
Evolution Oriented Monitoring oriented to Security Properties
for Cloud Applications

Jamal Toutouh
University of Malaga

Málaga, Spain
jamal@lcc.uma.es

Antonio Muñoz
University of Malaga

Málaga, Spain
amunoz@lcc.uma.es

Sergio Nesmachnow
Universidad de la República

Montevideo, Uruguay
sergion@fing.edu.uy

ABSTRACT
Internet is changing from an information space to a dynamic com-
puting space. Data distribution and remotely accessible software
services, dynamism, and autonomy are prime attributes. Cloud tech-
nology offers a powerful and fast growing approach to the provision
of infrastructure (platform and software services) avoiding the high
costs of owning, operating, and maintaining the computational
infrastructures required for this purpose. Nevertheless, cloud tech-
nology still raises concerns regarding security, privacy, governance,
and compliance of data and software services offered through it.
Concerns are due to the difficulty to verify security properties of
the different types of applications and services available through
cloud technology, the uncertainty of their owners and users about
the security of their services, and the applications based on them,
once they are deployed and offered through a cloud. This work
presents an innovative and novel evolution-oriented, cloud-specific
monitoring model (including an architecture and a language) that
aim at helping cloud application developers to design and moni-
tor the behavior and functionality of their applications in a cloud
environment.

KEYWORDS
Cloud Computing, Monitoring rules, Dynamic Verification, Security
Properties, Event-Sequence Language
ACM Reference Format:
Jamal Toutouh, Antonio Muñoz, and Sergio Nesmachnow. 2018. Evolution
Oriented Monitoring oriented to Security Properties for Cloud Applications.
InARES 2018: International Conference on Availability, Reliability and Security,
August 27–30, 2018, Hamburg, Germany. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3230833.3232856

1 INTRODUCTION
Despite the many advantages cloud technology offers, it still raises
significant concerns regarding security, privacy, governance, and
compliance of data and services offered through it. Such concerns
arise from the inherent difficulty to control processes and data that
are stored and used in platforms that are managed and controlled
by third-parties [1].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARES 2018, August 27–30, 2018, Hamburg, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6448-5/18/08. . . $15.00
https://doi.org/10.1145/3230833.3232856

We claim that evolution is a necessary ability for applications
and individual services. Nevertheless, there are bugs that need to be
overcome, i.e., threats overlooked in the development phase can be
later identified and require including countermeasures, new func-
tionalities, improved performance, or environment changes may
trigger the evolution of applications and services. In all these cases,
engineers must address evolution with few or even no information
about the behavior of the software component. This lack of support
for a security focused evolution process covering the full life cycle
of systems allows vulnerabilities to be exposed and exploited by
malicious users, before developers are able to fix them.

Evolution should take the spotlight in the development and
operation of cloud applications. Now, evolution is considered a
secondary activity in the life cycle of applications, but we argue
that this is not in the line with the needs of a large percentage
of cloud applications. Among the main reasons why applications
are hosted in the cloud we highlight, first, the need of making
them available to a very large number of users that use multiple
devices, and second, the high costs of maintaining and evolving
such type of applications in comparison with traditional standalone
or client-server applications. Likewise, it is common that the nature
of services provided by these applications also requires more fre-
quent updates to add new functionalities or new access interfaces.
Finally, the heterogeneity and unpredictability of modern comput-
ing and communication infrastructures and platforms on which the
applications actually run, is also an important reason that requires
adaptation and evolution. In order to be applicable as a driver of
security and efficiency in cloud computing, application evolution
approaches and mechanisms must be made more dynamic, tak-
ing advantage of the characteristics of the cloud scenario, while
avoiding the introduction of new security risks.

The aforementioned topic has been rarely addressed in the re-
lated literature. Few researches have focused on developing new
tools and mechanisms to improve the efficiency and security of
systems evolution across the whole software life cycle. In fact, se-
curity and evolution are tightly interrelated concepts. On the one
hand, poorly controlled evolution is the source of many security
weaknesses and other errors that have a negative impact on the
system security. On the other hand, evolution is a crucial feature
to maintain the security of systems. The current lack of support
for a security-focused evolution process covering the full life cycle
of computing systems results in (i) slow response times that allow
vulnerabilities to be known and exploited by malicious users before
developers are able to fix them, and (ii) high maintenance costs,
downtime, and security incident handling.

