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y Dominique Legendre, del Institut de Mécanique des Fluides de Toulouse en Toulouse (Francia),
durante las dos estancias realizadas a lo largo del desarrollo de la presente Tesis.

Ha sido también de agradecer la ayuda de Imma Sánchez en el montaje de algunos trabajos de
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Abstract

The present Ph.D Thesis investigates the formation of monodisperse droplets from an electrified
meniscus of a low viscosity, highly conductive liquid in the periodic electric microdripping regime,
termed Axial Spray Mode II by Juraschek & Röllgen (1998).

The meniscus of a highly conductive liquid is attached to the tip of a metallic capillary tube,
is fed with a constant flow rate, and is connected to continuous high voltage relative to a flat
counterelectrode at a certain distance in front of the tube. Within a certain range of flow rates
and in a narrow range of applied voltages, the meniscus sets in the microdripping regime, in
which its tip periodically elongates forming a ligament that ultimately detaches as a droplet.
This mode produces monodisperse droplets whose diameter depends on the flow rate and may
be one tenth of the diameter of the capillary tube.

The process is governed, mainly, by two dimensionless parameters: the dimensionless flow
rate, and the electric Bond number. The flow rate, nondimensionalized with the capillary flow
rate, is small, and it can be varied by a factor of about 100 within the microdripping regime,
whereas the Electric Bond number, which represents the ratio between electrical and capillary
stresses, is bound to a narrow range of order unity.

A second type of emission appears in the microdripping regime different from the droplet
emitted in each oscillation of the meniscus. From the moment in which the meniscus adopts
a quasi-conical shape, in the stage just before the ligament formation, until the ligament
detachment from the meniscus in each oscillation, a fine jet is emitted from the tip of the
meniscus. This jet breaks to droplets and forms a spray of very small droplets, with a total mass
emitted per oscillation that is negligible in comparison with the mass of the main droplet, as
long as highly conductive liquids are used. Nevertheless, the electric charge of the droplets in
the spray represent almost all the electric charge emitted per oscillation from the meniscus.

An experimental study is done, where high speed video recordings are used to analyze the
dynamics of the meniscus, and the electric charge carried by the emitted droplets is measured.
At very low flow rates, the period of the meniscus oscillation is of the order of the capillary time.
After reaching its maximum elongation, the meniscus recedes with a velocity of the order of the
capillary velocity, except for a region around its tip that is pinned by strong electric stresses and
develops into a ligament. The life time of this ligament is of the order of its pinch-off time. This
condition, together with the condition that the volume of the ligament at detachment should
be equal to the volume of liquid injected during a cycle of the oscillation, determines power
laws of the dimensionless flow rate for the dimensions of the ligament and the frequency of the
oscillation. These power laws fail at higher flow rates, when the ligament’s length ceases to be
small compared to the tube’s diameter, and the life time of the ligament is now of the order of
the oscillation period. Then, the balance of dynamic pressure, electric stress and surface tension
stress, together with the volume conservation condition and the condition that, according to the
experimental results, the electric charge at the ligament surface (which ends up in the detached
droplet) is of the order of the Rayleigh’s limit charge, determine new power laws for the frequency
of the oscillation and ligament size.

Numerical simulations are performed under the assumption of axisymmetric motion of
an inviscid liquid of infinite conductivity. The flow of the liquid is then irrotational and the
velocity potential satisfies Laplaces equation. The Laplace’s equation for the electric potential
is also satisfied outside the liquid, and both Laplace equations are solved using boundary
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element methods. The numerical results are compared with experimental results, where a highly
conductive water solution is used to enforce the equipotential assumption in the simulations. A
good agreement between simulations and experiments is found for high values of the flow rate, for
which the model captures the dependence of the mean meniscus volume and oscillation frequency
with the dimensionless flow rate and the Electric Bond number. However, the numerical results
depart from the experiments for low flow rates, when the rounded tip predicted numerically
differs from the pointed quasi conical tip observed experimentally, which can not be correctly
computed by the model used in the simulations.

To study the potential use of the microdripping regime to generate emulsions, a glass capillary
microfluidic device is manufactured, where droplets of ethylene glycol are emitted from the
meniscus attached at the tip of a stretched capillary glass tube. An outer flow of silicone oil is used
to drive the generated droplets away from the meniscus, in a coflow configuration. And an electric
field is created between the meniscus of the inner liquid and a liquid counter-electrode that is
used to discharge and collect the generated droplets. In this electro-coflow configuration, a phase
diagram of emission regimes is obtained experimentally when the inner and outer flow rates,
and the voltage applied to the inner liquid, are swept. For a range of the governing parameters,
an emission regime is found that resembles the microdripping regime in air, where droplets are
emitted periodically when the elongated tip of the oscillating meniscus detaches. Like in the
experiments in air, the frequency of the meniscus oscillation increases linearly with the applied
voltage. The outer flow rate is useful to drive away the generated droplets from the meniscus
and from the walls of the device, and to form a liquid collector in a counterflow configuration.
Nevertheless, the variation of the outer flow rate has little influence on the oscillation frequency
of the meniscus, which is mainly controlled by the inner flow rate and the applied voltage. While
the oscillation frequency for microdripping in air is of the order of the capillary frequency, in the
case of electro-coflow the corresponding oscillation frequencies are two orders smaller than the
capillary frequency. This suggests that other stresses must be involved in the process. Estimates
of the importance of the viscous stresses due to the outer and the inner liquid suggest that
the viscous effect of the outer liquid on the dynamics of the ligament is responsible for slowing
down the oscillation frequency, in comparison with what is observed in air. This leads to an
estimate of the frequency in terms of the viscosity of the outer liquid, the interfacial tension
and the length and diameter of the ligament that provides the correct order of magnitude of the
oscillation frequency. Considering the viscous effect of the outer liquid on the ligament dynamics,
approximate scaling laws are worked out for the ligament length and width when the inner flow
rate increases, assuming that the period of the meniscus oscillation is of the order of the formation
time of the ligament, and observing that the frequency of the oscillation scales as a power of the
inner flow rate.

In the case of the microdripping regime in air, if the voltage applied to the meniscus is
reduced, a pulsed microdripping regime appears, the Axial Spray Mode I of Juraschek & Röllgen
(1998), and when the voltage is reduced even more, pointed tips no longer appear on the meniscus
surface. In this case, the oscillation of the meniscus is related to such of an electrified pinned
droplet, when the flow rate tends to zero. It is numerically studied then, at the end of the present
Dissertation, the resonance of electrified and non electrified inviscid pinned droplets that present
an infinite electrical conductivity. For the case of pinned droplets with a volume lower than that
of a hemisphere pinned to the same surface, we found that the natural frequency of the droplet
scales as a power of the volume when the droplet is supported on a flat surface, in a different
way than the analytical solutions presented in the literature, which are valid when the droplets
are supported on a concave surface. Furthermore, the first natural frequency of sub-hemispheric
droplets strongly depends on the supporting surface where they are pinned. When supported
on a tube’s tip, the tendency of the natural frequency of the droplets when the dimensionless
volume tends to zero is a function of the thickness of the tube’s wall.



Resumen

En la presente Tesis Doctoral se investiga el proceso que da lugar a la formación y emisión de
gotas monodispersas desde un menisco electrificado de un ĺıquido de baja viscosidad y elevada
conductividad eléctrica en el régimen de microdripping eléctrico periódico, conocido como Axial
Spray Mode II por Juraschek & Röllgen (1998).

El menisco está anclado a la punta de un tubo capilar metálico, y se alimenta con caudal
constante de ĺıquido mientras se conecta a un voltaje constante referenciado a un contraelectrodo,
conectado a tierra, que está colocado a una cierta distancia de la punta del tubo. Dentro de un
cierto rango de caudales, y un estrecho rango de voltajes, la dinámica del menisco se encuadra
en el régimen de microdripping, en el que se establece un movimiento periódico del mismo, donde
su punta se alarga formando un filamento que finalmente se desprende, dando lugar a una gota.
Este modo de emisión produce gotas monodispersas cuyo diámetro depende del caudal con que
se alimenta el menisco, y puede ser de hasta una décima parte del diámetro del tubo capilar.

El proceso está gobernado, principalmente, por dos parámetro adimensionales: el caudal
adimensional y el número de Bond Eléctrico. El caudal, adimensionalizado con el caudal
capilar, es pequeño aunque puede variarse en tres órdenes de magnitud dentro del régimen de
microdripping, mientras que el número de Bond Eléctrico, que representa el ratio entre esfuerzos
eléctricos y capilares, puede solo variarse en un rango estrecho de orden unidad.

Un segundo tipo de emisión aparece en el régimen de microdripping, diferente de la emisión
de la gota a la que da lugar el ligamento estirado. Desde que el menisco adopta una forma
cuasicónica, en la etapa anterior a la formación del ligamento, hasta que se desprende la gota
del mismo en cada oscilación, se produce una emisión de espray desde la punta del menisco.
Este espray supone una emisión despreciable de masa, en el caso de ĺıquidos muy conductores,
comparado con la masa de la gota principal emitida, pero sin embargo transporta la mayor parte
de la carga eléctrica emitida desde el menisco.

Se realizada un estudio experimental donde se graban v́ıdeos con cámara de alta velocidad
para analizar la dinámica del menisco, y se mide, asimismo, la carga eléctrica transportada por
las gotas emitidas. Para caudales pequeños el peŕıodo de las oscilaciones del menisco es del
orden del tiempo capilar. Después de alcanzar el menisco su posición más estirada, la base de
este retrocede a una velocidad del orden de la velocidad capilar, mientras que la punta permanece
en la misma posición por acción del intenso campo eléctrico en esta zona, dando como resultado
la formación de un ligamento en la punta del menisco. La vida de este ligamento es del orden de
su tiempo de rotura. Esta condición, junto con la condición de que el volumen del ligamento en
el momento de la rotura es igual al volumen de ĺıquido inyectado al menisco durante un peŕıodo
de la oscilación, da lugar a diferentes potencias del caudal adimensional con las que escalan el
tamaño del ligamento y frecuencia de la oscilación. Estas leyes de escala dejan de ser válidas
para caudales elevados, cuando la longitud del ligamento deja de ser pequeña comparada con
el diámetro del tubo, y la vida del ligamento es ahora del orden del peŕıodo de la oscilación
del menisco. El equilibrio entre la presión dinámica, esfuerzos eléctricos y esfuerzos de tensión
superficial, junto con la condición de conservación de masa, y la condición de que, de acuerdo
con los resultados experimentales, la carga eléctrica en la superficie del ligamento (que da lugar
a la gota emitida) es del orden de la carga de Rayleigh, determina nuevas potencias del caudal
con que escalan la frecuencia de la oscilación y el tamaño del ligamento.

Cuando el menisco se alimenta con un caudal pequeño, dentro del régimen de microdripping,
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el volumen medio del mismo durante un peŕıodo de oscilación es del orden del cubo del diámetro
del tubo capilar donde se encuentra anclado, su frecuencia de oscilación es del orden de la
inversa del tiempo capilar, y el ancho y longitud caracteŕısticos del ligamento que se desarrolla
en la punta del menisco, justo antes de la emisión de la gota, escala con potencias del caudal
adimensional de 2/7 y 3/7, respectivamente. Para caudales mayores las tendencias cambian y
al aumentar el caudal el volumen del menisco se incrementa con la ráız cuadrada del caudal, la
frecuencia adimensional disminuye como el caudal adimensional elevado a −1/2, y el ancho y
largo caracteŕısticos del ligamento justo antes de su desprendimiento del menisco se incrementan
ambos como la ráız cuadrada del caudal adimensional.

En el régimen de microdripping se obtienen experimentalmente gotas de 50 µm para meniscos
anclados a tubos capilares de 500 µm. Y si el caudal adimensional es suficientemente pequeño,
se emite una única gota por oscilación del menisco y éstas son monodispersas. Si se emplean
tubos capilares más pequeños, en torno a las 100 µm se pueden producir gotas monodispersas
de tamaño inferior a 10 µm y a unas frecuencias alrededor de 10.000 gotas por segundo.

El trabajo experimental se completa con simulaciones numéricas, suponiendo el movimiento
axilsimétrico de un ĺıquido no viscoso infinitamente conductor. El flujo del ĺıquido es irrotacional y
el potencial de velocidad satisface, por tanto, la ecuación de Laplace. La ecuación de Laplace para
el potencial eléctrico también se satisface en el dominio exterior al ĺıquido, y ambas ecuaciones se
resuelven mediante el uso de elementos de contorno. Los resultados numéricos se comparan con
los experimentos, donde se usó una solución acuosa muy conductora, lo que justifica las hipótesis
de ĺıquido no viscoso e infinitamente conductor. Las simulaciones coinciden razonablemente bien
con los resultados experimentales para caudales grandes, en lo que a frecuencias de oscilación
del menisco se refiere. Para estos casos se encuentran las mismas tendencias de la frecuencia
de oscilación o del volumen medio del menisco respecto del caudal adimensional y el número
de Bond Eléctrico. Sin embargo, los resultados numéricos difieren de los experimentales para
caudales pequeños, donde la punta redondeada que se obtiene en las simulaciones difiere de la
punta cuasi cónica que se observa experimentalmente en la punta del menisco, la cual no puede
ser simulada correctamente con el modelo usado.

Para estudiar el potencial uso del régimen de microdripping para generar emulsiones, se
fabrica un dispositivo de microflúıdica usando capilares de vidrio, donde se emiten gotas de
etilenglicol desde el menisco anclado a la punta estirada de un capilar de vidrio. Se hace uso
de un flujo externo de aceite de silicona para conducir las gotas lejos del menisco desde el que
se emiten, en una configuración de coflujo. Se crea un campo eléctrico entre el menisco del
ĺıquido interior y un contraelectrodo ĺıquido usado para descargar las gotas generadas. En esa
configuración de electro-coflujo se realiza un diagrama de fase de los diferentes reǵımenes de
emisión cuando se barren los caudales de los ĺıquidos interior y exterior, aśı como el potencial
eléctrico aplicado al ĺıquido interior. Para un rango de los parámetros que gobiernan el proceso, se
encuentra un régimen de emisión parecio almicrodripping en aire, donde se emiten gotas de forma
periódica cuando se desprende el ligamento formado en la punta de un menisco oscilante. De la
misma forma que en los experimentos en aire, la frecuencia de oscilación del menisco aumenta
linealmente con el voltaje aplicado. El caudal exterior se utiliza para llevarse las gotas generadas
lejos del menisco y las paredes del dispositivo, aśı como para formar un colector ĺıquido en una
configuración de contraflujo. Sin embargo, la variación del caudal exterior tiene poca influencia
en la frecuencia de oscilación del menisco, que está principalmente controlada por el caudal del
ĺıquido interior y el voltaje aplicado. Mientras que la frecuencia de oscilación del microdripping
en aire es del orden de la frecuencia capilar, en el caso de electro-coflujo la frecuencia de oscilación
es varios órdenes de magnitud inferior a la frecuencia capilar correspondiente. Esto sugiere que
otros esfuerzos deben de influir en la dinámica del menisco, diferentes de los que se dan en aire.
Estimaciones de la importancia de los esfuerzos viscosos debidos a los ĺıquidos interior y exterior
indican que los efectos viscosos del ĺıquido exterior en la dinámica del ligamento, que se forma
en la punta del menisco, es responsable de la diferencia de la frecuencia de oscilación respecto
de la capilar. Esto conduce a la estimación de una frecuencia de oscilación en términos de la
viscosidad del medio exterior, la tensión interfacial, y la longitud y diámetro del ligamento que
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proporciona el orden de magnitud adecuado para la frecuencia de oscilación. Considerando el
efecto de la viscosidad del ĺıquido exterior en la dinámica del ligamento, se obtienen leyes de
escala aproximadas de la longitud y ancho del ligamento cuando el caudal interior aumenta,
asumiendo que el peŕıodo de oscilación del menisco es del orden del tiempo de formación del
ligamento, y observando que la frecuencia de oscilación escala como una potencia del caudal
interior.

En el caso del régimen de microdripping en aire, si se reduce el voltaje aplicado al menisco,
éste da lugar a un régimen de microdripping pulsado, el Axial Spray Mode I de Juraschek &
Röllgen (1998); si se sigue reduciendo el voltaje, dejan de producirse emisiones de espray desde la
superficie del menisco. En este caso, la oscilación del menisco está relacionada con la resonancia de
gotas electrificadas ancladas, cuando el caudal tiene a cero. Se estudia numéricamente, por tanto,
al final de la presente Tesis Doctoral, la resonancia de gotas ancladas no viscosas electrificas y no
electrificadas, que presentan una conductividad eléctrica infinita. Para el caso de gotas ancladas
con un volumen inferior al de una semiesfera anclada a la misma superficie, se ha encontrado
que la frecuencia natural de las gotas escala como una potencia del volumen de la gota cuando
la gota está soportada en una superficie plana, de forma diferente a las soluciones anaĺıticas que
para tal caso aparecen en la literatura, que son válidas para gotas soportadas en una superficie
cóncava. Además, la primera frecuencia natural de gotas sub-hemiesféricas depende fuertemente
de la geometŕıa donde se anclan dichas gotas. Cuando están ancladas en la punta de un tubo,
la tendencia de la frecuencia natural respento del volumen depende del espesor de la pared del
tubo, cuando el volumen de la gota tiende a cero.
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1.1 Introduction

This thesis tries to add light on some aspects of the electro-hydrodynamic atomization (EHD)
that are relevant to processes that require the generation of monodisperse droplets, in the
micron size regime, in a host media that may be a gas or vacuum, or a liquid, but avoiding
the use of micron sized nozzles, tubes or holes. In particular, this work focuses in regimes
where an electrified meniscus anchored to a tube oscillates periodically that, for the appropriate
parametrical range, in each oscillation it emits a single droplet, substantially smaller than the
diameter of the tube holding de oscillating meniscus. Therefore, the body of the manuscript
considers different problems where oscillating, electrified meniscus are involved. Those are
described in what follows.

1.1.1 Microdripping regime

Atomization of liquid menisci by means of electric fields has been known for a long time. The
evolution of the meniscus interface during this breaking process (and so its outcome) may be
quite different depending on the values of the liquid properties, electric field strength, etc., a
circumstance that has led to the classification of the electro-hydrodynamic (EHD) atomization
in different modes. Comprehensive reviews of the main modes have been given by Cloupeau
et al. 1994 and by Jaworek et al. 1999. The former considers modes appearing in situations
where the liquid is continuously fed at a constant rate to a meniscus attached at the tip of a
capillary tube. Possibly, the most studied mode among these is the so-called steady cone-jet, in
which a meniscus subjected to an intense electric field adopts a conical shape from whose tip a
very thin, highly charged, steady liquid jet is issued. The breakup of this jet yields a spray of
highly charged droplets. The success of this particular mode came across when Fenn et al. 1989
discovered that this simple process provides a means to transfer very large ions from the liquid
to the gas phase, making them suitable for their posterior weighting in a mass spectrometer.
However, the interest on cone-jet electrosprays was already ignited before, when it was realized

1
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that this mode allows the generation of monodisperse sprays of droplets whose diameter bear no
relation with the diameter of the meniscus. The study of the cone-jet electrospray (Fernández
de la Mora 2007) led to the conclusion that, as the liquid electric conductivity increases, the
liquid flow rate has to be decreased and the droplet size decreases as well. Quantitatively, liquids
with moderate conductivities, in the order of 10−3 S/m, produce monodisperse droplets in the
size range of a few microns, whereas liquids with larger conductivities, in the order of 1 S/m or
above, yield monodisperse droplets in the nanometer range, regardless of the size of the capillary
tip. This is a very interesting option to generate ultrafine monodisperse droplets. Therefore, the
potential applications of cone-jets as a monodisperse particle generator have been focused into
the sub-micron and nanometric size ranges (Wang et al. 2012; Larriba et al. 2011; Miao et al.
2002).

There are, however, numerous technological applications in which the droplets, although
monodisperse in size, do not need to be so small. A typical example is printing, where the droplet
size is in the range of 20−100 µm, see Basaran et al. 2013 for a recent review, but there are many
others. Combinatorial chemistry, micro-mixing or micro-tritiation (Schober et al. 1993; Tisone
1998; Litborn et al. 1998) already focus on monodisperse drop-on-demand systems that yields
micron sized droplets, where the small volumes of the same and the rapid dispensing capabilities
make possible an efficient and rapid testing of tens of thousands of mixtures in very short times.
Not only that, but performing reactions in airborne microdrops reduces potential contamination
from substrates. Analytical tools, such as MALDI TOF spectroscopy, also benefit from using
microdroplets, not just by saving the use of very expensive compounds but also from the increase
in sensitivity brought about when small volumes of samples are used (Allmaier 1997; Kling 2001).
Biotechnology is also an active area in which microdrops play a very important role. Already
commercially available systems for sorting cells are based on generation of drops of some 10 to
20 microns in diameter, the size needed to contain a single cell (Hulett et al. 1969). Bio-analysis
based on interactions with tagged DNA fragments also require the use of very small volumes
of dissolutions containing the DNA fragments, a very expensive material, something made
through generation of microdrops (Gabriel 1999; Theriault et al. 1999; Englert 2000). The same
requirements apply in drug discovery experiments for medical applications (Schober et al. 1993;
Tisone 1998), without forgetting the direct delivery through lung deposition via monodisperse
aerosols of droplets with diameters between 3 and 5 microns. Other applications include optics
(Cox et al. 2000a,b), where the microdrops are used as lenses themselves, manufacturing of
complex composite solids, such as directional asymmetric metal-ceramic matrices (Gao et al.
1994; Ashley 1995), direct soldering (Wallace 1989; Hayes et al. 2001, 1999; Orme et al. 2000),
thin film coatings and many more.

Almost all of the technologies operating in industry to produce droplets in this size range
resort to hydrodynamic processes where the liquid is forced through a hole with a similar
diameter. The forcing stimulus is typically a thermally formed bubble or a piezoelectrically
driven moving wall. EHD atomization might be an alternative, but the modes so far reported in
the literature either yield monodisperse droplets that are too small, particularly if the liquid is
highly conductive, or produce droplets in the right range of sizes but with a size distribution that
is too broad (Udey et al. 2013; Steijn et al. 2013; Patrascioiu et al. 2011). It would be interesting
to look for an EHD mode that might fulfill both requirements: size and size distribution, maybe
relaxing the requirement of using holes of similar sizes.

Attempts at using EHD for printing have been focused in the so called microdripping regime,
in which the electrified meniscus oscillates and emits certain amounts of mass and charge in each
oscillation. The first study, by Juraschek et al. 1998, relates to unsteady modes that may appear
while trying to setup steady cone-jets. For a given liquid flow rate, as the voltage increases they
identify two pulsating axial modes, I and II, before reaching the steady cone-jet mode, the axial
mode III. Briefly, in mode I the meniscus undergoes bursts of fast pulsed emissions (KHz) at
rather low frequencies (tens of Hz), whereas in mode II the emissions are periodic and proceed at
much higher frequencies (tens of KHz). Although Juraschek et al. 1998 do not refer explicitly to
the microdripping regime, their axial mode II corresponds with the microdripping regime when
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a liquid with a high electrical conductivity is used, according to their experiments.
For the sake of clarity, it is important to note that the regime termed microdripping might

differ depending on the authors. Jaworek et al. 1999 defined as microdripping the pulsating
regime in which the electrified meniscus of a highly conducting liquid oscillates and, in each
oscillation, its tip develops a short ligament (with a length of the order of its diameter) that
eventually detaches to form a droplet whose diameter is much smaller than that of the tube
from which the meniscus hangs; during a certain part of the oscillation a fine jet of electrospray
is emitted from the meniscus tip. On the other hand, they termed spindle regime that in which
ligaments much larger where formed. Cloupeau et al. 1994 also used the term spindle for the
cases in which large ligaments where stretched out from the meniscus, although they called
microdripping a regime that they observed with a liquid of a low electrical conductivity in which
no electrospray were emitted from the oscillating meniscus as droplets were formed. The main
motivation to study the microdripping regime in the present thesis is because of its particular
feature of producing one droplet per meniscus oscillation, with a diameter much smaller than
the tube. We shall see that this occurs when the flow rate feeding the meniscus is low enough to
produce short ligaments, so throughout this thesis the term microdripping regime is understood
as defined by Jaworek et al. 1999).

More recent investigations of pulsating Taylor cones have been carried out by Marginean
et al. 2006a, Chen et al. 2006, and Choi et al. 2008, who proposed different scaling laws for
the pulsation frequency and the masses delivered, while Marginean et al. 2007 introduced a
classification of axial modes based on three periodic and stationary regimes interspersed with two
chaotic regimes. Kim et al. 2008, Kang et al. 2011 and Lee et al. 2012 achieved improved control
of the size and emission frequency of the droplets by using pulsed electric fields, and partially
classified the new dripping modes that appear in these conditions. Further steps toward the
practical implementation of these techniques for high speed and drop-on-demand EHD printing
have been taken by Mishra et al. 2010 and Sutanto et al. 2012.

Many of the works mentioned here are based on the periodic emission of a single liquid jet
from the electrified meniscus. This jet is unstable under varicose disturbances and breaks into
drops whose diameter is similar to that of the jet. This type of emission is useful for direct
printing, that is, for applications in which the flowing jet lands on a spot on the target before
breaking into droplets, thus forming a single drop of a given volume. However, if the objective is
to form drops that must remain airborne for a later use, such as in material forming processes,
this type of microdripping is seldom useful. A recent use of EHD to generate nanodroplets for
printing of nanostructures is that of Galliker et al. 2012, where micron-sized nozzles were used
to eject monodisperse droplets, with diameters between 80 and 100 nanometers, of a colloidal
suspension of gold nanoparticles. At landing on a substrate, the volatile solvent evaporated
thus leaving a dense residue formed by a compact agglomeration of the gold nanoparticles. As
nanodroplets were continuously landing/evaporating on the same spot tiny nanopillars, made of
agglomerated gold nanoparticles, could be formed. Although these authors could not follow the
droplet formation dynamics, their experiments undoubtedly demonstrate that the periodic EHD
microdripping can be used to generate monodisperse nano-sized droplets from nozzles some
10 to 15 times larger in diameter. Finally, the microdripping regime can be used to produce
microdroplets when relatively low conductive liquids are used (electrical conductivities around
1 × 10−6 S/m) by special nozzle designs, such that described by Lee et al. 2008, or by the
combined use of conductive liquids, such that used by Larriba et al. 2011, thus broadening the
potential classes of liquids that may be used.

