejar de lado los posibles costes ocasionados por el almacenamiento
y movimiento de datos, en el uso de la computación en la nube, es especialmente
importante el aprovechamiento de los recursos de cómputo que se están usan-
do, pues ello determinará, además del tiempo de respuesta para la obtención de
resultados, los costes monetarios a ser sufragados. Por ello es importante el desa-
rrollo de técnicas genéricas de planificación de tareas, que permitan un mejor
aprovechamiento de los recursos computacionales.

Por otra parte, uno de los mayores inconvenientes para la adopción de estas
nuevas tecnoloǵıas es la dificultad que presenta su instalación, configuración y
uso. Por ello es importante facilitar estas tareas mediante el desarrollo de herra-
mientas/aplicaciones (clientes software) que permitan el uso de las herramientas
de bajo nivel desarrolladas, actuando de interfaz entre ambas partes.

La genómica comparativa, relacionada con la biomedicina, no escapa a estas
consideraciones de producción masiva de datos, la alta demanda de procesamiento
y sus costes asociados. Muchas de las aplicaciones en el área hacen uso de datos
en el rango de GB, TB e incluso PB tanto de entrada como de salida. Por otra
parte, las tareas a ejecutar en este dominio son complejas, heterogéneas, con
dependencias entre ellas, usualmente formando flujos de trabajo, lo que las hace
apropiadas para ser usadas como conjunto de pruebas para validar las técnicas
de transferencia de datos, almacenamiento, distribución, balanceo y en general
planificación de tareas en entornos de CAR que se abordan en esta tesis.

Esto hace que la investigación en técnicas que ofrezcan soluciones a los retos
del procesamiento de grandes conjuntos de datos en la nube con aplicaciones
en el dominio de la biomedicina y la bioinformática sean de interés directo en
ciencias de la vida, medicina y en particular, salud ciudadana. Desde el punto de
vista tecnológico, este trabajo aborda retos en transferencia y almacenamiento
de datos en la nube, planificación de tareas, y facilitación del uso de los recursos
disponibles por parte de los usuarios finales.

Se han alcanzado los objetivos que se fijaron al comienzo de este trabajo, los
cuales fueron:

1. Identificación y catalogación de requerimientos para trabajar en entornos
de computación en nube

C.1. Introducción 131

2. Con los clientes, explotación más sencilla de recursos de computación en la
nube por parte de los usuarios.

3. Estudio de las las estrategias de planificación de tareas en entornos de
computación en nube, optimización del tiempo de espera medio en cola de
los trabajos, del tiempo de respuesta medio para las tareas que se vayan a
ejecutar, en el uso de recursos, etc.

4. Habiendo aplicado estas técnicas al dominio de la genómica comparativa
se provee a los investigadores de dicho campo de recomendaciones y herra-
mientas que facilitan su trabajo y a su vez les permite hacer mejor uso de los
recursos computacionales para acelerar la obtención de resultados, hacien-
do un buen provecho de las ventajas que proporcionan las infraestructuras
de computación en la nube. Sin embargo, su aplicación no queda limitada
a este campo como se ha podido ver reflejado con el resto de aplicaciones
evaluadas.

Los resultados cient́ıficos obtenidos son los siguientes:

Estrategia de planificación de tareas con distribución dinámica de carga de
trabajo, y con escalado de los recursos de cómputo activos dependiendo de
la misma.

Estrategia para el almacenamiento, transferencia, y en general gestión de
los datos en la nube.

Conjunto de aplicaciones complejas, heterogéneas, con dependencias entre
ellas (en el campo de la genómica comparativa) que demuestran la efectivi-
dad del resultado mencionado en el punto anterior, y que puede ser válido
como conjunto de pruebas para soluciones equivalentes.

Clientes software que ofrecen una interfaz de usuario amigable para la ex-
plotación de los recursos de la nube haciendo uso de los resultados obtenidos
en los dos puntos anteriores.

A nivel personal, los resultados académicos que he obtenido son:

Experiencia de trabajo con entornos de computación en la nube.

Experiencia de trabajo con aplicaciones que trabajan con grandes conjuntos
de datos y que hacen uso de herramientas de CAR.

Experiencia en estrategias de planificación de tareas.

132 Apéndice C. Resumen en español

Experiencia en el dominio de aplicación de la genómica comparativa y de
la biomedicina.

Experiencia de trabajo con equipos extranjeros en la estancia planificada.

Las contribuciones de este trabajo han sido publicadas en congresos interna-
cionales con programa de revisión por pares [40, 81, 85], y en revistas cient́ıficas
indexadas y en los primeros cuartiles del ISI JCR tal y como requieren las reglas
del programa de doctorado. Adicionalmente, otras contribuciones [82, 83], aun-
que publicadas en congresos de más baja calidad, han ayudado a la consecución
del trabajo y al entrenamiento en la escritura de documentos cient́ıficos.

Las siguientes secciones resumen los caṕıtulos que se han ido tratando a lo
largo de esta tesis empezando por el estado actual de desarrollo encontrado al co-
mienzo de la tesis, seguido de la infraestructura basada en la nube, las estrategias
de planificación de tareas y auto-escalado de recursos, evaluación experimental
de las estrategias en la infraestructura descrita, y acabando con las conclusiones
extráıdas y posibles ĺıneas futuras de trabajo.

C.2. Estado actual de desarrollo

C.2.1. Computación en la nube

Después de varios años tras la aparición del paradigma de la computación en
la nube [64], todav́ıa no hay una definición comúnmente aceptada. Sin embargo,
las diferentes definiciones existentes poseen ciertas similitudes. Todas ellas están
de acuerdo en que la computación en la nube comprende diferentes servicios, in-
cluyendo almacenamiento y capacidad de cómputo proporcionados a través de la
red. Asimismo, es habitualmente aceptado que la computación en la nube no es
una tecnoloǵıa completamente nueva, sino que se trata de una evolución de tecno-
loǵıas existentes como la virtualización que ya estaba presente en la computación
en Grid, la cual estaba pensada para resolver problemas requiriendo grandes ca-
pacidades de cómputo y almacenamiento. Una de las principales caracteŕısticas
que define la computación en la nube es su modelo de pago por uso, el cual per-
mite traducir los gastos en infraestructura en gastos operacionales derivados del
uso puntual de la misma.

Tradicionalmente la computación en la nube ha ofrecido tres modelos de ser-
vicio, los cuales proporcionan diferentes niveles de abstracción a los usuarios.
Dichos modelos podŕıan organizarse en forma de pila, donde el nivel más ba-

C.2. Estado actual de desarrollo 133

jo (IaaS) proporciona las máximas posibilidades de configuración sacrificando la
simplicidad de uso. Mientras que niveles superiores como pueden ser PaaS y SaaS
abstraen en mayor medida al usuario de la complejidad inherente a la compu-
tación en la nube, a costa de perder posibilidades de configuración. A partir de
los tres modelos mencionados, han ido apareciendo sucesivos modelos que pro-
veen niveles de abstracción superiores. Ejemplos de estos modelos son las bases
de datos como servicio y los flujos de trabajo como servicio.

Los entornos de computación en la nube también se pueden clasificar según
los modelos de despliegue en públicos, privados, comunitarios e h́ıbridos. Estos
modelos de despliegue se distinguen por múltiples factores como pueden ser los
usuarios a los que está destinado (público en general, trabajadores de una empre-
sa o grupo de personas pertenecientes a un determinado grupo). Otro factor que
los diferencia es la localización f́ısica del centro de procesamiento de datos, y si
es compartido o no. Como último factor, pero no menos importante, son las ne-
cesidades de los usuarios, los cuales dependiendo de sus requisitos (normalmente
relacionados con cuestiones legales) deciden si usar entornos públicos, privados,
comunitarios o h́ıbridos.

C.2.2. Planificación de tareas

En el ámbito de la computación, el término planificación se refiere a la acción
de decidir cual es el siguiente trabajo en pasar a ejecución y que recursos de
entre los disponibles estará usando el mismo. La entidad encargada de realizar
dicha tarea se denomina algoritmo de planificación. Cada algoritmo se encarga de
optimizar uno o más objetivos, como pueden ser la reducción del tiempo medio
de espera en la cola, o el aumento del volumen de trabajo por unidad de tiempo
que ejecuta el sistema. Si ya es importante disponer de un buen planificador
en entornos de CAR, en el campo de la computación en la nube, es aún más
importante puesto que en este caso estamos pagando por cada unidad de tiempo
que tenemos activo cada nodo del sistema.

