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Prologo

En la prictica, las actividades desarrolladas por la mayoria de las organizaciones
tienen que ver con el uso, la transformacién, la distribucién o la venta de algtin tipo
de articulo o material. Estas tareas no sélo requieren una ubicacion fisica donde
almacenar los bienes, sino que ademas se debe ejercer un cierto control y coordinacién
sobre el mantenimiento y reposicién de las existencias. De manera general, los
inventarios se definen como aquellos bienes almacenados con valor econémico para
los que se prevé una demanda futura. Es por ello, que el control del inventario es
una accién comun en casi todas las industrias, empresas y organizaciones.

En los paises desarrollados, el capital invertido en el control/gestién de los in-
ventarios representa un porcentaje nada despreciable del producto interior bruto
anual. Esta inversién da fe de la importancia que actualmente tiene la gestiéon de
inventarios en cualquier parcela de la economia.

El Control del Inventario es una érea relevante de la Investigacién Operativa cu-
yo objetivo es, basicamente, la gestion eficiente de los articulos mantenidos por las
empresas para satisfacer la demanda de los clientes, ofreciendo ademads, informacién
para la toma de decisiones encaminadas a alcanzar objetivos econémicos y tacticos.
Generalmente, estos objetivos suelen estar en conflicto dentro de la empresa, debido
a que las responsabilidades estdn claramente demarcadas y a los gerentes se les ha
animado a suboptimizar independientemente cada uno de sus departamentos. Pre-
cisamente, el control de inventarios permite reconciliar estos objetivos para alcanzar
beneficios globales a la empresa.

Desde un punto de vista cientifico, el interés por los problemas de gestion 6ptima
de los inventarios se remonta a los comienzos del siglo veinte, tras la segunda guerra
mundial. La postura frente a la gestién del inventario ha cambiado notablemente a lo
largo del siglo pasado; desde su inicio cuando se pensaba que lo més conveniente era
mantener grandes cantidades de inventario para cubrir fluctuaciones de la demanda,
hasta nuestros dias en los que se persigue reducir los inventarios a niveles minimos.
Como fruto de este importante desarrollo, podemos encontrar, en revistas y libros
especializados, una razonable cantidad de articulos.



Debemos destacar, entre todas las aportaciones a la literatura de gestién de
inventarios, los trabajos de Harris (1913) y Wilson (1934), quienes, de manera inde-
pendiente, desarrollaron el modelo germinal de la teorfa de inventarios al que suele
referirse como modelo EOQ (Economic Order Quantity). Es ampliamente conocido
que la aplicacion de este modelo a problemas reales ha dado excelentes resultados
y, por ello, no nos debe sorprender que distintas extensiones de este modelo sigan
actualmente siendo un tema de investigacién. De hecho, esta nutrida cantidad de
articulos sobre generalizaciones del modelo EOQ es la que pone de manifiesto la
evolucion de los sistemas de inventario.

En sintonfa con esta evolucién, esta tesis contempla nuevas extensiones del mode-
lo EOQ y algoritmos eficientes que las resuelven. De manera més precisa, se abordan
las versiones dindmicas de dicho modelo al caso con limitacién de inventario y al
caso con multiples escenarios. Ademads, se analiza la extension del EOQ al caso de
dos niveles ofreciendo un algoritmo para determinar politicas eficientes. Por lo tan-
to, los métodos propuestos a lo largo de esta memoria representan una recopilacién
de técnicas eficientes, que pueden servir de ayuda al decisor para disenar la politica
mé&s conveniente en términos de minimizacién de costes.

