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Velázquez-Pérez4, and Gonzalo Joya2

1 University of Craiova, Romania
{catalin.stoean, ruxandra.stoean}@inf.ucv.ro

2 Universidad de Málaga, Spain
idertator@gmail.com, matencia@ctima.uma.es, lagos@dte.uma.es,

gjoya@uma.es
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Abstract. This paper aims at assessing spino-cerebellar type 2 ataxia
by classifying electrooculography records into registers corresponding to
healthy, presymptomatic and ill individuals. The primary used technique
is the convolutional neural network applied to the time series of eye move-
ments, called saccades. The problem is exceptionally hard, though, be-
cause the recorded saccadic movements for presymptomatic cases often
do not substantially differ from those of healthy individuals. Precisely
this distinction is of the utmost clinical importance, since early interven-
tion on presymptomatic patients can ameliorate symptoms or at least
slow their progression. Yet, each register contains a number of saccades
that, although not consistent with the current label, have not been con-
sidered indicative of another class by the examining physicians. As a
consequence, an unsupervised learning mechanism may be more suitable
to handle this form of misclassification. Thus, our proposal introduces the
k-means approach and the SOM method, as complementary techniques
to analyse the time series. The three techniques operating in tandem lead
to a well performing solution to this diagnosis problem.

Keywords: Classification; Convolutional Neural Networks; Unsuper-
vised Learning; k-means; Self-Organizing Maps; Saccadic eye movement

1 Introduction

Spino-cerebellar ataxia of type 2 (SCA2) is an incurable neurodegenerative dis-
order that progressively and, at first imperceptibly, affects the nervous system.
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It can be diagnosed by very expensive means such as genetic analysis, and its
course is visible in the impairment of certain body movements. But currently, the
easiest, cheapest and most widely available procedure is based on electrooculog-
raphy, by recording and examining the weak electrical potentials generated by
the eye movement of a person tracking the trajectory of an object. This move-
ments, induced by an abrupt displacement of the object, are called saccades.
They have proved to be a valuable marker in common neurological disorders
and their form can be used to perform a diagnosis at a pre-clinical stage of the
disease. Consequently, the computational classification of these saccades can not
only support a correct distinction between healthy, presymptomatic and ill peo-
ple, but more importantly an early detection of the presymptomatic cases, thus
triggering a timely medical assessment and intervention.

In the last couple of decades, medicine has become the playground of tra-
ditional machine learning techniques, such as random forests, support vector
machines and neural networks [1,3,5,8,10] and more recently of deep learning
methods [4,7,11]. The current problem has been tackled by shallow learning
methods, however only to grasp the complexity of the classification task: healthy
and presymptomatic registers are easily mistaken for each other [2]. This paper
therefore goes further in exploring the potential of saccade classification through
deep convolutional neural networks (CNN).

An electrooculographic test consists in a point alternatively appearing at
each side of a screen, thus inducing a particular angular deviation in the pa-
tient’s eyes. The evaluation proceeds by repeating the same object’s trajectory
several times, and the corresponding saccadic samples form a register, which is
labelled by the expert either from its subjective analysis or from additional ex-
tra knowledge. The vast majority of saccades in the register of an ill person are
clearly distinct from those of a healthy person. However, most saccades in the
register of a presymptomatic person are practically indistinguishable from the
standard healthy one, whereas a small number present a form slightly (but ap-
preciably) different. Hence, supervised classification of registers comprising both
positive and negative examples might get confused in learning the correspon-
dence between a saccade and its label from the whole register. This is the case
of CNN, thus our study also appoints two unsupervised approaches to perform
a label-free analysis of the saccadic patterns, namely k-means (KM) and self-
organizing maps (SOM). Additionally, the two methods provide an informative
visualization of the form and disposition of saccades that provides more insight
into the problem, unlike black box learning of the CNN. The creation of an en-
semble out of the three methods is finally considered, leading to a 93.75% test
accuracy on registers.