1.1.2 Generation of emulsions in electro-coflow

The generation of emulsions has numerous interesting applications (Basaran 2002; Barrero et al.
2007), such as in medical and pharmaceutical technology, where emulsions have been widely used
for the administration of drugs or as a vehicle for vaccines to control infectious diseases (Galliher-
Beckley et al. 2015). Other fields of applications includes the encapsulation of materials or the
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generation of oil-water emulsions, for example in agriculture (Li et al. 2013; ElShafei et al. 2010),
cosmetic (Glampedaki et al. 2014; Krasodomska et al. 2015) and food industries (Galus et al.
2015; Jiménez-Colmenero 2013).

Different techniques, based on hydrodynamic forces implemented in microfluidic devices, can
be found in the literature to generate emulsions (Basaran 2002), such as coaxial coflow (Castro-
Hernández et al. 2009), selective withdrawal techniques (Cohen 2001) or hydrodynamic flow
focusing (Calvo et al. 2001), microfluidic techniques (Stone et al. 2004) or mechanical disruption,
as well as different combinations among them (Castro-Hernández et al. 2011). These techniques
have demonstrated their effectiveness in producing emulsions of droplets or bubbles of tens of
microns, although for the case of droplets it is rather difficult to attain sizes of few microns or
slightly below, except by using fluids with very high viscosity to pull the liquid to be atomized.
This comes, however, with a high cost of pumping.

Electrical forces can be also used to generate emulsions and capsules ( (Barrero et al.
2004; Alexander 2008), (Chen et al. 2005)). Recently, Gundabala2010 (Guerrero et al. 2014),
developed a glass-based microfluidic setup for combining hydrodynamic (i.e. coflow) and electric
forces capable of forming , for the first time, steady electrosprays inside a microfluidic channel.
This new process, termed electro coflow by their discoverers, allows reducing notably the size
of the droplets of the disperse phase inside the continuous one with no need of extra pumping.
Therefore, it results a very attractive alternative to produce emulsions of monodisperse droplets
whose size may be tailored between tens of microns and submicronic, with the advantage of the
confinement of being run in a microfluidic device (Guillot et al. 2007).

Microfluidic devices can be generally classified as PDMS devices or glass capillary devices,
attending to the material or fabrication process, or as microfluidic junctions or microfluidic
chips devices (Vladisavljević 2015), depending on its geometry or number of circuits. In the case
of PDMS devices, liquid PDMS, poly(dimethylsiloxane), is poured over a silicone wafer with a
positive photolithographed version of the microfluidic circuit that serves as mold, and afterwards,
once cured, the channels in the PDMS are sealed with a flat glass surface (Castro-Hernández et
al. 2011). This technique offers a fast way to fabricate microfluidic devices, but the manufacture
of the photolitographed silicone wafer is usually rather expensive. On the other hand, glass-based
devices are made by inserting a glass tube, with a diameter in the millimeter range whose tip
have been stretched down to a diameter of some tens of microns, inside another glass tube,
such that different, immiscible liquids may flow through each of these tubes. Such couples of
tubes are combined in different geometries to form the desired flow structures. These glass-based
microfluidic devices are very cheap to fabricate, although they requires longer manufacturing
times that PDMS devices. Nevertheless, they are very appropriate for a rapid design at almost
no cost.

1.1.3 Droplet’s resonance

The two previous sections consider the existence of an oscillating electrified menisci that emits
mass and charge. However, electrified meniscus also exhibit oscillatory modes with no emission,
so this problem will also be treated in Chapter 5 of this thesis.

The resonance of free droplets has been studied since the works of Rayleigh 1879 and Kelvin
1890 more than a century ago. They obtained an analytical expression for the natural frequency
of inviscid droplets in free space. Later, Lamb 1932 extended the expression for the oscillation of
free droplets inside an outer liquid under the assumptions of zero gravity and negligible viscous
effects,

f2 =
1

4π2

n(n− 1)(n+ 1)(n+ 2)

(n+ 1) + nρ0/ρ
, (1.1)

where ρ and ρ0 are, respectively, the density of the inner and outer liquid, n is the oscillation
mode, and f the different natural frequencies of the droplet, non-dimensionalized with the



1.1. INTRODUCTION 5

capillary time referred to the droplet radius R . In other works (Prosperetti 1980 and Miller
et al. 1968) studied the effect of viscosity on the resonance of free droplets.

For the case of constrained droplets there are numerous experimental works in the literature.
Among them, Noblin et al. 2004 studied the oscillation of pinned sessile droplets as well as
droplets with mobile contact line. They also highlighted the analogy between the oscillation
of pinned droplets and the stationary wave on the surface of a liquid bath. By expanding the
velocity potentials in series of Legendre polynomials, Strani et al. 1984 made an analytical study
for the case of the oscillation of inviscid droplets supported by a solid bowl inside an outer inviscid
liquid. And then, they complemented the work by considering viscous effects (Strani et al. 1988).
Bostwick et al. 2009 extended the work of Strani et al. related to inviscid droplet oscillations
with the difference that in the case of Bostwick et al. the droplet was pinned to a circle. They
obtain the natural frequency of the droplet numerically truncating the eigenvalue problem using
spectral methods. Celestini et al. 2006 studied the resonance of vibrated supported droplets in a
direction parallel to the substrate, and established an analogy with a simple oscillator, obtaining
a semi-analytical expression for the eigenfrequency and a scaling law for the dissipation energy.

For the case of the resonance of charged droplets, it was Rayleigh 1882 who first studied the
effect of electric charge in the resonance of inviscid free droplets, considered as perfect conductor,
incorporating a term to Equation 1.1 when there is no outer medium,

f2 =
1

4π2
(n(n− 1)(n+ 2)− B

E
n(n− 1)), (1.2)

where B
E

= Ĉs2R/(ǫ0γ) is the Electric Bond number, R the droplet’s radius, γ the surface
tension, Ĉs the surface charge, and the oscillation frequency is nondimensionalized with the
capillary time tc = ρR3/γ.

Rayleigh stated that the natural frequency decreases when the charge of the droplet increases
until the Rayleigh limit is reached C

R
=

√

8π(ǫ0γR3), in which case the frequency of the
fundamental mode, n = 2, is f = 0 and the droplet become unstable. It is in this limit
when pointed tips appears on the surface of the droplet giving rise to the emission of fine
jets which eventually break into charged droplets to form a spray. This phenomena, which can
be observed both in electrified droplets and electrified meniscus, was then studied by Taylor
1964 who particularly looked at the effect of electric fields on free space elongated droplets and
soap films, as well as jet emissions from electrified meniscus (Taylor 1969). Different experimental
studies, in which different methods are used to levitate the droplets, have confirmed the Rayleigh
theory for the resonance of inviscid free droplets. In a more recent work, Hill et al. 2010 levitate
diamagnetic water droplets using magnetic fields and they compare the frequency of resonance
of the first seven modes with the Rayleigh theory. In a later paper, Hill et al. 2012 performed a
similar work, but in this case they levitate electrically charged droplets.

The effect of charge relaxation was studied when Saville 1997 simulated the resonance of
dielectric droplets in an insulating fluid making use of the leaky dielectric model, and imposing
conservation of interfacial charge. Saville stated that for the case of droplets with a moderate
viscosity inside an inviscid medium the Rayleigh criterion, Equation 1.2, continues being valid
even in the cases in which charge relaxation is slow, although the damping rate is altered.

The resonance of electrified or charged pinned droplets was studied by Basaran and others for
conducting (Basaran et al. 1990) and dielectric (Wohlhuter et al. 1992) sessile droplets when an
electric field is created between two parallel plates. They studied the equilibrium shape and the
limit of stability when the electric field is increased numerically, using Finite Element Methods,
and experimentally, using soap bubbles. More specifically, the aspect ratio of the elongated
droplets when the electric field increases was studied. Starting with hemispherical droplets, and
increasing then the electric field, when the critical electric field was reached beyond which the
droplet became unstable, they reported numerically and experimentally an aspect ratio of about
1.84. For dielectric droplets Wohlhuter et al. 1992 found a narrow parametrical range where
hysteresis appears, so unstable droplets were reported for a range of electric fields and aspect
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ratios. Ramos et al. 1994 also studied the limit of stability of dielectric droplets inside a dielectric
medium between two parallel plates extending the works of Basaran et al., and including the
case of fixed contact angle.

More recent works relating the stability of electrified sessile or pendant drops refer to the
dynamic response to a sudden change in the electric potential applied to low conductivity droplets
(Acero et al. 2013), the study of the droplet shape when an AC electric field is applied (Tran et al.
2011) or the influence of separation between plates on the elongation of the droplets (Tsakonas
et al. 2014).

The study of the stability of pinned electrified droplets is of interest for applications such
as electrowetting, the handling of droplets or cells, mass spectrometry, or printing. Roux et al.
2008 analyzed the non-wetting conditions of conducting droplets in a dielectric liquid pinned to
a hydrophobic substrate to force the lift of the droplets. Vancauwenberghe et al. 2013 stated how
electrified sessile drops can be used to enhance the evaporation rate through effects on contact
angle and equilibrium shape when electric fields are used. In another application, Ren et al. 2010
used and electrified sessile droplet submerged inside a black liquid as an optical switch in which
light pass through the system droplet-plates when an electric field is applied.

1.2 Motivation

The previous section mentioned some problems related to electrified oscillating meniscus whose
understanding might contribute to technological applications, this being the motivation of the
present thesis. Therefore, part of this thesis will be devoted to the investigation, experimental
and numerical, of the electric periodic microdripping process in air of low viscosity, high electrical
conductivity liquids, that produce a single droplet per oscillation, such that the droplet is
substantially smaller than the typical size of the oscillating meniscus. The main object of this
part is to obtain and understand the effect of the controlling parameters on the outcome, mainly
on the droplets size and on the oscillation frequency. Also, glass capillary devices, similar to
those described by Gundabala et al. 2010 and Utada et al. 2005, will be built to experimentally
study the different regimes of EHD that appear in electro coflow in situations where the electric
forces are dominant in the atomization process. Special attention will be paid to those modes
in which oscillating electrified menisci appear, as potential candidates to generate monodisperse
emulsions. The final part of this thesis will be devoted to the modeling of the oscillation of pinned
non-electrified and electrified droplets of inviscid and highly conducting liquids. In particular,
the effect on their oscillation frequencies of the shape of the solid holding the droplet will be
investigated, as well as the effect of the electrode configuration in the case of electrified pinned
droplets.

1.3 Thesis Outline

The present document is organized as follows. In Chapter 2 the electric microdripping regime,
termed as Axial spray mode II by Juraschek et al. 1998, is studied experimentally for a highly
conductive , low viscosity, water solution. A tube-plate configuration is used to generate the
electric field by connecting the metallic tube to a continuous high voltage. The meniscus of the
liquid at the tube’s tip is fed through the tube at a constant flow rate. In these conditions,
the dynamics of the meniscus and droplet emission are characterized by means of dimensional
analysis. High speed recordings and computer video processing are crucial for the observation
and analysis of the different stages that occur along each period of the meniscus oscillation.
Oscillation frequency and droplet size are thus characterized as a function of the controlling
parameters for the microdripping regime.

A numerical approach to the microdripping regime is performed in Chapter 3, assuming
an inviscid perfect conductor liquid. The Laplace’s equations for the velocity potential and for
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the electric field are solved, respectively, inside and outside the liquid domain using Boundary
Element Methods discretizing the boundary with linear elements and considering a constant
potential in each element. A tube-plate configuration similar to that of the experiments is used
to generate the electric field. The interface is advanced in time using an adaptive Runge-Kutta
method where the step size is changed to maintain bounded the estimated local error of the
numerical method. The numerical results are compared with the experimental results. The limits
of the model are discussed.

In Chapter 4 the possibilities of generating emulsions using the microdripping regime are
explored. Series of experiments are run within a glass microfluidic device to generate the
emulsions in a coflow configuration. A liquid collector acts as counter electrode, in a configuration
like that used by Gundabala et al. 2010, discharging and collecting the generated droplets. A
phase diagram of the different emission regimes is also performed for different ranges of the
controlling parameters. Some features of the oscillating regimes are explained using order of
magnitude estimates.

The resonance of electrified and non electrified pinned droplets has been treated in Chapter 5.
The same numerical scheme used to simulate the microdripping regime have been used to follow
the time evolution of inviscid, and perfect conductor droplets, pinned to a surfaces with different
shapes, once initially perturbed. The first natural frequency of the droplets is obtained after
applying a Fourier Transformation to the position of a point of its surface. The results of
uncharged droplets are compared with experiments for the case of sub-hemispherical droplets.

Finally the conclusions of the present dissertation are summarized in Chapter 6.
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Microdripping emissions in air
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2.1 Introduction

The generation of identical droplets of controllable size in the micrometer range is a problem of
much interest owing to the numerous technological applications of such droplets. This work
reports an investigation of the regime of periodic emission of droplets from an electrified
oscillating meniscus of a liquid of low viscosity, and high electrical conductivity, attached to the
end of a capillary tube, which may be used to produce droplets more than ten times smaller than
the diameter of the tube. To attain this periodic microdripping regime, termed axial spray mode
II by Juraschek et al. 1998, liquid is continuously supplied through the tube at a given constant
flow rate, while a DC voltage is applied between the tube and a nearby counter electrode. The
resulting electric field induces a stress at the surface of the liquid that stretches the meniscus
until, in certain ranges of voltage and flow rate, it develops a ligament that eventually detaches
forming a single droplet, in a process that repeats itself periodically. While it is being stretched,
the ligament develops a conical tip that emits ultrafine droplets, but the total mass emitted is
practically contained in the main droplet.

In the parametrical domain studied, the process depends mainly on two dimensionless
parameters, the flow rate nondimensionalized with the diameter of the tube and the capillary
time, q, and the Electric Bond number B

E
, which is a nondimensional measure of the square of

the applied voltage. The problem also depends on others dimensionless numbers like the Bond
number, B, and the Ohnesorge number, Oh, that represent, respectively, the effect of gravity and

13
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tensiometer. The electric conductivity is K = 4.1± 0.7 mS/cm, measured with a conductimeter.
Both surface tension and conductivity are measured before each experiment, and the uncertainty
in their values is within the 95 % confidence interval of the different measurements. The dielectric
constant of the mixture (ǫ) has not been measured; the mean value of the dielectric constants
of their components has been arbitrarily taken as a first order approximation of the real value.
The viscosity is µ = 2.3 ± 0.2 mPa s, measured with a custom-made Ostwald viscometer. The
density is ρ = 1065 Kg/m3, measured with a pycnometer.

Minimizing the liquid spreading over the tube tip is essential to the robustness and
reproducibility of the experiments. To do that a superhydrophobic stainless steel surface was
generated at the tube tip by following a methodology similar to that presented in Li et al. 2012.
First of all, the surface of the tube tip was cleaned with distilled water, ethanol and acetone, then
it was dipped in a mixture of 50 % in weight of hydrochloric acid and nitric acid for 3 minutes
to produce the acid etching and passivation of the surface, and rinsed afterwards in distilled
water. Once dried the process is followed by the deposition of a hydrophobic film; a thin layer of
a commercial anti-wetting agent (602A-FP and 602A-FS, Cytonix) was deposited on the outer
part of the tube’s tip to ensure that the oscillating meniscus is anchored at the tube’s outer rim.
The coating process consisted of dipping the tube’s tip in the commercial anti-wetting solution
and on thermally stabilizing the agent for 60 minutes in air at 150◦C. After this, the coating
cures at room temperature for 24 hours before using the tube.

(a) Collage of different frames, with recognition of different meniscus and droplet shapes.
The shapes which are recognized are marked with a white border.

(b) Edge detection. The cross symbols correspond to the edge
detection made by the Canny method after the subpixel correction.
The white curve is the fitting of cubic splines to the position of the
edges detected.

Figure 2.2: Interface tracking for periodic microdripping emission with q̂ = 2.1 mL/h,
φ̂0 = 3.39 kV, L = 9 mm and D = 500 µm.

The volume of the detached droplets has been measured as follows. For a given microdripping
situation, the oscillating meniscus and the emitted droplets have been continuously recorded
using a high speed camera, so the time evolution of the meniscus and of an emitted droplet, as
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it moves away from the meniscus, are obtained; see Fig. 2.2 for a few sample frames. Each frame
of the emitted droplet, which is not spherical due to its own oscillations, has been processed
with a custom-made software of interface tracking, see appendix B, which provides the droplet’s
contour in the visualization plane; say r̂ = r̂d(ẑ), where, ideally, ẑ and r̂ are distances along and
normal to the axis of the tube. White curves in Fig. 2.2(a) show sample detected contours of the
meniscus and the flying droplet. The volume of the droplet is calculated from its contour under
the assumption of axisymmetry. A 95 % confidence interval is considered for the results, and hence
the mean volume of the droplet, V̂mean, and its measurement uncertainty, δV̂mean, are calculated
by processing a large number of frames. The measurement is accepted if the uncertainty is
sufficiently small. The droplet equivalent diameter is then defined as d̂d = (6V̂mean/π)

1/3.
A similar approach has been used to measure the instantaneous meniscus volume. More

precisely, the Canny algorithm (Canny 1986) has been used to detect the edges of droplets
and meniscus in each frame. To increase precision, a sub-pixel detection method has also been
implemented which consists of fitting a sigmoid function to the gray intensity level across the edge
in each point, as in Acero et al. 2013 and Song et al. 1996. An example of how the algorithm works
is shown in Fig. 2.2(b). The picture on the left shows a frame of the oscillating meniscus, where
the ligament that eventually will form a droplet can be identified. The picture on the right shows
a detail of the neck forming at its base. The cross symbols in this picture mark the edge defined
by sequentially applying the sub-pixel and Canny algorithms. The white curve corresponds to
the least square spline interpolation of the points defining the edge, using different cubic splines.
Finally, the spline fitting is used to compute the instantaneous volume of the droplet and the
meniscus. The relative variation of the meniscus volume during a cycle of the oscillation is always
small when the flow rate is small, and increases when this parameter increases.
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(a) Meniscus profile in dimensionless coordinates
r = r̂/D, z = ẑ/D. The dashed line is the least
square spline interpolation to the detected points of
the meniscus from the images, using the subpixel
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position of the base and the tip of the ligament,
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(b) Dimensionless meniscus curvature, ku = Dk̂u, as
a function of arc length, s, calculated from splines fitted
to the meniscus shape. The diamond represents the tip
and the circles represent the base of the ligament.

Figure 2.3: Detection of the ligament dimensions.

To measure the length ℓs = ℓ̂s/D and the width ds = d̂s/D of the ligament at the tip of
the meniscus (see Fig. 2.3), we have measured first the local mean curvature of the meniscus
surface using the splines fitted to its contour; say z(s) and r(s), where s is the arc length on the
meniscus contour. The curvature of the meniscus, assumed axisymmetric, in dimensionless form
is

ku(s) =
z′′(s)r′(s)− z′(s)r′′(s)

[z′(s)2 + r′(s)2]3/2
− z′(s)

r(s) [z′(s)2 + r′(s)2]1/2
, (2.1)
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motion is axisymmetric. The microdripping regime may be sustained within a certain voltage
range. The same protocol is repeated for different flow rates. The voltage upper limit of this
periodic microdripping is indicated by either the appearance of non-axisymmetric motions of
the oscillating meniscus, when the flow rate is moderate, or by the emission of more than one
droplet per oscillation, when it is larger.

(a) q̂ = 1.0 mL/h.

(b) q̂ = 10.0 mL/h.

Figure 2.5: Snapshots of the microdripping regime for φ̂0 = 3.39 kV, L = 9 mm and D = 500 µm.

Series of experiments have also been carried out in which the flow rate is increased at constant
voltage, in order to characterize the range of flow rates compatible with the microdripping regime.
For very low flow rates, not all the meniscus oscillations yield a droplet. As we shall see, the
minimum flow rate for which periodic microdripping occurs also yields the minimum droplet
diameter. The diameter of the emitted droplets increases with the flow rate until eventually the
droplets cease to be small compared to the diameter of the capillary tube.
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(a) Non-periodic microdripping emission (axial spray
mode I) (q̂ = 0.2 mL/h, φ̂0 = 3.45 kV, L = 9 mm,
D = 500 µm).
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(b) Periodic microdripping emission (axial spray
mode II) (q̂ = 0.5 mL/h, φ̂0 = 2.95 kV, L = 9 mm,
D = 500 µm).

Figure 2.6: Current recorded at the collector electrode.
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We have recorded the electric current induced at the collector electrode by the mass/charge
emission from the oscillating meniscus, using a data acquisition card. The recorded current signal
changes as the voltage applied to the needle increases, as shown in Fig. 2.6. Figure 2.6(a) shows
a high frequency (KHz) charge emission that occurs intermittently at a much smaller frequency
(tens of Hz), an electric non-periodic microdripping termed “axial spray mode I” by Juraschek et
al. 1998. The oscillation of the meniscus becomes periodic for a larger voltage, giving an electric
signal as the one shown in Fig. 2.6(b). This periodic microdripping is termed “axial spray mode
II” by Juraschek et al. 1998. This behavior, in which the emission regime from the meniscus goes
from electro-dripping to non-periodic microdripping (axial spray mode I) and then to periodic
microdripping (axial spray mode II) as the voltage increases, only appears in our experiments
when the liquid flow rate is small (the lowest value used in the experiments for each voltage).
Otherwise, a direct transition from electro-dripping to periodic microdripping (axial spray mode
II) occurs.

2.2.3 Dimensionless variables and results

The meniscus mean volume v̂
M

and oscillation frequency f̂ , and the electric charge Ĉd and
equivalent diameter d̂d of the detached droplets, have been measured for many values of
the applied voltage and the flow rate. We shall use dimensional considerations and order-of-
magnitude estimates to help organizing the large body of data thus gathered. In what follows,
distances are scaled with the outer diameter of the needle, D, where the meniscus is attached,
and times are scaled with the capillary time tc = (ρD3/γ)1/2. The dimensionless flow rate is

q =
q̂

D3/tc
=

ρ1/2q̂

γ1/2D3/2
, (2.3)

and the square of the voltage applied between needle and collector is measured by the Electric
Bond number

B
E
=

ǫ0E
2
cD

γ
with Ec =

φ̂0

D ln(4L/D)
. (2.4)

Here ǫ0 is the permittivity of vacuum, L is the needle-to-collector distance, and Ec is the
characteristic electric field induced by the applied voltage around the end of the needle (Choi
et al. 2008; Taylor 1969).

The needle-to-collector distance is large compared to the diameter of the needle; the ratio
L/D is about 18 in the experiments. The length of the needle and the radius of the collector are
even larger. In these conditions, the precise values of these two parameters are irrelevant, while
L has only a weak effect that is accounted for using the expression of Ec in (2.4) above instead
of the simpler expression φ̂0/D.

The effect of the viscosity of the liquid, µ, is small in our experiments. Taking the capillary
velocity vc = D/tc as a characteristic liquid velocity, this effect is measured by the Ohnesorge
number Oh = µ/(ρvcD) = µ/(ργD)1/2, which is small, of order 10−2.

The effects of the electrical conductivity and the dielectric constant of the liquid, K and ǫ,
are also small because the electric relaxation time te = ǫ0ǫ/K is small compared to the capillary
time, the ratio te/tc being of order 10−7. The electric relaxation time is the characteristic time
required for the electric charge to reach the surface of the liquid by conduction and screen the
liquid from the surrounding electric field; see, e.g. Fernández de la Mora et al. 1994. Its small
value implies that the surface of the liquid is essentially at the potential of the needle in our
experiments.

The effect of the gravity acceleration is also small because the Bond number ρgD2/γ is small,
of order 10−2.
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Figure 2.7: Dimensionless mean volume and oscillation frequency respect to dimensionless flow
rate.
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In these conditions, the only relevant control parameters are expected to be q and B
E
.

Figures 2.7(a), 2.7(b) and 2.8 show, respectively, the dimensionless volume of the meniscus
averaged over a cycle of the oscillation, v

M
= v̂

M
/D3, the dimensionless frequency of the

oscillation, f = f̂ tc, and the dimensionless equivalent diameter of the droplets, dd = d̂d/D,
as functions of the dimensionless flow rate q for B

E
= 0.20, 0.27 and 0.37.

Figure 2.10 shows the electric charge of the droplet scaled with the charge given by the
Rayleigh’s limit at which a spherical droplet of diameter d̂d becomes unstable, Ĉd/CR

with
C
R
= (8π2ǫ0γd̂

3
d)

1/2 (see Rayleigh 1882) as a function of the Electric Bond number B
E
for three
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values of q. Figure 2.9 shows the square of the dimensionless frequency as a function of B
E
for

various values of q. All these results are for a needle of outer diameterD = 500 µm. Dimensionless
data collected with capillary needles having different outer diameter also approximately collapse
onto the same curves.
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Figure 2.9: Square of the dimensionless oscillation frequency as a function of the Electric Bond
number for q = 8 × 10−4, 2 × 10−3, 4 × 10−3, 1.47 × 10−2 and 3.4 × 10−2, increasing from top
to bottom (filled symbols). Empty inverted triangles show data from Fig. 6 of Juraschek et al.
1998 for q = 1.42× 10−3. The dashed line stands for the expression f ∼ B

E

3/4 proposed by Choi
et al. 2008.
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2.3 Results

2.3.1 Dimensionless frequency and mean volume

The microdripping regime analyzed here occurs only for values of the Electric Bond number
of order unity, in a range that increases somewhat when the flow rate increases; see Fig. 2.9.
Surface tension stresses, of O(γ/D), and electric stresses, of O(ǫ0E

2
c ), are thus of the same order

and equally important in the evolution of the meniscus. The electric stress tends to elongate
the meniscus axially, and the maximum elongation increases with the dimensionless flow rate.
Inspection of sequences of images similar to those of Fig. 2.5 shows that (i) the diameter of
the meniscus cross-section is not larger than the diameter of the needle D during most of the
evolution, while its length, say H, may be of the order of D (at small flow rates) or somewhat
larger than D (when the flow rate increases); and (ii) the amplitude of the oscillation of the tip
is of the order of H. An order-of-magnitude balance of the liquid acceleration and the pressure
force due to the electrically induced depression reads therefore ρHf̂2 ∼ ǫ0E

2
c /H, whence, in

dimensionless variables, f ∼ B
E

1/2 /v
M
.
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Figure 2.11: Dimensionless frequency, f , as a function of the mean dimensionless volume of the
meniscus in each oscillation, v

M
, for B

E
= 0.20 (circles), 0.27 (triangles) and 0.37 (squares). The

dashed line stands for the relation fv
M

≈ 0.32.