El resto de esta memoria se ha estructurado como sigue. En el Capitulo 2,
hemos abordado la versién dindmica del modelo EOQ admitiendo restricciones de
capacidad de inventario, demostrando que dependiendo de la estructura de costes se
pueden disenar distintos algoritmos eficientes. En concreto, los resultados relativos
a la caracterizacién de planes 6ptimos asi como el correspondiente algoritmo para el
caso de costes céncavos se recogen en Gutiérrez et al. [12]. En cambio, en ausencia
de costes de setup (activaciéon) y admitiendo que la estructura de costes es lineal
, demostraremos, como también se hace en Sedenio-Noda et al. [21], que se puede
desarrollar un algoritmo greedy de orden O(7T log T') para obtener politicas ¢ptimas.
Ademds, también propondremos, al igual que en Gutiérrez et al. [13], un algoritmo
de orden O(T'logT) basado en una técnica geométrica para el caso en el que las
funciones de coste son lineales y se admiten setups. En los Capitulos 3 y 4 se discuten
extensiones del modelo EOQ desde la perspectiva de la programaciéon multicriterio.
De manera mas especifica, en el Capitulo 3, se asume que el valor que toma la
demanda en un periodo dado no es conocido sino que se extrae de un conjunto finito
de valores discretos, generando asi distintos vectores posibles de demanda y dando
lugar, por lo tanto, a diferentes escenarios. Resolveremos este problema aplicando
un esquema de ramificacién y acotaciéon y presentamos un método general para
identificar el conjunto de soluciones eficientes. Algunos de los resultados propuestos
en este capitulo ya han sido publicados en Gutiérrez et al. [11]. Por tltimo, en
el Capitulo 4 se analiza el sistema de Inventario/Distribucién (I/D) considerando
dos criterios y se desarrolla un método eficiente para caracterizar las soluciones no
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dominadas. Parte de las contribuciones incluidas en este capitulo se recogen en un
trabajo de Gutiérrez et al. [10].
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Resumen en espanol

Fundamentos de la Gestion de Inventarios

Introducciéon

Desde un punto de vista operativo, los inventarios respresentan aquellos bienes alma-
cenados por una organizacion para los que se prevé una demanda futura. En cambio,
desde un punto de vista econémico, los inventarios suponen un capital invertido que
es recuperado cuando se satisface la demanda para un articulo o servicio especifico.
En esencia, los inventarios pueden verse como la cantidad de articulos adquirida
por la empresa, también conocida por cantidad colchén (buffer), para atenuar la
diferencia entre la oferta y la demanda variable. Un objetivo frecuente en control de
inventarios es el de gestionar este colchén a minimo coste. Por lo tanto, el control
de inventario involucra a todas aquellas actividades y procedimientos empleados
para asegurar el mantenimiento de la cantidad correcta de cada articulo. En este
sentido, los inventarios juegan un importante papel por la dificultad de sincronizar
perfectamente la oferta y la demanda. Esta falta de sincronizacién es, bdsicamente,
el resultado de cuatro factores: el tiempo, la discontinuidad, la incertidumbre y la
economia (Tersine [23]).

El interés en el estudio de sistemas de inventario ha crecido notablemente en las
iltimas decadas, y son numerosas las publicaciones que estdn dedicadas en exclusiva
a este tema. En Hax y Candea [15], Silver et al. [22], Chikdn [5], Waters [27], Na-
rasimhan et al. [19], Tersine [23], Plossl [20], Zipkin [32] y Axsiter [3], entre otros,
se presentan excelentes revisiones de sistemas de inventario. Ademés, muchos de los
articulos dedicados a este topico aparecen regularmente en revistas especializadas
de impacto como Management Science, Operations Research, Journal of the Opera-
tional Research Society, Computers and Operations Research, European Journal of
Operational Research, y en muchas otras.

Cabe mencionar que la gestiéon de inventarios se desarroll6 a partir del trabajo
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germinal de Harris [14] en 1913, quien propuse el modelo EOQ (Economic Order
Quantity), aunque este sistema fue introducido también, de manera independiente,
por Wilson [29] en 1934. Este modelo bésico impone ciertas hipétesis sobre los
pardmetros como el hecho de que la demanda final para el articulo sea conocida.

Notacion y definiciones bésicas

Las principales caracteristicas o componentes que intervienen en los sistemas de
inventario son: la demanda, la reposicion, los costes y las restricciones.