Run-time monitoring has become an essential element whenever
high levels of assurance are required. Monitoring can be useful for

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/214830584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3230833.3232856
https://doi.org/10.1145/3230833.3232856

ARES 2018, August 27–30, 2018, Hamburg, Germany Jamal, Antonio and Sergio

different purposes such as prevention of harm when an strange
behavior is detected, collection of information from both the appli-
cation and the environment where it is running, etc. The current
concept of monitoring focuses on the runtime supervision and
control of applications, allowing the early detection of operation
problems of individual application instances and supporting the au-
tomated reconfiguration of these applications. In our context, as we
have already mentioned, there are not appropriate pre-deployment
controls for the services running on a cloud. Therefore, runtime
analysis and control become an essential tool for comprehensive
support of the security of cloud software, especially when focusing
on evolution. Consequently, in this article we focus on developing
the concept of evolution-oriented monitoring to monitor systems
to obtain feedback and inform the evolution process. These pro-
cesses are themselves subject to security requirements and they
need to ensure that the privacy of different stakeholders is pre-
served whilst sufficient information is communicated to developers
to guide evolution.

Many authors have studied evolution topics from different per-
spectives, focusing on classifying types of evolution and also defin-
ing abstract models of evolution [7–10]. Some initiatives have fo-
cused on requirement evolution [11–13] more than system evolu-
tion. A key research contribution in this area is a better understand-
ing of the origins of change [14, 15]. Roshandel et al. [16] presented
an approach for managing architectural evolution in sync with code.
Yu et al. [17] defined an approach based on ignoring all information
but the source code, and applying reverse engineer requirements
from there on an as-needed basis.

In the area of evolution of software systems, Kephart [2] pro-
posed autonomic software that self-configures, self-repairs, self-
optimizes and self-protects. Oreizy [3] proposes an architectural
approach for adaptive software systems that adapt to the environ-
ment to meet their intended purpose through a monitor-diagnose-
compensate feedback loop. Following this approach, a reflective
middleware was presented by Kon et al. [4]. Rainbow et al. [5] pro-
posed an architecture-based framework that enables self-adaptation
based on two models: (i) an externalized approach and (ii) software
architecture models. A number of authors have been interested in
software evolution, most of them focusing of helping developers
understand how to change the system. However, very few efforts
are dedicated to address the full life cycle of systems, being just
some of them interested in engineering.

In this line of work, this article describes a proposal for an
evolution-oriented monitoring model for cloud systems focused on
security properties.

The article is organized as follows. Section 2 presents the main
features of the proposed evolution-oriented monitoring for specifi-
cations and implementations. The proposed model for evolution
of cloud applications is described in Section 3. The ongoing work
about monitoring applications is described in Section 4. Finally,
Section 5 presents the conclusions and formulates the main lines
for current and future work.

2 EVOLUTION ORIENTED CAPABILITIES
In this work, we propose a framework that provides support for
evolution of both specifications and implementations by means of

evolution-oriented monitoring mechanisms that enable the analysis
of experiences (e.g. runtime data) gathered during the deployment
of solutions (services and components) on different platforms. We
envisage such mechanisms being based on secondary analysis of
primitive monitoring data, aimed at identifying several issues, in-
cluding:
• Gaps in the descriptions of solutions (e.g. missing precondi-
tions and other assumptions about the operational context
of a solution).
• Faulty implementations of solutions (e.g. implementations
that do not satisfy certain solution properties under specific
conditions).
• Faulty or incomplete models for solutions (e.g. missing state
transitions).
• Improvements and enhancements in the solution composi-
tion plans.

The first level of monitoring (application-specific monitoring
carried out by the Local Application Surveillance (LAS) is based
on logic reasoning and deterministic rules. For the higher levels
(interaction between applications carried out by the Intra Platform
Surveillance (IPS) and monitoring of different instances of the same
application running on different platforms carried out by the Global
Application Surveillance (GAS) we propose adopting probabilistic
reasoning, which fits better the nature of the rules to deal with in
these levels. Precisely, most of the evolution-oriented knowledge is
generated in these two levels.