In agreement with this estimation, the product fv
M

computed using data from Figs. 2.7(a)
and 2.7(b) is nearly constant, independent of the flow rate in the whole range of this parameter
spanned by our experiments. This product is also nearly independent of B

E

1/2, which may
be due to the narrow range of B

E

1/2 where the microdripping regime is realized. With good
approximation our results give fv

M
≈ 0.32 (see Fig. 2.11).

2.3.2 Scale disparity. Small q and domain of existence

The volume of liquid emitted per period of the oscillation is equal to the volume supplied by
the imposed flow rate during a period. At small flow rates, this volume is small compared
to the volume of the meniscus. The ratio of droplet-to-meniscus volume is then of order q
because the period of the oscillation is of the order of the capillary time (f = O(1) at the left-
hand side of Fig. 2.7(b)) and the volume of the meniscus is of the order of D3 (v

M
= O(1) in



2.3. RESULTS 23

Fig. 2.7(a)). The periodic microdripping at small q entails thus a delicate balance to keep the
mean meniscus volume close to the boundary between oscillations without volume loss and more
violent oscillations in which electric stresses would tear the meniscus and cause the loss of a
significant fraction of its volume.

This critical volume must coincide with the one indicated by the plateau value at the left
in Fig. 2.7(a), a value that depends on the electrical Bond number. Similarly, the oscillation
frequency of a meniscus with this critical volume must coincide with the plateau value in
Fig. 2.7(b). This frequency is affected by the presence of the electric field and is different from
the capillary frequency of a meniscus of the same volume. The electric field and the electric stress
around the tip of the meniscus intensify when the meniscus elongates, which in turn reinforces
the elongation until a conical tip develops. When the meniscus begins to recede, the conical tip
lags behind the rest of the meniscus, and at the same time shortens and sharpens under the
squeezing effect of the surface tension; see Fig. 2.5(a).
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Figure 2.12: Contours of constant q in the (v
M
,B

E
) plane. Contours shown are for q = 1.93×10−3

(circles), q = 3.86× 10−3 (squares) and q = 1.43× 10−2 (diamonds), increasing from bottom to
top.

Since the volume of the meniscus is nearly constant when q is small, the problem of finding
v
M
, f and dd as functions of q and B

E
can be approximately recast as that of finding f(v

M
,B

E
)

and dd(vM
,B

E
) for a meniscus of strictly constant dimensionless volume v

M
, and then making

q = (π/6)d3df . Since (vM
,B

E
) = O(1), this problem should have a solution with dd ≪ 1 only in a

narrow band around the curve of the (v
M
,B

E
) plane where dd = 0. On one side of this curve the

meniscus would oscillate without ejecting any droplet. On the other side of the curve the volume
of the droplets, hence q, would increase with distance to the curve. To get an idea of the shape
of the band and the limiting curve where dd = 0, Fig. 2.12 shows some contours of constant,
small q in the (v

M
,B

E
) plane. The lowest contour should be close to the limiting curve. As can

be seen, the range of B
E
where microdripping occurs extends to larger values of this parameter

when q increases.

2.3.3 Comments on the tip emission of electrospray

One of the characteristics of the microdripping regime studied here is the existence of a sharp
conical tip that persists during a non-negligible part of the meniscus oscillation cycle, as shown
in Fig. 2.5. This conical tip leads to the formation of an electrospray. Even though we have not
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attempted to measure or quantify such emission, its existence is confirmed by adding colorant
to some of the liquids: a fine deposition, covering a wide area, was collected onto the counter
electrode. There was impossible to completely eliminate this electrospray emission. However, its
contribution to the total mass emitted per oscillation was negligible. The reason supporting that
claim is twofold. First, for an electrospray of a very conductive liquid in the cone-jet mode, the
characteristic flow rate is given by (Fernández de la Mora et al. 1994) Qe ∼ (γǫ0ǫ)/(ρK), so one
would expect that the flow rate carried by the electrospray was of that order. Comparing the
former with the total flow rate, one obtains

Qe

q̂
∼ γǫ0ǫ

ρKq̂
=

te/tc
q

≪ 1. (2.5)

Some preliminary experiments varying the liquid conductivity seem to support Eq. (2.5) in
the sense that the ratio Qe/q̂ decreases as K increases, although an investigation of its precise
dependence on the conductivity is beyond the scope of the present work. In principle Eq. (2.5)
also provides a minimum flow rate criterion; namely that q̂ > Qe, since no main droplet will
be emitted if the entire flow rate is emitted as electrospray. However, experiments performed
with very small flow rates show that the periodic microdripping regime gives way to a pulsed
non-periodic emission akin to axial spray mode I of Juraschek et al. 1998 well before values of
the order of Qe are reached.

Second, in all the experiments we compared the value of the diameter of the emitted droplet
measured from the images with the one obtained from the mass conservation balance (including
the measured oscillation frequency). The differences between them were within the measurement
errors. In conclusion, the mass emitted in the form of an ultrafine electrospray is negligible, so
we shall consider that the total mass is emitted in the form of a single drop.

From the practical point of view, even though electrospray emission might be an undesirable
effect of this microdripping regime, the fact that these ultrafine droplets are highly charged (high
electrical mobility) allows sweeping them out very easily by using nearby electrodes, while the
main droplet may fly away carried by its own inertia.

2.3.4 Ligament characterization

Figure 2.13 shows the dimensionless length and width of the ligament at the tip of the meniscus
immediately before a droplet is ejected (ℓs = ℓ̂s/D and ds = d̂s/D) as functions of the
dimensionless flow rate for three values of B

E
. These results suggest that ℓs and ds increase as

powers of q, although these powers may be different for the very small values of q corresponding
to the plateaus of Figs. 2.7(a) and 2.7(b) and for larger values of this parameter.

The conditions around the tip of the meniscus when the ligament develops are too complex
to allow a simple analysis of the process, which seems to depend on the competition of electric
stresses trying to elongate the ligament and the retraction of the rest of the tip, that probably
pushes the liquid toward the bulk of the meniscus. At least for very small values of q, the process
appears to be local, in the sense that it does not affect the evolution of the rest of the meniscus,
and short compared to the period of the oscillation. Tentative estimates for the latest stages of
the ligament evolution are worked out in this section.

The results for the smallest values of q in Figs. 2.13 can be partially rationalized as follows.
As mentioned in Section 2.3.2, inspection of a number of video records suggests that a ligament
appears in these cases because, after reaching its maximum elongation, most of the meniscus
begins receding under the effect of surface tension stresses while locally intense electric stresses
still keep its tip pinned. Assuming that recession occurs at the capillary velocity vc (from the
balance of inertia and surface tension in the bulk of the meniscus), and that the time available
for the ligament to form is of the order of the pinchoff time ts = (ρd̂3s/γ)

1/2 determined from the
balance of inertia and surface tension in the ligament (ρd̂2s/t

2
s ∼ γ/d̂s), the length of the ligament

would be ℓ̂s ∼ vcts = d̂
3/2
s /D1/2. In addition, the volume of the detaching ligament must coincide
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(a) Dimensionless length of the ligament ℓs = ℓ̂s/D
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Figure 2.13: Dimensionless length and width of the ligament immediately before detachment
as functions of the dimensionless flow rate for B

E
= 0.20 (circles), 0.27 (squares) and 0.37

(diamonds).

with the volume of liquid supplied to the meniscus during a period of the oscillation, which is
of the order of the capillary time; i.e., d̂2s ℓ̂s ∼ q̂tc. These two conditions taken together give
ℓs ∼ q3/7 and ds ∼ q2/7, which are represented by the dashed lines at the left-hand side of
Figs. 2.13. However, the consistency of these estimations is not immediately clear. At first sight,
since the only dimensionless control parameters of the problem are q and B

E
, the proportionality

factors implicit in the proposed power laws can be at most functions of B
E
and should be expected

to be of order unity because B
E
= O(1). This would imply that ℓs ≪ ds for any q ≪ 1, which

is meaningless. The measured aspect ratio of the detaching ligament is ℓs/ds = 4–8 in our
experiments, indicating that the proportionality factor for d̂s/D is small compared with that for
ℓ̂s/D in the small region of the parameter space where this type of microdripping occurs.

The evolution of the meniscus undergoes some changes when the flow rate q increases. First,
the period of the oscillation increases with q past the plateau at the left of Fig. 2.7(b). Redoing
the estimations above with a period proportional to q1/2, the modified results ℓs ∼ q9/14 and
ds ∼ q3/7 are obtained, whose larger exponents are in qualitative agreement with the increasing
slopes at the right-hand side of Figs. 2.13. Second, the elongation of the meniscus increases with
q, which modifies the process of formation of a ligament. The process changes from the axial
growth due to differential receding velocities discussed above to a radial squeezing of a region
of the elongated meniscus around its tip; compare Figs. 2.5(a) and 2.5(b). The length of this
region eventually becomes of the order of the total length of the meniscus, though the volume
emitted per cycle is still small compared to the volume of the meniscus because the ligament
undergoes substantial radial squeezing before detachment. The elongation time of the meniscus

is T ∼ ℓ̂s/vE
∼ ρ1/2ℓ̂s/ǫ

1/2
0 E in these conditions, where the velocity induced in the liquid by

electric stresses (from the balance ρv2
E
∼ ǫ0E

2) has been used. This estimation is equivalent to

that of section 2.3.1 with ℓ̂s playing the role of the length of the meniscus. Assuming that the
period of the oscillation is of the order of the elongation time, the volume conservation condition
d̂2s ℓ̂s ∼ q̂T gives ds ∼ q1/2/B

E

1/4, while the value of ℓs is not determined by these estimations.
The square root increase of the width of the ligament with dimensionless flow rate agrees with
the results of Fig. 2.13(b) (dashed line at the right-hand side of this figure).

Figure 2.13(a) shows that the length of the ligament also increases nearly as the square root
of q. This result can be understood noticing that: (i) Electric stresses are needed to partially
offset surface tension stresses in the prominent, elongated ligament that develops for large values
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of q; see, e.g., Fig. 2.5(b). This requires ǫ0Ê
2
n ∼ γ/d̂s, where Ên is the electric field at the surface

of the ligament. And (ii) the measured electric charge of the detached droplets is of the order of
the limit Rayleigh’s charge C

R
= (8π2ǫ0γd̂

3
d)

1/2. The ratio of the measured charge to the limit
charge is about 1/4 and depends little on q and B

E
; see Fig. 2.10. The conditions that the charge

and volume of a droplet should coincide with the charge and volume of the ligament immediately
before detachment read σd̂sℓ̂s ∼ C

R
and d̂2s ℓ̂s ∼ d̂3d, where σ = ǫ0Ên is the surface density of

charge in the ligament (Landau et al. 1984). Upon eliminating d̂d and Ên, these conditions give
ℓs ∼ ds up to a numerical factor that turns out to be in the order of 6–7.

2.3.5 High q trends and droplet diameter

The estimation ℓs ∼ q1/2/B
E

1/4 (up to a numerical factor) accounts for the increase of the
dimensionless volume of the meniscus at the right-hand side of Fig. 2.7(a). Also, together
with the estimation of the elongation time worked out in Section 2.3.4, which can be recast
as f ∼ B

E

1/2 /(ℓs) in dimensionless variables, it accounts for the decrease of the dimensionless
frequency at the right-hand side of Fig. 2.7(b).

The dimensionless equivalent droplet diameter in Fig. 2.8 increases as q1/3 for very small flow
rates and as q1/2 for larger flow rates. Both results follow from the volume conservation condition
dd = (6/π)1/3(q/f)1/3 noticing that f = O(1) for small q and f = O(q−1/2) for larger q. It is
noteworthy that the type of microdripping analyzed here can be operated to yield monodisperse
droplets whose diameter is one tenth of the diameter of the capillary tube to which the oscillating
meniscus is attached.

2.3.6 Comparisons with other results in the literature

For comparison, some experimental data of Juraschek et al. 1998 for the meniscus pulsation
frequency as a function of q and B

E
have been included in Figs. 2.7(b) and 2.9 (empty inverted

triangles). Since these results have been used for reference in much of the later work (see,
e.g., Chen et al. 2006; Choi et al. 2008), the good agreement displayed by this comparison
shows that our results fit into the body of known data. Some of the pictures of Juraschek et al.
1998 suggest that the contact line of their menisci with the capillary tube may in some cases
spread slightly along the outer surface of the tube. While the liquid wetting this surface is not
expected to play an important part in the oscillation of the meniscus, because its motion is
hindered by the proximity of the wall, it still enlarges the radius of the liquid surface and thus
decreases the electric field acting on it. To try to account for this effect, an arbitrary reduction
factor has been included in the expression of the electric field Ec in (2.4), whose value has been
chosen for the plateaus in Fig. 13 of Juraschek and Röllgen and in our Fig. 2.7(b) to coincide.
The good agreement achieved when this same factor is used for the data in Fig. 2.9 partially
justifies its use.

A number of scaling laws for the meniscus oscillation frequency in pulsating spray modes have
been proposed by different authors. Marginean et al. 2006a note that the oscillation frequency of
low conductivity liquids in large emitters is remarkably close to the lowest capillary frequency of
an isolated spherical droplet of radius equal to the radius of the contact line, which is given
by f = 4/π in our dimensionless variables and is marked by the solid line in Fig. 2.7(b).
Following Juraschek et al. 1998, these authors attribute the increase of the oscillation frequency
with the voltage applied to the meniscus to a decrease of the amount of liquid pulsating at the
end of the capillary. Similarly, they explain the decline of the frequency with increasing flow
rate as an effect of the increase of liquid volume. Using Marginean et al. 2006a estimate as a
starting point, Choi et al. 2008 work out the modified scaling f ∼ B

E

3/4 by replacing the radius
of the contact line by the radius of the ejected ligament, which they estimate independently.
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Their result is included in Fig. 2.9 (dashed line). It qualitatively accounts for the trend of the
data, although it does not include the effect of the flow rate on the frequency.

Some numerical results for axial spray mode II have been reported in Higuera et al. 2013a
for an inviscid liquid of infinite electrical conductivity that is injected at a constant flow rate
through an orifice in a metallic plate into a region of uniform electric field. The numerical results
reproduce the main features of the periodic dynamics, including the stretching of the meniscus,
the formation of a ligament whose tip emits a spray of tiny droplets and eventually detaches,
and the subsequent recoil of the meniscus. However, the simplified configuration used in the
numerical simulations precludes quantitative comparison with our experimental data. Thus, for
a value of the dimensionless flow rate in the range of our experiments, the numerical values of
the Electric Bond number required for periodic microdripping (based on the uniform electric
field far from the meniscus) are somewhat larger than the experimental values. The computed
oscillation frequency and the maximum length of the ligament are somewhat larger than in the
experiments and the mean volume of the meniscus is significantly smaller. These differences can
be traced to the morphology of the electric field. Contrary to the case of a meniscus at the end
of a capillary, the electric field does not tend to zero far from a meniscus on a metallic plate.
This leads to enhanced electric stresses that accelerate the formation of a ligament, increase its
elongation, and cause its detachment before the volume of the meniscus can increase much. In
addition, since the flow rate is given, the faster dynamics also implies a larger dripping frequency.

2.4 Conclusions

We have studied the electric microdripping regime of highly conducting, low viscosity liquids,
as a mean to generate monodisperse droplets with diameter considerably smaller than the
capillary tube holding the dripping meniscus. We have focused on the conditions in which the
microdripping is periodic.

During each oscillation, the meniscus elongates axially, growing an axisymmetric disturbance
that eventually leads to the formation of a ligament and a droplet. Simultaneously, the meniscus
develops a pointed tip which emits an ultrafine aerosol for a non-negligible fraction of the cycle.
However, in the conditions investigated, almost all the mass emitted per oscillation is contained
in the main droplet. The ultrafine emission seems to evolve on its own, independently of the
main breakup process.

The dimensionless parameters controlling this periodic microdripping regime are the Electric
Bond number, B

E
, and the dimensionless liquid flow rate, q. The microdripping regime occurs

in a fairly narrow range of values of B
E
of order unity. The mean volume of the meniscus in

an oscillation cycle is of the order of the cube of the diameter of the capillary tube for very
small values of the flow rate, and increases nearly as the square root of the flow rate when this
parameter increases. The oscillation frequency nondimensionalized with the capillary time is of
order unity for very small q and decreases as 1/q1/2 when q increases.

Approximate scaling laws valid in different ranges of q have been worked out for the length
and width of the ligament, and for the diameter of the main droplets.

By reducing the liquid flow rate, this mode of periodic microdripping can easily yield
monodisperse droplets with diameters one tenth of that of the capillary tube at rates of the
order of the capillary frequency. In the data shown, monodisperse droplets of 50 µm from a
nozzle of 500 µm are produced at rates of several kHz, thus demonstrating that this microdripping
regime constitutes a real alternative to the hydrodynamic atomization techniques currently used
for printing or for material processing. The scaling laws obtained should allow designing the
geometry of the nozzle device together with the properties of the liquid to set a given droplet size
range, potentially including sub-micronic, within which monodiperse droplets may be produced
at will.
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Perfect conductor liquid model simulations
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3.1 Introduction

The dynamics of a meniscus of a conducting liquid hanging at the tip of a capillary tube, when
subjected to an electric field, present a broad variety of functioning modes. For intense enough
electric fields, those modes eventually lead to the atomization of the liquid, thus constituting the
so-called electro-hydrodynamic (EHD) atomization technique. Cloupeau et al. 1994, and Krupa
et al. 1999 classified for the first time those modes. Juraschek et al. 1998 investigated the EHD
atomization when a capillary tube continuously fed with liquid was placed in front of a metallic
plate, such that the electric field was set by applying a constant voltage difference between the
needle and the plate (i.e. needle-plate configuration). For low voltage differences, droplets detach
continuously from the capillary tip due to the electric pulling: this is called electrodripping. These
droplets have diameters similar to that of the capillary tube. As the voltage difference increases,
they found three axial atomization modes in which the droplets are substantially smaller than the
capillary tube, which they labeled as axial mode I, II and III. The first two modes are pulsating
modes, where the meniscus is oscillating axially. In the axial mode I, sequences of emissions,
in which ligaments are stretched from the meniscus tip and finally detached, are interspersed
with intervals of no emission, where the meniscus oscillates at the frequency of an electrified
pinned droplet without forming a ligament. Axial mode II is a periodic pulsating mode, also
known as the the microdripping emission mode, which is the one considered in this work. In
each pulsation, a ligament is stretched and detached from the meniscus. This ligament may yield
one or several droplets. Marginean et al. 2006b suggested that the axial mode I is a transition
mode from electrodripping to microdripping regimes. Finally, axial mode III is a steady mode,

29
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also known as steady cone-jet electrospray, where a fine jet is issued from the tip of a static
meniscus.

We focus in the axial mode II in situations in which a single droplet is produced in each
oscillation, since this is a simple way to produce monodisperse droplets, considerably smaller
than the capillary tube, at relatively high frequencies. In Chapter 2 we studied experimentally
the axial mode II for the production of monodisperse droplets. We found that the main controlling
parameters are the liquid flow rate, q in dimensionless form, and the voltage difference, B

E
in

dimensionless form. While B
E
= O(1), q may span several orders of magnitude, thus becoming

the most important controlling parameter. We also proposed some asymptotic power-law for the
dependence of the dimensionless oscillation frequency f , the dimensionless droplet diameter dd
and the ligament length and diameter, ℓs and ds respectively, versus q. Briefly, we noticed two
different trends, one for the moderate and large values of q and other for the smaller values of
q. For low values of q, the dynamic of the meniscus is independent of that of the tiny ligament,
so that f becomes independent of q, being of the order of the capillary frequency; the droplet
diameter dd decreases with q, so they could form droplets ten time smaller than the capillary
tube. For larger values of q the ligament length becomes comparable to the meniscus size, and
it exist for a rather important part of the oscillation period, so it strongly affects the dynamics
of the whole process. We also noticed the emission of an ultrafine spray from the tip of the
ligament during part of its elongation stage, particularly while its tip locally adopts a conical
shape. This happens during a non-negligible part of the microdripping period, resembling a
cone-jet electrospray emission. In Chapter 2 we argued that the flow rate emitted from the tip
in the form of an ultrafine aerosol has a negligible contribution to the total volume emitted in
each meniscus oscillation because of the high conductivity of the dissolution used. Nevertheless,
the presence of such ultrafine highly charged aerosol is expected to affect the electric field, at
least in a region close to the ligament tip.

In this chapter we model and simulate the dynamic of a meniscus of an inviscid liquid,
µ = 0, infinitely conducting, K → ∞, (i.e. the liquid remains equipotential) subjected to an
intense electric field in the needle-plate configuration and compare the results with experiments
done with highly conducting water dissolutions in microdripping (axial mode II). This is similar
to the work developed by Higuera et al. 2013b, except that now the electrode configuration
is that of the real experiments, so the results may be contrasted. The model, which does not
consider the droplets airborne, presents a limited range of applicability for two reasons. First,
it does not apply at the cone-jet that may form locally at the tip of the ligament because the
electric field enters the liquid in the cone-to-jet transition region (Higuera 2003), so the liquid
does not remain equipotential there. Second, the ultrafine, highly charged aerosol emitted from
the tip strongly distorts the electric field around the tip of the ligament in a region whose
extend is unknown. A more appropriate treatment of the liquid tip would require the balance
of charges on the surface of the liquid forming the meniscus (Higuera 2003), which requires
solving the electric field inside the liquid. Unfortunately, the time scale of the dynamics of the
charges are of the order of the electric relaxation time, te = ǫǫ0/K, where ǫ and K are the liquid
dielectric constant and conductivity, respectively, and ǫo is the permittivity of vacuum. For the
high conductivity liquids used here, te ∼ 1 × 10−9 s, so very short time steps are required to
describe the fast dynamics of this tip, if possible at all. However, the size of the region around
the tip where the liquid might not be equipotential is of the order of the distance in which the
residence time of the liquid is of the order of the electric relaxation time (Fernández de la Mora

et al. 1994), r̂ ∼ (γ/ρ)1/3 (ǫǫ0/K)2/3, which in our experiments result r̂ ∼ 1 × 10−7 m, that is,
much smaller than any other length of interest. On the other hand, the meniscus oscillation time

is of the order of the capillary time, tc =
(

ρD3/γ
)1/2

, where ρ and γ are the liquid density and
surface tension, and D is the diameter of the capillary tube; in our experiments tc ∼ 1× 10−3 s.
Therefore, to avoid extremely long simulations, requiring very short time steps and very small
size resolution, the perfect conductor liquid assumption is considered to be valid in the whole
meniscus, although it cannot catch the details of what happens at the tip. Therefore, the model
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is expected to capture the dynamic of the meniscus in situations in which the ligament conical
tip forms relatively far from the meniscus, that is, for moderate or large flow rates.

3.2 Mathematical model

A flow rate q̂ of a liquid of density ρ, surface tension γ, zero viscosity (µ = 0), and an infinite
electrical conductivity K → ∞, flows through an infinitely thin tube of length L

N
and diameter

D into the space between the tube and a flat counter-electrode of infinite radius, following the
axisymmetric model sketched in Figure 3.1(a). The distance L between the tube’s tip and the
counter-electrode is much larger than the diameter of the tube, D/L << 1. An electric field, Ê,
is created between the tube and the counter-electrode when a voltage difference φ0 is applied
between the tube and counter-electrode.

(a) Model sketch to solve the electric potential. (b) Model sketch to solve the
hydrodynamic potential.

Figure 3.1: Definition Sketch.

3.2.1 Equations

The surface of the liquid is considered electrically equipotential and the movement of the
meniscus perturbs the electric field in the vicinity of the tube’s tip. The electric potential outside
the liquid, φ̂e, must satisfy the Laplace’s equation, ∇2φ̂e = 0, which is solved outside the liquid
in the region sketched in figure 3.1(a), with φ̂e = 0 on the the counter-electrode and infinitely far
from the tube and the liquid, and φ̂e = φ0 on the tube and the liquid as boundary conditions.

The flow is considered irrotational, and the velocity potential, v̂ = ∇φ̂, is calculated by
solving the Laplace’s equation in the liquid region, as sketched in Figure 3.1(b), which includes
a length of the injection tube of the order of the tube diameter, L

N
∼ D. We use homogeneous

Neumann conditions at the walls of the tube, and ∇φ̂ · ez = 4q̂/(πD2) in the injection zone
(ẑ = −L

N
, r̂ < D/2), where q̂ is the liquid flow rate and ez is the unit vector in ẑ direction. On

the surface of the liquid, defined by the function f(ẑ, r̂, t̂) = 0, with f < 0 inside the liquid, the
kinematic condition, Df/Dt̂ = 0, and the dynamic condition, ∂t̂φ̂+ p̂/ρ+1/2∇φ̂ ·∇φ̂−gẑ = c(t),
must be satisfied, where p̂ is the pressure in the liquid relative to the outer medium, g acceleration
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of the gravity , c(t) a constant that depends on the time, t̂, and D/Dt̂ = ∂t̂+ v̂ ·∇ (see Fernández
Feria 2001 or Landau et al. 1987).

The relative pressure, p̂, can be written from a balance of normal stresses at the meniscus
surface as p̂ = γk̂u − n · Te · n, where k̂u is the curvature of the surface, γk̂u is the capillary
pressure and Te the electric stresses tensor. The curvature of the meniscus is calculated in
terms of the arc length, ŝ =

∫ ŝ
0

√

1 + (dr̂/dẑ)2 dẑ, and the slope angle, θ, with tan θ = dr̂/ dẑ:

k̂u = − dθ/ dŝ+cos(θ)/r̂. The electric stresses are obtained from the Maxwell stress tensor, which
for a continuum isotropic medium, with constant permittivity and a magnetic field negligible
with respect to the electric field, is Te = ǫ0(ÊÊ − 1/2(Ê · Ê)I) (Dulikravich et al. 1997). For a
perfect conductor the electric charges are only present at the liquid surface, so the electric field
is normal to its surface, Ê = Ênn, and the Maxwell tensor reduces to Te = 1/2ǫ0Ê

2
nnn, where

n = ∇f/|∇f | is the unit normal to the meniscus surface pointing away from the liquid.