Además de la planificación de tareas, en entornos de computación distribuida
como clusters, grids y clouds se requiere de un gestor de recursos. La principal
meta de dicho gestor es asegurar que los usuarios puedan usar entornos distribui-
dos con una dificultad similar a con la que usan máquinas locales. Aunque esta
es la principal meta, los gestores de recursos distribuidos se encargan además de
comprobar el estado los nodos que componen el sistema, de planificar las tareas
que los usuarios env́ıan, y de una vez planificadas asignarlas a recursos de cómpu-
to. Un buen gestor de recursos distribuidos debe tener una serie de propiedades

134 Apéndice C. Resumen en español

como la simplicidad, portabilidad, escalabilidad, configurabilidad, expansibilidad,
robusteza, seguridad y simplicidad de administración.

C.2.3. Flujos de trabajo

La complejidad de los análisis actuales en diversos campos cient́ıficos ha hecho
indispensable la interconexión de módulos más sencillos ejecutados en un deter-
minado orden para llegar al resultado final. La ejecución orquestada de dichos
módulos es lo que se conoce habitualmente como “flujos de trabajo”. El interés
en los flujos de trabajo ha crecido vertiginosamente en los últimos años dado que
representan una forma automática de llevar a cabo estudios complejos.

Los gestores de flujos de trabajo aparecen como una herramienta esencial
para ejecutarlos de manera automática y reproducible, no sólo en ordenadores
convencionales pero también en entornos de computación distribuida. Aparte de
permitir la ejecución de flujos de trabajo, estos gestores también permiten su
definición y el manejo tanto de los datos de entrada aśı como de los datos de
salida (tanto intermedios como finales).

La principal razón de la popularidad de los gestores de flujos de trabajo es el
número de ventajas que ofrece a los usuarios finales. En primer lugar eliminan
la necesidad de ejecutar manualmente un análisis consistente en múltiples pasos.
Otras ventajas de dichos gestores son la tolerancia a fallos, la grabación de la
procedencia de los datos, la definición gráfica de flujos de trabajo y la explora-
ción de resultados. Sin embargo, los gestores de flujos de trabajo poseen ciertas
desventajas como la falta de portabilidad entre diferentes gestores, lo cual limita
la posibilidad de usar indistintamente varios gestores al mismo tiempo; el exceso
de solicitudes en los gestores públicos, que hace que la espera para llevar a cabo
un determinado análisis sea significativa; y la inquietud por la privacidad y segu-
ridad de los datos que son necesarios para el análisis, porque tienen que salir del
entorno controlado del usuario final.

Además de los mencionados gestores de flujo de trabajo, tradicionalmente
han existido aplicaciones con el objetivo de homogeneizar no sólo la ejecución de
flujos de trabajo, sino también la de servicios disponibles en la Web provistos
por diferentes áreas de investigación. Los metadatos de estos servicios (nombre,
parámetros, etc.) comúnmente conocidos como Servicios Web, se almacenan en
repositorios centrales. A partir de esta información, es posible invocarlos, aunque
es necesario que los mismos tengan una interfaz de invocación común, la cual se
ha diseñado e implementado en esta tesis.

C.2. Estado actual de desarrollo 135

C.2.4. Dominios de aplicación

Los dominios de aplicación de las cargas de trabajo reales que han servido
como prueba de concepto para la infraestructura basada en la nube diesñada
son la bioinformática y la biomedicina. Más concretamente, la aplicación elegida
dentro del campo de la bioinformática es la comparación de secuencias biológi-
cas. Los algoritmos existentes para la comparación de secuencias están limitados
en el tamaño de las secuencias de entrada por sus requerimientos de memoria
y necesidades de cómputo. Históricamente estos algoritmos se han clasificado en
algoritmos de alineamiento global y algoritmos de alineamiento local. Los algo-
ritmos globales producen un alineamiento que tiene en cuenta todos los residuos
presentes en las secuencias, mientras que los algoritmos locales determinan un
conjunto de regiones similares entre las dos secuencias. De uno u otro tipo, la
complejidad de dichos algoritmos junto con su mezcla de etapas intensivas en
CPU y operaciones de Entrada/Salida (E/S) hacen que sean un buen caso de uso
para probar mecanismos de planificación en entornos distribuidos.

Por otro lado, en el campo de la biomedicina los estudios de asociación a nivel
de genoma (GWAS) son la forma en que se estudian como afectan las variacio-
nes genómicas a las enfermedades humanas. La idea detrás de estos estudios es
comparar que variaciones ocurren más frecuentemente en personas con una de-
terminada enfermedad comparadas con las variaciones de los individuos sanos.
El tamaño t́ıpico de los datos de entrada (fichero de secuenciación de genoma
completo) es de 100GB, y el tamaño temporal necesario para extraer las varia-
ciones es de 1TB. Además, si consideramos la cantidad de pacientes necesarios
para obtener resultados estad́ısticamente significativos, los millones de variacio-
nes que tiene cada paciente, y que existen enfermedades relacionadas no solo con
una variación, sino también con más de una de ellas, estos estudios representan
un problema computacional complejo con requisitos de cómputo variable, y por
tanto un buen caso de uso para evaluar en entornos de computación en la nube.

C.2.5. Trabajos relacionados

La capacidad inherente de la computación en la nube para el escalado de re-
cursos ha hecho que tanto los proveedores públicos de computación en la nube
como terceras partes hayan desarrollado estrategias de escalado automático. Las
estrategias de los proveedores públicos poseen ciertas similitudes, como la agrupa-
ción de un conjunto de instancias para el cual se definen alarmas de uso de CPU
y memoria que disparan mecanismos de escalado de tamaño. Estas estrategias
suelen ser suficientes para la mayoŕıa de usuarios, pero no lo son para entornos

136 Apéndice C. Resumen en español

de computación cient́ıfica basados en la nube. Por ello, se han llevado a cabo
diversos trabajos que usan por un lado gestores de recursos distribuidos conoci-
dos, y por otro lado implementan estrategias de escalado automático de recursos
para ajustarlos a la demanda. Por lo general, las estrategias mencionadas están
limitadas a ser usadas en una plataforma de computación en la nube y un gestor
de recursos distribuidos determinado.

La planificación y ejecución de flujos de trabajo en infraestructuras de compu-
tación en la nube ha seguido el camino de las estrategias que ya fueron diseñadas
para entornosGrid, pero teniendo en cuanto las propiedades y oportunidades ofre-
cidas por la nube. Aunque hay diversas estrategias, existen aún ciertas cuestiones
abiertas que requieren ser estudiadas. Por ejemplo, la mayoŕıa de las técnicas tra-
bajan con un entorno de computación en la nube simulado (cloudsim), por lo que
no se trata de una infraestructura real donde poder ejecutar los flujos de trabajo
a posteriori. Además, al tratarse de un entorno virtual se simplifica el número
de caracteŕısticas simuladas lo que puede producir diferencias comparado con un
entorno real. Otro aspecto importante que no contemplan algunas estrategias es
las propiedades (CPU, memoria, etc.) de la instancia requeridas por el traba-
jo, dando por hecho una uniformidad probablemente inexistente en las tareas a
ejecutar.

C.3. Infraestructura

C.3.1. OpenStack

OpenStack [69] ha sido elegida como la solución de computación en la nube
dentro de las disponibles y más apropiadas (modelo IaaS) para el contexto de la
computación cient́ıfica. Aparte de ser más apropiadas, estudios previos demues-
tran que dicho modelo reporta un mejor rendimiento en aplicaciones cient́ıficas.
OpenStack es una solución de software libre popular que dispone de soporte de
grandes empresas como IBM. En este trabajo se usa una configuración afinada
de OpenStack en términos de autenticación, cómputo, gestión de datos e infraes-
tructura de red.

C.3.2. Autenticación

El componente de autenticación de OpenStack, llamado Keystone, se encar-
ga de gestionar las autenticaciones de usuario a través de un Servicio Web. De

C.3. Infraestructura 137

forma similar a los grupos de usuario de los sistemas operativos convencionales,
OpenStack tiene el concepto de tenants lo que permite asignar permisos al nivel
de grupo. El componente de autenticación ha sido configurado para trabajar con
un árbol de credenciales de usuario LDAP [31]. El manejo de los datos repre-
sentados en dicho árbol, los cuales son similares al concepto de organizaciones
virtuales de los entornos Grid, se lleva a cabo con la aplicación DirGrid. De este
modo los usuarios tienen un único par usuario-clave que recordar, mapeado con
distintos permisos a los diferentes componentes del sistema. Desde el punto de
vista del administrador del sistema, también se simplifica la gestión teniendo una
localización centralizada para el manejo de credenciales y permisos.