The addition of the most abstract monitoring level allows obtain-
ing information that cannot be obtained using normal application
monitoring. In particular, the IPS allows our model to deal with
potential problems caused by the interaction between different ap-
plications in the same platform. For example, if the frequency of
correlation between events generated in two monitored applica-
tions is statistically significant our model may conclude that there
is an unforeseen interaction between those applications and take
appropriate measures. On the other hand, GAS supports mainte-
nance and evolution of specific applications and detect problems
with non-compliant implementations, as well as problems in the
modeling. With an isolated application, monitoring can detect a fail-
ure, which is by definition an inconsistency between the model and
the implementation of the application (considering that it includes
all supporting layers of the cloud stack). However, it is not possible
to determine whether the problem is actually in the model or in
the implementation. With the vertical monitoring that GAS per-
forms over different instances of the same application, our model
can indeed determine the origin of the inconsistency. Suppose that
GAS receives, from a given application instance, events indicating
repeated violations of a monitoring rule indicating an illegal transi-
tion between two states. This would indicate that the application
instance does not conform to its application model. On the con-
trary, if the violations come from different instances of the same
application, these violations would most likely indicate an error in
the model of the application.

3 EVOLUTION OF CLOUD APPLICATIONS
The evolution of cloud applications is a complex task due to the
difficulty of knowing the specific problems that applications have

Evolution Oriented Monitoring oriented to Security Properties for Cloud ApplicationsARES 2018, August 27–30, 2018, Hamburg, Germany

and how correctly evolve then in order to obtain a new enhanced
application without unexpected security problems. It is relevant
to take into account that those problems increase since the cloud
applications are running over different operating systems and ar-
chitectures, which means different software and hardware infras-
tructures. Our approach addressed these problems by using the
monitoring architecture described in the previous section. This sec-
tion describes how the architecture works and how the evolution
of cloud applications by using our approach is performed.

3.1 Evolution of applications running on Cloud
Data needed for the evolution is obtained by using the monitoring
infrastructure, from different architectures (hardware and software)
where the same cloud application is running. CloudMon[18] in-
frastructure enable applications to forward those data that allow
identifying and studying the different configurations and behaviors
that were active when the cloud application failed or a monitor rule
was violated.

The CloudMon workflow consists of creating an instance of LAS
specific for each application. The idea is that every application loads
its Application Behavior Security Model in its associated LAS in
such a way that LAS detects what to monitor is described in the
event declaration part. LAS sends to a subscriber (a daemon process)
the list of events to subscribe. After that, rules are checked and if any
rule is violated then the reaction for that specific rule is performed.
IPS can act as privacy filter to decide whether sending the set of
events to their related GAS or not. At this level, events become
rule violations. If a rule is violated, it is reported to application
provider in order to be analyzed and study if a common error in
many instances of its application or only for one instance.

The local monitors (LAS) of each system check the correct work-
ing and behavior of a specific cloud application. If the application
violates any rule included in the list of the monitor, it reacts by exe-
cuting the (re)action specified in the rule and sends the information
to the IPS. Each IPS receives reports from different cloud application
running in the same platform. When rules are violated, IPS sends
the information to GAS, as it means that the cloud application has
a security vulnerability or flaw in the design and must be evolved.
The information sent to the cloud application developer, that is to
GAS, is a precise and focused report that describes the problem,
the system configuration, the functionality that violated the rule,
the environment where the cloud application is running, and every
other relevant detail. Using all this information, the developer can
analyze the problem and extract the problematic functionalities of
the application.

To follow the proposed approach, new cloud applications should
be designed for monitoring. For this purpose, specific parts of soft-
ware must have attached a set of rules, similarly to the Proof Car-
rying Code [6] approach. Applications must have the structure
depicted in Figure1. Obviously, the application code and data parts
are essential for runtime. As it was previously described, the Ap-
plication Behavior Security Model (ABSM) enables a mechanism
for communicating application specific events. For instance, ap-
plications write on a specific file such as monitoring log and the
Application Interaction Security Model (AISM) is used to define the

monitoring of problems derived from the interaction of this appli-
cation with others simultaneously running at the same platform

Figure 1: Application Instrumented Code Interlinked.

Let us introduce an example including an application interaction
security model that describes the problem. Let suppose that App1
uses key K1 from key-store KS1 for encryption, and there is evidence
that none KS1 or App1 does ever leak K1. App2 also uses K1 from
KS1, but we know it is vulnerable to an attack that can extract
K1. In this case, App1 becomes vulnerable too and application
designer and/or developer should be warned. In this example AISM,
is described in [18] as a set of rules used to declare what to monitor
regarding the use of shared resources. These rules are mostly based
on abduction, focused on interaction and not application-specific.
Thus, if we observe that App2 fails more than 60% of the times
after App1 fails, we can conclude that App1 and App2 have an
unexpected interaction.