3.2.2 Non-dimensionalization

The problem is made non-dimensional using as characteristic dimensions the tube’s diameter,
D, the capillary time, tc = (ρD3/γ)1/2, the capillary velocity, vc = (γ/(ρD))1/2, the capillary
flow rate, qc = (γD3/ρ)1/2, and taking φc = Dvc as the characteristic velocity potential. The
characteristic voltage is selected as φ0/ ln(4L/D) to obtain a similar non-dimensionalization
for the electric field than in Chapter 2; hence, the characteristic electric field is Ec =
φ0/(D ln(4L/D)).

The problem depends then on three dimensionless parameters that are the electric Bond
number, B

E
, the Bond number, B, and the dimensionless flow rate, q, or injection velocity,

vn(z = −LN/D, r < 1/2), which take the form:

B
E
=

ǫ0E
2
cD

γ
, (3.1)

B =
ρgD2

γ
, (3.2)

vn(z = −LN/D, r < 1/2) =
4

π
q. (3.3)

3.2.3 Perfect conductor assumption

Considering a liquid and a geometry similar to that used on the experiments of Chapter 2, the
time scales of the different charge transport mechanisms are the capillary time, tc = (ρD3/γ)1/2,
which is the time scale of the liquid motion and so of charge convection, te = ǫǫ0/K the time
scale of the charge conduction or charge relaxation, and td = D2/Df0 the time scale of charge
diffusion. They can be estimated using ǫ = 63, K = 0.4 S/m, ρ = 1× 103 Kg/m3, γ = 40× 10−3

N/m, D = 500 × 10−6 m, and the characteristic diffusion coefficient can be estimated making
use of the Einstein relation Df0 = k

B
ZeT/(ze) for the diffusion of charged particles. k

B
is the

Boltzmann constant, Ze is the electrical mobility of the ions, with K = ρ̂eZe, and ze the charge
of the ions. Additionally, the temperature is T = 298K, and the charge density can be estimated
considering that, in the experiments, all the additive (1.5 mg of hydrochloric acid per liter of
solution) is completely dissociated. The characteristic charge density can be estimated then as
ρ̂e ∼ 1 × 105 C/m3, and the characteristic diffusion coefficient is finally Df0 ∼ 1×−8 m2/s
1. With these estimates, the following time relations are obtained: te/tc ∼ 1 × 10−7 ≪ 1 and
te/td ∼ 1 × 10−10 ≪ 1. So diffusion and convection of electric charges are not important in the
bulk of the liquid compared to conduction.

Nevertheless, the assumption of perfect conductor liquid is not valid in length scales δ ≪ D
in the following cases: (i) when te ∼ td, but now using δ as characteristic length, which yields

1The value reported for HCl in water in Freitas Jr. 1999 is Df0 = 3.6× 10−9 m2/s at T = 310 K.
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a length scale δ/D ∼ (te/td)
1/2 ∼ 1 × 10−5 known as the Debye length. And (ii) when te ∼ tc,

again with δ as characteristic length, which yields a length scale δ/D ∼ (te/tc)
2/3 ∼ 1 × 10−5,

where charge convection is important.

Summarizing, the assumption of a perfect conducting liquid is reasonably valid for the case
of highly conductive liquids used in the experiments, except for very thin layers where the liquid
is in contact with the electrode, at the liquid surface or at the very tip of the conical meniscus
produced by the effect of the electric stresses.

3.2.4 Inviscid liquid assumption

The assumption of inviscid liquid is reasonable for water solutions like the ones used in the
experiments (Chapter 2), where the Ohnesorge number, Oh = µ/

√
ργD is of the order of 1×10−2,

so viscous effects are considerably less important than the effects of inertia or capillary forces.
Gravitational forces are also small, B ∼ 1× 10−2, and could be dropped out from the dynamic
condition, although they have been maintained in the formulation.

3.3 Numerical procedure

The solution of the problem requires solving the Laplace equation for the velocity potential in the
liquid, φ̂, and for the electric potential outside the liquid, φ̂e, subjected to their corresponding
boundary conditions. In what follows, we shall consider the dimensionless variables.

The Laplace’s equation can be transformed into a boundary integral equation by the
Boundary Element Methods, BEM, such as that in Equation 3.4 for the dimensionless liquid
velocity potential φ. The equation needs to be solved exclusively on the boundary/contour that
encloses the liquid, termed C1, which includes the liquid surface that is represented by the
function f(z, r) = 0. The integral equation is numerically solved over a set of points along C1,
including the liquid meniscus, the tube walls, and the injection zone of the tube. A number of
points equal to N = 101 + 8round(ztip) are uniformly distributed on the arc length along the
meniscus, whose known positions are given by their dimensionless radial and axial coordinates,
r and z respectively, and whose dimensionless velocity potentials φ are known. With round a
function that rounds towards the nearest integer, and ztip the axial position of the meniscus tip.
The normal velocity, vn is known in the tube walls, vn = 0, and injection zone, vn = (4/π)q.
Thus, Equation 3.4 yields the dimensionless velocity normal to the interface on the N points,
vn = v · n (see Appendix C for more detail).

φ(z0, r0) = −2

∫

C1

G(z, r, z0, r0)vn(z, r)r dl

+2

∫ PV

C1

φ(z, r)Gn(z, r, z0, r0)r dl, (3.4)

where G is the appropriate Green function, see Pozrikidis 2002, Gn = ∂nG, dl a differential
element of length arc on C1, with the unit normal vector, n, pointing inwards, and PV stands
for the Cauchy principal value of the integral.

A similar approach is done for the dimensionless electric potential, whose corresponding
boundary integral equation is shown in (3.5). The boundary C2 encloses the outer medium,
including also the liquid interface.

φe(z0, r0) = 2

∫

C2

G(z, r, z0, r0)En(z, r)r dl

+2

∫ PV

C2

φe(z, r)Gn(z, r, z0, r0)r dl, (3.5)
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where En = −∇φe ·n is the normal dimensionless electric field on the boundary C2, and the unit
normal vector, n, points inwards. In this case Equation 3.5 provides the normal dimensionless
electric field on the surface of the meniscus, known the electric potential applied to the meniscus
and the tip φe = ln(4L/D) (as follows from the non-dimensionalization).

Once the En and vn at the meniscus surface are known, Equations 3.6 and 3.7 yield the time
evolution of the meniscus surface, whereas Equation 3.8 (the dynamic condition on the interface)
provides the update of the dimensionless velocity potential. These differential equations are
solved using the adaptive Runge-Kutta-Fehlberg method of fourth order (see Mathews et al.
1999 and Appendix D).

dz

dt
= vz, (3.6)

dr

dt
= vr, (3.7)

dφ

dt
=

1

2
∇φ · ∇φ+

1

2
B

E
E2

n − ku +Bz + c(t), (3.8)

with vr = vs sin θ + vn cos θ, vz = vs cos θ − vn sin θ, and the constant c(t) is arbitrarily taken in
each time step to impose a velocity potential φ = 0 at the point (r = 1/2, z = 0). The tangential
velocity on the meniscus, vs, is calculated by differentiating the velocity potential with respect to
the arc length, vs = dφ/ds, using a central difference scheme. At the droplet’s tip the condition
limr→0 k2 = k1 is imposed, that is, the meniscus tip must end with a spherical cap (θ = −π/2).

The simulation starts with a static hemispherical meniscus, which serves as initial condition
for equations 3.6 and 3.7. Initially, the flow rate, q(t = 0), is zero and vn(t = 0, z, r) = 0 for all
the points of the interface. This last condition is then used in equation 3.4 to obtain the velocity
potential, φ, that is used as initial condition in equation 3.8. Once started the simulation, the
flow rate is increased linearly with time until the desired flow rate is obtained at t = 0.01, and
maintained constant afterwards. For given values of the flow rate, q, Electric Bond number, B

E
,

and Bond number, B, the simulations are let to evolve in time until a periodic oscillation of the
meniscus is reached.

3.3.1 Global mass conservation, pinch-off condition and tip

treatment

Different numerical considerations must be undertaken, additionally, for the particular
simulations performed in the present chapter. It is expected that, at some times, a fraction of the
meniscus is going to detach from it to form a droplet, so an algorithm needs to be implemented
to allow removing the part of the simulated meniscus downstream of the axial point where a
certain pinch-off condition is reached. Also, global mass conservation must be imposed on the
meniscus to compensate for the round-off errors that inevitably lead to a mass imbalance after
a large number of time steps.

Global mass conservation in the meniscus is imposed in each time step as follows: the volume
of the meniscus is calculated at the current time step, i, as vi = π

∫

r2dz, with z and r the
position of the points forming the meniscus at the current time step. Considering the volume in
the prior time step, vi−1, the geometric factor Cv is calculated as,

Cv =
vi−1 + q∆t

vi
, (3.9)

with q the flow rate and ∆t the current time step. Cv is now used to readjust the position of the
points of the interface, being (z∗, r∗) the adjusted position, in a way that mass conservation is
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Figure 3.2: Minimum radius of the neck, rmin, prior pinch-off versus the time to pinch-off, (tp−t)
for q = 4.56× 10−2 and B

E
= 0.2. The dashed line stands for rmin ∼ (tp − t)1/3

automatically satisfied:

z∗ = C1/3
v z, (3.10)

r∗ = C1/3
v r. (3.11)

(3.12)

The boundary condition for r∗(s = 0) = 1 is also imposed. It has to be pointed out that this
is a very small correction since the factor |1−Cv| is in general lower than 1×10−6. Nevertheless,
it must be included to avoid mass imbalance after the very large number of time steps required
by the simulations.

Regarding the pinch-off condition needed to remove all the fluid downstream of a given point,
we select the pinch off location as that where (i) the radial position of a point of the interface
is smaller than a critical radius rc (r < rc) and (ii) this point must be a local minima of r(s),
with s being the arc length. To find this point, in each time step we (i) adjust two splines to
the radial and the axial position of the interface, r(s) and z(s) respectively, with respect to the
arc length s. (ii) All the local minima, rm, of r(s) are identified. (iii) If the condition rm < rc
is satisfied for any minima (zm, rm), all the points that satisfies that z > zm are removed from
the meniscus interface. (iv) An hemispherical cusp is added to close the tip, discretized in five
points, from the point (zm, rm) to the point (zm + rm, 0), and assigning to those new points the
values of the velocity potential, φ, and the normal velocity, vn, of the pinch-off point (zm, rm).
After this procedure, the interface is re-gridded to maintain the number of points it had before
the pinch-off, and maintaining an approximately equal arc length spacing on the meniscus by
interpolating with cubic splines r(s) and z(s). It has to be noted that after the pinch-off the time
step is automatically reduced by the adaptive Runge-Kutta method, as described in Appendix
D. This time step reduction is crucial to prevent the simulations from failing after the pinch-off.

The radius rc for the pinch-off criteria is chosen as rc = 5 × 10−3 in the simulations. This
value is small enough to ensure that the time and location at which the pinch-off between the
ligament and the meniscus occurs, are practically the same even if smaller values of rc are chosen.
Figure 3.2 shows the evolution of the minimum radius of the neck, which forms on the meniscus
before the pinch-off, as a function of the time to pinch-off in a simulated case. For a sufficiently
small neck radius, the computations suggest that it goes as r ∼ (tp − t)1/3, which implies that
when r ∼ rc = 5× 10−3, the time for the pinch-off to occur is of the order of (tp− t) ∼ 1× 10−7,
which is much smaller than any other characteristic time of interest in the problem. Interestingly,
this pinch-off time scaling does not agree with the scaling provided in literature for the pinch-off
of uncharged inviscid liquid ligaments, r ∼ (tp − t)2/3 (Nitsche et al. 2004). However, this later
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scaling is recovered with our model if the dripping of an uncharged droplet is computed (not
shown). Nevertheless, the results plotted in Figure 3.2 are not intended to specifically analyze
the pinch-off problem in detail, but just to provide some estimate of the pinch off time to support
the appropriateness of using rc = 5× 10−3 as the radius at which pinch-off occurs.

Finally, during its evolution the meniscus might tends to develop conical or sharp pointed
tips, as those seen in the experiments, making the electric and capillary stresses on the meniscus
surface to increase dramatically as the tip is approached. Even though the meniscus tip is always
forced to be a spherical cap in the model, the radius of such cap may be made as small as desired
by increasing the number of nodes in which the interface is discretized, which in principle would
allow simulating such conical (although artificially rounded) tips. However, increasing the number
of nodes a factor of two or three dramatically rises the time required by the simulation to attain
periodic conditions. From the argument given in section 3.2.3, the radius of the electrospray jet
would be rj ∼ 1× 10−5, so an extremely large number of nodes would be needed around the tip
to describe such cone-jet transition. But even in that case, the equations would fail because the
surface would cease being equipotential, so for the present model it is useless to try to describe
such small geometrical features. On the other hand, the condition that both radii of curvature
must be equal at the liquid tip, limr→0 k2 = k1, (i.e. spherical cap) becomes a source of error in
the model as soon as the ”real shape” requires tips sharper than that allowed by the differential
arc length ds chosen for the calculations, even long before the field penetrates the liquid, or
when the tip is artificially rounded after the pinch-off. This artificial geometrical imperfection of
the tip leads to spurious imbalances between the capillary and electric pressures that strongly
influences the dynamic of the liquid tip, resulting in the formation of spurious liquid jets when
the electric stresses overcome the capillary ones, or in the formation of spurious wells at the
tip otherwise. In either case, spurious capillary waves are generated that travel and propagate
upstream since there is no viscosity to damp them, so the influence of this source of error in the
dynamic of the oscillating meniscus is difficult to asses.

3.3.2 Electrical and capillary stresses on the meniscus surface

Figure 3.3 shows five computed dimensionless meniscus profiles, from its most retracted position
to the more elongated one (prior to pinch off), for q = 5.79× 10−2 (a), and for q = 6.82× 10−3

(b), for B
E
= 0.2 and B = ×10−2. In both cases, the evolution has reached a periodic regime. The

radial and axial coordinates are made dimensionless with the nozzle diameter, D. The meniscus
begins to elongate from its retracted position until it adopts a quasi-conical shape (second panel
from the top in (a) and in (b)) after which tiny droplets begin to be ejected from the meniscus tip.
As time advances, the meniscus develops a ligament whose tip keeps on randomly emitting bursts
of tiny droplets (panels 3 and 4 in both cases). The ligaments are stretched and finally detached
from the meniscus (fifth panel in both cases, just before detachment), forming a larger droplet.
After the detachment the meniscus recedes violently (not shown) and the same process starts
again periodically. Figure 3.3 also show the strong influence of the flow rate q on the meniscus
mean volume, the length and width of the ligament and the volume of the droplets emitted
from the meniscus during each oscillation. The main features are similar to those observed in
the experiments, although in the later there were no ejection of small droplets prior to the
detachment of the ligament (except for those invisible ones emitted by the electrospray at the
conical tip, see section 3.4). This qualitative difference might be possibly due to the spurious
effect caused by the way the model reshapes the ligament tip, as discussed in the previous section.

The simulations allow checking the importance of the capillary and electric stresses on each
point of the meniscus surface at any stage of its oscillation, and so checking if some of the
assumptions made in Chapter 2 are appropriate. Figures 3.4 to 3.6 represent the dimensionless
capillary and electric stresses on the meniscus, ku and 1/2B

E
E2

n respectively, versus the
dimensionless axial position, z, for some key stages of the meniscus oscillation.

Figure 3.4(a) shows a meniscus with an elongated ligament right before its detachment. The
ligament is fully stretched and the neck where the capillary stresses are going to produce the
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(a) Meniscus during its oscillation for q = 5.79×10−2.
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(b) Meniscus during its oscillation for q = 6.82×10−3.

Figure 3.3: Dimensionless meniscus profile at different stages during its oscillation for two
different flow rates. B

E
= 0.2 and B = 6× 10−2.
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(a) Capillary stresses (continuous line) and electric
stresses (dashed line) on the meniscus surface just before
the ligament detachment.
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(b) Capillary stresses (continuous line) and electric
stresses (dashed line) on the meniscus surface just
after the ligament detachment.

Figure 3.4: Dimensionless capillary and electric stresses on the meniscus surface just before and
after the ligament detachment. q = 5.79× 10−2, B

E
= 0.2 and B = 6× 10−2.

pinch off can be clearly observed. As assumed in Chapter 2, the capillary and electric stresses
balance each other along the ligament, where they remain constant, whereas the capillary stresses
dominates on the neck and the electric ones dominate on the tip. Right after the detachment,
see Figure 3.4(b), the electric stresses at the tip become stronger than the capillary ones, leading
to the ejection of tiny droplets from the meniscus tip until the capillary stresses take over and
the meniscus begins to recede violently with a velocity of the order of the capillary velocity. This
feature is not observed in the experiments, where there is no emissions from the meniscus tip
after the detachment of the ligament, and it is probably due to the numerical errors linked to the
artificially rounded tip, as commented before. The beginning of the recession period is shown in
Figure 3.5(a). As mentioned before, the capillary stresses become dominant at the tip leading to
a retraction of the meniscus. Figure 3.5(b) shows an instant where the retraction velocity is of
the order of the capillary velocity. Some capillary waves may be identified. After the retraction,
the meniscus elongates again, Figure 3.6(a), and a rounded tip is formed later on, Figure 3.6(b),
when the electric stresses begin to take over at the tip. Capillary waves can be observed. In
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(a) Capillary stresses (continuous line) and electric
stresses (dashed line) on the meniscus surface during
the first stages of the retraction.
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(b) Capillary stresses (continuous line) and electric
stresses (dashed line) on the meniscus surface during
its violent retraction.

Figure 3.5: Dimensionless capillary and electric stresses on the meniscus surface in different
stages during its retraction. q = 5.79× 10−2, B

E
= 0.2 and B = 6× 10−2.

subsequent times, small droplets will start being ejected from the tip and the ligament begins
to form.
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(a) Capillary stresses (continuous line) and electric
stresses (dashed line) on the meniscus surface when it
starts to elongate after the retraction stage.
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(b) Capillary stresses (continuous line) and electric
stresses (dashed line) on the meniscus surface when a
pointed tip starts to form at its tip.

Figure 3.6: Dimensionless capillary and electric stresses on the meniscus surface in different
stages during its elongation. q = 5.79× 10−2, B

E
= 0.2 and B = 6× 10−2.

3.4 Comparison with experiments

The simulations have been performed for B
E
= 0.2, B = 6× 10−2 and a range of dimensionless

flow rates, q, from 6.3×10−4 up to 1.5×10−1 to compare them with the experiments of Chapter
2. The simulations start with an initial hemispherical meniscus that inflates while being fed at
constant flow rate. The electric stresses pull the meniscus, giving it an ellipsoidal-like shape as
it continuously grows in volume. After some time, the electric stresses start tearing off a small
mass of liquid from the meniscus tip while it keeps on growing and elongating. At some point,
a periodic state is reached, where the volume that enters the meniscus during a period of the



3.4. COMPARISON WITH EXPERIMENTS 39

oscillation equals the volume emitted from it in the form of droplets during that period. These
processes can be observed in Figure 3.7(a) for a case in which q = 7.35 × 10−2, B

E
= 0.2 and

B = 6 × 10−2. It represents the dimensionless meniscus volume, vol, versus the dimensionless
time, t. The dotted line corresponds to the computed results whereas the solid line collects
experimental results for the same conditions when the periodic microdripping is obtained. It
is interesting to note that the values of vol and the oscillation period is well captured by the
simulations. However, it is also clear that the detail of the emissions is not.

Figure 3.7(b) shows the dimensionless axial position of the meniscus tip, ztip, versus the
dimensionless time t. The dotted line represents the computed values and the solid line represents
the experiment. Whereas in the experiments there is apparently just one droplet emitted at the
end of each oscillation, indicated by the steep fall of ztip, the simulations yield two or three burst
of emissions of tiny droplets at a very high frequency while the meniscus elongates, as indicated
by the highly oscillating parts of ztip, before a much larger droplet is eventually emitted at the
end of the period. The inset in Figure 3.7(b) shows the blown up of one of these high frequency
bursts.

t

0 5 10 15 20 25 30 35 40

v
o
l

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Volume of the meniscus versus time. (b) Axial position of the meniscus tip versus time.

Figure 3.7: Temporal evolution of the meniscus volume and the axial position of the tip for
q = 7.35 × 10−2, B

E
= 0.2 and B = 6 × 10−2. Solid line for experiments and dashed line for

simulations.

A more detailed comparison between the experimental and numerical values of ztip with
time t is shown in Figure 3.8 for q = 5.79 × 10−2, B

E
= 0.2 and B = 6 × 10−2. The time

offset between the experimental curve (dotted line) and the numerical one (continuous line) has
been manually adjusted to kind of overlapping both curves. This figure includes pictures of the
experimental meniscus shape corresponding to the time location where the arrows point at. As
mentioned before, the experimental result yields a single drop, indicated by the sudden drop
of ztip. When analyzed in more detail, one observes how the experimental curve ztip versus t
increases smoothly from the beginning (left most point in the curve) when, suddenly, its slope
presents an abrupt drop around t ∼ 111.35 in this case. This jump in the slope of ztip(t) occurs
when the meniscus develops the conical tip, as indicated by the corresponding picture. In this
case, the conical tip persists even after the ligament detaches from the meniscus (right most
picture). It seems reasonable to expect that the intense space charge in front of the meniscus,
caused by the electrospray of invisible droplets emitted from its conical tip, deforms, decreases
or limits the electric field acting on a region close to the tip of the ligament, thus explaining why
the velocity of the tip suddenly slows down. Therefore, it seems that the main difference between
the simulations and the experiments lays on the dynamic of the tip that the present model is
unable to describe, as mentioned before, and also on the existence of a strong space charge due
to the electrospray emitted form the conical tip, which is not taken into account in the model.

Figure 3.9 shows the experimental evolution of the tip velocity, vtip, made dimensionless with
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Figure 3.8: Temporal evolution of the axial position of the tip for q = 5.79× 10−2, B
E
= 0.2 and

B = 6× 10−2. Solid line for experiments and dashed line for simulations.
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Figure 3.9: Temporal evolution of the dimensionless velocity of the tip, vtip, in a cycle of the
meniscus oscillation for q = 5.79 × 10−2, B

E
= 0.2 and B = 6 × 10−2. A pentagon symbol

indicates the moment at which an electrospray starts to be emitted from the meniscus tip. T is
the dimensionless period of the oscillation.
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(a) Temporal evolution of the dimensionless velocity of
the tip, vtip, in a cycle of the meniscus oscillation for
dimensionless flow rate varying from q = 2.57 × 10−2

up to q = 7.9× 10−2.

(b) Temporal evolution of the dimensionless velocity of
the tip, vtip, in a cycle of the meniscus oscillation for
dimensionless flow rate varying from q = 8 × 10−4 up
to q = 2.37× 10−2.

Figure 3.10: Temporal evolution of the dimensionless velocity of the tip, vtip, in a cycle of the
meniscus oscillation for different dimensionless flow rate. Darker solid lines are for higher flow
rates, and pentagon symbols indicate the moment at which an electrospray starts to be emitted
from the meniscus tip. B

E
= 0.2 and B = 6×10−2. T is the dimensionless period of the oscillation.

the capillary velocity, vc, versus the time made dimensionless with the oscillation period, T , for
the same case of Figure 3.8 (q = 5.79 × 10−2, B

E
= 0.2 and B = 6 × 10−2). The starting time

is set at the instant when the ligament detaches from the meniscus. The symbol (star) indicates
the time location when the conical tip develops. At the beginning, the tip velocity is negative,
indicating the recession of the meniscus after the detachment of the ligament. At t/T ∼ 0.1
the tip velocity is zero, indicating the time at which the recession part of the oscillation ends.
Between t/T ∼ 0.1 and t/T ∼ 0.5 the meniscus grows and its tip remains rounded, although
its tip velocity does not grow monotonically: a noticeable hump near t/T ∼ 0.3 may be easily
identified, although there are one more hump, much more subtle, around t/T ∼ 0.15. These
humps are caused by capillary waves reflecting back and forth from the meniscus base at the
needle rim, which may be clearly seen in the videos. At t/T ∼ 0.5, when the conical tip develops,
the tip velocity suffers a sudden drop, jumping from vtip ∼ 2.5 to vtip ∼ 1, to grow again with
time, but much smoothly than before, until the end of the oscillation. As shown in Figure 3.10
(a), very similar results are obtained from the experiments for moderate an large values of q
while keeping constant B

E
= 0.2 and B = 6 × 10−2: the conical tip develops somewhere close

to t/T ∼ 0.5 and the dimensionless tip velocity drops from vtip ∼ 2.2− 2.8 down to vtip ∼ 1 to
remain relatively constant until the end of the oscillation.

Figure 3.10(b) shows experimental values of vtip(t) for the smaller flow rates keeping B
E
= 0.2

and B = 6 × 10−2. The first half of the cycle is very similar to the case of moderate and large
flow rates, Figure 3.10(a). The conical tip also appears around t/T ∼ 0.5, but as q decreases
vtip also decreases for dimensionless time larger than 0.5, in contrast with the case of larger flow
rates. The main reason is the length of the ligament. Whereas for moderate and large flow rates
the dimensionless length of the ligament, ℓs, is of order one or larger, for sufficiently small flow
rates one obtains that ℓs < 1. When ℓs ≥ 1 the dynamic of the tip of the ligament becomes
almost independent of the oscillation of the meniscus, whereas for ℓs < 1 the motion of the tiny
ligament is linked to the oscillation of the meniscus, so the tip tends to move as the meniscus
does.

For our inviscid liquid, one may assume that the velocity of the tip as the elongation of
the meniscus proceeds is caused by the electric suction, so that ρv̂2tip ∼ ǫ0Ê

2
tip, from which one
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obtains Êtip ∼ (ρ/ǫ0)
1/2v̂tip or, in dimensionless form, Etip ∼ vtip/BE

1/2. With this hypothesis,
Figures 3.9 and 3.10 are just a re-scaled measurement of Etip versus time. In this case, Etip drops
down as soon as the conical tip forms, and remains relatively constant until the detachment of
the ligament. The electric field given by Taylor is expressed as Ê

T
= (2γ/(rǫ0 tanαT

))1/2, where
α

T
= 49.23◦ is Taylor’s angle. For the liquid used, and taking a characteristic value of r = D/4

as the radius of the ligament at the instant in which the conical tip develops, one obtains a
dimensionless Taylor field E

T
≈ 6 that would induce a tip velocity v

Ttip
≈ 2.6. This estimate

is consistent with the idea that the formation of an electrospray at the conical tip limits the
ligament tip velocity. The fact that the field at which the conical tip forms is relatively constant
might be understood since for highly conducting liquids, like the ones used here, the details of
the cone-jet-electrospray are relatively independent of the surroundings, and so is the electric
field on the Taylor cone.