C.3.3. Gestión de datos

OpenStack separa sus sistema de almacenamiento en diferentes servicios:
Glance para las imágenes de instancias, Cinder para los volúmenes/discos vir-
tuales, y Swift para los contenedores de objetos. Glance almacena los metadatos
de las imágenes, Cinder permite asociar volúmenes a instancias en ejecución, y
Swift permite almacenar ficheros no necesariamente asociados a instancias en
ejecución.

Al igual que para la autenticación, OpenStack es configurable con respecto
al sistema de ficheros base a utilizar. En este caso se ha utilizado el sistema de
ficheros distribuido Ceph [97]. Su mecanismo distribuido de resolución de locali-
zación de datos hace que no disponga de un punto único de fallo. Ceph además
implementa una interfaz de programación que permite una conexión directa con
los componentes de almacenamiento de OpenStack.

Uno de los objetivos de esta tesis es permitir la gestión de grandes conjuntos
de datos. Para permitirlo, se ha hecho uso del protocolo GridFTP [3], el cual ha
permitido usar otras tecnoloǵıas de gestión de datos como GO [29]. GridFTP fue
diseñado originalmente para entornos Grid por lo que para ser usado en entornos
de computación en la nube requiere de cierta configuración adicional. El primer
punto a tener en cuenta es la autenticación, la cual se ha llevado a cabo usando
las credenciales almacenadas en el árbol LDAP, y MyProxy [66] y SimpleCA
para generar certificados temporales de autenticación. Una vez configurada la
autenticación, el siguiente paso fue conectar el almacenamiento de objetos de
OpenStack con GridFTP, puesto que este último trabaja con sistemas de ficheros
convencionales. Esta conexión se ha realizado con CloudFuse, un demonio que se
encarga de montar el almacenamiento de objetos del usuario autenticado en el
sistema de ficheros del servidor GridFTP. El último paso necesario para configurar

138 Apéndice C. Resumen en español

el almacenamiento es el registro del servidor GridFTP configurado dentro de
GO para de esta forma aprovechar las ventajas que proporciona GO (como por
ejemplo la parada/reanudación de transferencias).

C.3.4. Cómputo

Nova es el componente de cómputo principal de OpenStack. El entorno de
computación en la nube usado ha sido configurando para trabajar con la tecno-
loǵıa de virtualización KVM1. Otro componente de cómputo de OpenStack es
Glance. Glance se encarga de almacenar los metadatos de las imágenes de instan-
cias, imágenes que son posteriormente utilizadas para añadir nuevas máquinas.
En conjunto, Nova recibe la petición para añadir una nueva máquina con unas ca-
racteŕısticas determinadas, y Glance se encarga de recuperar la imagen o plantilla
que ha pedido el usuario.

TORQUE2 ha sido el gestor de recursos distribuidos elegido, el cual es capaz
de gestionar grupos de máquinas con miles de nodos y trabajos, y tareas requi-
riendo una gran cantidad de recursos. Además de los mecanismos de planificación
que trae por defecto, TORQUE permite su configuración para usar planificadores
externos como Maui3, el cual ha sido usado en esta tesis. Sin embargo, TORQUE
fue diseñado sin tener en cuenta las propiedades de los entornos de computación
en la nube, por lo que es necesario el uso de soluciones externas para el escalado
automático de los recursos de cómputo.

Otro objetivo importante fijado al comienzo de este trabajo es la simplificación
del uso de este tipo de entornos por parte de usuarios con no necesariamente el
conocimiento necesario de los entornos de computación en la nube. Para satisfacer
este objetivo en primer lugar se diseñó una interfaz de ejecución común REST,
la cual es independiente de la aplicación final. De esta manera clientes software
existentes como jORCA [61] o mORCA [25] pueden hacer uso de estas aplicaciones
a través de dicha interfaz abstrayendo a los usuarios de la complejidad inherente
a la infraestructura.

Frecuentemente, en diversos dominios de aplicación es necesaria la intercone-
xión de diferentes aplicaciones para llevar a cabo un análisis formando lo que se
conoce como flujos de trabajo. Existen multitud de gestores de flujos de trabajo
siendo Galaxy [1] uno de los más representativos al tratarse de una herramienta
web que permite la definición y ejecución de flujos de trabajo de manera reprodu-

1http://www.linux-kvm.org/
2http://www.adaptivecomputing.com/products/open-source/torque/
3http://www.adaptivecomputing.com/products/open-source/maui/

http://www.linux-kvm.org/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/maui/

C.3. Infraestructura 139

cible. Se ha configurado Galaxy para que se comunique con el gestor de recursos
TORQUE, de tal manera que se permita la sencilla explotación de los recursos
disponibles a través de interfaces gráficas. El despliegue de Galaxy ha sido auto-
matizado, permitiendo de este modo iniciar y detener el entorno de computación
en la nube en el momento que se requiera.

C.3.5. Infrastructura de red

El componente encargado de la gestión de la infraestructura de red en OpenS-
tack se denomina Neutron. Este componente se encarga de asignar automática-
mente direcciones IP internas a las máquinas, y permite a su vez la asignación por
parte del usuario de IPs públicas accesibles desde el exterior. Además, permite
su configuración con diversos plug-ins para conectarse con los mecanismos de red
de Linux o con redes definidas a nivel software.

En nuestro caso, el componente Neutron ha sido configurado para permitir
controlar redes virtuales a usuarios sin privilegios administrativos autorizados
por un administrador. El sub-componente que los usuarios puede administrar es
la red interna a nivel de proyecto, la cual conecta las máquinas de un proyecto de-
terminado. Las redes externas al proyecto, como puede ser Internet, solo pueden
ser gestionadas por un administrador. Asimismo los usuarios con privilegios ad-
ministrativos pueden añadir enrutadores virtuales para conectar diferentes redes
de distintos proyectos o bien para proporcionarles acceso a redes externas.

C.3.6. Horizon

OpenStack proporciona una consola central de gestión de los diferentes compo-
nentes (almacenamiento, cómputo, etc.). Dicha consola central llamada Horizon
se trata de un portal web en el cual se pueden llevar a cabo tareas como lan-
zar y terminar instancias, enlazar volúmenes de almacenamiento con máquinas
en ejecución, asignar IPs públicas, etc. Al mismo tiempo, esta funcionalidad que
ofrece el portal comentado está disponible a través de un interfaz de programación
permitiendo el acceso programático a usuarios avanzados.

C.3.7. Interconexión entre componentes

Tradicionalmente el despliegue de aplicaciones Web ha seguido un esquema
con dos servidores: un servidor web y un servidor de bases de datos. Sin embargo,
en entornos de computación de alto rendimiento como el presentado en esta tesis,

140 Apéndice C. Resumen en español

es necesario hacer un despliegue más sofisticado que explote las caracteŕısticas
de la computación en la nube. Para identificar las necesidades de los distintos
componentes los hemos categorizado como śıncronos y aśıncronos. Los servicios
śıncronos son aquellos para los cuales el usuario espera un tiempo de respuesta
pequeño como por ejemplo el interfaz web de Galaxy. Los servicios aśıncronos
son aquellos para los cuales no se espera un tiempo de respuesta corto como
por ejemplo la transferencia de grandes ficheros de datos. El resultado es un
conjunto de máquinas interconectadas que se auto-escalan priorizando primero
los servicios śıncronos y después los aśıncronos. La configuración automática de
los componentes y su interconexión se ha definido en plantillas OpenStack Heat.

C.4. Planificación y auto-escalado

C.4.1. Planificación de tareas

Los planificadores por defecto incluidos en TORQUE (p.ej FIFO y Fair-share)
no son suficientemente eficientes para grandes infraestructuras, en primer lugar
por su rendimiento y en segundo lugar por las limitadas posibilidades de configu-
ración que ofrecen. Por ello, es interesante el uso de planificadores como Maui o
Moab4, los cuales son capaces de comunicarse con TORQUE. Estos dos últimos,
son planificadores basados en prioridad que permiten definir la prioridad de los
trabajos atendiendo a una serie de propiedades de los trabajos. En nuestro caso
se han tenido en cuenta el tiempo de ejecución solicitado al enviar el trabajo, el
tiempo que lleva esperando en la cola, un ratio de estos dos últimos factores y
el número de recursos que pide el trabajo. Más concretamente se han priorizado
trabajos cortos, seguidos de los que más tiempo llevan en la cola, y por último te-
niendo en cuenta los que solicitan menos recursos para de esta forma aprovechar
mejor los recursos libres del sistema. En la selección de trabajos se ha activado
una optimización que permite ejecutar trabajos menos prioritarios que pueden
ser ejecutados en periodos de tiempo que los nodos están ociosos y no pueden ser
usados por trabajos más prioritarios por sus requerimientos en cuanto a recursos
se refiere.