The paper is organized as follows. Section 2 describes the data and the pre-
processing steps before feeding it to the learners. Section 3 outlines the three
chosen techniques, with their architecture and supplementary mechanisms for the
current problem. The experimental setup and results are presented in Section 4.
Section 5 draws the conclusions and suggests directions for future improvement.
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2 Data

Electrooculograms are elecrophysiologic signals obtained by electrooculography,
which measures the electrical potential between the cornea and Bruch’s mem-
brane. This potential varies with the angular position of the eye, allowing us to
track different eye movements such as saccades. The data used in this work was
extracted from electrooculograms recorded with a sampling frequency of 200 Hz.

(a) Spatial features (b) Kinetic features

Fig. 1: Useful saccadic spatial and kinetic features

We have registers of 88 subjects at different health status: 29 of them are
healthy people (control subjects), 29 are subjects with initial symptoms (presymp-
tomatic individuals), and 30 are already suffering from active SCA2. For each
person we have registers corresponding to electrooculograms recorded using pro-
tocols with different stimuli angles (10◦, 20◦, 30◦, 60◦). After calibration, the
electrical potential samples are converted to angular position time series, and the
velocity profiles are computed together with some important features, shown in
Figure 1. The saccade extraction process is described in the following procedure:

1. Position signals are filtered using a median filter of 9 points.
2. Velocity profiles are calculated using a Lanczos method with 11 points, and

the output filtered again with another median filter of 9 points.
3. For detecting the saccades, KM with 2 clusters (having only a preprocessing

role here) is applied to samples of the velocity profile. The samples in the
cluster with high velocities are considered belonging to a saccade and the
other ones to a fixation. Saccadic samples grouped together are selected as
individual saccades. The sample with the minimum abscissa value (times-
tamp) in the group is considered the onset point, and the sample with the
maximum abscissa value, the offset point.

4. For each pair of onset and offset points:

(a) If the amplitude of the saccade is too low or too high the saccade is
considered noisy and discarded. Skip the remaining steps.
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(b) Extract the saccade window using the following procedure:
– Find the sample index with the maximal velocity between the onset

and offset points of the saccade, and define it as mvi.
– Define the saccade window as the set of 192 samples in the interval

[mvi− 96,mvi + 95].
(c) The central value of the saccade, defined as the average of the minimal

and maximal values, is subtracted from saccade windows, thus resulting
centred saccades with null central value.

(d) Left and right saccades can be distinguished where in the former the
onset has a lower value than the offset. Right saccades are flipped us-
ing a symmetrical transformation with respect to the vertical axis, thus
resulting in all the saccades with the same direction.

Finally, 6124 saccade windows of 192 samples each are obtained and vertically
stacked resulting in a 6124×192 matrix X, which is then normalized component-
wise into the interval [−0.5, 0.5] to enhance the performance of the optimization
algorithms involved in the learning process. The normalized matriz XN results

from the following formula: XN = X−min(X)
max(X)−min(X) − 0.5, where the operations

min,max act over all the matrix components.
The three classes of the problem are denoted as follows: C (control, healthy

subjects), P (presymptomatic cases) and S (sick patients). The number of sac-
cades per register in each class ranges in the interval [49, 169] for C, [38, 172] for
P, and [6, 169] for S.

3 Methodology

The architectural design of the CNN and the tuning of the KM and SOM for
the task at hand are presented in the following subsections.

3.1 Convolutional Neural Networks

Since saccades are time series data, a 1D CNN (with temporal convolutions) is
considered. Its architecture is chosen after manual testing. According to extensive
preexperimentation, the CNN models applied to this task tend to overfit. Hence
several dropout layers are interposed in between the feature extraction and the
classification steps. The flow of layers is established as follows:

– A pair of convolutional 1D layers with size 3, a number of filters equal to
128 and a ReLU activation function.

– A max pooling 1D layer with a window size of 2 and a stride of 2.
– A dropout layer with rate 0.4.
– A second pair of convolutional layers with 256 filters of size 3.
– Another dropout layer with rate 0.4.
– A global average pooling 1D layer to further limit overfitting [6].
– A last dropout layer with rate 0.8.
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– The final dense layer with the three outputs, corresponding to the given
labels. Experiments showed that a sigmoid activation function works better
than the usual softmax one, due to the overlapping nature of the outcomes.