The Monitoring Forwarding Control is fully editable, config-
urable, and parameterizable by the user. This component provides
the user the decision aboutwhat to report to the application provider,
keeping the user privacy. We assume that user is a gambler, but he
prefer to keep it as a secret. Then, an specific parameter of a violated
rule reflects that the access to the file "gambling.avi" is not granted.
Let us introduce the next example: rule R1 is violated by App1 and
after one second, rule R2 is violated three times by App2. This fact
reflects that a correlation exists. The next step is to notify someone
that R1 is always violated after R3 is violated three times. Neverthe-
less, this notification must be done in a privacy-respectful system
and based on a policy that must be known beforehand. We notice
after our analysis that it is necessary to forward only that required
information for performance, privacy, and efficiency issues. As an
additional measure, and tailored for specific cases the application
code, ABSM, AISM, and Monitoring Forwarding Control parts can
be signed.

The evolution-aware cloud applications are created using a spe-
cific methodology and they have a particular structure. Applica-
tions are enabled to be checked for malfunctioning, attacks, security
vulnerabilities, and other issues. The monitoring rules for each ap-
plication are specific and designed by expert users who know the

ARES 2018, August 27–30, 2018, Hamburg, Germany Jamal, Antonio and Sergio

expected behavior and possible problems that the application can
present when executing in a cloud system. Besides the applica-
tion information and behavior, the monitoring rules must check
the environment behavior where the cloud application is running.
For example, there must be rules in charge of checking the RAM
memory consumed by the application, the behavior of other applica-
tions running in the same system, etc. This functionality is possible
thanks to an important characteristic of the proposed evolution-
aware cloud applications model: Applications are created using
modules for each specific functionalities. This means that the ap-
plication is composed of modules that cover specific functionalities
or areas of the application. For example, a cloud application for
messaging would be composed of a module for sending messages,
a module for the encryption of data, a module for the receiving of
data, etc.

Figure 2 describes the structure of an evolution-aware cloud
application. It is structured in independent modules that can be
replaced if any of them fails, is vulnerable to a malicious attack, or
if the monitor detects a security vulnerability, etc. This is one of
the most important characteristics of these applications: the mod-
ules can be replaced if necessary and the application will continue
working successfully without notice, although some functionalities
can be disabled temporarily.

Figure 2: Evolution-aware cloud application structure.

One of the most important modules of a cloud application using
the proposed model is the one that has the information of the
monitoring rules, which implies that each application created with
this structure contains all the monitoring rules in a single package
and it can be updated with additional and/or different rules if the
system evolves or security threats that were not predicted are found.

3.2 The proposed evolution process
The evolution process of the evolution-aware cloud applications is
a critical and necessary functionality that allows cloud applications
to evolve, adapt, and fix errors or security vulnerabilities detected
in some instances of the applications running in specific system
configurations or infrastructures. The evolution process takes into
account the distributed and heterogeneous functionalities of the
cloud applications, allowing these applications to avoid future risks
and threats that are not yet detected by some instances of the
application.

Evolution process is composed of two different processes. These
two parts complement each other and helps the developer to control
and evolve the cloud application. The main two functionalities are
prevention and evolution.

Prevention is a local action that happens only in the cloud appli-
cation instance that has detected the vulnerability. Thus application
executes the reactions defined in the rule violation description, in
order to minimize the error and data vulnerability.

Evolution is a general response for all the instances of the cloud
application. The cloud application developer uses the information
collected by the monitoring infrastructure and updates and/or man-
ages the threated modules. These modules and the corresponding
information are then deployed and all the instances of the cloud
application can benefit from these changes.

For example, if application A detects a rule violation, the system
reacts with the two-phase functionality. First, the local monitor
reacts to the violation by executing the response code defined in
the rule (stopping the application, disabling some modules, alerting
the user, etc.); second, the local monitor (LAS) derives the infor-
mation to be forwarded to the cloud application developer using
the Monitoring Forwarding mechanism. This mechanism will use
the information to create an evolution version of the application.
The developer updates and manages the vulnerable modules and
forwards information to all the instances of the cloud application.
By means of this mechanism, even those cloud applications that
have not detected the threat are protected against it. Figure 3 shows
the evolution process for our proposal of evolution-aware cloud
applications based on two phases.