Una vez se ha decidido que trabajo es el siguiente a ejecutar, es necesario
decidir en qué nodo(s) se va a ejecutar. En este trabajo se han priorizado los
nodos a tres niveles. El primer nivel elige nodos estáticos antes que dinámicos, el
segundo da prioridad a los nodos más usados y el tercero prioriza los nodos con
menos recursos. El objetivo es permitir la eliminación de las máquinas dinámicas

4http://www.adaptivecomputing.com/products/hpc-products/moab-hpc-basic-edition/

http://www.adaptivecomputing.com/products/hpc-products/moab-hpc-basic-edition/

C.5. Evaluación experimental 141

con el mayor número de recursos lo antes posible, puesto que estas últimas suelen
ser las más caras en entornos de computación en la nube.

C.4.2. Auto-escalado

Se ha desarrollado una estrategia de escalado automático de recursos basa-
da en Dynamic TORQUE [104]. Esta estrategia, implementada en el lenguaje
Python, permite configurar una serie de parámetros como son el mı́nimo núme-
ro fijo de instancias del cluster ; el número máximo dinámico de máquinas que
se pueden añadir; el tiempo máximo que una máquina puede estar sin ejecutar
trabajos antes de ser apagada; la lista de configuraciones en cuanto a recursos
se refiere para las máquinas a instanciar; y el tiempo que toma iniciar cada uno
de estos tipos de instancias para decidir si compensa o no añadir una máquina
nueva dependiendo de la duración del trabajo.

La estrategia de escalado pregunta a TORQUE por las tareas que están espe-
rando ser ejecutadas y en caso de que su duración sea mayor al tiempo que toma
iniciar una nueva máquina se añade. En el caso de la eliminación de máquinas,
se eliminan máquinas que hayan sobrepasado un umbral de tiempo sin ejecu-
tar trabajos, teniendo en cuenta el periodo de facturación del proveedor para
aprovecharlas al máximo.

La estrategia de auto escalado se ha desplegado al mismo nodo que los ser-
vidores de TORQUE y del sistema de ficheros NFS, mientras que el resto de
máquinas solamente ejecutan los clientes NFS y TORQUE para el acceso a los
datos y recibir trabajos respectivamente.

C.5. Evaluación experimental

Otro punto abordado que ha sido abordado es la evaluación experimental de
la infraestructura basada en la nube diseñada usando diferentes flujos de tra-
bajos sintéticos y reales. Los sintéticos se tratan de flujos de trabajo usados en
trabajos relacionados mientras que los tres casos reales se enmarcan dentro de
los campos de la bioinformática y biomedicina. Los dos primeros casos reales son
aplicaciones para el cálculo de comparaciones de parejas y múltiple de secuencias
de nucleótidos (GECKO [84] y GECKO en paralelo [85]), las cuales representan
una contribución importante de este trabajo en el dominio de aplicación de la
bioinformática. Y el tercer caso real se corresponde con una aplicación para llevar
a cabo la conversión de datos en bruto de genotipado de pacientes a un formato

142 Apéndice C. Resumen en español

de representación estándar, la cual es fruto de la colaboración con expertos en el
dominio de la biomedicina.

Las métricas evaluadas han sido el tiempo medio de espera de un trabajo en
la cola de ejecución, el tiempo entre que el primer trabajo entra a ejecución en el
sistema hasta que el último finaliza su ejecución (makespan), el número de traba-
jos por unidad de tiempo, y el porcentaje de utilización de recursos. La selección
de flujos de trabajo que se ha hecho pretende mostrar las ventajas y limitaciones
de la estrategia de planificación diseñada comparada con la planificación FIFO.

Los resultados muestran que en el caso del tiempo de espera en cola se ha
reducido considerablemente en la mayoŕıa de los casos tal y como era el objetivo.
El makespan se ha reducido en algunos casos y en otros ha aumentado debido
a que el planificador diseñado prioriza los trabajos más pequeños, los cuales son
beneficiosos al final de la ejecución para balancear la carga de los nodos. Para
las métricas de número de trabajos por unidad de tiempo, y la de utilización
de recursos ocurre un escenario similar al del makespan puesto que se tratan de
métricas proporcionales a la misma.

Un segundo tipo de evaluación se ha llevado a cabo para evaluar el funciona-
miento de la estrategia de escalado de recursos. Esta evaluación ha sido efectuada
usando tres flujos de trabajo, los dos primeros para comparación múltiple de ge-
nomas (en secuencial y en paralelo) ambos implementados en esta tesis, y el
ultimo para la extracción de variaciones genéticas en un número determinado
de pacientes. En el primer flujo de trabajo el tiempo de ejecución se ha reducido
desde 16,5 horas a 2,33 usando hasta 10 máquinas. En el segundo, donde el grupo
de máquinas fue escalado previamente, se han obtenido valores de aceleración y
eficiencia razonables, sobre todo para al conjunto de datos que genera un mayor
número de tareas. En el tercero y último flujo de trabajo el tiempo se ha reducido
de 4970 segundos que ya reportaba la publicación original en una infraestructura
equivalente a 1756 segundos en el grupo de máquinas escalado automáticamente.

C.5.1. Factores que afectan la planificación y el auto-escalado

Adicionalmente, se ha llevado a cabo un estudio de los principales factores
que afectan el funcionamiento de las estrategias de planificación y de escalado
automático de recursos diseñadas. Estos factores son la distribución de la duración
de las tareas que componen los flujos de trabajo, los errores en las estimaciones de
la duración de las tareas, y los retardos según el tipo de configuración de máquina
en el entorno de computación en la nube de este trabajo.

La distribución de la duración de las tareas, aśı como en que momento son

C.6. Conclusiones y trabajo futuro 143

enviadas a ejecutar, pueden determinar en primer lugar el tiempo promedio de
espera en la cola,como es el caso del planificador FIFO para cargas de trabajo
con tareas de larga duración al comienzo. Además, si el número de tareas no esta
balanceado al número disponible de nodos, el makespan y el resto de métricas
dependientes de esta última pueden verse afectadas.

Las imperfecciones cometidas al estimar la duración de las tareas afectan las
decisiones del planificador puesto que basa las prioridades de las tareas en ese
valor entre otros. Seŕıa de esperar que mientras peor sean estas estimaciones peo-
res decisiones tomará el planificador. Sin embargo, sorprendentemente en algunas
cargas de trabajo este no ha sido el caso. Por ejemplo cuando la carga de tra-
bajo tiene una distribución de duración de tareas parecida, estas imperfecciones
pueden ayudar a diferenciar al planificador a elegir más fácilmente las tareas más
cortas al comienzo para reducir el tiempo de espera en cola. Para el caso del
makespan, el tiempo extra añadido a tareas cortas hace que su tiempo pueda
llegar a ser similar al de tareas de duración media y por tanto se postergue su
ejecución tras ellas desequilibrando pues la carga de los nodos. En otros casos, el
tiempo extra añadido a las tareas cortas fue tan grande que hizo que se convir-
tiesen en tareas de larga duración y por tanto tuviesen más baja prioridad que
los trabajos con duración real más larga. Este hecho produce en consecuencia un
mejor balanceo con estas tareas al final de la ejecución, puesto que realmente su
duración es pequeña a pesar de la estimación.

Como último factor principal afectando las decisiones de planificación y esca-
lado automático tenemos el tiempo de aprovisionamiento de las diferentes con-
figuraciones de máquinas. Puesto que la decisión de cuando añadir una nueva
máquina depende de si el tiempo de ejecución de las tareas en cola supera o
no este tiempo de aprovisionamiento, se ha llevado a cabo un estudio de cuánto
tiempo lleva comenzar las distintas configuraciones de máquinas. Los valores ob-
tenidos en este estudio han permitido reducir el número de llamadas a OpenStack
para el comienzo de nuevas máquinas cuando realmente la tarea es corta.

C.6. Conclusiones y trabajo futuro

Actualmente multitud de dominios de aplicación se enfrentan al problema de
analizar grandes conjuntos de datos. La CAR aparece como una alternativa su-
gerente para analizarlos, sin embargo las estrategias de CAR requieren del uso de
infraestructuras caras que suelen ser compartidas lo que limita el ritmo de obten-
ción de resultados. La computación en la nube se ha convertido en una posible
alternativa para el eliminar este problema, sin embargo al no estar diseñada para

144 Apéndice C. Resumen en español

ello requiere de cierta investigación en el tema.