In the computed case, however, the tip accelerates to dimensionless velocities much larger
than 2.8 and much faster than in the experimental cases. This is clearly seen from Figure 3.8,
where before each burst the slope of the discontinuous line (computed one) representing ztip(t)
becomes much steeper than the maximum slope of the continuous line (i.e., when the conical
tip forms). The bursts are preceded by the formation of a (spurious) jet, possibly caused by the
artificial rounded tip forced by the model. Accordingly, this results in spurious values of Etip,
much larger than the real ones, due to the shape of the tip imposed in the model and, perhaps,
also overestimated due to the absence in the model of the electrospray-space charge. Therefore,
the details of the dynamics of the ligament tip cannot be correctly reproduced.
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(a) Dimensionless frequency of the oscillation, f ,
versus the dimensionless flow rate, q. Circles for the
experiments and squares for the simulations.
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Figure 3.11: Evolution of the dimensionless frequency of the oscillation and the dimensionless
mean volume of the meniscus versus the dimensionless flow rate. B

E
= 0.2 and B = 6× 10−2.

Nevertheless, more global quantities, such as meniscus dimensionless volume, vol, and
oscillation dimensionless frequency, f , are reproduced rather well for most cases, suggesting
that the errors associated to the tip does not affect much the dynamic of the meniscus.
Figure 3.11 shows the dimensionless oscillation frequency, f , and the dimensionless meniscus
mean volume, v

M
,versus the liquid flow rate q. The circles represent the experimental results

whereas the squares represent the numerical results. For moderate and large flow rates, q ≥ 10−2,
the simulations reproduce the experimental results. However, for the smaller flow rates the
simulations under estimate f and over estimate v

M
. The simulations also appear to yield a plateau

of both f and v
M

for flow rates smaller than q = 1×10−2 whereas in the experiments the plateau
is attained at around q = 1× 10−3. The simulations cease to yield periodic microdripping (axial
mode II) for flow rates smaller than q ≈ 5 × 10−3. For smaller flow rates, the simulations yield
axial mode I instead: meniscus oscillation with interspersed emissions of droplets and stages
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Figure 3.12: Dimensionless ligament length ℓs and ligament mean diameter ds versus the
dimensionless flow rate q. Circles for the experiments and squares for the simulations. B

E
= 0.2

and B = 6× 10−2.

with no emission. This result is not surprising since the simulated meniscus in axial mode II
always exhibit spurious bursts of emissions of droplets as the ligament forms, thus emptying the
ligament itself. As q → 1 × 10−3, the drainage due to the bursts reduces in excess the volume
of the ligament and eventually prevents the pinch off, whereas in the experiments the volume
of liquid emitted in the form of ultra fine aerosol is almost negligible, so the ligament does not
have any appreciable drainage.

The effect of this drainage due to the emission of droplets as the ligament forms may be
clearly seen in Figures 3.12. Figures 3.12(a) and 3.12(b) show, respectively the dimensionless
length and diameter of the ligament, ℓs and ds, before pinch off versus the dimensionless flow
rate q. The circles represents experiments whereas the squares represents simulations. In this
case B

E
= 0.2 and B = 6 × 10−2. The computed values of ℓs are larger than the experimental

ones, as expected form the discussion about the velocity of the ligament tip. On the other hand,
the computed values of ds are considerably smaller than the experimental ones. This is due to the
continuous drainage brought about by the bursts suffered by the simulated ligament during the
oscillation. The same may be concluded from Figure 3.13. It plots the equivalent dimensionless
diameter of the droplet, dd, formed after the ligament detaches from the meniscus, versus the flow
rate q. Circles represent experiments whereas the squares represent simulations. As expected, the
simulations notably under estimate the experimental results because of the spurious drainage
effect. In the same figure 3.13, the crosses stand for the dimensionless droplet volume obtained
by resorting to mass conservation through the flow rate q and the oscillation frequency f
obtained from the simulation. The crosses match very well the experimental results. It is not
surprising since the computed f reproduces very well the experimental ones, so application of
mass conservation leads to the correct droplet size.

3.5 Conclusions and future works

An inviscid, perfectly conducting liquid has been used to model the axial mode II (periodic
microdripping) regime, in the needle-plate electric configuration, neglecting the effect of the
droplets emitted during the oscillations. Under these hypotheses, the equations governing the
liquid dynamics and the electric field are the Laplace equation for the velocity and electric
potentials. Those are solved by the Boundary Element Method (BEM).
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Figure 3.13: Equivalent diameter of liquid emission per meniscus oscillation. Circles for the
experiments and crosses for the simulations. Squares represent the equivalent diameter of the
volume emitted in the main ligament developed in each period. B

E
= 0.2 and B = 6× 10−2.

The results of the simulations agree qualitatively well with the experiments. As time advances,
the meniscus elongates and forms a relative narrow tip that eventually forms a ligament. As the
ligament stretches, bursts of droplets are randomly emitted from the tip of the ligament. At
some further time the ligament detaches from the meniscus. The meniscus then recedes and the
process repeats itself periodically.

Some of the assumptions made in Chapter 2 have been checked. As expected, the electric
stresses are of the order of the capillary stresses in the ligament, except at the tip and the
neck. The electric stresses are dominant in a zone around the ligament tip whereas the capillary
stresses dominate on the neck, eventually leading to the ligament pinch off. After the ligament
detaches from the meniscus, the capillary stresses become dominant in all the meniscus and the
meniscus retracts violently at a velocity of the order of the capillary velocity. Capillary waves
are formed on the meniscus while it starts to elongate again and the electric stresses take the
control of the tip producing a pointed quasi conical tip from which small droplets begin to be
emitted again.

The simulations have been compared with the experimental results of Chapter 2. The
computed values of the oscillation frequency f and the meniscus mean volume v

M
for moderate

and large flow rates agree very well with the experimental results. However, the details of the
evolution of the ligament are not captured. The bursts of droplets that randomly occur on
the simulations do not happen in the experiments. The reason lays mainly on the limitations
of computing the details of the ligament tip, which is artificially rounded leading to spurious
imbalances between the electric and capillary stresses at the tip. This effect is combined with the
existence, in the experiments, of a strong space charge that is not included in the present model.
This space charge is generated by the electrospray emitted from the Taylor cone that forms at the
tip of the ligament in the experiments. This particular structure seems to limit the maximum
electric field pulling the ligament. As a consequence, the computed ligaments are exposed to
stronger electric fields on their tip, so they become longer, thinner and have a smaller volume
than the experimental ones due to the spurious bursts of emissions, so the droplets formed after
the ligament pinch off are smaller than the experimental ones. The disagreement increases as
the flow rate decreases. Nevertheless, the droplet size may be obtained with good precision by
combining the computed frequency f with mass conservation.

The minimum flow rate for axial mode II obtained from the simulations is overestimated.
This is due to the continuous mass drainage that experiences the computed ligament as bursts
of droplets are randomly emitted from its tip, whereas in the experiments an almost negligible
mass is emitted from the conical tip, which forms at the tip of the ligament, in the form of an



REFERENCES 45

ultra fine aerosol.
Future works are, then, necessary to correctly compute the variables near the tip and to

include the effect of the structure space charge emitted from the Taylor cone that forms at
the ligament tip for a non-negligible part of the oscillation period. Perhaps the large scale
disparity between the dimensions of the ligament and those of the cone-jet-electrospray for
highly conducting liquids, such as the ones used in this work, might allow treating at least to a
first order this effect.
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Chapter 4

Electro-coflowing emissions
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4.1 Introduction

The generation of emulsions is a regular procedure to synthesize particles in the micron size
regime. One inexpensive way of doing so resorts to glass microfluidic devices operated in the
so-called coflow configuration. It consists of a capillary tube in which a thinner capillary tube
is coaxially located. This thinner tube is usually a borosilicate tube whose end has been pulled
to form a tip that may have a diameter between a few and hundreds of microns. A liquid flows
through the annular gap between the concentric tubes, whereas a second liquid, immiscible with
the first one, is forced through the inner tube. For given tube sizes and fluid properties (density,
viscosity, and surface tension) the controlling parameters are the liquid flow rates. Thus, for given
density and viscosity ratios, the outcome is controlled by the flow rates, or in dimensionless form,
by the Weber and Capillary numbers. In its most typical configuration, the viscous drag the outer
liquid exerts on the meniscus of the inner liquid sticking out of the tip may overcome the capillary
stress, thus pulling a liquid ligament whose diameter decreases as it develops downstream. This
is the so-called jetting mode in the thinning regime, and it is a simple way to generate droplets
that may be smaller in diameter than the tip. There are many other modes (Guerrero et al. 2014;
Castro-Hernández et al. 2009; Utada et al. 2007) but they are not in the scope of this work. In
brief, the scaling laws for this jetting in thinning regime indicate the possibility of generating
tiny droplets from large tips, but it also states the difficulty of reaching the sub-micron size
regime.

On the other hand, it is well known that the electrospray in the cone-jet mode is an easy
mean to generate droplets or fibers (liquid ligaments) that may easily reach the sub-micron size
regime. It is, therefore, promising to combine both techniques, coflow and electrospray, to try
to generate droplets from a single device, but whose diameters may now span from hundred of
microns down to the sub-micron regime.

47
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The novelty is, therefore, including the electric forces within the microfluidic device. To
that end Gundabala et al. 2010 (Gundabala et al. 2013) developed a novel microfluidic device,
in which a third liquid, immiscible with the first one, is injected counterflow through a third
capillary tube, also axially located inside the first capillary tube, see Fig. 4.1(a). This third
liquid, the liquid collector, forms an interface with the first liquid, the outer one. This interface
is steady, but flows downstream dragged by the outer liquid. Then, if the outer fluid is a dielectric
and the collector one is a conductor, one can apply a voltage difference between the collector
fluid and the inner fluid (the one that will form the droplets), as sketched in Figs. 4.1. The
thus formed highly charged droplets will swim towards the liquid interface (the liquid collector),
where they will loose their charge. The velocity of the interface will drag the uncharged droplets
away downstream.

This Chapter is dedicated to the experimental characterization of this novel glass microfluidic
device when the atomization is mostly due to the action of the electric stresses. Different emission
regimes are observed when different ranges of the controlling parameters are swept, and among
them appears a pulsating regime similar to the microdripping regime studied in Chapter 2. Under
this regime, droplets are generated whose diameter is smaller than the diameter of the tip of the
inner tube.

4.2 Problem description and experiments

To search the microdripping regime in electro-coflow and to characterize the generation of
emulsions in this regime, a microfluidic device such as the one used by Gundabala et al. 2010
and Utada et al. 2005 has been fabricated. The device, sketched in figure 4.1, has been fabricated
using borosilicate glass capillaries. The tip of a glass tube of 2 mm of outer diameter has been
pulled and cut by means of the equipment described in appendix A to a tip diameter of around
50 µm. This tube, labeled as inner glass tube in figure 4.1(a), has been introduced inside another
glass tube of square section of 2 mm of inner side labeled as outer glass tube. A third glass tube
of 2 mm of outer diameter, the collector glass tube, has been also introduced inside the outer
glass tube through the opposite side as the inner glass tube, and located at a distance of 1.5 mm
from the pulled tip.

A flow rate, q̂i, of ethylene glycol has been forced through the inner glass tube by means of a
pressurized tank. Another pressure driven flow rate, q̂o, of silicone oil, acting as coflowing liquid,
flows through the gap between the outer diameter of the inner glass tube and the inner square
section of the outer glass tube. Another flow rate of ethylene glycol, q̂col, is pressure driven, in
counterflow configuration, through the collector glass tube. The flow rate of the collector is set
to form a rounded and steady liquid interface between the outer and collector liquids, located
at a distance of 1 mm from the inner tube tip.

It is important to notice that this three-fluid system is very sensitive to variations of pressure
in the feeding systems, so special care must be taken to ensure the steadiness of the liquid
collector interface. It would be preferable to fix the flow rates with syringe pumps to overcome
these stability problems.

The conductivity of the ethylene glycol, 1.07 × 10−4 S/m in this case, and the practically
dielectric silicone oil allows setting up an electric field between the meniscus of the inner liquid
at the inner glass tube tip, connected at a voltage φ̂0, and the liquid collector connected at
ground voltage. Thus, by varying the outer flow rate and the electric field one may observe
different emission regimes produced in electro-coflow. The properties of the liquids used have been
obtained from the literature, and are listed in the table 4.1. The interfacial tension, γ = 17.5±0.4
mN/m has been measured by the pendant drop method at 20◦C.

Once the geometry and the liquids are established, the governing parameters are the inner
and outer flow rates, q̂i and q̂o respectively, along with the voltage applied to the inner liquid,
φ̂0. These parameters have been swept to make a phase diagram of the emissions in electro-
coflow. The emissions from the meniscus tip have been recorded with a high speed camera and,
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(a) Oscillating meniscus, zone II (sub-zone b). q̂o = 5
mL/h, q̂i = 94 µL/h, φ̂0 = 500 V, and D = 50 µm

(b) Oscillating meniscus, zone II (sub-zone c). q̂o = 5
mL/h, q̂i = 94 µL/h, φ̂0 = 750 V, and D = 50 µm

Figure 4.4: Emissions in electro-coflow: oscillating meniscus and transition to jetting.

(a) Plane whipping, zone III. q̂o = 3
mL/h, q̂i = 274 µL/h, φ̂0 = 1030 V, and
D = 50 µm

(b) Whipping, zone IV. q̂o = 5 mL/h, q̂i = 298
µL/h, φ̂0 = 1250 V, and D = 50 µm

Figure 4.5: Emissions in electro-coflow: Emission of jets.

a clear transition to a jetting regime.

Jetting emissions occur for high enough voltages. In these emissions, from the tip of a static
meniscus an electrified jet is issued. In zone IV three-dimensional whipping instabilities are
dominant in the charged jets, which develop a helicoidal structure whose characteristic frequency
is much slower than those observed in air thanks to the viscosity of the outer fluid, figure 4.5(b).
It’s to be noted the almost in-plane whipping observed in zone III, figure 4.5(a), in contrast
with the three-dimensional structure of the jet in the whipping instability in zone IV. In zone
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Figure 4.7: Jetting, zone V. q̂o = 16 mL/h, q̂i = 346 µL/h, φ̂0 = 800 V, and D = 50 µm.

Figure 4.8: Whipping, zone IV. Viscosity of the outer liquid, 0.5 × 10−3 Pa s. q̂o = 16 mL/h,
q̂i = 346 µL/h, φ̂0 = 1000 V, and D = 50 µm.

of forces that are acting on the meniscus.

4.3.3 Oscillatory regime in electro-coflow and comparison with

microdripping regime in air

Once checked the viability of the liquid collector for discharging the emitted droplets and the
outer flow for taking these droplets away, and once identified the parametrical range in q̂o, q̂i
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Figures 4.9(a) and 4.9(b) the inner flow rate is maintained almost constant, and the outer flow
rate is changed by three orders of magnitude, but the frequency of the oscillating meniscus is
barely affected by the changes in the outer flow rate. The different curves remain approximately
within the error bars of the measurements. The shape of the frequency versus voltage curves
is quite indicative of the regime of each measurement. In zone II the frequency grows linearly
with the voltage; for larger voltages (end of sub-zone c) the frequency remains almost constant
or grows at a very lower rate with the voltage. Is in this part where the dripping regime is
transitioning to a jetting regime. In the linear region, between 500 V and 900 V, there is a trend
similar to that of the microdripping regime in air, where the frequency also increases linearly
with the voltage.

In Figures 4.10(a) and 4.10(b) the outer flow rate is maintained constant and the inner flow
rate is varied. When the inner flow rate is increased the oscillation frequency decreases, while
the relation f̂ − φ̂0 continues being relatively linear. Attending to changes in inner flow rate an
voltage, the oscillation regimes in electro-coflow behave similarly than the microdripping regime
in are, while changes in the outer flow rate do not produces appreciable changes in both frequency
of the oscillation or emitted volume per oscillation.

4.3.3.1 Time scale of the meniscus oscillations

The main difference between the oscillating meniscus regimes observed in electro-coflow and
the microdripping regime in air of Chapter 2 is the time scale of the meniscus oscillations.
In the periodic microdripping regime in air the dynamics of the meniscus and the ligament
formation process is determined by the action of capillary and electric forces. The electric
forces are dominant in the meniscus tip, pulling the meniscus axially or at least maintaining
the tip pinned, whilst the capillary forces are dominant in the meniscus zone close to the tube
provoking the recession of this part of the meniscus. This distribution of stresses makes possible
the formation and elongation of a ligament which ultimately detaches from the meniscus and
develops a droplet. As stated in Chapter 2 the time needed to form and develop this ligament
has an important effect on the period of the meniscus oscillations when high flow rates are being
considered and hence large ligaments are formed. But despite this effect, as a first approximation,
the period of the oscillations in microdripping in air is of the order of the capillary time. In electro-
coflow, however, the period of the meniscus oscillations is of the order of 1 × 10−3 s, as shown
in Figures 4.9 and 4.10, while the capillary time is of the order of tc = (ρiD

3/γ)1/2 ∼ 1× 10−5

s. In this case the tube’s tip diameter is D = 50 µm, ρi is the density of the inner liquid, the
ethylene-glycol, and γ is the interfacial tension between the inner and outer liquids, being the
outer liquid silicone oil of 10 cSt. This difference with respect to the microdripping in air suggests
that in the oscillation/emission process in liquid phase other stresses must play a role. When
the viscosity of the outer medium is reduced from 9.3 × 10−3 Pa s to 5 × 10−4 Pa s, there is
a significant increment of the oscillation frequency of the meniscus, which seems to imply that
the new stresses that are important in the meniscus dynamics in electro-coflow are the viscous
stresses of the outer and inner liquid.

Figure 4.11 shows a collage of images of different stages of the meniscus during the formation
of the ligament for a representative case of the pulsating regimes in electro-coflow. In the image
at the top the meniscus has a quasi-conical shape and a fine jet begins to be emitted from its
tip. The ligament evolves very similarly to the way it does in the microddripping regime in air,
developing a neck. And finally, in the image at the bottom, the pinch off occurs and the ligament
detaches from the meniscus. The period of the meniscus oscillation is of the order of the ligament
formation time, t̂s, which has a value of 1× 10−3 s in the experiments of Figure 4.11. Estimates
of the ligament formation time, and the effect that the viscosity of the inner and the outer liquid
have on this time, are worked out in this section.

The ligament developed in the meniscus tip is a slender geometry that is characterized by a
length, ℓ̂s, and a width, d̂s, in the same way than in Chapter 2. During the ligament formation
time, t̂s, the liquid flows in radial direction from the meniscus to the ligament a distance which
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Figure 4.11: Ligament formation in oscillating meniscus regime, zone II, in electro-coflow.
Viscosity of the outer liquid, 9.3 × 10−3 Pa s. q̂o = 48 mL/h, q̂i = 188 µL/h, φ̂0 = 700 V,
and D = 50 µm.

is of the order of d̂s at a radial velocity v̂rs ∼ d̂s/t̂s, where the subindex s stands for ligament
related magnitudes. This radial flow must fill up the rest of the ligament, so by the continuity
equation, the axial velocity of the liquid in the ligament is v̂zs ∼ v̂rsℓ̂s/d̂s, and hence v̂zs ∼ ℓ̂s/t̂s.
Note that the ligament is a slender geometry and then ℓ̂s ≫ d̂s, which imply that v̂zs ≫ v̂rs.

For the representative case of Figure 4.11, the Reynolds number of the inner and outer
liquids are of the order of Rei = ρiℓ̂sd̂s/(µit̂s) ∼ 1 × 10−1 and Reo = ρoℓ̂sd̂s/(µot̂s) ∼ 1 × 10−1,
respectively, where the subindexes i and o stand for properties of the inner and outer liquid; and
the representative values of d̂s, l̂s, and t̂s measured in the recorded videos of the experiments
are, respectively, 15 µm, 200 µm, and 1 × 10−3 s. These relatively low value of the Reynolds
numbers indicate that the characteristic time of the oscillation of the meniscus is going to be
some viscous time, instead of the capillary time as it occurs in air.

At the same time, the capillary stresses acting on the meniscus produce an overpressure
∆p̂γ ∼ γ/d̂s in the region around the neck, which is the one that pushes the liquid in axial
direction to form the ligament. This force per unit of ligament length is of the order of
F̂p ∼ d̂2s∆p̂γ/ℓ̂s, and must be balanced by a viscous force since the Reynolds numbers are smaller
than one.

The two candidates to balance F̂p are the viscous force per unit of ligament length due

to the elongation of the liquid inside the ligament, which is of the order of F̂vi ∼ d̂2sµiv̂zs/ℓ̂
2
s,

and the viscous force per unit of ligament length from the viscous shear stress due to the
outer medium, which is of the order of F̂vo ∼ µov̂zs. If we compare both viscous forces, we
have that F̂vo/F̂vi ∼ µoℓ̂

2
s/(µid̂

2
s), where µi and µo are the viscosities of the inner and outer

liquid, respectively. In the experiments performed both viscosities are of the same order, so
F̂vo/F̂vi ∼ (ℓ̂s/d̂s)

2 ≫ 1. So F̂vo must be the one that balances F̂p. From this balance the
following expression for t̂s is obtained,
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t̂s ∼
µo

γ
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d̂s
. (4.1)
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Figure 4.12: Ligament formation time, t̂s, versus inner flow rate, q̂i. Viscosity of the outer liquid,
9.3 × 10−3 Pa s. φ̂0 = 700 V, and D = 50 µm. Circles for the values measured in the videos,
squares for the values from Equation 4.1. The results corresponding to different outer flow rates
are represented in this figure, due to the little effect that this flow has in oscillating regimes.

In Figure 4.12, the circles represent experimental values of t̂s versus the inner flow rate,
whereas the squares represent the values of t̂s yield by Equation 4.1, calculated with the measured
values of ℓ̂s and d̂s, versus t̂s. Although the values plotted in the figure have a high dispersion due
to the uncertainties in the measurements of t̂s, ℓ̂s, and d̂s, the order of magnitude of the values
of t̂s are consistent with the experimentally measured period of the oscillations in electro-coflow
oscillating regime.

4.3.3.2 Ligament characterization

As shown in Figure 4.4, in the parametric range for which periodic oscillating regimes are
established, each of these oscillations have different stages, similar to those observed in the
case of the microdripping regime in air: a first stage of elongation of the meniscus until fine jets
are emitted from its tip, a second stage in which a ligament is developed, a third stage where
the pinch off of the ligament occurs, and a final stage where a subtle recession of the meniscus
take place.

Knowing that the ligament formation process is controlled by the viscous shear of the outer
liquid, scalings of the ligament length, ℓ̂s, and diameter, d̂s, can be obtained in electro-coflow
with respect to the inner flow rate. In the experiments made on oscillating regime, zone II, the
period of the oscillation, T , is of the order of the ligament formation time, ts, approximately
given by equation 4.1. Assuming that the mass flow issued in the form of spray from the tip of
the ligament is small compared with the injected flow rate, mass conservation in the ligament
provides q̂iT ∼ ℓ̂sd̂

2
s, which combined with equation 4.1 yield

ℓ̂s ∼ q̂
1/5
i T 3/5, (4.2)

d̂s ∼ q̂
2/5
i T 1/5. (4.3)

Figure 4.13 shows f̂ versus q̂i at constant voltage φ̂0 for four different voltages. It seems that
the frequency of the meniscus oscillation scales with a power close to −1/3 of q̂i for the range
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Figure 4.13: Frequency of the meniscus oscillation, f̂ , in zone II, versus inner flow rate, q̂i for a
outer flow rate q̂o = 51± 7 mL/h and outer viscosity µo = 9.3× 10−3 Pa s. Circles for φ̂0 = 900
V, squares for φ̂0 = 850 V, triangles for φ̂0 = 800 V, and diamonds for φ̂0 = 750 V. The dashed
lines have slope −1/3.

of flow rates in the experiments. By introducing T = 1/f̂ ∼ q̂
1/3
i in equations 4.2 and 4.3, the

scalings ℓ̂s ∼ q̂
2/5
i and d̂s ∼ q̂

7/15
i are obtained.

Figure 4.14 shows the measured values of d̂s and ℓ̂s versus the inner liquid flow rate, q̂i,
in electro-coflow oscillating regimes for a voltage φ̂0 = 700 V. Interestingly, despite of the
dispersion of the measurements, which include those taken for different outer flow rates, the
proposed scalings, represented by dashed lines, agree relatively well with the experiments. It is
noteworthy that trends not too different from those obtained for microdripping in air are found
for d̂s and ℓ̂s, even though the dynamics in the zone II of electro-coflow are controlled by the
viscosity of the outer fluid terms in our experiments.
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(a) Length of the ligament ℓ̂s respect to the flow rate
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Figure 4.14: Length and width of the ligament immediately before detachment as a function of
the inner flow rate. φ̂0 = 700 V, and D = 50 µm. The results corresponding to different outer
flow rates are represented in this figure, due to the little effect that this flow has in oscillating
regimes.
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4.4 Conclusions and future works

Following Gundabala et al. (2010), glass capillary microfluidic device has been manufactured
with the purpose of generating emulsions of ethylene glycol in silicone oil using electro-coflowing
techniques. A liquid collector has been used satisfactorily to discharge the droplets of the
dispersed phase of the emulsion and the outer flow rate has been useful to drive the neutralized
droplets away from the electrified meniscus of the inner liquid. Nevertheless, small pressure
fluctuations in the systems controlling the outer and collector liquids flow rates make it difficult
to maintain stable the liquid collector interface at a constant distance of 1 mm from the tip of
the inner tube, so extreme care has to be taken to get steady state conditions. There is also a
maximum voltage difference between the inner liquid and the liquid collector beyond which fine
electrified jets are emitted from the collector severely affecting the dynamics of the meniscus of
the inner liquid.