Figure 3: Evolution Process for Evolution-aware Cloud Ap-
plications.

Evolution has two phases. The first evolution phase is the adap-
tation of the application following the behavior model described
in the monitoring rules of the application. These responses are
specified in the LAS monitoring rules, which are the first ones exe-
cuted when an application violates a rule. If the LAS detects that
an application is having a security problem or has an unexpected
behavior (i.e, it violates any of the rules), then it will execute the
reactions specified for each violated rule. For example, LAS can
close the application, disable the sending module of the application
(preventing the application to send raw private data, etc.), restart
the application, send a message to the system administrator, etc.
These responses and reactions are specified in the monitoring rules
by expert users who know which are the more dangerous assets
and vulnerabilities of the application, allowing the system a quick

Evolution Oriented Monitoring oriented to Security Properties for Cloud ApplicationsARES 2018, August 27–30, 2018, Hamburg, Germany

response to unexpected error or attacks and, preventing the harm
to the system or the user. As the first reaction to errors and attacks,
this first evolution phase is performed in real time, preventing at-
tacks before any real threat occurs. In addition, as this rules and
reactions are described in a specific module of the evolution-aware
cloud applications, when the application creators receive more in-
formation about errors, attacks, security vulnerabilities, and other
issues from the applications’ interactions in real systems, they can
create a new set of rules and reactions and update the application
with the new information.

The second phase of the evolution-aware process for cloud appli-
cations consists on changing, managing, and updating the modules
of the application. This phase complements and works in parallel
with the first phase of the evolution process. In this phase, feedback
information and monitoring rules of all the different instances of
cloud applications are received and used to create or update their
modules in the case that is required. A cloud application has several
instances running in different environments and systems archi-
tectures. These instances have their LAS checking for the correct
behavior of the applications and the data they use. When errors are
detected, the LAS reacts executing the adaptability rules defined in
the monitoring rules, and sends data about the error to the IPS.

The monitor engine receives as input information from the same
application running in different platforms. Then the IPS (Intra Plat-
form Surveillance) module receives many reports of an error or
security vulnerability in an specific functionality the developers
of the application use this information to evolve the application
by updating or changing the module or set of them that fails. The
information of all the different threats and reports from the exe-
cution of the cloud application are collected by the GAS. Cloud
application developers access this information in order to obtain
the necessary data for the evolution of the application, but keeping
user privacy. Once the developers receive the information of the
malfunction module, they react disabling that module in the appli-
cation (or taking other preventive procedures) and, if necessary,
changing the module by another one that offers the same or similar
functionalities and can be used in that cloud application (regarding
compatibility). This action is critical, as developers have to check
that the new module is not only secure, but its use does not create
new security vulnerabilities or errors in the application. Develop-
ers check this issue by testing the application including the new
module internally, checking for violation of existing rules and the
new rules included in the new module. This functionality allows
users of the application to continue using the cloud application
while developers fix the errors or security vulnerabilities detected
in the failing module. Although the new module would not offer
the same functionality and would not work as good as the former
one, it will allow using the majority of functionalities of the cloud
application. In the meanwhile, developers use the information from
the monitors to fix the errors of the application by updating or
creating a new module that replaces the one failed. A very impor-
tant step of this process is the creation of new rules for the new
module. Developers create new rules and reactions for the module
and insert them in the monitoring module of the application. These
new rules are based on the existing ones, and update them with the
information of the detected threats, environment data where the
application failed, and other relevant information. Once finished,

developers evolve the cloud application by changing the old module
or replacing it with the new one and update the rules module for
the LAS. Users can continue working with the cloud application
that is more secure and resilient after the procedure, as it has been
evolved to check and work with the new issues founded thanks to
the monitoring infrastructure.

3.3 Life cycle of the evolution process
The life cycle of the proposed evolution process is described in
detail in this subsection.