Las contribuciones de esta tesis han sido en primer lugar la selección del
modelo de computación en la nube más adecuado para entornos de CAR. En
segundo lugar, se han identificado las principales tareas a realizar en entornos
de este tipo (como la gestión de datos, planificación de tareas, etc.). Para llevar
a cabo dichas tareas, se han usado o bien software disponible para ello o se ha
desarrollado software espećıfico. En tercer lugar, se ha diseñado una estrategia
de planificación basada en prioridades que optimiza una serie de criterios de
rendimiento. En cuarto lugar, se ha conectado la infraestructura basada en la
nube con clientes de explotación de aplicaciones con el objetivo de facilitar el
trabajo a los usuarios finales. En último lugar, la evaluación experimental del
sistema demuestra el buen funcionamiento del mismo.

En cuanto a autenticación de usuarios se refiere, el uso de mecanismos estable-
cidos como el árbol de credenciales LDAP ha permitido proporcionar seguridad
y privacidad en diferentes partes del sistema, todo ello facilitando las tareas del
administrador al tener una localización central de gestión de credenciales y per-
misos. En el tema cómputo, se contribuye proporcionando a TORQUE de un
mecanismo de escalado automático de recursos cuando es usado en la nube, eli-
minando aśı la necesidad de mantener un gran conjunto de máquinas a lo largo
del tiempo. Este escalado automático mejora el estado del arte porque tiene en
cuenta el tipo de máquina necesaria según los recursos que pide el trabajo, y
además a la hora de eliminar máquinas lo hace cuando se alcanza su periodo
de facturación y no inmediatamente cuando se alcanza su tiempo máximo sin
ejecutar trabajos.

Es importante destacar la flexibilidad de la estrategia de escalado, a pesar
de haberse probado solo con OpenStack y TORQUE, pensamos que la forma
en que ha sido estructurada permitirá el uso de otras soluciones con relativa
facilidad. Otro punto a favor de esta estrategia es que al no estar incluida dentro
de TORQUE, en primer lugar hace que sea transparente para los usuarios finales
y no añade ninguna sobrecarga a TORQUE; y en segundo lugar hace que si
la estrategia de escalado deja de funcionar el cluster gestionado por TORQUE
podŕıa seguir ejecutando trabajos sin ningún tipo de problemas.

El planificador basado en prioridades ha sido configurado para optimizar el
tiempo de espera en cola, el makespan, el número de trabajos ejecutados por
unidad de tiempo y la eficiencia de uso de los recursos (en el orden mencionado).
Para la elección de nodos dónde ejecutar los trabajos, siempre se prioriza los nodos
estáticos sobre los dinámicos, y dentro de los dinámicos los de menos recursos
para aśı reducir el coste que puede conllevar en entornos de computación en la

C.6. Conclusiones y trabajo futuro 145

nube.

Los flujos de trabajo usados para evaluar el sistema representan un conjunto
de tareas suficientemente heterogéneo. Cabe destacar, que las aplicaciones para
comparación por parejas y múltiple de secuencias de nucleótidos desarrolladas en
este trabajo (GECKO, GECKO en paralelo) no solo poseen patrones de ejecución
similares a las cargas de trabajo simuladas usadas habitualmente para evaluar
este tipo de sistemas, sino que también representan una importante contribución
al campo de la bioinformática al estar permitiendo estudios en dicho campo
que hasta ahora no eran posibles por las limitaciones del software existente en
cuanto a tiempo de ejecución y longitud máxima de las secuencias a comparar. En
general, sos resultados de la evaluación experimental muestran que las métricas
de rendimiento han sido optimizadas, aunque al haber dependencias entre ellas al
final es un compromiso cuál optimizar con más ah́ınco. Sin embargo, una simple
re-configuración de los parámetros para el cálculo de la prioridad de los trabajos
puede permitir optimizar las métricas en un orden diferente al mencionado o
incluso añadir nuevos criterios.

Resumiendo, esta tesis ha provisto de una infraestructura de CAR basada en
la nube presentando soluciones para tareas usuales como la gestión de datos, la
planificación de tareas y el escalado automático de recursos. Sin embargo, hemos
identificado que aún hay trabajo por hacer en relación al uso de la nube como
infraestructura de CAR y que podŕıa ser interesantes de abordar en trabajos
futuros. Ejemplos de estos trabajos son la mejora de las decisiones de escalado
de recursos, pruebas con otros gestores de recursos distribuidos como Slurm y
otros planificadores distintos a Maui, pruebas con más cargas de trabajo para
reforzar la evaluación experimental, y el uso de entornos de computación en la
nube diferentes a OpenStack como Amazon u OpenNebula.

Para finalizar comentar que todos los objetivos de investigación y académicos
establecidos en el plan de investigación han sido cumplidos.

Bibliography

[1] Enis Afgan, Dannon Baker, Marius van den Beek, Daniel Blankenberg,
Dave Bouvier, Martin Čech, John Chilton, Dave Clements, Nate Coraor,
Carl Eberhard, et al. The Galaxy platform for accessible, reproducible and
collaborative biomedical analyses: 2016 update. Nucleic acids research,
page gkw343, 2016. (Cited on pages 22, 51 and 138)

[2] Ehab Nabiel Alkhanak, Sai Peck Lee, and Saif Ur Rehman Khan. Cost-
aware challenges for workflow scheduling approaches in cloud computing
environments: Taxonomy and opportunities. Future Generation Computer
Systems, 2015. (Cited on page 34)

[3] William Allcock, John Bresnahan, Rajkumar Kettimuthu, Michael Link,
Catalin Dumitrescu, Ioan Raicu, and Ian Foster. The Globus striped
GridFTP framework and server. In Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, page 54. IEEE Computer Society, 2005.
(Cited on pages 41, 61 and 137)

[4] Bryce Allen, John Bresnahan, Lisa Childers, Ian Foster, Gopi Kandaswamy,
Raj Kettimuthu, Jack Kordas, Mike Link, Stuart Martin, Karl Pickett,
et al. Globus online: radical simplification of data movement via SaaS.
Preprint CI-PP-5-0611, Computation Institute, The University of Chicago,
2011. (Cited on page 43)

[5] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and
David J Lipman. Basic local alignment search tool. Journal of molecular
biology, 215(3):403–410, 1990. (Cited on page 24)

[6] Amazon Web Services, Inc. Amazon Elastic Compute Cloud. http:

//aws.amazon.com/es/documentation/ec2/, 2015. [Online; accessed 12-
November-2015]. (Cited on page 29)

147

http://aws.amazon.com/es/documentation/ec2/
http://aws.amazon.com/es/documentation/ec2/

148 BIBLIOGRAPHY

[7] Daniel P Ames, Nigel WT Quinn, Andrea E Rizzoli, et al. Intelligent
Workflow Systems and Provenance-Aware Software. (Cited on page 20)

[8] Armbrust, Michael and Fox, Armando and Gri�th, Rean and Joseph, An-
thony D and Katz, Randy and Konwinski, Andy and Lee, Gunho and
Patterson, David and Rabkin, Ariel and Stoica, Ion and others. A view of
cloud computing. Communications of the ACM. (Cited on page 2)

[9] Patrick Armstrong, Ashok Agarwal, A Bishop, Andre Charbonneau, R Des-
marais, K Fransham, N Hill, Ian Gable, S Gaudet, S Goliath, et al. Cloud
Scheduler: a resource manager for distributed compute clouds. arXiv
preprint arXiv:1007.0050, 2010. (Cited on page 30)

[10] GB Berriman, JC Good, AC Laity, A Bergou, J Jacob, DS Katz, E Deel-
man, C Kesselman, G Singh, M-H Su, et al. Montage: a grid enabled image
mosaic service for the national virtual observatory. In Astronomical Data
Analysis Software and Systems (ADASS) XIII, volume 314, page 593, 2004.
(Cited on page 76)

[11] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, To-
bias Kötter, Thorsten Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel, and
Bernd Wiswedel. KNIME: The Konstanz Information Miner. In Studies in
Classification, Data Analysis, and Knowledge Organization (GfKL 2007).
Springer, 2007. (Cited on page 22)

[12] Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang Mehta, Mei-Hui
Su, and Karan Vahi. Characterization of scientific workflows. In Workflows
in Support of Large-Scale Science, 2008. WORKS 2008. Third Workshop
on, pages 1–10. IEEE, 2008. (Cited on page 100)

[13] Daniel Blankenberg, Gregory Von Kuster, Nathaniel Coraor, Guruprasad
Ananda, Ross Lazarus, Mary Mangan, Anton Nekrutenko, and James
Taylor. Galaxy: A Web-Based Genome Analysis Tool for Experimental-
ists. Current protocols in molecular biology, pages 19–10, 2010. (Cited on
page 100)