The number of epochs is set to 100, the batch size to 25 and the optimizer is
Adam. Data are split into training, test, and validation sets by considering whole
registers, although the model is trained on individual saccades, whose class is
given by the register to which it belongs. The model with the best accuracy on
the validation saccadic samples is the selected one.

After training, the saccades in the test set are then taken one by one and
labeled with the class predicted by the CNN model. The majority label in one
register establishes its class. A register contains several saccades and the medical
decision is made on the observed behavior of all these examples. As such, there
are several samples that exhibit features distinct from the expected shape for
that class. As a consequence, supervised learning will wrongly attribute some
samples to classes that correspond to the shape of those series. Therefore, an
unsupervised treatment might discover a more accurate grouping of saccades,
according to shapes and not to labels given to a whole register. Accordingly,
two conceptually different representatives of this type of learning are used for
an unsupervised analysis of the problem in the next section.

3.2 K-Means

The simplest form of unsupervised learning is represented by the KM algorithm.
The KM approach used herein follows the standard procedure for training: k
cluster centroids are established starting from random positions and moved as
samples are assigned to them based on proximal Euclidean distances. From pre-
experimentation, it is observed that the value for k must be higher than 7, which
gives a first confirmation of the multimodality of the saccadic forms present in
the data set. Once the different shapes of the given saccades are discovered,
the connection between clusters and the three classes of the problem has to be
established.

Algorithm 1 outlines the entire KM procedure, from the generation of cen-
troids (line 1) to the labeling of test cases. The determination of the profiles for
each of the three categories is performed in the validation phase. Saccades in
every validation register are attributed to a generated cluster centroid by Eu-
clidean distance (line 5). Then, for each register, the percentage of saccades that
are assigned to each cluster is determined (line 7). At this point, the three labels
of the problem are also taken into account and the average percentage is now
computed over all registers for each category (line 9). A profile for every label,
regarding the percentage of saccades corresponding to each cluster, is therefore
obtained. However, these profiles have many intersection points. It is therefore
of interest to grasp what is the difference between them, i.e. which clusters are
more prominent for each label (those that have more saccades assigned or, on
the contrary, less examples as opposed to the amount for the other classes).
Consequently, the difference between the cluster values of one category versus
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the average of the other two is next calculated by Manhattan distance (line 13).
An average of this vector of differences is computed (line 14) and those positions
that have values above it denote the clusters that are discriminating for that
class (line 15). A ranking of the importance of each of these prominent clusters
still has to be quantified and therefore weights proportional to the corresponding
value above the average of discerning differences give the measure of this degree
(line 16).

In the test phase, the form for each register (in percentage of its saccades
attributed to each of the k clusters) is acquired (line 22). Finally, the weighted
Euclidean distance (on the base of the weights calculated in line 16) between
this form and the profile of each class (obtained in the validation phase—line
9) is calculated (line 23), naturally taking into account only the discriminative
clusters (line 15). The distances corresponding to the three classes are then
divided by the number of positions found important for each label (line 24). The
minimum distance points to the label that will be predicted by the model for
the current test register (line 25).

3.3 Self Organizing Maps

Although simple and direct, KM may be a too general algorithm for clustering
the temporal saccadic samples. SOM, on the other hand, introduces a more
sophisticated dimensionality reduction that is more appropriate for time se-
ries analysis, while at the same time provides a different visualization angle of
the learning. The SOM generates a two-dimensional map from the initial high-
dimensional input, based on the competition between neurons in response to the
training saccades and a neighborhood function that preserves the topology of
the initial space.

Once the map is unsupervisedly produced from unlabeled saccades in the
training phase, the mapping of the test registers proceeds in the following man-
ner. The winning neuron is determined for each saccade in a test register. For
that position, each training saccadic sample mapped within the same place is
collected and the class to which it belongs gets one vote. The test saccade thus
gets a triplet of votes, corresponding to votes for each label of the training sam-
ples found in that position. The register is assigned the sum of the triplets of
each of its saccades and the class with the maximum value gives its final label.
In case of equality, the leftmost (less severe) condition is taken as the label.