Lets suppose that a group of end users are working with their
company private data using a cloud application in their system. The
local monitoring infrastructure detects an error in the application
concerning the visibility of the private data by a malicious user.
The CloudMon framework detects the problem before any harm
is caused. The first reaction is executing the prevention response
specified in the violated rule. This response was defined by the
application developer, who knewwhat was the best course of action
to avoid data loss or intrusion of malicious users. Lets suppose the
reaction specified was to stop using the communications module of
the cloud application, because if the data was sent without security,
then it is better to avoid this functionality. Using this approach,
users can continue using the cloud application without risk to
expose the private data to malicious users. Only the vulnerable
module is disabled, so users can work without worrying a malicious
user access the company private data. Besides, users know that
the information and data of the violated rule and the discovered
vulnerability are being used by the cloud application developers to
fix the threat. The CloudMon infrastructure sends data to protect
the private information and data from the users, allowing for a
major confidence and use of this system.

Together with the previous process, as the LAS reacts and ex-
ecutes the prevention action specified in the rule, it sends the in-
formation of the problem, violated rule, environment, cause, data
of the application, the system configuration where it is running,
and other data. This component can receive reports from both the
same and different threats of the same application. If LAS receives
several messages regarding the same threat, it analyzes the data,
preserving the privacy of users, and sends the information to the
Global Application Surveillance (GAS). GAS is in charge to check
and digest information from local monitors, analyzes it, stores and
extracts the key information in order to send it to the cloud ap-
plication developer. Through the GAS, a user can obtain all the
data relating to the detected threats and vulnerabilities of the cloud
application. Then, the user identifies the problem and threat and
can start working in the solution. The developer studies the risk of
threat and, if necessary, can deploy a temporal module that offers
the same functionality (in a lower tier) than the vulnerable module.
By means of this mechanism, users of the cloud application can
use the functionality of the affected module without compromising
their private data. As this new module was not created specifically
for the cloud application where it is used, it has to be checked
against the threats detected in the previous module, to check that
it does not bring new unexpected errors or vulnerabilities to the
system. This part is very important, since if the new module has

ARES 2018, August 27–30, 2018, Hamburg, Germany Jamal, Antonio and Sergio

more vulnerabilities than the previous one, the capacity and usabil-
ity of the cloud application can be worse than before, thus there is
no real benefit of applying the process.

The proposed approach guarantees the confidentiality and pri-
vacy of the end users’ data, as the monitors do not send any of this
information to the cloud application developers. The developer cre-
ates a new version of the application that fixes the security threat
or vulnerability. It is usually done by creating a new version of the
threated module or, if necessary, some more modules. After creat-
ing the new module, the cloud application developer also creates
new rules that can assure the correct functionality of the system
with the new module, as it can bring new functionality or has a
new data structure. Also, new rules have their equivalent reactions
described. They are specified in the rules module of the application,
which will be evolved with the rest of the application. Finally, once
the developer has checked that the new version fix the threat, it
is uploaded to the cloud application providers. The users receive
a message indicating that a new version of the application is up
and ready to be evolved. When the application evolves, it changes
the malfunction module (or modules) and updates the rules module
with the new rules and reactions for the evolved modules.

The end user can continue working with the application, with
her privacy and confidentiality data protected. The information
their monitor provided was used to secure and evolve not only the
user application but also all its different instances that are used
by different users in different environments. The benefit of this
functionality is that even the users that have not experienced the
error or security threat are now updated and security-enhanced
to this new version. For example, let us suppose that a company
is using a cloud application that stores the private financial data
of the company. If the monitor detects the error but cannot send
this information to the LAS, IPS, or GAS, the cloud application
developer will not have enough information to fix the error. The
company, I.T. workers, can fix the threat internally, e.g., by fixing
ports and disabling some permission, but this will not help the
rest of the users of the cloud application or even assure that the
application is fully secured. As the same time, if users fix locally the
application in one of their computing resources, other resources of
the same companywill still be vulnerable to the threat and can affect
the whole company system, because it does not include reaction
procedures defined for the rule violation.

CloudMon provides a solution to the aforementioned problem.
In case that an instance of a cloud application is compromised,
developers use the information derived from the execution of a
particular action to fix the application. In such a way, all instances
of the application will be fixed and secured before malicious users
can attempt to attack other computing resources or application
instances using a security bug in many cases. Once the error has
been identified in one instance, all other instances can be secured
against the threat only upgrading their applications.

4 ONGOINGWORK
Currently, we are working on some specific developments and
improvements to the proposed evolution approach.