[14] Jim Blythe, Sonal Jain, Ewa Deelman, Yolanda Gil, Karan Vahi, Anirban
Mandal, and Ken Kennedy. Task scheduling strategies for workflow-based
applications in grids. In Cluster Computing and the Grid, 2005. CCGrid
2005. IEEE International Symposium on, volume 2, pages 759–767. IEEE,
2005. (Cited on page 14)

[15] T. Brisco. DNS Support for Load Balancing. RFC 1794 (Informational),
April 1995. (Cited on page 61)

149

[16] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose,
and Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning
algorithms. Software: Practice and Experience, 41(1):23–50, 2011. (Cited
on page 34)

[17] Thomas L Casavant and Jon G Kuhl. A taxonomy of scheduling in
general-purpose distributed computing systems. Software Engineering,
IEEE Transactions on, 14(2):141–154, 1988. (Cited on pages xiii, 124
and 125)

[18] CERN. The Large Hadron Collider. http://home.web.cern.ch/topics/
large-hadron-collider, 2015. [Online; accessed 12-November-2015].
(Cited on page 30)

[19] Confluence, Atlassian. Workflow Generator. https://confluence.

pegasus.isi.edu/display/pegasus/WorkflowGenerator, 2015. [Online;
accessed 12-November-2015]. (Cited on page 75)

[20] Daniel Cukier. DevOps patterns to scale web applications using cloud
services. In Proceedings of the 2013 companion publication for conference
on Systems, programming, & applications: software for humanity, pages
143–152. ACM, 2013. (Cited on page 58)

[21] Rafael Ferreira Da Silva, Weiwei Chen, Gideon Juve, Karan Vahi, and
Ewa Deelman. Community resources for enabling research in distributed
scientific workflows. In e-Science (e-Science), 2014 IEEE 10th International
Conference on, volume 1, pages 177–184. IEEE, 2014. (Cited on page 75)

[22] Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor. Work-
flows and e-Science: An overview of workflow system features and capabil-
ities. Future Generation Computer Systems, 25(5):528–540, 2009. (Cited
on page 19)

[23] Ewa Deelman, Carl Kesselman, Gaurang Mehta, Leila Meshkat, Laura
Pearlman, Kent Blackburn, Phil Ehrens, Albert Lazzarini, Roy Williams,
and Scott Koranda. Griphyn and ligo, building a virtual data grid for
gravitational wave scientists. In High Performance Distributed Computing,
2002. HPDC-11 2002. Proceedings. 11th IEEE International Symposium
on, pages 225–234. IEEE, 2002. (Cited on page 76)

[24] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil,
Carl Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John

http://home.web.cern.ch/topics/large-hadron-collider
http://home.web.cern.ch/topics/large-hadron-collider
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

150 BIBLIOGRAPHY

Good, Anastasia Laity, Joseph C. Jacob, and Daniel S. Katz. Pegasus:
A framework for mapping complex scientific workflows onto distributed
systems. Scientific Programming, 13(3):219–237, 2005. (Cited on page 100)

[25] Sergio Dı́az Del Pino, Tor Johan Mikael Karlsson, Juan Falgueras Cano,
and Oswaldo Trelles. Mobile Access to On-line Analytic Bioinformatics
Tools. In International Conference on Bioinformatics and Biomedical En-
gineering, pages 555–565. Springer, 2015. (Cited on pages 23 and 138)

[26] Ricardo Graciani Diaz, Adria Casajus Ramo, Ana Carmona Agüero,
Thomas Fifield, and Martin Sevior. Belle-DIRAC setup for using Ama-
zon elastic compute cloud. Journal of Grid Computing, 9(1):65–79, 2011.
(Cited on page 29)

[27] Yiqiu Fang, Fei Wang, and Junwei Ge. A task scheduling algorithm based
on load balancing in cloud computing. In Web Information Systems and
Mining, pages 271–277. Springer, 2010. (Cited on pages 19, 34 and 36)

[28] Keith Flanagan, Sirintra Nakjang, Jennifer Hallinan, Colin Harwood,
Robert P Hirt, Matthew R Pocock, and Anil Wipat. Microbase 2.0: A
generic framework for computationally intensive bioinformatics workflows
in the cloud. Journal of integrative bioinformatics, 9(2):212, 2012. (Cited
on page 20)

[29] Ian Foster. Globus Online: Accelerating and democratizing science through
cloud-based services. IEEE Internet Computing, 15(3):70, 2011. (Cited on
pages 43 and 137)

[30] Ian Foster and Carl Kesselman. The globus toolkit. The grid: blueprint for
a new computing infrastructure, pages 259–278, 1999. (Cited on page 8)

[31] Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a New Com-
puting Infrastructure. Elsevier, San Francisco, December 2003. (Cited on
pages 40 and 137)

[32] Ian Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of the Grid:
Enabling Scalbale Virtual Organizations. International Journal of Super-
computing Applications, 15(3), 2001. (Cited on page 40)

[33] A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer (ssl) Pro-
tocol Version 3.0. Internet RFC 6101, August 2011. (Cited on page 41)

[34] FU, Ming and ZHANG, Wei. Open source J2EE-based Workflow Engine
JBPM Design and Implementation [J]. Computing Technology and Au-
tomation, 4:028, 2008. (Cited on page 52)

151

[35] Wolfgang Gentzsch. Sun grid engine: Towards creating a compute
power grid. In Cluster Computing and the Grid, 2001. Proceedings. First
IEEE/ACM International Symposium on, pages 35–36. IEEE, 2001. (Cited
on page 31)

[36] Spyridon Gogouvitis, Kleopatra Konstanteli, Stefan Waldschmidt, George
Kousiouris, Gregory Katsaros, Andreas Menychtas, Dimosthenis Kyriazis,
and Theodora Varvarigou. Workflow management for soft real-time interac-
tive applications in virtualized environments. Future generation computer
systems, 28(1):193–209, 2012. (Cited on page 19)

[37] Robert Graves, Thomas H Jordan, Scott Callaghan, Ewa Deelman, Edward
Field, Gideon Juve, Carl Kesselman, Philip Maechling, Gaurang Mehta,
Kevin Milner, et al. Cybershake: A physics-based seismic hazard model for
southern california. Pure and Applied Geophysics, 168(3-4):367–381, 2011.
(Cited on page 76)

[38] Arpan Gupta, Paolo Faraboschi, Filippo Gioachin, Laxmikant V Kale,
Richard Kaufmann, Bu-Sung Lee, Victor March, Dejan Milojicic, and
Chun Hui Suen. Evaluating and Improving the Performance and Scheduling
of HPC applications in Cloud. 2014. (Cited on pages 34 and 36)

[39] S. Hanks, T. Li, D. Farinacci, and P. Traina. Generic Routing Encapsulation
(GRE) (RFC 1701), October 1994. (Cited on page 55)

[40] Paul Heinzlreiter, James R. Perkins, Óscar Torreño Tirado, Tor Jo-
han Mikael Karlsson, Juan Antonio Ranea, Andreas Mitterecker, Miguel
Blanca, and Oswaldo Trelles. A Cloud-based GWAS Analysis Pipeline
for Clinical Researchers. In Markus Helfert, Frédéric Desprez, Donald
Ferguson, Frank Leymann, and Vı́ctor Méndez Muñoz, editors, CLOSER
2014 - Proceedings of the 4th International Conference on Cloud Computing
and Services Science, Barcelona, Spain, April 3-5, 2014., pages 387–394.
SciTePress, 2014. (Cited on pages 5, 96 and 132)

[41] Robert L Henderson. Job scheduling under the portable batch system.
In Workshop on Job Scheduling Strategies for Parallel Processing, pages
279–294. Springer, 1995. (Cited on page 48)

[42] Hiden, Hugo and Woodman, Simon and Watson, Paul and Cala, Jacek.
Developing cloud applications using the e-science central platform. Phil.
Trans. R. Soc. A, 371(1983):20120085, 2013. (Cited on page 52)

152 BIBLIOGRAPHY

[43] Philipp Hoenisch, Stefan Schulte, and Schahram Dustdar. Workflow
scheduling and resource allocation for cloud-based execution of elastic pro-
cesses. In Service-Oriented Computing and Applications (SOCA), 2013
IEEE 6th International Conference on, pages 1–8. IEEE, 2013. (Cited on
pages 34 and 36)

[44] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical prediction
models for adaptive resource provisioning in the cloud. Future Generation
Computer Systems, 28(1):155–162, 2012. (Cited on page 106)

[45] David Jackson, Quinn Snell, and Mark Clement. Core algorithms of the
maui scheduler. In Workshop on Job Scheduling Strategies for Parallel
Processing, pages 87–102. Springer, 2001. (Cited on page 67)