4 Experimental Results

The data is split into training-validation-test with the percentages of 40%-40%-
20% of randomly taken registers from each category: 12-12-5 registers for C,
12-12-5 for P and 12-12-6 for S.

The following comparative results come from a split where the number of
saccades for training is 901 C - 1039 P - 491 S (2431 in total), for validation 977
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Algorithm 1 KM detection of saccadic centroids, class profiles and test predic-
tions
Require: Data set of saccadic registers and the three outcomes
Ensure: k centroids and predicted labels for test observations
1: Determine the k centroids from the training saccades
2: for each label do
3: for each validation register do
4: for each saccade do
5: Attribute to a cluster centroid
6: end for
7: Compute the percentage of saccades attributed to each cluster
8: end for
9: Calculate the average percentage of saccades for every class

10: end for
11: for each label do
12: Compute the average of the validation profiles of the complementary two labels

13: Get the vector of differences between the profile of the current label and the
computed average profile of the other categories

14: Average the obtained vector of differences
15: Take positions whose values are above average in the vector as class defining

clusters
16: Calculate weights for each position proportional to the distance to the average
17: end for
18: for each test register do
19: for each saccade do
20: Attribute to a cluster centroid
21: end for
22: Compute the percentage of saccades attributed to each cluster
23: Compute the weighted distances between the percentage form of the register and

the validation profile of each label, taking into account only the class defining
clusters

24: Divide the distances by the number of positions found for each class
25: Label the register with the class of the validation profile that led to the minimum

distance
26: end for
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C - 845 P - 771 S (2593 in total) and for test 360 C - 421 P - 319 S (1100 in
total). There are accordingly 2238 C saccades, 2305 P and 1581 S ones.

Given the random nature for the initial weighting in CNN and SOM, and
for the KM initialization of centroids, 30 runs are conducted for each method
in order to be conclusive of the obtained test results. The three methods are
implemented in Python, using the following libraries: Keras with TensorFlow as
back end (CNN), Scikit-learn (KM) and MiniSom (SOM). The architecture and
corresponding parametrization of the CNN is appointed after manual selection.

The value for k in KM is also the result of manual tuning. Figure 2 shows
in the first plot the 11 centroids discovered by the KM on the training data.
Each saccade from the validation and from the test set is then compared to
these cluster centers. For every validation register the amount of saccades that
are attributed to each cluster (the assignment is set by the minimum Euclidean
distance) is computed and a percentage of the saccades distribution is further
obtained (line 7 in Algorithm 1). Then, averages are computed over the registers
with the same class for validation (line 9): the results are illustrated in the
last 3 plots from the second row. The next step regards the identification of
the discriminating centroids for every label in turn, based on these computed
validation class averages. The discriminative clusters are selected for each class
against the other two in such a way that they are either much smaller or much
larger than for the complementary labels (line 15). The distinctive centroids for
every class in turn are illustrated in the plots 2, 3 and 4 from the first row: dotted
line means that the amount of saccades in that register should be smaller for
that cluster, while continuous ones indicate the reverse. It should be underlined
that the colors for the clusters are kept similar for all plots, be that they contain
lines or bars.

The shapes for the C and P classes are very similar, as observed from the
profiles for each label found in the validation phase. However, the discriminative
clusters are not identical for the two, as indicated in the second plot from the first
row: a larger number of saccades closer to the light blue centroid is indicative for
the C class, which is one of the reasons why register P020 is wrongly assigned
to this class. Conversely, the light blue line is dotted for S (fourth plot in the
first row), indicating that a small number of saccades assigned to that centroid
is illustrative for this class.