One of the main lines of ongoing work is related to enhance the
CloudMon approach in order to provide more support for applica-
tion developers. For this target, we have included as a milestone to
provide engineering approaches that help developers incorporate
monitoring specifications into applications and novel programming
models that produce monitoring-ready applications with built-in
support for being monitored. Today, cloud applications are de-
veloped using tools designed for traditional computing systems,
without offering adequate support for developing applications that
can be securely and efficiently adapted to the different and possibly
evolving characteristics of the cloud infrastructures used to execute
them. Applications could easily and systematically evolve, using a
“social” strategy that takes advantage of the knowledge gathered
from the execution of different instances in different clouds. This
lack of cloud-oriented engineering and programming models has
some important consequences. First, cloud applications might not
be able to take full advantage of existing cloud security mechanisms,
as these mechanisms might not be standardized or have a level of
complexity that make it hard for application developers to under-
stand and exploit them. Second, security mechanisms hard-coded
into applications may interfere with cloud security and other appli-
cation and infrastructure management mechanisms in ways that
reduce the overall level of application security and resilience. Third,
assumptions about the cloud infrastructure on which an application
was originally planned to be deployed on may have influenced its
design in ways that make it difficult (if not impossible) migrating
the application to different clouds, even if the latter are part of the
same cloud federation.

Due to the aforementioned reasons, developing and program-
ming cloud applications should be based on a clear model of the
needed infrastructure. Moreover, the process of developing secure
and evolvable applications for the cloud does frequently not only
deal with technical problems, but it also involves social and or-
ganizational aspects that must be considered in a systematic way
from the beginning of the engineering process. Requirements are
not limited to technical needs to be satisfied, but also to policies
and restrictions that have to be guaranteed in line with the so-
cial/organizational setting and within the business policies and
processes that will be adopted.

Furthermore, security requirements and policies that affect cloud
applications may change during their lifetime. When this situation
happens, applications must evolve to ensure the satisfaction of the
new security needs whilst making effective use of the available
cloud mechanisms. Proper monitoring and evolution techniques
must be used at runtime to guarantee continuous alignment be-
tween technical evolution of the application and security require-
ments and properties emerging at social and organizational level.
Additionally, we consider that in order to take full advantage of
the proposed approach, a way to represent the different underlying
trust models used in each cloud computing platform must be es-
tablished. Such trust model will be used by applications to become
aware of and to adapt themselves to their current execution envi-
ronment. Trust models that are currently assumed for applications
executing on platforms owned and/or controlled by application
providers themselves are not always adequate when the same ap-
plications are to be deployed on a cloud infrastructure, mainly
because actors, roles responsibilities, and capabilities changes. For

Evolution Oriented Monitoring oriented to Security Properties for Cloud ApplicationsARES 2018, August 27–30, 2018, Hamburg, Germany

instance, responsibilities that were originally assigned to the ap-
plication provider, such as ensuring that changes in the platform
do not affect the application or that application code itself is not
modified, are transferred to the cloud provider in the new approach.
Therefore, new trust models must be defined that are tailored to the
cloud computing model and can be supported by specific trust and
security mechanisms integrated into cloud infrastructures. These
new trust models should also consider different attack models that
have been redefined in the cloud environment taking advantage of
the previously mentioned changes in roles and responsibilities of
the cloud setting.

5 CONCLUSIONS
This article proposes an approach for managing software evolution
for cloud applications. The model is based on runtime analysis
and control mechanisms that streamline the evolution processes
of cloud-based software, and considers evolution along the full
application engineering life cycle, in order to guarantee the security
and resilience of evolving systems. In order to achieve these goals,
the model provides a three-layered monitoring infrastructure to
facilitate the operation of monitoring activities and the correct
treatment of the monitoring information by different parties.

The proposed architecture increases the security and reliabil-
ity of cloud computing by making easier the task of identifying
the origin of design-flaws. This feature is performed by LAS, IPS,
and GAS components, which are able to monitor each application
separately or as a whole. In addition, components capture precise
and specific information on attacks, errors, and malfunctioning and
improve the efficiency (in terms of time) required to identify and
fix errors. A proper set of monitoring rules helps with error identi-
fication before it further propagates in the application and becomes
harder to track. This architecture enables the evolution of appli-
cations at runtime supporting the evolution of both specifications
and implementations by means of evolution-oriented monitoring
mechanisms that enable the analysis of experiences (e.g. runtime
data) gathered during the deployment of solutions (services and
components) on different platforms.