[46] Jiahui Jin, Junzhou Luo, Aibo Song, Fang Dong, and Runqun Xiong. Bar:
An e�cient data locality driven task scheduling algorithm for cloud comput-
ing. In Proceedings of the 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, pages 295–304. IEEE Computer
Society, 2011. (Cited on pages 34 and 36)

[47] Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, Bruce Berri-
man, Benjamin P Berman, and Phil Maechling. Data sharing options for
scientific workflows on amazon ec2. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–9. IEEE Computer Society, 2010. (Cited on
page 100)

[48] J. Karlsson and O. Trelles. MAPI: a software framework for distributed
biomedical applications. Journal of Biomedical Semantics, 4(4), 2013.
(Cited on page 22)

[49] Johan Karlsson, Oscar Torreno, Daniel Ramet, Günter Klambauer, Miriam
Cano, and Oswaldo Trelles. Enabling large-scale bioinformatics data anal-
ysis with cloud computing. In Parallel and Distributed Processing with
Applications (ISPA), 2012 IEEE 10th International Symposium On, pages
640–645. IEEE, 2012. (Cited on page 38)

[50] W James Kent. BLAT—the BLAST-like alignment tool. Genome research,
12(4):656–664, 2002. (Cited on page 24)

[51] J.M. Korn, F.G. Kuruvilla, S.A. McCarroll, A. Wysoker, J. Nemesh,
S. Cawley, E. Hubbell, J. Veitch, P.J Collins, K. Darvishi, C. Lee, M.M.
Nizzari, S.B. Gabriel, S. Purcell, M.J. Daly, and D. Altshuler. Integrated

153

genotype calling and association analysis of SNPs, common copy number
polymorphisms and rare CNVs. Nature Genetics, 10(40):1253–1260, Octo-
ber 2008. (Cited on page 83)

[52] Michael T Krieger, Oscar Torreno, Oswaldo Trelles, and Dieter Kran-
zlmüller. Building an open source cloud environment with auto-scaling
resources for executing bioinformatics and biomedical workflows. Future
Generation Computer Systems, 2016. (Cited on page 5)

[53] Peter Lawrence. Workflow handbook 1997. John Wiley & Sons, Inc., 1997.
(Cited on page 19)

[54] Young Choon Lee, Hyuck Han, Albert Y Zomaya, and Mazin Yousif.
Resource-e�cient workflow scheduling in clouds. Knowledge-Based Sys-
tems, 80:153–162, 2015. (Cited on page 75)

[55] Song Li, Yangfan Zhou, Lei Jiao, Xinya Yan, Xin Wang, and Michael R Lyu.
Delay-aware cost optimization for dynamic resource provisioning in hybrid
clouds. In Web Services (ICWS), 2014 IEEE International Conference on,
pages 169–176. IEEE, 2014. (Cited on page 106)

[56] David J Lipman and William R Pearson. Rapid and sensitive protein sim-
ilarity searches. Science, 227(4693):1435–1441, 1985. (Cited on page 24)

[57] Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski. Cost-
and deadline-constrained provisioning for scientific workflow ensembles in
IaaS clouds. In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, page 22. IEEE
Computer Society Press, 2012. (Cited on pages 35 and 36)

[58] Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski. Algo-
rithms for cost-and deadline-constrained provisioning for scientific workflow
ensembles in iaas clouds. Future Generation Computer Systems, 48:1–18,
2015. (Cited on pages 19, 75, 99, 100 and 106)

[59] Ming Mao and Marty Humphrey. Auto-scaling to minimize cost and meet
application deadlines in cloud workflows. In Proceedings of 2011 Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, page 49. ACM, 2011. (Cited on page 14)

[60] Ming Mao and Marty Humphrey. A performance study on the vm startup
time in the cloud. In Cloud Computing (CLOUD), 2012 IEEE 5th Inter-
national Conference on, pages 423–430. IEEE, 2012. (Cited on page 106)

154 BIBLIOGRAPHY

[61] Victoria Mart́ın-Requena, Javier Ŕıos, Maximiliano Garćıa, Sergio
Ramı́rez, and Oswaldo Trelles. jORCA: easily integrating bioinformatics
web services. Bioinformatics, 26(4):553–559, 2010. (Cited on pages 22
and 138)

[62] Vivien Marx. Biology: The big challenges of big data. Nature,
498(7453):255–260, 2013. (Cited on page 1)

[63] Massachusetts Institute of Technology. StarCluster. http://star.mit.

edu/cluster/, 2015. [Online; accessed 12-November-2015]. (Cited on
page 31)

[64] Peter Mell and Tim Grance. The NIST definition of cloud computing. 2011.
(Cited on pages 8, 9 and 132)

[65] Saul B Needleman and Christian D Wunsch. A general method applicable
to the search for similarities in the amino acid sequence of two proteins.
Journal of molecular biology, 48(3):443–453, 1970. (Cited on page 24)

[66] Jason Novotny, Steven Tuecke, and Von Welch. An online credential repos-
itory for the grid: MyProxy. In High Performance Distributed Computing,
2001. Proceedings. 10th IEEE International Symposium on, pages 104–111.
IEEE, 2001. (Cited on pages 44 and 137)

[67] Aisling O’Driscoll, Jurate Daugelaite, and Roy D. Sleator. ‘big data’,
hadoop and cloud computing in genomics. Journal of Biomedical Infor-
matics, 46(5):774 – 781, 2013. (Cited on page 2)

[68] William R Pearson and David J Lipman. Improved tools for biological
sequence comparison. Proceedings of the National Academy of Sciences,
85(8):2444–2448, 1988. (Cited on page 24)

[69] Ken Pepple. Deploying openstack. ” O’Reilly Media, Inc.”, 2011. (Cited
on pages 38 and 136)

[70] Deepak Poola, Saurabh Kumar Garg, Rajkumar Buyya, Yun Yang, and
Kotagiri Ramamohanarao. Robust scheduling of scientific workflows with
deadline and budget constraints in clouds. In Advanced Information Net-
working and Applications (AINA), 2014 IEEE 28th International Confer-
ence on, pages 858–865. IEEE, 2014. (Cited on pages 35 and 36)

[71] Sergio Ramı́rez. Arquitectura SOA para la integración de servicios distribui-
dos. PhD thesis, University of Malaga, 2012. (Cited on page 22)

http://star.mit.edu/cluster/
http://star.mit.edu/cluster/

155

[72] Sergio Ramı́rez, Antonio Muñoz-Mérida, Johan Karlsson, Maximiliano
Garćıa, Antonio J Pérez-Pulido, M Gonzalo Claros, and Oswaldo Trelles.
MOWServ: a web client for integration of bioinformatic resources. Nucleic
acids research, page gkq497, 2010. (Cited on page 23)

[73] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. Ad-
dress Allocation for Private Internets (RFC 1918), February 1996. (Cited
on page 55)

[74] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. A taxonomy and
survey of cloud computing systems. In 2009 Fifth International Joint Con-
ference on INC, IMS and IDC, pages 44–51. IEEE, 2009. (Cited on page 9)

[75] Rolo↵, Eduardo and Diener, Matthias and Carissimi, Alexandre and
Navaux, Philippe OA. High Performance Computing in the cloud: Deploy-
ment, performance and cost e�ciency. In Cloud Computing Technology and
Science (CloudCom), 2012 IEEE 4th International Conference on, pages
371–378. IEEE, 2012. (Cited on page 2)

[76] Vipin Samar. Unified Login with Pluggable Authentication Modules
(PAM). In Proceedings of the 3rd ACM Conference on Computer and Com-
munications Security, CCS ’96, pages 1–10, New York, NY, USA, 1996.
ACM. (Cited on page 45)

[77] Sucha Smanchat and Kanchana Viriyapant. Taxonomies of workflow
scheduling problem and techniques in the cloud. Future Generation Com-
puter Systems, 52:1–12, 2015. (Cited on page 34)

[78] Temple F Smith and Michael S Waterman. Identification of common molec-
ular subsequences. Journal of molecular biology, 147(1):195–197, 1981.
(Cited on page 24)

[79] Inc. SwiftStack. The OpenStack Object Storage system Deploying and
managing a scalable, open-source cloud storage system with the SwiftStack
Platform, 2012. (Cited on page 43)

[80] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed comput-
ing in practice: The Condor experience. Concurrency-Practice and Expe-
rience, 17(2-4):323–356, 2005. (Cited on page 30)

[81] Oscar Torreno, Michael T Krieger, Paul Heinzlreiter, and Oswaldo Trelles.
Pairwise Genome Comparison Workflow in the Cloud Using Galaxy. Pro-
cedia Computer Science, 51:2864–2868, 2015. (Cited on pages 5 and 132)