For a fixed couple of liquids (the inner and collector liquids are the same in our experiments),
a phase diagram of the emissions in electro-coflow has been obtained by sweeping the governing
parameters, the inner liquid flow rate, q̂i, the outer liquid flow rate,q̂o, and the voltage difference
set between the inner and collector liquids, φ̂0. The outer liquid flow rate does not have a
pronounced effect on the phase diagrams, so those are given in the q̂i-φ̂0 plane. Five different
zones have been identified. Zone I stands for dripping. Zone II stands for oscillating meniscus,
where in general a thin jet is issued from the tip of the ligament as it forms; although in some
regions of zone II (sub-zone a) no jet is issued from the tip of the ligament. In another region
of zone II, sub-zone c, the jet is continuously emitted from the ligament tip, and the ligament
break up is multimodal, yielding droplets smaller than the tip diameter. This zone also covers the
transition from dripping regimes to jetting regimes. In zone III, the first jetting zone, the highly
charged jet experiences an in plane whipping: the wavy jet is always contained in an axial plane
that may rotate at a slow frequency. This type of whipping, till our knowledge, has not been
reported in the literature. In zone IV the electrified jet develops a three-dimensional whipping,
forming an spiral whose diameter increases as the jet approaches the liquid collector. Finally,
in zone V the jet becomes stable and remains straight until it reaches the liquid collector. For
the liquid used, we have not seen a cone-jet structure that breaks up into droplets before the
whipping sets in.

In the oscillation regime, zone II, the meniscus pinned to the tip of the inner tube drips
periodically in a manner that resembles the microdripping regime in air characterized in
Chapter 2. We find that in this oscillatory regime, before the transition to jetting occurs, the
frequency of the oscillation f̂ increases lineally with the voltage φ̂0, and decreases when the inner
flow rate q̂i increases, similar to what we observed in the microdripping regime in air. This linear
behavior is observed in all the sub-zones a and b, and nearly the entire sub-zone c, indicating
that despite the differences observed in the emission, the whole zone II is the same oscillatory
regime. The outer flow rate, q̂o, does not seems to have any effect on the on the frequency of the
oscillation.

While the oscillation frequency for microdripping in air is of the order of the capillary
frequency in the case of electro-coflow, however, the corresponding oscillation frequencies are two
orders smaller than the capillary frequency. This suggests that other stresses must be involved
in the process. Estimates of the importance of the viscous stresses due to the outer and the inner
liquid are worked out, indicating that the viscous effect of the outer liquid on the dynamics of the
ligament is responsible for slowing down the oscillation frequency. This leads to an estimate of
the frequency in terms of the viscosity of the outer liquid, the interfacial tension and the length
and diameter of the ligament that provides the correct order of magnitude of the oscillation
frequency.

Approximate scaling laws have been worked out for the ligament length and width when the
inner flow rate increases, assuming that the period of the meniscus oscillation is of the order of
the formation time of the ligament, and observing that the frequency of the oscillation scales as
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q̂
−1/3
i .

As future works, new geometries need to be studied for the microfluidic device to generate
the liquid collector interface, to make it more robust to fluctuations in the pressure or in the
flow rate of the outer and collector liquids. The experimental work needs also to be extended to
a wider range of flow rates and liquid properties (i.e. increase the viscosity ratio) to explore new
emission regimes and production rates of droplets.
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Resonance of electrified and non electrified

pinned droplets
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5.1 Introduction

The stability and vibration of electrified and non-electrified pinned droplets has been thoroughly
studied, both numerically and experimentally. In the related literature, it is customary the use
of flat surfaces to support the droplet and then vibrate it to study its resonance. Nevertheless, in
many practical cases droplets or meniscus are supported by, or are hanging from, more complex
surfaces, like tube tips with different wall thickness, as in the case of electrosprays or the electric
microdripping regime. The numerical scheme used to simulate the microdripping regime, see
Appendices C and D, can also be used to perform nonlinear time-marching simulations of
vibrating pinned droplets, that is, pendant or sessile drops anchored to the outer rim of a
cylindrical rod, or tube, or to any other axisymmetric surface, to find their resonance frequencies,
thus extending the works in the literature.

In the case of the resonance of electrified pinned droplets, a cylinder-plate configuration
instead of a parallel plates configuration may be also more appropriate to generate the
electric field around the droplet. This cylinder-plate configuration is broadly used in electro-
hydrodynamic atomization because the cylinder allows intensifying the electric field around the
droplet for a given voltage difference.

The present chapter collects the results, obtained from numerical simulations and from
experiments, of the first natural frequency of inviscid pinned droplets (higher natural frequencies
are also obtained from the simulations, but the work is centered on the first natural frequency of
the droplets). In this work, the droplets are anchored to the outer diameter of a rod or tube. For
the case of electrified droplets, the electric field is created between the tube holding the droplet
and a flat counter electrode.

61
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For the computations, the liquid is considered a perfect conductor and inviscid, so that
electrical relaxation effects are neglected and the flow is irrotational. Once the droplet is
deformed, it is left to vibrate freely. Equilibrium static shapes are never reached due to the
consideration of inviscid fluid, so the droplets remains oscillating indefinitely. The first natural
frequencies of the vibrating droplet are obtained by performing the Fourier’s Transform of the
position of a point of the interface in time.

For the experiments, a solution of water and ethylene glycol is used to avoid
evaporation/condensation of solvents. The droplets are hold in tubes with different wall thickness.
The Ohnesorge number is of the order of 1 × 10−2 and its electrical relaxation time is
te ∼ 1× 10−6s, so that viscous and electric effects in the liquid can be neglected.

5.2 Equations

Consider a droplet of radius R pinned to the tip of a tube of outer radius a and thickness e, as
sketched in Figure 5.1 in dimensionless form. The liquid has a density ρ, a surface tension γ, is
considered inviscid and its flow irrotational, so the Laplace’s equation is solved inside the droplet
for the velocity potential, φ̂, as in Chapter 3, with the difference that in the present case the
injection velocity through the tube is zero, so the boundary condition for φ̂ at the tube walls and
base, is ∇φ̂ ·n = 0, with n the normal to the boundary (see Figure 5.1(b)). The velocity potential
at the droplet’s interface is known in each time step, the interface being given by f(ẑ, r̂, t̂) = 0,
with f < 0 inside the droplet. The kinematic and dynamic conditions must be satisfied at the
interface (see Higuera et al. 2013b),

∂t̂f̂ + v̂ · ∇f̂ = 0, (5.1)

∂t̂φ̂+
p̂

ρ
+

1

2
∇φ̂ · ∇φ̂− gẑ = ĉ(t), (5.2)

where v̂ = ∇φ̂ is the liquid velocity and p̂ = γk̂u − 1/2ǫ0Ê
2
n is the liquid pressure referred to the

outer medium. k̂u is the local curvature, 1/2ǫ0Ê
2
n the electric stresses and Ên the normal electric

field at the droplet’s interface. The time dependent constant ĉ(t) is selected at each time step to
impose that φ̂(r̂ = a, ẑ = 0) = 0 as a reference, without limiting the generality of the foregoing.
The local curvature is calculated as,

k̂u = k̂1 + k̂2, with k̂1 = −dθ

dŝ
, and k̂2 =

cos(θ)

r̂
, (5.3)

where k̂1 is the in-plane curvature (i.e. in the ẑ − r̂ plane), k̂2 is the azimuthal curvature,
θ = atan (dr̂/ dẑ) is the slope angle of a tangent to a given point of the interface, and ŝ is
the arc length, dŝ2 = dẑ2 + dr̂2. The singularity at the droplet’s tip is solved considering that
limr̂→0 k̂2 = k̂1.

For the simulations of electrified droplets, the liquid is considered a perfect conductor and
the outer medium a perfect dielectric gas or vacuum. The electric field inside the droplet is hence
null and the outer electric field at the interface is normal to it, Ê = Ênn. Outside the droplet
the electric field is obtained by solving the Laplace’s equation for the electric potential ∇2φ̂e = 0
in the tube-plate configuration sketched in Figure 5.1(a). The boundary conditions are φ̂e = 0
at the plate and far from the droplet, and φ̂e = φ̂0 at the tube and the droplet’s interface.

The problem, considering the most general case of electrified droplets, is made dimensionless
using the tube’s outer radius, a, the capillary time, tc = (ρa3/γ)1/2, the capillary velocity,
vc = (γ/(ρa))1/2, the electric field Ec = φ̂0/a and the velocity potential φc = avc. The resonance
of the electrified pinned droplets depends then on four dimensionless parameters: The Bond
number, B, the Electric Bond number, B

E
; and two geometric parameters: i) the aspect ratio

R/a or the dimensionless volume, vol, and ii) the dimensionless thickness of the tube’s wall, e/a.
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(a) Model sketch to solve the electric potential. (b) Model sketch to solve the
hydrodynamic potential.

Figure 5.1: Definition Sketch.

B =
ρga2

γ
, B

E
=

ǫ0E
2
ca

γ
, vol = v̂ol/a

3, e/a. (5.4)

5.3 Numerical approach

Using Boundary Element Methods, BEM, as described in appendix C, the Laplace’s equation
for the velocity potential is transformed to the boundary integral equation shown in 5.5, which is
solved exclusively on the boundary that encloses the liquid, which includes the droplet interface.
For a known position of the interface, where r and z are respectively the dimensionless radial
and axial position of a set of N points, equally distributed in arc length, on the interface, and for
the known dimensionless velocity potential φ at those points, the dimensionless normal velocity
to the interface, vn, can be obtained from 5.5. The number of points in which is discretized the
interface is selected as a function of the droplet volume, as N = 101+4round(H/a), with round()
a function that rounds its argument to the nearest integer.

φ(z0, r0) = −2

∫

C1

G(z, r, z0, r0)vn(z, r)r dl + 2

∫ PV

C1

φ(z, r)Gn(z, r, z0, r0)r dl, (5.5)

where G is the appropriate Green function, see appendix C, Gn = ∇G · n, C1 is the boundary
which encloses the domain where is solved the Laplace’s equation, and PV stands for the Cauchy
principal value of the integral.

For such interface, the tangential velocity vs = ∂sφ is obtained directly differentiating φ
respect to the arc length s using central differences. And the axial and radial velocity are obtained
as vz = vs cos(θ)− vn sin(θ) and vr = vs sin(θ) + vn cos(θ), respectively.

For the general case of electrified droplets simulations, the Laplace’s equation for the electric
field, ∇2φe = 0, is transformed, as in the case of the velocity potential, to the boundary integral
equation 5.6 by means of BEM, see appendix C. Once solved, this equation provides the normal
electric field En = −∂nφe at the interface.

φe(z0, r0) = 2

∫

C2

G(z, r, z0, r0)En(z, r)r dl + 2

∫ PV

C2

φe(z, r)Gn(z, r, z0, r0)r dl. (5.6)
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The boundaries C2 and C1 (see apprendix C) depend, on the geometry used to generate
the far electric field and to support the droplet, respectively. For the case of electrified pinned
droplets, the droplet is connected to a dimensionless voltage φe=1, and the reference voltage
φe=0 is in an infinite plane located at a dimensionless distance L/a from the droplet in axial
direction.

Once the normal component of the electric field, En and velocity, vn, are known on the
interface at a given time, the time evolution of the interface is determined following the adaptive
Runge-Kutta scheme of Appendix D. The points (z, r) of the interface at the next time step,
together with the new velocity potential, are used to solve again the Laplace equations for vn
and En.

To test the model, the solutions yielded by the numerical scheme proposed above have been
compared with results given in the literature. First of all, the vibration of charged and non-
charged inviscid free droplets have been studied numerically under very small perturbations,
and the natural frequencies obtained have been compared with the analytical expressions given
by Rayleigh in both cases ( Rayleigh 1879 and Rayleigh 1882). This comparison supports the
validity of the numerical scheme used in this dissertation. The details have been included in
Appendix C.

Then, axisymmetric numerical simulations of non-electrified pinned droplets have been
performed in the geometry sketched in Figure 5.1(b) with and without the effect of gravity,
B 6= 0, for different tube’s wall thickness. These simulations have been compared with i) the
analytical solution 5.7, which stands for the resonance of a droplet pinned to a circle (Bostwick et
al. 2009, and see Appendix E), ii) simulations of droplets supported on a bowl (the geometry used
for the solutions of Strani et al. 1984), and iii) experimental results of sessile droplets supported
on a tube’s tip. Also, non-electrified droplets pinned on a flat plate have been simulated to
compare their first natural frequency for sub-hemispheric droplets.

Finally, axisymmetric numerical simulations of electrified pinned droplets have been
performed in the geometry sketched in Figure 5.1, to check the effect of the Electric Bond
number on their first natural frequency. For the sake of simplicity, in the case of these particular
simulations, gravity has been neglected, B = 0, and tubes without wall thickness, e/a = 0, have
been considered.
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Figure 5.2: Peaks representing the natural frequencies obtained from the simulations after
applying the Fourier transform to the evolution over time of the axial position of the droplet’s
tip, ztip. This case is for a non-electrified sub-hemispheric droplet of volume vol = 1.12 supported
on a tube of wall thickness e/a = 0.3

In all the cases, the simulation starts with an initial perturbed shape of the droplet (zi, ri), and
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(a) superimposed contours of the droplet during
its oscillation. Darker colors are used for the
contours at the end of the droplet’s oscillation.
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(b) Variation of droplet height, H, with time.

Figure 5.4: Information obtained from high-speed recordings of vibrated droplets.

shape at rest. During its movement, a video is recorded using a high speed camera, and a set
of images like that of figure 5.3(b) are obtained. These images are analyzed using different
computer vision techniques to detect the contour of the droplets, as described in appendix B,
so the evolution of the droplet shape and height with time can be characterized and measured.
Figure 5.4(a) shows a set of droplet dimensionless contours obtained at different times since the
electric field is turned off until the droplet becomes at rest. In this case the meniscus volume
was v̂ol = 27 nL. Figure 5.4(b) shows the droplet dimensionless height since the electric field is
turned off until the droplet becomes at rest. The analysis of this oscillation provides the first
natural frequency of the droplet. Although an electric field is used to perturb the droplet surface,
the resonance frequency obtained from H/a(t) may be taken as that of a non-electrified droplet
provided that (i) the voltage has been turned off in a time much shorter than the oscillation
period, and (ii) that the electrical relaxation time of the liquid is also much smaller than the
oscillation period. The charge relaxation time is te = ǫǫ0/K, with ǫ the dielectric constant of the
liquid, K its electrical conductivity, and ǫ0 the vacuum permittivity. For the liquid considered,
te ∼ 1×10−6 s, which is effectively much shorter than the period of the oscillation of the droplets,
which for the experimental cases is of the order of 1 × 10−2 s. This method of measuring the
first natural frequency of droplets pinned to a tube’s tip has turned out to be very effective
compared to others, such as mechanically vibrating the meniscus. In particular, for the case
of sub-hemispheric droplets, where its surface is barely exited by the action of a mechanical
vibrator, excitation with the field has been essential to measure their natural frequencies.

5.5 Results

5.5.1 Vibrations of non-electrified pinned droplets

A droplet with the form of a spherical cap of dimensionless radius R/a and dimensionless volume
vol is pinned to the rim of a circular flat surface, or tube’s tip, of radius a, see Figure 5.1(b) in
the simulations performed in this Chapter. Strani et al. 1984 found an analytical solution for the
resonance of non-electrified inviscid droplets if instead of a flat surface or tube, a bowl is used to
support the droplet. Bostwick et al. 2009 presented an extension of Strani’s work, but in this case
they studied the resonance of a droplet of radius R pinned to a circle. Strani and Bostwick do not
obtain an analytical expression as an result of their work, because the pinned droplet that they
are considering is vibrating immersed in an outer medium. But if no outer medium is considered
instead, the analytical dimensionless natural frequencies, or eigenfrequency, f = f̂(ρa3/γ)1/2, for
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inviscid droplets can be written into a compact expression as follows (see appendix E),

f =
1

2π

(

R

a

)

−3/2
√

l(l − 1)(l + 2), (5.7)

where l is a real number, which makes zero the Legendre’s function of first kind Pl(cos(α0)) = 0,
with α0 = π − arcsin(a/R). Given α0, this equation has solution for an infinite number of l:
l1 < l2 < l3..., which correspond with the resonance modes n = 1, n = 2, n = 3, ... of the droplet
(if free droplets where considered). l = l2 is the first value of l that corresponds to a vibration of
the droplet where its volume remains constant, so it corresponds to the first natural frequency we
are going to observe in the experiments and the simulations. This solution is shown in figure 5.5,
where the dimensionless frequency versus the droplet dimensionless volume is represented by the
solid red line.
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Figure 5.5: First dimensionless eigenfrequency versus droplet dimensionless volume of pinned
droplets. The solid red line represents analytical solution 5.7 (for l2) and the dashed lines its
trends in the regions where vol → 0, vol ∼ 2 (hemispherical droplets) and vol ≫ 1. Circles
indicates the simulations supporting the droplets on a bowl (Strani’s geometry) whereas the
triangles represents simulations of droplets supported on a flat surface.The frequency is made
dimensionless with the capillary time associated to the anchoring radius a. The numbers in (a)
corresponds to the cases shown in figure 7.

Several simulations have been performed using both the Strani’s bowl and a flat surface to
support the droplets. The results are shown in Figure 5.5. The cases for Strani’s geometry are
represented by the dots, whereas the triangles collect the results of droplets on flat surfaces. The
analytical solution, Equation 5.7, is represented by the solid red line and, as expected, matches
the simulations using the Strani’s geometry. As stated by Strani et al. 1984, the frequency
only seems to vary as a power of the volume if a small range of volumes is considered. For
example, for a droplet radius between 1 and 3 times the radius of the solid support, R/a = 1−3,
the first natural frequency goes as f ∼ v−0.8

ol . Nevertheless, when a wider range of volumes is
swept, see figure 5.5(a), the relation frequency - volume is no longer potential. For very large
droplets, R/a ≫1, the first natural frequency of the pinned droplet tends to that of a free droplet,

f ∼ v
−1/2
ol . This last results was also stated by Strani et al.

Considering droplets on flat surfaces, the difference with Strani’s results occurs for droplets
with a volume lower than that of a hemisphere of radius R/a = 1, sub-hemispheric droplets, as
can be seen in Figure 5.5(b). As vol increases over 1, the first natural frequency on a flat surface
equals that provided by Strani’s geometry. The difference between the oscillations in these two
geometries can be seen in Figure 5.8 for five different values of vol, where the deformation
of the interface, the red solid line, has been exaggerated to ease visualization. The cases 1 to 5
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Figure 5.6: Evolution of the first dimensionless eigenfrequency versus the droplet dimensionless
volume of pinned droplets. Solid red line for simulations of droplets supported on a bowl with
B = 0, solid green line for simulations of droplets supported on the tip of a tube without
thickness and with B = 0, solid blue line for simulations of droplets supported on a flat surface
and with B = 0, solid magenta line for simulations of droplets supported on the tip of a tube
with dimensionless thickness e/a = 0.3 and with B = 0, dashed magenta line for simulations of
droplets supported on the tip of a tube with dimensionless thickness e/a = 0.3 and with B = 2.04,
and diamonds for experiments of droplets supported on the tip of a tube with dimensionless
thickness e/a = 0.33 and with B = 2.04.

correspond to the Strani’s geometry, and cases 6 to 10 correspond to a spherical droplet supported
on a flat surface. They are also represented by their corresponding numbers in Figure 5.5.

On the other hand, an analogy can be established between the vibration of pinned droplets
supported on a flat surface and the stability of the free surface in a tank. Noblin et al. 2004
made use of this analogy to approximate the natural frequencies of pinned droplets. These
authors considered a cylindrical tank of radius a filled up to an height h with the same inviscid
liquid. The natural frequencies of the liquid’s surface, made dimensionless with the capillary time
and neglecting gravity, is f = 1/(2π)

√

k3tanh(kh/a), k being the zeros of the Modified Bessel
Function of the first kind of order zero. In the analogy, the small volume droplets, vol → 0,
corresponds to a tank with a very low depth, h → 0. In this limit the natural frequency for the

vibration of the tank’s surface scales as f ∼ v
1/2
ol , in very good agreement with the simulations,

see Figure 5.5(b).

If droplets are now supported on the tip of a tube of dimensionless radius a = 1 and depth
R/a, that has no thickness, e/a = 0, the simulations, solid green line in Figure 5.6, indicates
that, regardless of the droplet volume, the first eigenfrequency, f , is practically the same that
in the case of droplets supported on a bowl, represented by the red solid line in Figure 5.6.
In contrast, as already mentioned above, when droplets are supported on a flat surface, the
natural frequency of sub-hemispheric droplets follows a completely different behavior as volume
is reduced, solid blue line in Figure 5.6. This case represents the limit of a tube of radius a
and thickness e/a = 1, so curves green and blue are the limiting cases for the behavior of the
oscillation of droplets supported on a tube’s tip of a given thickness. Effectively, if we perform
simulations for the case of a tube with wall thickness of e/a = 0.3, solid magenta line in Figure
5.6, we observe that the result is between the curves green a blue, as expected. The diamonds in
Figure 5.6 represent experiments of droplets supported on a glass tube of outer radius a = 3.065
mm and wall thickness of 1 mm, e/a = 0.33. We can see that the experimental data agree
with the simulations, solid magenta line, even though B = 2.04 in the experiments. The dashed
magenta line in Figure 5.6 shows the same simulations but taking B = 2.04. For hemispheric
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and sub-hemispheric droplets, the influence of B is small, although it becomes significant as vol
increases.

5.5.2 Vibrations of electrified pinned droplets

The droplets have been electrified, now, generating an electric field between a cylinder and an
infinite plate. An hemispherical droplet of radius R = a is supported on the flat base of the
cylinder, of radius a, and the Electric Bond number has been increased from 0 to the critical
value, Bcr

E
, at which the droplet’s surface becomes unstable and fine jets are emitted from it.

The evolution of the first eigenfrequency of the simulated droplets in this case is compared with
the case in which the electric field is created between two parallel plates and also with the
analytical expression for charged free droplets of the same volume than the hemisphere placed
at the cylinder’s tip, Equation 1.2. The results are shown in Figure 5.7(a). The main difference
between the cylinder-plate and parallel plates configurations is that the critic Electric Bond
number is much higher in the case of the parallel plates, because the electric field intensifies
more strongly at the cylinder’s tip. Once normalized the Electric Bond number with its critic
value, the evolution of f respect to B

E
/Bcr

E
are very close in both electrical configurations, circles

an triangles in Figure 5.7(a).
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Figure 5.7: Dimensionless first eigenfrequency versus Electric Bond number and droplet’s volume
for the first vibration mode, l = l2. For the case of droplets supported on a flat surface.

For B
E
/Bcr

E
< 0.8 the equilibrium shape of the droplet, before perturbing it, has a maximum

radial deformation respect to a spherical shape lower than a 10%. For these quasi-spherical
droplets the square of the first eigenfrequency varies linearly respect to the normalized Electric
Bond number in a similar way than the charged free droplets do. That is f2−f2

ne = −Cg BE
/Bcr

E

(solid line in Figure 5.7(a)), where fne is the natural frequency of the same non electrified droplet
and Cg a geometric factor. This expression is obtained analytically in Appendix E for a spherical
droplet pinned to a circle and creating the electric field between the droplet and a concentric
spherical counter electrode placed away from the droplet and perturbing the droplet’s radius
as Rp(α) = R/a + ǫiωtPl(cos(α)), for small perturbations (ǫ ≪ 1). When B

E
/Bcr

E
> 0.8 the

equilibrium shape of the droplets are clearly non spherical, are rather elongated in the axial
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direction instead, and this produces a change on the tendency of the natural frequency, whose
square is no longer linear with respect to the normalized Electric Bond number. In the limit
of very elongated droplets, when B

E
→ Bcr

E
, the computed results seems to indicates that the

square of the frequency scales as f2 ∼
√

1− B
E
/Bcr

E
, although the range of B

E
swept are too

small to be sure.
In Figure 5.7(b) the Electric Bond number is maintained constant, B

E
= 5 and B

E
=

5.3, in a cylinder-plate configuration and the droplet’s volume has been increased. The first
eigenfrequency, circles and stars, is compared with the simulations of non electrified droplet,
triangles, in the same conditions. The same two tendencies than in the case of non electrified
droplets have been found. For droplets with a volume lower than such of a hemisphere the

frequency scales as f ∼ v
1/2
ol and for bigger droplets the frequency decreases initially as a power

of the volume, with the difference that now there is a maximum droplet’s volume beyond which
no equilibrium shape exist.
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left, and a droplet supported on a flat surface, right. For the case l = l2
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5.6 Conclusions

In this chapter we have looked at the natural vibration of pinned droplets, with and without
electrification. In particular, we have analyzed the effect of the shape of the solid supporting
the droplets, as well as the effect of setting the electric field with electrodes in the plate-to-plate
or in the cylinder-to-plate configuration. Spherical bowls, flat plates, and tubes with different
wall thickness have been considered as solid supports. The inviscid, perfect conductor liquid
model developed in Chapter 3 has been used to simulate the vibration of these droplets. Small
perturbations have been considered in this work, although non-linear oscillations can also be
determined. Some experiments have been carried out with non-electrified droplets.

Regarding the oscillation of uncharged droplets, it is found that, according to our model,
pinned droplets with volumes larger than that of the hemisphere (super-hemispherical droplets)
exhibit a first natural frequency that does not depend on the shape of the support. Our results
matches with those of Strani et al. 1984, who considered droplets supported by a bowl of equal
radius, and Bostwick et al. 2009, who considered droplets pinned by a circumference. However,
for sub-hemispherical droplets, the geometry of the support strongly affects the natural frequency
of the droplets and so its resonance. For flat supports, the first eigenfrequency tends to vary as

v
1/2
ol as vol → 0, resembling the oscillation of a pool with a very small depth. However, if the
support is a bowl the frequency remains constant. For tubes with different wall thickness the
frequency evolves in between the previous two cases, letting it clear that the shape of the solid
support affects the natural frequency of the droplets. Experiments with sub-hemispheric droplets
seems to confirm the computed results.

To perform the oscillation experiments with sub-hemispheric droplets it has been essential
to initially disturb them with an electric applied between the droplet support and a nearby
electrode. After the electric field deforms the otherwise mechanical equilibrium shape, the voltage
difference is turn to zero, so the droplet oscillates for several cycles. The optical analysis of the
cycles allow obtaining the first natural frequency of the droplet. We where unable of mechanically
excite sub-hemispheric droplets while within the small perturbation limit.