The values for the sigma (of the neighborhood function) and learning rate
parameters within SOM are tuned on the validation set by searching through
combinations in the set {0.9, 1.2, 1.4, 1.6, 1.8} for sigma and {0.1, 0.2, 0.3, 0.4,
0.5} for the learning rate. For tuning and for overcoming the stochastic nature
of the algorithm, for each setting a number of 5 repeats is considered. The best
classification accuracy on the validation set at the register level is achieved for
a sigma of 0.9 and a learning rate of 0.1. Another setting that led to the same
accuracy result on the validation set was a sigma of 1.2 and a learning rate of
0.3. The number of iterations for training is established at 2000 and the size
of the map is chosen to be 40 by 40. Although smaller values for the map size
lead to faster running time, the accuracy of the results decreases in these cases,
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Fig. 2: The plots in the first row indicate the cluster centers as found by the KM
in the first picture, followed by the centroids that are discovered as important
for each class in turn. The first plot on the second row indicates the profile of
the saccades in a presymptomatic register wrongly classified and the subsequent
plots show the mean percentages of saccades from the validation set that are
assigned to each class in turn. The numbers and colors shown in the plots are
consistent among all of them. The centroids in dotted line indicate that the
amount of saccades associated with that cluster should be smaller than the
corresponding average number from the other two classes; continuously drawn
ones mean the opposite.

while larger values for this parameter (it was tried only up to 50) did not lead to
significant improvement. Using these settings, the training phase conducts to the
map illustrated in Figure 3. Although the problem has only three classes, there
are many more clusters obtained by SOM. This comes in line with the KM results
which showed that better results were obtained when the number of clusters was
high, concretely 11. Moreover, there are many cells in which winning neurons
are chosen from different classes—especially the C class is frequently mixed with
the P category.

Figure 4 shows the confusion matrices for the three methodologies. The mis-
classified test registers in the 30 repeated runs for each of the three methods are
illustrated in Figure 5. Although for all three matrices the number of confused
registers of types C and P are identical, the actual mistaken registers are not
the same: as observed in Figure 5, P020 is the only one that is confused by both
KM and SOM. Therefore if an ensemble is created out of the three methods by
majority vote, there is only one error out of 16 registers, leading to a 93.75%
test accuracy.
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Fig. 5: The number of times the class of each test register is mistaken out of 30
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is considered wrongly classified.
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5 Conclusions and Future Work

The paper aims to discover the insights of SCA 2 diagnosis from electrooculog-
raphy data and does so through representatives of both supervised and unsuper-
vised learning. Three techniques are employed for saccade pattern recognition in
connection to the three classes (healthy, presymptomatic and ill) of the problem:
a convolutional neural network, a k-means and a self-organizing map.

KM performs the worst of the three as a single decision maker (with four
wrongly attributed registers from all three categories), which was expected, as it
is the simplest form of learning. The CNN and the SOM mistake three registers,
two of which are presymptomatic and one healthy. Moreover, it was interesting
to see that the three algorithms have each a very different perspective upon
the saccades-class correspondence, which demonstrates both the multiple facets
of the problem and the efficiency of the ensemble, with only one final wrongly
labeled test register and a corresponding accuracy of 93.75%. Although each
of the chosen techniques misclassifies more presymptomatic cases than samples
from the complementary classes, the overall ensemble mistakes only one, which
makes it a suitable solution for the task of an early recognition of the disease.

Future work will target both methodology as well as data enrichment. On the
technical side, other classifiers should be included in the ensemble, for example
recurrent neural networks that are suitable for capturing temporal behavior.
Parametrization of the employed approaches is also an issue related to better
performance. Exploring the landscape for the parameters of the CNN (number
and type of layers, kernel attributes, initial weighting) and of the unsupervised
learners (number of clusters in KM, map size in SOM) can be for instance
properly undertaken by evolutionary computation [9].

As far as the data is concerned, the computational support for the diagno-
sis of SCA 2 has only taken so far into account saccadic movement. There are
however some other preclinical indicators of the disease that should be further
included as input for the learning methodologies. Evidence that saccadic slow-
ing characterizes the early stages of the condition was brought forth in [12].
Therefore, apart from the movement, the velocity of the saccades should also
be investigated computationally. The same study also discovered that the sac-
cadic slowing appears during the presymptomatic stage of the disease only for 60
target amplitude. Therefore, amplitude should be taken into account as a sup-
plementary pattern. Finally, since SCA2 is also a hereditary disease, the genetic
markers are expected to bring new discriminating potential within the learning
process.
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