156 BIBLIOGRAPHY

[82] Oscar Torreno and Oswaldo Trelles. Running workflows in the cloud. In
Jornadas de Paralelismo (JP), 2014. Sociedad de Arquitectura y Tenoloǵıa
de Computadores, 2014. (Cited on pages 5 and 132)

[83] Oscar Torreno and Oswaldo Trelles. Auto-scaling strategy for Openstack
cloud resources managed by TORQUE. In Jornadas de Paralelismo (JP),
2015. Sociedad de Arquitectura y Tenoloǵıa de Computadores, 2015. (Cited
on pages 5 and 132)

[84] Oscar Torreno and Oswaldo Trelles. Breaking the computational barriers of
pairwise genome comparison. BMC bioinformatics, 16(1):250, 2015. (Cited
on pages 5, 80 and 141)

[85] Oscar Torreno and Oswaldo Trelles. Two level parallelism and I/O reduc-
tion in genome comparisons. Cluster Computing, pages 1–12, 2017. (Cited
on pages 5, 94, 132 and 141)

[86] Oswaldo Trelles. On the parallelisation of bioinformatics applications.
Briefings in Bioinformatics, 2(2):181–194, 2001. (Cited on pages 7 and 23)

[87] Oswaldo Trelles, Pjotr Prins, Marc Snir, and Ritsert C Jansen. Big data,
but are we ready? Nature Reviews Genetics, 12(3):224–224, 2011. (Cited
on page 1)

[88] Oswaldo Trelles and Andrés Rodŕıguez. Bioinformatics and Parallel Meta-
heuristics, pages 517–549. John Wiley & Sons, Inc., 2005. (Cited on pages 7
and 23)

[89] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Inter-
net X.509 Public Key Infrastructure (PKI) Proxy Certificate Profile (RFC
3820), June 2004. (Cited on page 44)

[90] Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. Cost-
optimal scheduling in hybrid iaas clouds for deadline constrained workloads.
In Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference
on, pages 228–235. IEEE, 2010. (Cited on page 14)

[91] Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A
break in the clouds: towards a cloud definition. ACM SIGCOMM Computer
Communication Review, 39(1):50–55, 2008. (Cited on page 8)

[92] Amandeep Verma and Sakshi Kaushal. Cost-Time E�cient Scheduling
Plan for Executing Workflows in the Cloud. Journal of Grid Computing,
pages 1–12, 2015. (Cited on page 75)

157

[93] A. Vogel, D. Griebler, C. A. F. Maron, C. Schepke, and L. G. Fernandes.
Private IaaS Clouds: A Comparative Analysis of OpenNebula, CloudStack
and OpenStack. In 2016 24th Euromicro International Conference on Par-
allel, Distributed, and Network-Based Processing (PDP), pages 672–679,
Feb 2016. (Cited on page 38)

[94] JianwuWang, Prakashan Korambath, Ilkay Altintas, Jim Davis, and Daniel
Crawl. Workflow as a service in the cloud: architecture and scheduling al-
gorithms. Procedia Computer Science, 29:546–556, 2014. (Cited on pages 9,
35 and 36)

[95] Lizhe Wang, Gregor Von Laszewski, Andrew Younge, Xi He, Marcel Kunze,
Jie Tao, and Cheng Fu. Cloud computing: a perspective study. New
Generation Computing, 28(2):137–146, 2010. (Cited on page 8)

[96] Wendy A Warr. Scientific workflow systems: Pipeline pilot and knime.
Journal of computer-aided molecular design, pages 1–4, 2012. (Cited on
page 22)

[97] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and
Carlos Maltzahn. Ceph: A scalable, high-performance distributed file sys-
tem. In In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI), pages 307–320, 2006. (Cited on pages 42
and 137)

[98] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn.
CRUSH: controlled, scalable, decentralized placement of replicated data.
In Proceedings of the 2006 ACM/IEEE conference on Supercomputing, SC
’06, New York, NY, USA, 2006. ACM. (Cited on page 42)

[99] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.
(Cited on page 31)

[100] Michael Wilde, Mihael Hategan, Justin M Wozniak, Ben Cli↵ord, Daniel S
Katz, and Ian Foster. Swift: A language for distributed parallel scripting.
Parallel Computing, 37(9):633–652, 2011. (Cited on pages 20 and 100)

[101] Fuhui Wu, Qingbo Wu, and Yusong Tan. Workflow scheduling in cloud:
a survey. The Journal of Supercomputing, pages 1–46, 2015. (Cited on
page 34)

[102] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple linux
utility for resource management. In Workshop on Job Scheduling Strategies
for Parallel Processing, pages 44–60. Springer, 2003. (Cited on page 49)

158 BIBLIOGRAPHY

[103] Jia Yu, Rajkumar Buyya, and Kotagiri Ramamohanarao. Workflow
scheduling algorithms for grid computing. In Metaheuristics for schedul-
ing in distributed computing environments, pages 173–214. Springer, 2008.
(Cited on pages 14 and 19)

[104] S Zhang, L Boland, P Coddington, and M Sevior. Dynamic VM Pro-
visioning for TORQUE in a Cloud Environment. In Journal of Physics:
Conference Series, volume 513, page 032107. IOP Publishing, 2014. (Cited
on pages 32, 70, 74 and 141)

	Agradecimientos
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1.- Introduction
	Motivation and Contributions
	Research objectives
	Contributions
	Scope and limitations
	Outline of the Thesis

	2.- Background and Related Work
	Cloud computing
	Cloud computing service models
	Infrastructure-as-a-Service
	Platform-as-a-Service
	Software-as-a-Service

	Cloud computing deployment models
	Public cloud
	Private cloud
	Community cloud
	Hybrid cloud

	Scheduling
	Overview of tasks scheduling
	Scheduling algorithms
	Multilevel queue scheduling
	Priority-based scheduling

	Distributed resource managers

	Workflows
	Workflow management systems and software clients
	Workflow management systems
	Software clients

	Application Domain
	Pairwise sequence comparison
	Genome-wide association studies

	Auto-scaling strategies
	Workflows scheduling in the cloud

	3.- Infrastructure
	Cloud computing solution: OpenStack
	Authentication
	Data management
	Underlying file system (Ceph)
	Globus Online
	Endpoint Setup
	GridFTP User authentication
	Object Storage Integration
	Endpoint Registration
	Architecture and Workflow

	Computation
	TORQUE distributed resources manager
	RESTful Web Services front-end
	Galaxy workflows management system
	Galaxy deployment

	Networking
	OpenStack Horizon
	Interconnection between components

	4.- Scheduling and auto-scaling
	Scheduling
	Built-in TORQUE FCFS scheduler
	Maui scheduler
	Job priority parameters
	Node allocation policy
	Backfill

	Auto-scaling strategy
	Configuration parameters
	Scaling decision mechanism
	The deployment scenario

	5.- Experimental Evaluation
	Workflow applications
	Synthetic workflows
	Real-world workflows
	Pairwise genome comparison workflow
	Multiple genome comparison parallel workflow
	Genome-Wide Association Study workflow

	Evaluation metrics
	Experiment results
	Results of the performance metrics
	Queued time
	Makespan
	Throughput
	Resource utilisation

	System behaviour using the auto-scaling strategy
	Multiple genome comparison sequential workflow
	Multiple genome comparison parallel workflow
	Genome-Wide Association Study workflow

	Main factors affecting the scheduling and auto-scaling mechanisms
	Task duration distribution
	Inaccuracies in the task runtime estimates
	Provisioning delays

	6.- Conclusions and Future Work
	Appendices
	A.- Cloud computing features
	On-demand
	Pay-per-use
	Rapid elasticity
	Maintenance and upgrading

	B.- Scheduling
	Types of processes
	Scheduling level
	Short-term
	Medium-term
	Long-term

	Types of scheduling algorithms (static and dynamic)
	Traditional scheduling algorithms
	FIFO
	Shortest Job First
	Round-robin scheduling

	C.- Resumen en español
	Introducción
	Estado actual de desarrollo
	Computación en la nube
	Planificación de tareas
	Flujos de trabajo
	Dominios de aplicación
	Trabajos relacionados

	Infraestructura
	OpenStack
	Autenticación
	Gestión de datos
	Cómputo
	Infrastructura de red
	Horizon
	Interconexión entre componentes

	Planificación y auto-escalado
	Planificación de tareas
	Auto-escalado

	Evaluación experimental
	Factores que afectan la planificación y el auto-escalado

	Conclusiones y trabajo futuro

	Bibliography