Regarding the oscillation of electrified droplets, the model developed in Chapter 3 allows
to compare the effect of the electrode configuration. No experiments have been performed in
this case. The analysis is restricted to hemispheric droplets. It is found that the range of B

E

is much wider for the plate-to-plate than for the cylinder-to-plate configuration. In fact, the
critical Electric Bond number Bcr

E
at which no steady solution exists is much larger for the

plate-to-plate than for the cylinder-plate configuration. Nevertheless, when the Electric Bond
Number is normalized with the critical Electric Bond number, the first natural frequency made
dimensionless with the capillary time for both configurations nearly coincide with each other.
For B

E
/Bcr

E
< 0.8, where the droplet equilibrium shape is still close to an hemisphere, the

eigenfrequency evolves approximately as that of the charged free droplet, f2−f2
ne = −Cg BE

/Bcr
E
,

where fne is the first natural frequency of the same non-electrified droplet and Cg is a geometrical
factor. When 0.8 < B

E
/Bcr

E
< 1 the equilibrium shape is rather elongated along the symmetry

axis. The simulations seem to yield f2 ∼
√

1− B
E
/Bcr

E
.
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Chapter 6

Conclusions and future work
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6.1 Conclusions

This thesis deals with some aspects of the electro-hydrodynamic atomization (EHD) that are
relevant to practical processes that require the generation of monodisperse droplets, in the micron
size regime, in a host medium that may be a gas or vacuum or a liquid, but avoiding the use of
micron sized nozzles, tubes or holes. In particular, this work focuses in regimes where a meniscus
anchored to a tube oscillates periodically, and for the appropriate parametrical range, it emits
a single droplet, substantially smaller than the diameter of the tube holding the oscillating
meniscus, in each oscillation. Therefore, the body of the manuscript considers different problems
where oscillating, electrified menisci are involved.

Chapter 2 collects the experimental analysis of the so-called oscillating axial mode II
(Juraschek et al. 1998), also termed electric microdripping, in which the electrified meniscus
of a low viscosity, highly conducting liquid, oscillates periodically in air, such that a single
droplet noticeable smaller than the meniscus is emitted in each oscillation. As it oscillates, the
meniscus stretches and develops a ligament that, eventually detaches from the meniscus, thus
forming a droplet. Interestingly, the tip of the ligament develops a Taylor cone-electrospray for
a non-negligible part of its life. Nevertheless the mass emitted by this electrospray is negligible
compared to the mass of the droplet. The process is controlled by two dimensionless parameters,
the Electric Bond Number B

E
and the dimensionless liquid flow rate q. While B

E
∼ O(1), q may

vary over several orders of magnitude, thus becoming the most important controlling parameter.
The dimensionless oscillation frequency f , droplet diameter dd, meniscus mean volume v

M
and

ligament dimensions, ℓs and ds, have been characterized as q varies. The data are obtained from
the analysis of digital images of the process taken with a high speed camera. It is found that f ∼ 1
for very small flow rates and f ∼ q−1/2 as the flow rate increases, and also fv

M
≈ 0.32 regardless

of q. Regarding dd, ℓs and ds, some approximate scaling laws have been worked out. For small
flow rates, the tiny ligament evolves linked to the oscillating meniscus and the pinch off time is
controlled by capillary stresses leading to the scalings dd ∼ q1/3, ℓs ∼ q3/7 and ds ∼ q2/7. For
large flow rates, the dynamic of the ligament evolves on its own, with an interplay of the electric
and the capillary stresses that, combined with the measured fact that the emitted droplets are
charged to 20 % of its Rayleigh limit, suggest dd ∼ q1/2, ℓs ∼ q1/2 and ds ∼ q1/2.

Chapter 3 is devoted to the modeling of the microdripping. An inviscid, perfectly conducting
model liquid is considered. Neither the charged droplets nor any kind of charged aerosol that

75
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might be emitted is considered in the model. The problem thus reduces to determining the
velocity potential for the liquid and the electric potential outside of it. The Boundary Element
Method (BEM) is used to transform the Laplace equation of both potentials into integrals on the
boundaries. The numerical results describes qualitatively well the microdripping process. When
compared with the experiments described in Chapter 2, the simulations reproduce well the
meniscus oscillation frequency and mean volume. However, the details of the ligament dynamics
are not fully captured by the model. A more detailed analysis of the tip of the simulated
ligaments, which are forced to be rounded, appears to be the reason of the inability of the
model to reproduce the details of the microdripping process, in particular the Taylor cone that
forms at the tip of the ligaments observed in the experiments. The condition imposed at the
tip causes spurious stresses at the ligament tip that leads to the spontaneous emissions of mass
at very high frequencies from the tip of the simulated ligaments, which are not observed in the
experiments. As a consequence, the simulations predict ligaments that are longer, thinner and
have smaller volumes than the experimental ones, and also droplets smaller than those obtained
experimentally. The disagreement increases as the flow rates are reduced. Nevertheless, the trend
of the ligament length and diameter with the liquid flow rate are recovered by the simulations.
On the other hand, the computed frequency combined with total mass conservation provides the
correct droplets size.

Chapter 4 collects the experimental characterization of the so-called electro-coflow, a novel
microfluidic implementation for simultaneously combining hydro and electro-hydrodynamic
forces to form emulsions. The device comprises an inner tube 1, through which the liquid to be
atomized flows, axially immersed in another tube 2 through which a dielectric liquid, immiscible
with the previous one, flows. A third tube is immersed inside tube 2 , facing opposite to tube 1,
through which a conducting liquid, immiscible with the previous one, flows. The liquids flowing
through tube 2 and 3 form a steady interface inside tube 2 that acts as an electric collector.
The electric forces appear when a potential difference is set between liquids 1 and 3. Microfluidic
devices made of glass have been built. In particular, the work focuses on conditions in which
the electric forces are dominant. In this scenario, and for a given pair of liquids, the controlling
parameters are the flow rates of liquids 1 and 2, q̂i and q̂o respectively, and the voltage difference
between liquid 1 and 3, φ̂0. It is found that q̂o has no effect. Seven different zones have been
identified as function of q̂i and φ̂0. Zone I stands for dripping. Zone II stands for oscillating
menisci; a ligament forms at the tip of the meniscus, a thin jet is issued from the tip of the
ligament as it forms (in most part of zone II), while in subsequent times there is no jet and
the ligament breaks in a bimodal type break up. In the higher voltages of zone II the jet is
continuously emitted from the ligament tip, and the ligament break up is multimodal, yielding
droplets smaller than the tip diameter. This zone also covers the transition from dripping regimes
to jetting regimes. In zone III, the first jetting zone, the highly charged jet experiences an in
plane whipping: the wavy jet is always contained in an axial plane that may rotate at a slow
frequency. This type of whipping, to our knowledge, has not been reported in the literature.
In zone IV the electrified jet develops a three-dimensional whipping, forming an spiral whose
diameter increases as the jet approaches the liquid collector. Finally, in zone V the jet becomes
stable and remains straight until it reaches the liquid collector. For the liquid used, we have
not seen a cone-jet structure that breaks up into droplets before the whipping sets in. The
oscillating regimes, zone II, resembles the microdripping in air studied in Chapters 2 and 3.
While the oscillation frequency for microdripping in air is of the order of the capillary frequency,
in the case of electro-coflow, however, the corresponding oscillation frequencies are two orders
smaller than the capillary frequency. Analysis of the viscous effect of the outer liquid on the
dynamics of the ligament leads to an estimated oscillation frequency in terms of the viscosity
of the outer liquid, the interfacial tension, and the length and diameter of the ligament that
provides the correct order of magnitude of the oscillation frequency. Approximate scaling laws
have been worked out for the ligament length and width when the inner flow rate increases,

ℓ̂s ∼ q̂
2/5
i and d̂s ∼ q̂

7/15
i , assuming that the period of the meniscus oscillation is of the order of
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the formation time of the ligament, and observing that the frequency of the oscillation scales as

q̂
−1/3
i .

Finally, in Chapter 5 the numerical scheme developed in Chapter 3 to simulate the
microdripping regime has been used to compute the natural frequencies of electrified and
non electrified pinned droplets, supported on different geometrical shapes. The dimensionless
parameter controlling the process is the dimensionless droplet volume. For uncharged droplets,
the geometry used to support the droplets has been found to affect its first eigenfrequency
only for sub-hemispherical droplets. For sub-hemispherical droplets supported on a bowl the
dimensionless frequency remains constant whereas for sub-hemispherical droplets on a flat plate
the dimensionless frequency goes as the dimensionless drop volume to 1/2 as the drop volume
decreases. For super-hemispheric droplets the shape of the holder has almost no effect on the first
natural frequency of the droplets. Experiments carried out with sub-hemispheric droplets confirm
the numerical results. It is interesting to note that for doing these experiments the droplets where
initially deformed with an electric field, a much more convenient way than mechanical excitation.
For electrified droplets, hemispherical droplets in a plate-to-plate or cylinder-to-plate electrode
configuration have been considered. The controlling parameters are the droplets dimensionless
volume and the Electric Bond Number B

E
, although we have fixed the dimensionless volume

in the computations. When B
E
is normalized with critical Electric Bond Number, Bcr

E
, which is

that at which the meniscus emits mass, the first dimensionless eigenfrequency for both electrode
configuration are practically the same. For B

E
/Bcr

E
< 0.8 the frequency evolves as that of the

charged free droplet, f2−f2
ne = −Cg BE

/Bcr
E
, where fne is the first natural frequency of the same

non-electrified droplet and Cg is a geometrical factor. When 0.8 < B
E
/Bcr

E
< 1 the simulations

seem to yield f2 ∼
√

1− B
E
/Bcr

E

6.2 Future work

There are many possible ways to improve and to move forward the body of work described in
this thesis. In regard of the electric microdripping in air or vacuum, two potential directions
of advance are proposed. On one hand, the controlled generation of monodiperse, electrically
charged, droplets in the micron size range might be very useful for 3D printing if the liquid were
a molten material, such as molten alloys or metals, or if it were a material capable of solidifying
very fast under a proper excitation, such as photopolymers. The interesting features are the high
degree of monodispersity in size, control of the droplet size, and the possibility of easily driving
the charged droplets to the desired spot by using external electric fields. This requires studying
the solidification process and redesigning the set up accordingly to the new requirements.

On the other hand, it might be very interesting to try forming core-shell droplets by injecting
two immiscible fluids such as the oscillating meniscus, composed of these two liquids, ejects a
compound droplet. This requires studying the rapid dynamics of the compound meniscus or,
perhaps, the dynamic of a meniscus covered by a thin layer of another liquid. This would open
a new way to form liquid capsules in just one shot.

Any progress in understanding the electric microdripping must go through a better process
modeling. Improvements of the proposed model needs to take into account the viscosity and the
finite liquid conductivity to extend the study to liquids with other properties. Those, perhaps,
might be more easily included in the 1-D lubrication approximation of the meniscus-ligament,
as done by Hohman et al. 2001 for example. But most important, it is necessary to analyze the
formation of the Taylor cone, and the electrospray it emits, on the evolution of the ligament.
Perhaps, for highly conducting liquids, the scale disparity between the cone-jet and the rest of
the geometrical lengths allows for an asymptotic treatment.

Further research also needs to be done to improve the robustness of the emulsion generation
process in electro-coflow. The high sensitivity of the steady interface of the liquid collector to
perturbations in the pressure of the outer and collector liquids makes it difficult to use this
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technique for controlled production. A potential improvement, already tested in our lab, is to
generate the interface of the liquid collector forcing it to coflow with the dielectric liquid instead
of being counterflow. On the other hand, extension of the model to handle two low viscosity
fluids or, perhaps, two very viscous (Stokes regime) might help to understand the electro-coflow
process.
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A.1 Microdripping experiments in air

The equipment listed in Table A.1 has been used to perform the experiments of Chapter 2.

Instrument Model Manufacturer

Syringe pump KDS-100-CE Kd Scientific
High voltage power supply Bertan 205B-10R Spellman

High speed camera Fastcam APX-RS Photron
Tv screen 701N Samsung

Data acquisition card 6024-E National Instruments
Fiber optic illuminator 4000-1 Volpi

Ring tensiometer Sigma 702 KSV
Conductimeter TB84 ABB

Pycnometer 10 mL PYC3-010-002 labbox
Laser Doppler velocimeter miniLDV-G5-240 MSE Inc.

Table A.1: List of equipment used in experiments of Chapter 2.

The syringe pump has been used with plastic syringes, manufactured by Becton & Dickinson
company, from 1 mL up to 5 mL of capacity, depending on the flow rate, in such a way that the
stepping frequency of the pump doesn’t affects the meniscus dynamics during the microdripping
regime. A stainless steel tube connects the syringe to the tube where the meniscus is anchored
through PEEK connectors, so that the system is rigid enough to have a quick answer to changes
in the flow rate imposed by the pump.

The optical system for the high speed camera has been formed coupling different optics
to obtain a spatial resolution ranging from 2.3 µm per pixel up to 12.5 µm per pixel. Each
combination of optics used has been calibrated using a graduated microscope calibration slide.
Both, x and y axis have been calibrated, and the distortion introduced by the lenses has been
checked to be minimal.

A fiber optic illuminator has been used to illuminate the scene in the videos recorded with
the high speed camera. The illuminator uses a halogen lamp of 90 W, and back-illuminates
the tube’s tip and the meniscus through a fiber optic cable, so that the lamp is far form the
setup. The temperature in the meniscus has been measured with a thermocouple when the
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illumination is connected. The temperature of the liquid at the meniscus is maintained reasonably
constant during the experiments, at about 25◦C, so that Marangoni effects are not considered.
The illumination is enough to perform high speed recordings with exposition times as low as 2
µs.

The current signal at the collector plate has been obtained using a data acquisition card
by measuring the voltage drop at a shunt resistor of 1 MΩ. The current measured in the
microdripping experiments is in the range of 100 × 10−9 A, so the effect of the current in the
resistance of the shunt resistor is negligible and a standard resistor can be used. The ground of
all the instruments and all the metallic parts of the setup not connected to high voltage were
connected to the same ground to avoid ground loops.

Distilled water has been used as reference liquid to measure the density of the aqueous
solution used in the experiments of Chapter 2 with the pycnometer at 25◦C. Distilled water
was also used as reference liquid in a homemade Ostwald viscometer, where the liquid, which
viscosity wants to be measured, flows from an upper reservoir to a lower reservoir through a
long tube when the levels of both reservoirs are maintained practically constant. The measured
viscosity, µm, is then µm = Kρmt/M , where ρm is the viscosity of the liquid, M is the mass of
liquid which flows through the tube in a time t, and K is a constant which is determined using
the reference liquid, K = µwMw/(ρwtw), when a mass Mw of distilled water, with viscosity µw

and density ρw, flows through the same viscometer during a time tw.

A.2 Coflowing experiments

The equipment listed in Table A.2 has been used to perform the experiments of Chapter 4.
These experiments were performed during a stay at the Soft Condensed Matter Laboratory, in
the School of Physics of the Georgia Institute of Technology, Georgia, USA.

Instrument Model Manufacturer

High voltage power supply Bertan 205B-10R Spellman
High speed camera Phantom v7.1 Vision Research

picoammeter 6485 Kethley
Pressure regulators 4ZM14 Speedaire
Inverted microscope Axio-observer.A1 Carl Zeiss

Puller P-97 Sutter Instruments
Microforge MF-830 Narishige

Table A.2: List of equipment used in experiments of Chapter 4.

The puller indicated in the Table A.2 has been used to create micropipettes from borosilicate
glass tubes of circular section with an outer diameter of 2 mm and an inner diameter of 1.16 mm.
The stretched tip of the micropipettes has been cut and polished with the microforge equipment
at a diameter of about 50 µm. This tube, labeled as inner tube in Figure A.1, is introduced into
a borosilicate glass tube, the outer tube, of square section and inner side of 2 mm as sketched
in Figure A.1(a). Another glass tube, the collector tube, of circular section and outer diameter
of 2 mm is introduced through the opposite side of the outer tube, to create the configuration
shown in Figure A.1(b). Those tubes are glued with epoxy to a glass slide. PEEK tubes are also
glued to the inlets of the inner, outer and collector tubes; and to the outlet of the outer tube.
Hence, a microdevice with three inlets and an outlet is formed.

The glass microdevice is placed in an inverted microscope, where is connected a high speed
camera to record high speed videos of the experiments. Objectives with zooms of 5x, 10x and
20x were used in the experiments.

Three pressurized reservoirs have been used to feed the inner, outer, and collector tubes.
Pressure regulators are used to fix the pressure in each reservoir, which is maintained constant
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(a) Sketch of the concentric configuration of the pulled inner
tube and the square outer tube.

(b) Image of the inner, outer and collector tubes
in the glass microdevice. The collector flow rate is
settled to create a liquid collector at a distance of
1 mm from the tip of inner tube.

Figure A.1: Configuration of the inner, outer and collector tubes in the glass microdevices used
in the experiments of Chapter 4.

during the experiments. The outer flow rate is then measured by weighting the amount of outer
liquid, which is immiscible with the collector and inner liquids, used during each experiment.

The inner flow rate is determined by measuring in the videos the volume of a number of
droplets emitted in electrodripping regime during a time t.
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The videos recorded in Chapter 2 have been analyzed to extract information from then such
as volume and trajectories of the emitted droplets and volume and curvature of the meniscus,
among others. The oscillation frequency of the meniscus, although can also been measured from
the videos, has been obtained with higher precision from the current signal measured at the
collector plate with the data acquisition card.

In the present Appendix, the procedure used to extract information from the high speed
videos recorded in the experiments is described. A contour detection procedure is used to detect
gradients in the gray level of the images. Once the contours of the black regions of the images are
detected, these contours are smoothed with a subpixel detection algorithm. The different regions
detected are then classified as meniscus or droplets using a classification algorithm based on
invariant moments of image pixels. Once the droplets and meniscus are automatically recognized
in the images, different characteristics are extracted from them, like shape, sizes, velocities or
curvature.

B.1 Contour detection in images

In the images of the recorded videos there is two clearly distinguishable regions with dark level of
gray due to the back-illumination and the low exposition time used to record the videos, which
corresponds to the droplets and the meniscus area in the images (see Figure B.1). Therefore,
an algorithm which detects gradients in gray level, that is, transitions from dark to white gray
levels, in the images is appropriate to detect the position of the contour of droplets and meniscus.
Nevertheless, there is other transitions of gray level that are detected with this method which
are not actual boundaries of the droplets or meniscus. Those non-interest contours are due,
mainly, to a non-homogeneous background gray level or to the lens effects in rounded meniscus
or stretched ligaments, and need to be identified and discarded. (see Figure B.1(b)).

The Canny algorithm (Canny 1986) has been used to perform the contour detection in the
images. This algorithm looks for local maxima of the gradient of gray levels in the images. It
uses an adaptive thresholding with hysteresis to detect these maximums. A 20 % and a 50 % of

83



84 APPENDIX B. IMAGE PROCESSING AND MEASUREMENT PROCEDURE

(a) Tube’s outer diameter D = 500 µm, flow rate q̂ = 0.5 mL/h, voltage φ̂0 = 2.95 kV, and tube tip to collector
distance L = 9 mm.

(b) Tube’s outer diameter D = 500 µm, flow rate q̂ = 10 mL/h, voltage φ̂0 = 2.95 kV, and tube tip
to collector distance L = 9 mm.

Figure B.1: Recorded images of the meniscus and droplet emission during a period of the
oscillation in electric microdripping regime for different flow rates.

the maximum gradient value have been used, respectively, as minimum and maximum threshold
values for the algorithm. The gradient of the gray level of the images is calculated by using the
derivative of the Gaussian filter with a standard deviation of 1.6.

In Figure B.2 are shown the pixels detected by the Canny edge detector which correspond to
the meniscus (dots). To smooth the boundary detected a cubic spline has been adjusted by least
squares method using the points marked with squares as collocation points (see Figure B.2(b)
for a closer detail at the ligament). This algorithm has produced a unique and precise detection
of the meniscus and droplets contours in all the videos recorded in the experiments, with little
adjustments needed due to changes in the illumination condition.

Similar detection techniques have been satisfactorily used in the literature to detect liquid
interfaces (see Acero et al. 2013 and Song et al. 1996) such as pendant or sessile drop contours.

B.2 Subpixel detection algorithm

The precision of the edge detection performed by the Canny algorithm is determined, at first,
by the pixel size in the images. Nevertheless, a subpixel analysis of the images has been done to
correct the position of the edges detected by the Canny detector, giving thus a position of the
meniscus and droplets contours with a resolution higher than such of the image. This subpixel
analysis consists on adjusting a sigmoid function, equation B.1, to the gray level of the image
pixels, g(x), in the direction of the gradient, x, through the transition from a dark level, g1,
inside a droplet of meniscus to a white level, g2, at the other side of the contour, as sketched in
Figure B.3(a). The adjustment gives as result the parameters g1, g2, W and x0, where x0 is the
actual position of the edge at a subpixel level. In Figure B.3(b) the gray level at the position
of the pixels in the direction of the gradient around the edge are represented by circles. The
function B.1 is fitted to those points , and a more precise position of the contour, between pixels,
is determined, marked with an asterisk in the figure.
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(a) Meniscus contour detected by
the Canny algorithm, dots, with
a spline adjusted by least squares
method, line, using as collocation
points those marked with square
symbols.

(b) Closer view of the contour
detection of the ligament neck.
Contour detected by the Canny
algorithm, dots. Adjusted spline
by least squares method, line.
Collocation points for the spline
adjustment, squares.

(c) Subpixel correction of the
contour detection at the neck of
the ligament, green dots. And
spline adjusted to the corrected
points, line.

Figure B.2: Contour detection. Tube’s outer diameter D = 500 µm, flow rate q̂ = 1.0 mL/h,
voltage φ̂0 = 2.95 kV, and tube tip to collector distance L = 9 mm. As a reference, the normalized
arc length, s, with values from 0 to 1, is represented (circles) in the images.

A cubic spline adjusted by least squares method to the edges detected by the Canny algorithm
and corrected with the subpixel analysis allows a precise and smooth detection of the contours
of droplets and meniscus, as shown in Figure B.2(c), where the edge detected by the Canny
algorithm is represented by blue dots, the subpixel correction gives the green dots, and the solid
line is the spline adjustment.

ǫ(x) =
g(x)− g2
g1 − g2

=
1

1 + e(x−x0)/W
. (B.1)

B.3 Region classification

Before obtaining the volume, velocity and sizes of droplets and meniscus from the images in the
recorded videos, it is necessary to distinguish which of those detected contours corresponds to
a droplet, to a meniscus, of if they are not actual boundaries of droplets or meniscus but non-
interest contours. This classification is done using the invariant moments of the different groups
of pixels detected, known as regions, which corresponds with edges in the images. These invariant
moments, known as Hu moments (Hu 1962), are invariant to the scale, position, rotation and
reflexion of the region considered, so basically they can be used to detect shapes. Those moments
consist in a vector of seven numbers, from hu1 to hu7 in equations B.2 to B.8, that are used to
classify each detected region.
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(a) Sketch of the meniscus with
x indicating the direction of the
gradient of gray level in the images
from gray level g1, dark, to gray
level g2, clear.

(b) Non-linear adjustment of a sigmoid function, ǫ(x), (solid
line) to the gray level, g(x), of the pixels in the images
(circles) through the direction of the gradient, x. g1 and g2
are, respectively, the gray level inside and outside the droplets
or meniscus. The point (x0, ǫ(x0)) of the sigmoid function,
marked with an asterisk, indicates the position of the contour
at a subpixel level.

Figure B.3: Detection subpixel.

hu1 = u20 + u02, (B.2)

hu2 = (u20 − u02)
2 + 4u211, (B.3)

hu3 = (u30 − 3u12)
2 + (3u21 − u03)

2, (B.4)

hu4 = (u30 + u12)
2 + (u21 + u03)

2, (B.5)

hu5 = (u30 − 3u12)(u30 + u12)((u30 + u12)
2 − 3(u21 + u03)

2) +

(3u21 − u03)(u21 + u03)(3(u30 + u12)
2 − (u21 + u03)

2), (B.6)

hu6 = (u20 − u02)((u30 + u12)
2 − (u21 − u03)

2 + 4u11(u30 + u12)(u21 + u03)), (B.7)

hu7 = (3u21 − u03)(u30 + u12)((u30 + u12)
2 − 3(u30 + u12)

2) +

(u30 − 3u12)(u21 + u03)(3(u30 + u12)
2 − (u21 + u03)

2), (B.8)

where uij = µij/µ
1+(i+j)/2
00 are the normalized form of the central moments µij of the region

form by the pixels of the contour detected. With µij =
∑N

y=1

∑N
x=1(x − µx)

i(y − µy)
j , being

N and (µx, µy) the number of pixels and the centroid of the region, respectively, and (x, y) the
coordinates in the image of each pixel.

The space formed by the seven Hu moments have been analyzed to search zones in that
space corresponding to meniscus or droplets. As a result of this analysis a region is classified as
a meniscus if hu3 > δ, where δ is a number between 100 and 400, depending on the flow rate.
And a region is classified as a droplet if the criteria B.9 to B.11 are fulfilled. The rest of the
regions are classified as regions non-interest.

hu1 > |(hu2, hu3, hu4, hu5, hu6, hu7)| or max(hu1, hu2, hu3) > |(hu4, hu5, hu6, hu7)|, (B.9)

min(hu1, hu2, hu3, hu4, hu5, hu6, hu7) > 2, (B.10)

hu3 < δ. (B.11)

In Figure B.4 can be observed how the different regions detected have been classified in the
recorded videos. The regions detected as meniscus or droplets are marked with a white or red line,
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(a) Tube’s outer diameter D = 500 µm, flow rate q̂ = 0.5 mL/h, voltage φ̂0 = 2.95 kV, and tube tip to collector
distance L = 9 mm.

(b) Tube’s outer diameter D = 500 µm, flow rate q̂ = 10 mL/h, voltage φ̂0 = 2.95 kV, and tube tip
to collector distance L = 9 mm.