REFERENCES
[1] Schadt, E. et al. Computational Solutions to Large-Scale Data Management and

Analysis. Nature reviews. Genetics 11.9 (2010): 647âĂŞ657. PMC. Web. 18 May
2018.

[2] Kephart, J., Chess, D., “The Vision of Autonomic Computing”, IEEE Computer
36(1), January 2003, 41-50.

[3] Oreizy, P., Gorlick, M., Taylor, R., Heimbigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D., and Wolf, A., “An Architecture-Based Approach to
Self-Adaptive Software” IEEE Intelligent Systems 14, 1999, 54-62.

[4] Kon, F., Costa, F., Blair, G., Campbell, R.H., “The case for reflective middleware”,
Communications of the ACM 45(6), 2002, 33âĂŞ38.

[5] Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P., “Rainbow:
architecture based self-adaptation with reusable infrastructure”, IEEE Computer
37(10), October 2004, 46âĂŞ54.

[6] Colby C., Lee P., Necula G.C. (2000) A Proof-Carrying Code Architecture for
Java. In: Emerson E.A., Sistla A.P. (eds) Computer Aided Verification. CAV 2000.
Lecture Notes in Computer Science, vol 1855. Springer, Berlin, Heidelberg.

[7] Lehman, M., “On Understanding Laws, Evolution, and Conservation in the Large
Program Life Cycle”, Journal of Systems and Software 1, 1980, 213âĂŞ221.

[8] Mens, T., Buckley, J., Zenger, M. and Rashid, A. “Towards a Taxonomy of Soft-
ware Evolution”, In Proceedings of the 1st Workshop on Unanticipated Software
Evolution, 2003.

[9] Buckley, J., Mens, T., Zenger, T., Rashid, A. and Kniesel, G. “Towards a Taxonomy
of Software Change: Research Articles”, Journal of Software Maintenance and
Evolution, 17(5):309âĂŞ332, 2005.

[10] Fernandez-Ramil, J., Perry, D., Madhavji, N.H. (eds.) “Software Evolution and
Feedback: Theory and Practice”, Wiley, Chichester, 2006.

[11] Harker, S.D.P., Eason, K.D., Dobson, J.E. “The change and evolution of require-
ments as a challenge to the practice of software engineering”, IEEE International
Symposium on Requirements Engineering, January 1993, 266âĂŞ272.

[12] Lam, W., Loomes, M., “Requirements evolution in the midst of environmental
change: A managed approach”, Euromicro Conf. on Software Maintenance and
Reengineering, Florence, Italy, March 1998, 121âĂŞ127.

[13] Felici, M., “Observational Models of Requirements Evolu-
tion”, PhD thesis, University of Edinburgh, 2004, Available at
http://homepages.inf.ed.ac.uk/mfelici/doc/IP040037.pdf

[14] Stark, G., Skillicorn, A., Ameele, R., “An examination of the effects of requirements
changes on software releases”, Crosstalk: J. of Defence Software Eng., Dec. 1998,
11âĂŞ16.

[15] Wiegers, K., “Automating requirements management”, Software Development
Magazine 7(7), July 1999.

[16] Roshandel, R., Van Der Hoek, A., Mikic-Rakic, M., Medvidovic, N., “Mae âĂŞa
system model and environment for managing architectural evolution”, ACM
Trans. On Software Engineering and Methodology 13(2), 2004, 240âĂŞ276.

[17] Yu, Y., Wang, Y., Mylopoulos, J., Liaskos, S., Lapouchnian, A., “Reverse engineer-
ing goal models from legacy code”, International Conference on Requirements
Engineering (REâĂŹ05), Paris, September 2005, 363âĂŞ372.

[18] Muñoz, A; Gonzalez, J; Maña, A, "A Performance-Oriented Monitoring System for
Security Properties in Cloud Computing Applications". Accepted for publishing
in "The Computer Journal". doi:10.1093.

	Abstract
	1 Introduction
	2 Evolution Oriented Capabilities
	3 Evolution of Cloud Applications
	3.1 Evolution of applications running on Cloud
	3.2 The proposed evolution process
	3.3 Life cycle of the evolution process

	4 Ongoing Work
	5 Conclusions
	References