Figure B.4: Region classification during an oscillation period of the microdripping regime for
different flow rates. Region detected as meniscus are marked with white line, those detected as
droplet are marked with red line and the regions without interest are marked with green line.

respectively. The meniscus are detected and classified in practically all the frames independently
on if it is in an elongated or retracted stage (see Figures B.4(a) and B.4(b)). Droplets are also
accurately detected and classified even after the detachment of the ligament, when they have
a non-spherical shape (see the first image of the sequence in Figure B.4(b)). Other detected
regions which are not actual boundaries, like the transitions between black and white due to the
lens effect inside droplets and meniscus are accurately discarded and marked with green lines in
Figure B.4.
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(a) Histogram of droplet diameter measured from the
detected droplets in the video.
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(b) Evolution of the meniscus volume versus time, for
the meniscus detected in the video.

Figure B.5: Characteristics extracted from video analysis. Tube’s outer diameter D = 500 µm,
flow rate q̂ = 10 mL/h, voltage φ̂0 = 2.95 kV, and tube tip to collector distance L = 9 mm.
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B.4 Extraction of characteristics and measurements

Once detected and classified, droplets and meniscus are tracked independently through the
different frames of the videos, and the evolution with time of their shape, size and volume,
among other characteristics, are obtained.

As an example, some of those characteristics obtained from video analysis are shown in
Figure B.5. The histogram of droplet diameter, Figure B.5(a), measured from the same video
than the sequence of images of Figure B.4(b), indicates a quite monodisperse droplet emission
process, characteristic of the microdripping regime. The volume of the meniscus versus time,
Figure B.5(b), has a shape of saw-tooth graphic where the meniscus volume grows linearly with
time during its elongation, because the flow rate is maintained constant, and when the ligament
is detached there is a sudden reduction of the volume of the meniscus.

References

Acero, A. et al. 2013. Experimental analysis of the evolution of an electrified drop following high
voltage switching. Eur. J. Mech. B 38, 58–64.

Canny, J. 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal.
Machine Intell. (6), 679–698.

Hu, M.-K. 1962. Visual pattern recognition by moment invariants. IEEE Trans. Inf. Theory
8(2), 179–187.

Song, B & Springer, J. 1996. Determination of Interfacial Tension from the Profile of a Pendant
Drop Using Computer-Aided Image Processing2. Experimental. J. Colloid Interface Sci. 184,
77–91.



Appendix C

Boundary Element Method and validation of

the simulations

Contents

C.1 Laplace’s equation for the velocity potential . . . . . . . . . . . . . . . . . . . 89

C.2 Laplace’s equation for the electric potential . . . . . . . . . . . . . . . . . . . . 92

C.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

C.1 Laplace’s equation for the velocity potential

Using Boundary Element Methods, BEM, the Laplace’s equation, ∇2φ = 0 for the velocity
potential, valid inside the liquid, can be transformed into the boundary integral equation C.1,
which is solved exclusively on the boundary that encloses the liquid, C1, including the droplet
interface, f(z, r, t) ≡ r − r(z, t) = 0, the tube walls, and the injection tube, see Figure C.1(a).
To solve equation C.1, the boundary C1 is discretized in N linear elements of length li, see
Figure C.1(b), where the potential, φi, and the normal component of the gradient of the potential,
the normal velocity vni, are constant in each element i.

φ(z0, r0) = −2

∫

C1

G(z, r, z0, r0)vn(z, r)r dl + 2

∫ PV

C1

φ(z, r)Gn(z, r, z0, r0)r dl, (C.1)

where G is the appropriate Green function, Gn = ∇G · n, PV stands for the Cauchy principal
value of the integral, the normal vector n points inside the liquid, and (z, r) and (z0, r0) are two
points of the boundary. The boundary conditions are,

vn = 0, at thewalls,

φ = φint, at the interface,

vn =
4

π
q, at the injection zone.

From the solution of the boundary equation C.1, the normal velocity at the interface, vintn

and the velocity potential at the injection tube and tube walls, φtube are obtained.

Using the middle points of the elements, (z0i, r0i), as collocation points, the Equation C.1
can be written as

89
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(a) Boundary, C1 where the Laplace equation
is solved for the velocity potential.

(b) Linear elements used to discretize
the boundary.

Figure C.1: Boundary of the domain discretized with linear elements, where the Laplace equation
for the velocity potential is solved.

φ(z0, r0) = −2

N
∑

i=1

αi(z0, r0)vni + 2

N
∑

i=1

βPV
i (z0, r0)φi, (C.2)

with αi(z0, r0) =
∫

iG(z, r, z0, r0)r dl and βPV
i =

∫ PV
i Gn(z, r, z0, r0)r dl for points (z, r) on the

element i of the boundary. These integrals are approximated using Gauss-Legendre quadrature
with Nq quadrature base points as

αi(z0, r0) ≈
li
2

Nq
∑

k=1

G(zk, rk, z0, r0)rkωk, (C.3)

βPV
i (z0, r0) ≈

li
2

Nq
∑

k=1

[nzi∂zG(zk, rk, z0, r0)rkωk + nri∂rG(zk, rk, z0, r0)rkωk] , (C.4)

where (nzi, nri) are the normal components of the boundary at element i, ωk are the weights
of the Gauss-Legendre quadrature, and (zk, rk) are Nq points at element i, with zk = z0i +
(li/2)ξk cos(θi) and rk = r0i + (li/2)ξk sin(θi). ξk ∈ [−1, 1] is the k-th root of the Legendre’s
polynomial of order Nq, LNq(ξ).

Equation C.1 is hence written in a matrix form,

Avn = (B − 1

2
I)φ, (C.5)

where A and B are matrices which components Aji and Bji are integrals αi(z0j , r0j) and
βPV
j (z0j , r0j) along element i with (z0j , r0j) the middle point of element j. Matrix I is the

identity matrix, and φ and vn are vectors with the velocity potential and normal velocity at the
elements of the boundary.

The velocity potential is known at the interface, φint and unknown at the tube walls and
injection, φtube. Similarly, the normal velocity is known at the tube walls and injection, vtuben and
unknown at the interface, vintn . So the linear system C.5 is reordered as,

(

Aint,int −M int,tube

Atube,int −M tube,tube

)(

vintn

φtube

)

=

(

−Aint,tube M int,int

−Atube,tube M tube,int

)(

vtuben

φint

)

(C.6)

where M = B− (1/2)I. The linear system C.6 is solved and the normal velocity at the interface,
vintn , is obtained.
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(a) Points at the extremes (points) and the middle
(crosses) of the linear elements used to discretize the
boundary C1 to solve the Laplace’s equation for the
velocity potential.
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(b) Points at the extremes (points) and the middle
(crosses) of the linear elements used to discretize the
boundary C2 to solve the Laplace’s equation for the
electric potential.

Figure C.2: Discretization.

Linear elements of equal length are distributed along the interface, a minimum of 100
elements, and the injection zone of the tube, and the tube walls are discretized with 20 elements
in such a way that there is not brusque jumps in element length, as observed in Figure C.2(a). The

length of the element i in the tube walls is then li = Lf
(i−1)/(N−1)
s (1−f

1/(N−1)
s )/(1−f

N/(N−1)
s ),

where N = 20 is the number of elements in the tube walls, L is the length of the tube walls
and equal to the tube’s Diameter and fs is the spacing factor, calculated in such a way that the
elements at the extremes of the tube have equal length that the elements of the interface and
injection zone, respectively.

Finally, the Green function and its gradient used to solve the Laplace’s equation, for the
axisymmetric case, are (see Pozrikidis 2002),

G(z, r, z0, r0) =
F (k)

π
√

(z − z0)2 + (r + r0)2
, (C.7)

∂zG(z, r, z0, r0) = −z − z0
4π

I30, (C.8)

∂rG(z, r, z0, r0) = − 1

4π
(rI30 − r0I31), (C.9)

where,

k =

√

4rr0
(z − z0)2 + (r + r0)2

,

I30 =
4

((z − z0)2 + (r + r0)2)
3/2

E(k)

1− k2
,

I31 =
4

((z − z0)2 + (r + r0)2)
3/2

1

k2

(

−2F (k) +
2− k2

1− k2
E(k)

)

.

F (k) and E(k) are the complete elliptic integrals of the first and second kind, respectively.
Singular points, (z, r) = (z0, r0), are avoided in Integrals C.3 and C.4 evaluating the Green
function and its gradient in points, (z, r) = (zk, rk), distributed as the zeros of the Legendre’s
polynomial of order 4, Nq = 4, in each element, and the poles, (z0, r0), in the middle points of
the elements.



92APPENDIX C. BOUNDARY ELEMENTMETHODANDVALIDATION OF THE SIMULATIONS

C.2 Laplace’s equation for the electric potential

Figure C.3: Domain where the Laplace’s equation is solved for the electric potential. Boundary
C2 includes the tube and the interface

The Laplace’s equation ∇2φe = 0 for the electric potential, φe, is solved outside the liquid.
Using Boundary Element Methods this Laplace’s equation can be reduced to a boundary
equation, Equation C.10, as in the case of the velocity potential, but solved in the boundary
C2, which includes the interface and the metallic tube, and the collector plane, considering that
the boundary is closed between the collector and the tube by walls located infinitely far from
the interface (see Figure C.3). The infinite collector plane can be avoided making use of the
Method of the Images, equivalent to adding a boundary similar to C2 placed symmetrically
respect to the collector and connected to an electric potential φe = −φe0. In practice, only the
original boundary C2 is discretized using a Green function G∗ and its gradient (G∗

z, G
∗

r). The
value of φe0 depends on the different non-dimensionalization made in Chapters 3 and 5, being
φe0 = ln(4L/D) and φe0 = 1, respectively.

φe(z0, r0) = 2

∫

C2

G∗(z, r, z0, r0)En(z, r)r dl + 2

∫ PV

C2

φe(z, r)G
∗

n(z, r, z0, r0)r dl, (C.10)

with φe = φe0 at the tube walls and interface. The boundary condition at the collector, φe = 0,
is satisfied applying the Method of Images. The boundary is discretized with linear elements and
the electric potential and normal electric field, En = −∇φe · n, is constant in each element. The
interface has been discretized with 100 elements of the same length, and the elements in the tube

walls have a length li = Lf
(i−1)/(N−1)
s (1 − f

1/(N−1)
s )/(1 − f

N/(N−1)
s ), where at least N = 150,

and fs is determined to guarantee that the element close to the interface has the same length
that the elements at the interface.

The boundary equation C.10 is reduced to the linear system in the same way than in
Section C.1,

AEn = (B − 1

2
I)φe, (C.11)

where A and B are matrices with components Aji =
li
2

∑Nq

k=1G
∗(zk, rk, z0, r0)rkωk and Bji =

li
2

∑Nq

k=1 [nzi∂zG(zk, rk, z0, r0)rkωk + nri∂rG(zk, rk, z0, r0)rkωk], respectively.
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The Green function and its gradient components are,

G∗(z, r, z0, r0) = G(z, r, z0, r0)−G(z, r, zim0 , rim0 ),

G∗

z(z, r, z0, r0) = Gz(z, r, z0, r0)−Gz(z, r, z
im
0 , rim0 ),

G∗

r(z, r, z0, r0) = Gr(z, r, z0, r0)−Gr(z, r, z
im
0 , rim0 ),

with G, Gz and Gr such of Equations C.7, C.8 and C.9, and considering the point (z0, r0) and
its image (zim0 , rim0 ), where zim0 = 2L/D − z0 and rim0 = r0.

C.3 Validation

The numerical scheme presented in this Appendix, along with the scheme presented in
Appendix D to advance in time the interface, are validated here by the simulation of the
resonance of inviscid free droplets in vacuum when the droplets have an electric surface
charge, Ĉs, assuming the drop is a perfect conductor. This problem has analytical solution for
small perturbations following the linear theory presented by Rayleigh (See Rayleigh 1882).
The perturbed shape of the droplet can be written as a function of spherical harmonics as
Rp(θ) = 1 +

∑

(ǫei2πftPn(cos(θ))), where Rp is the radial position of the droplet interface for
a given unperturbed spherical droplet of radius R, ǫ ≪ 1 is the amplitude of the oscillations,
f the frequency of the oscillations and Pn(cos(θ)) the Legendre’s polynomial of order n (See
Figure C.4(a)). The frequency f , non-dimensionalized with the capillary time, tc =

√

ρR3/γ can

be expressed as a function of the Electric Bond number, B
E
= Ĉs2R/(ǫ0γ),

f =
1

2π

√

n(n− 1)(n+ 2)− B
E
n(n− 1), (C.12)

for any integer n ≥ 2.

(a) Unperturbed droplet (solid line) of radius
R = 1 and surface charge density Ĉs.
Perturbed shape (dashed line) Rp(θ) = 1 +
ǫPn(cos(θ)), for n = 6 and ǫ = 0.145.
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(b) Square of the dimensionless frequency of resonance,
f2, versus the Electric Bond number, B

E
. Simulations

for modes n = 2 (circles), n = 3 (squares) and
n = 4 (triangles) compared with Rayleigh theory of
linear droplet oscillations when surface electric charge
is added to its surface (solid lines).

Figure C.4: Validation. Resonance of free charged droplets.

To perform the simulations half of the interface has been discretized in 100 linear elements
of equal size, with z = 0 the axis of symmetry. The axisymmetric Boundary Element Method
presented in Sections C.1 and C.2 have been used to solve the Laplace’s equation for the velocity
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potential inside the droplet, and the Laplace’s equation outside the droplet for electric potential.
As boundary conditions, the dimensionless electric potential on the droplet’s surface is φe = 1,
taking as characteristic voltage φ0 = ĈsR/ǫ0, and φe = 0 infinitely far from the droplet. The
initial shape of the droplet is a hemisphere of radiusR = 1 perturbed asRp(θ) = 1+0.001rand(θ),
where rand(θ) is a function which gives a normally distributed random number between −1 and
1 for each θ. The position (z, r) of the droplet’s interface and its velocity potential, φ, is evolved
in time using the adaptive scheme of Appendix D for 200 capillary times.

The first three frequencies of resonance, obtained from the Fourier transform of the axial
position versus time at the point (z, r = 0) of the interface, are represented in Figure C.4(b)
respect to the Electric Bond number for n = 2 (circles), n = 3 (squares) and n = 4 (triangles)
. The results agree very well with Rayleigh theory, Equation C.12 (solid lines), and the droplet
becomes unstable when B

E
= 4, that is, when the total charge of the droplet is the Rayleigh

charge C
R
= 8π

√

ǫ0γR3.

References

Pozrikidis, C. 2002. A practical guide to boundary element methods with the software library
BEMLIB. CRC Press, Inc. Boca Raton, FL, USA.

Rayleigh, L. 1882. XX. On the equilibrium of liquid conducting masses charged with electricity.
Philos. Mag. 14(87), 184–186.



Appendix D

Adaptive Runge-Kutta method
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An adaptive Runge-Kutta-Fehlberg method (Mathews et al. 1999) has been used to advance
in time the simulations of Chapters 3 and 5. The problem to solve on the liquid meniscus can
be written in a compact form as dy/ dt = f(t,y, En, vn), where the normal velocity vn and the
normal electric field En are obtained solving the respective Laplace equations for the velocity
and electric potential, φ and φe. The vector y stands for y = (r, z, φ), with z and r the axial and
radial component of the position of a set of points equally spaced along the meniscus interface.
The vector f is f = (vr, vz, 1/2(v

2
n + v2s) + 1/2B

E
E2

n + B z − ku + c(t)), with vs = dφ/ ds the
tangential velocity, ku = − dθ/ ds+cos(θ)/r the curvature of the interface, B

E
the Electric Bond

number, and B the Bond number. s is the arc length and θ the slope angle, with tan(θ) = dz/ dr.
The singularity in the curvature at r = 0 is solved taking in account that ku → −2 dθ/ ds when
r → 0. The constant c(t) from the dynamic condition at the interface can be taken to impose
that φ = 0 at the junction of the interface and the tube or supporting surface.

Given the solution, yn, at the current time, tn, and a time step, ∆t, the solution at a time
tn +∆t, yn+1, can be estimated with an error of the order of ∆t4 and ∆t5 with Equations D.1
and D.2, respectively.

y
(4)
n+1

= yn +∆t

(

25

216
K1 +

1408

2565
K3 +

2197

4104
K4 −

1

5
K5

)

, (D.1)

y
(5)
n+1

= yn +∆t

(

16

135
K1 +

6656

12825
K3 +

28561

56430
K4 −

9

50
K5 +

2

55
K6

)

, (D.2)

where:

K1 = f (tn,yn) ,

K2 = f

(

tn +
1

4
∆t,yn +

1

4
∆tK1

)

,

K3 = f

(

tn +
3

8
∆t,yn +

3

32
∆tK1 +

9

32
∆tK2

)

,

K4 = f

(

tn +
12

13
∆t,yn +

1932

2197
∆tK1 −

7200

2197
∆tK2 +

7296

2197
∆tK3

)

,

K5 = f

(

tn +∆t,yn +
439

216
∆tK1 − 8∆tK2 +

3680

513
∆tK3 −

845

4104
∆tK4

)

,

K6 = f

(

tn +
1

2
∆t,yn − 8

27
∆tK1 + 2∆tK2 −

3544

2565
∆tK3 +

1859

4104
∆tK4 −

11

40
∆tK5

)

.
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The local error of the solution is then estimated as RKE = |y(5)
n+1

− y
(4)
n+1

|. And the time
step ∆t is modified if RKE is higher than a certain tolerance. More specifically, a parameter

E = ||RKE/(Tolr|y(4)
n+1

|+Tolabs)|| is defined and if E > 1 the time step is reduced, ∆t = ∆t/1.2
and the iteration repeated, if E < 0.05 the time step is increased, ∆t = 1.2∆t, or maintained
otherwise. Tolr and Tolabs are the relative and absolute tolerances, which have been fixed to
1× 10−4 and 1× 10−7 in the simulations, and the symbol || · || stands for the 2-norm of a vector.

This adaptive approach allows to automatically reduce the time step during the simulations,
specially when the pinch-off of the droplets emitted from the meniscus is about to occurs, and
increased afterwards when the meniscus is receding or elongating.

Once evolved the interface, the new points (z, r) are first filtered (Pozrikidis 2002) using the
five points averaging formula D.3 and D.4, to avoid the growth of numerical instabilities, and
them re-sampled using cubic spline interpolation, to assure that the points are equally distributed
in arc length.

zj =
1

16
(−zj−2 + 4zj−1 + 10zj + 4zj+1 − zj+2) , (D.3)

rj =
1

16
(−rj−2 + 4rj−1 + 10rj + 4rj+1 − rj+2) , (D.4)

where the subindex j goes from 1 to N sweeping the different points on the interface.

Initial shape.
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∫ tp

0

√

S′2
z + S′2

r dtp
s
N
= s0 +

∫

1

0

√

S′2
z + S′2

r dtp

θ = arctan

(

S′

z

S′

r

)

vr = vs sin θ + vn cos θ
vz = vs cos θ − vn sin θ

k1 = −dθ

ds

k2 =
cos θ

r

vs = ∂sφ

ku = k1 + k2

dr

dt
= vr

dz

dt
= vz

dφ

dt
+ ku − 1

2
B

E
E2

n − 1

2
(v2n + v2s)−Bz = c(t)

Figure D.1: Simulations flow chart.

The chart of Figure D.1 shows the different steps followed to advance in time the simulations
once solved, respectively, the Laplace equations for the electric field, on the boundary C2, and
for the velocity potential, on the boundary C1. In this chart Si is the part of boundaries C1

and C2 that corresponds with the interface, and S0 the part of C2 connected to ground voltage,
φe = 0. Sz(tp) and Sr(tp) are the cubic splines used to re-sample the interface, as a function



REFERENCES 97

of a parameter tp which goes from tp = 0 at the connection of the meniscus and the tube, to
tp = 1 at the meniscus tip. k1 and k2 are, respectively, the in-plane and azimuthal curvature,
being k2(r → 0) = k1(r → 0).
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Appendix E

Analytical solution of the resonance frequency

of a droplet pinned to a circle without outer

medium
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E.1 Non electrified droplets

Consider an unperturbed droplet of radius R presented in the sketch of Figure E.1. This droplet
is pinned to a circle of radius a = 1 indicated by the dots. The inner liquid is considered inviscid
and incompressible, there is no outer medium, and gravity is neglected. In this geometry it
is studied the evolution of small axisymmetric deformation, η(t, α), in a similar way than in
Bostwick et al. 2009, but for the lack of an outer medium here.

The velocity field may be expressed as v = ∇φ, and thus the Laplace’s equation for the
velocity potential φ must be solved,

∇2φ = ∂2
rφ+

2

r
∂rφ+

1

r2
∂2
αφ+

1

r2 tanα
∂αφ = 0 (E.1)

expressed in spherical coordinates (r, α, ϕ), with α ∈ [0, π]. The kinematic and dynamic
conditions must be satisfied on the droplet’s surface,

dfc
dt

= 0, (E.2)

∂tφ+
1

2
(∇φ · ∇φ) = −ku + C, (E.3)

where t is the time, fc = r−R− η(t, α), ku = ∇ · (∇fc/|∇fc|) the curvature, and C a constant.
Equations E.1 to E.3 are subjected to the following boundary conditions: i) the surface is pinned
at the point (R,α0) and then η(t, α0) = 0, ii) symmetry condition, 1/r∂αφ|α=0,π = 0, and iii)
the solution must be finite at the center of the droplet, |φ(t, r = 0, α) < ∞|

All the equations are written in dimensionless form, following the non-dimensionalization of
chapter 5. In this context a solution of the form E.4 to E.5 is proposed, with ω = 2πf , being
f the dimensionless frequency, ǫ the small amplitude of the perturbation, and f1(t), g1(α), and
g2(r) unknown functions of t, α, and r, respectively.
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Figure E.1: Sketch of a droplet of radius R pinned to a circle or radius a = 1.

η(t, α) = ǫeiωtg1(α), (E.4)

φ(t, r, α) = ǫf1(t)g1(α)g2(r). (E.5)

Applying now the cinematic condition E.2 the function f1(t) is obtained as,

f1(t) =
iω

g′2(R) + g′′2(R)η
eiωt, (E.6)

with g′2(R) denoting dg2(r)/dr|r=R. And using E.4 to E.5, the Laplace’s equation E.1 can be
transformed to two separate equations, one in r and other in α:

g′′1
g1

+
1

tanα

g′1
g1

= −l(l + 1), (E.7)

r2
g′′2
g2

+ 2r
g′2
g2

= l(l + 1), (E.8)

with l a constant. Equation E.7 can be identified as the Legendre’s equation, and has a general
solution g1(α) = C1Pl(cosα)+C2Ql(cosα), and equation E.8 has solution g2(r) = C3r

l+C4r
−1−l.

Where C1 to C4 are constants, Pl is the Legendre function of first kind and Ql the Legendre
function of second kind.

η = ǫeiωtPl(cosα), (E.9)

φ = ǫf1(t)Pl(cosα)r
l, (E.10)

Pl(cosα0) = 0 ⇒ l = l1, l2, l3, ... (E.11)

f1(t) =
iω

lRl−1
eiωt. (E.12)

Using now the boundary conditions, the constant l are the zeros of the Legendre function
Pl(cosα0) = 0, from the pinning condition to the circle at α = α0; and the constants C2 and
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C4 are C2 = 0 and C4 = 0 due, respectively, to symmetry condition, and that the center of the
droplet requires that |φ(t, r = 0, α) < ∞|. The solution for η and φ can now be written as:

ku =
2

r
− ǫ

sin2 α

r2
eiωtP ′′

l (cosα) + ǫ
cosα

r2
eiωtP ′

l (cosα). (E.13)

Making now use of this solution and applying the dynamic condition at the droplet’s surface,
equation E.3, where the curvature can be written as E.13 for small perturbations, allows to
obtain the compact expression of equation E.14 for the resonance frequency f of an inviscid
droplet of radius R pinned to a circle of radius a.

f =
1

2π
R−3/2

√

l(l − 1)(l + 2). (E.14)

E.2 Electrified droplets

Considering now the droplet of section E.1 as a perfect conductor, and connecting it to a
dimensionless voltage φe = 1 respect to a concentric spherical counter electrode of radius R+ b
connected to a voltage φe = 0, as sketched in Figure E.2, the solutions E.9 to E.12 are valid,
because the unperturbed shape of the droplet continues being a sphere of radius R due to
spherical symmetry. But now a new term appears on the right hand side of equation E.3:

∂tφ+
1

2
(∇φ · ∇φ) =

1

2
B

E
E2

n − ku + C, (E.15)

with B
E
the Electric Bond number and En the normal electric field to the droplet’s surface. To

obtain the electric field at the droplet’s surface, the Laplace’s equation for the electric potential
φe is solved subjected to the boundary conditions,

φe(t, R+ η, α) = 1, (E.16)

φe(t, R+ b, α) = 0, (E.17)

and assuming a solution of the form,

φe(t, r, α) = Φe(r) + ǫeiωth1(α)h2(r), (E.18)

with h1(α) and h2(r) unknown functions of α and r, respectively.
The Laplace’s equation for the electric potential can be solved in a similar way than the

Laplace’s equation for the velocity potential in section E.1, satisfying the boundary conditions
E.16 to E.17 and taking into account small perturbations and that the solution must by
axisymmetric, the following solution for the electric potential is obtained:

φe(t, r, α) =
R(R+ b)

rb
− R

b
+ ǫeiωtPl(cosα)(A1r

l +A2R
−1−l), (E.19)

where A1 and A2 are geometric constants:

A1 = − Rl(R+ b)

b2(R+ b)2l +Rb(R+ b)2l − bR2l+1
, (E.20)

A2 = − (R+ b)l+1

Rb

[

Rl

(R+ b)l+1
− (R+ b)l

Rl+1

] . (E.21)

The electric field at the droplet’s surface, obtained from making
En =

√

(∂rφe)2 + (1/r∂αφe)2|r=R+η, is introduced in the dynamic condition at the interface,
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Figure E.2: Sketch of an electrified droplet of radius R pinned to a circle or radius a = 1.

equation E.15, and an expression for the resonance frequency of electrified droplets is obtained,
when the unperturbed shape of the droplet is a sphere:

f =

√

1

4π2R3
[l(l − 1)(l + 2)]− B

E

A3

4π2
, (E.22)

with A3 a geometric constant,

A3 = l
R2 +R+ b

R2b

[

−2(R+ b)

R2b
−A1lR

l−1 +A2(1 + l)R−2−l

]

. (E.23)

The expression E.22 can be rewritten as,

f2 = f2
ne − B

E

A3

4π2
, (E.24)

where f is the resonance frequency of the electrified droplet, and fne is the resonance frequency
of the same non-electrified droplet.
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