La demanda

De manera general, la demanda no es una variable que pueda ser controlada
directamente, ya que depende de las decisiones de gente externa a la organizacién
con el problema de inventario. El tamano de la demanda representa la cantidad
necesaria para satisfacer la demanda a través del inventario. Cuando este tamano no
varfa con el tiempo diremos que es constante, en otro caso serd variable. Los sistemas
de inventario en los que el tamano de la demanda se concoce con antelacién reciben
el nombre de sistemas deterministicos. En tales sistemas, cuando la demanda es
constante, es conveniente usar la tasa de demanda que se define como el tamano
de la demanda por unidad de tiempo. En ocasiones, es posible identificar distintas
maneras de ocurrencia de la demanda. En concreto, si consideramos un periodo
de tiempo, la demanda se puede satisfacer al comienzo o al final de este periodo;
también puede ser cubierta uniformemente a lo largo del periodo o siguiendo un
patrén potencial; etc (ver Naddor [18]). A las distintas maneras en las que la
demanda puede acontecer se les da el nombre de patrones de demanda. En adelante,
prestaremos atencién al caso en el que la demanda ocurre al comienzo del periodo
y, también, al caso en el que la demanda adopta un patrén uniforme.

La reposicion

La reposicién de los sistemas de inventario es controlada, generalmente, por el
decisor. La reposicién hace referencia a las cantidades que se programan para ser
incluidas en el inventario, al instante en el que se toman las decisiones relativas a
la reposicién de esas cantidades, y al tiempo en el que éstas son realmente anadidas
en el inventario. Por lo tanto, se pueden identificar los siguientes elementos en la
reposicién. El periodo de planificacion es el intervalo temporal entre reposiciones
consecutivas, la cantidad a reponer representa la cantidad programada que se debe
incorporar al inventario, y por ultimo, el tiempo de retardo es el intervalo temporal
entre la programacion de un pedido y su incorporacién al inventario.

Los costes



Representan los componentes econémicos més importantes en cualquier mode-
lo de inventario, y se pueden agrupar en distintas categorias. El coste unitario de
compra representa el coste en el que se incurre cuando se compra una unidad de
articulo en caso de abastecimiento externo, o el coste de producir una unidad cuando
el articulo es manufacturado por la propia empresa. El coste fijo o coste de acti-
vacién (setup) indica el gasto fijo de tramitar un pedido a un proveedor externo o
de iniciar el proceso de produccion. El coste de reposicion/pedido incluye los gastos
variables por tramitar un pedido. El coste de mantenimiento incorpora los costes de
capital /oportunidad, impuestos, seguros, manipulacién, almacenaje, deterioro y ob-
solesencia y, normalmente, suele ser proporcional al capital invertido en inventarios.
Por ltimo, el coste de rotura/escasez refleja la consecuencia econémica de una mala
politica de reposicién o produccién. La rotura externa ocurre cuando la demanda
del cliente no es satisfecha, mientras que la escasez interna se produce cuando la
demanda, dentro de la organizacién, no es cubierta. La cuantificacién de este coste
ha sido, durante mucho tiempo, un problema dificil y no resuelto de manera satis-
factoria y, por ello, muchas organizaciones evitan el problema de la estimacién de
este coste estableciendo niveles de servicio al cliente.

Las restricciones

Estdn relacionadas con las limitaciones que se imponen sobre los elementos dis-
cutidos en las secciones previas, pudiéndose clasificar en: tipo de unidades (discretas
o continuas), restricciones sobre la demanda, sobre la reposicién y sobre los costes.
En el desarrollo de esta memoria, se consideran, en el Capitulo 2, restricciones sobre
la cantidad a reponer por capacidades de almacenaje o por la capacidad del vehicu-
lo de reparto en el Capitulo 4. Ademds, en los Capitulos 2 y 3, se obliga a que la
cantidad a reponer sea un valor entero.

Es evidente que cualquier problema de inventario tiene que ver con la toma
de decisiones 6ptimas que minimicen el coste total de un sistema de inventario.
Normalmente, estas decisiones se toman en términos de tiempo y cantidad, ya que
éstas son variables sujetas a control. Segin lo anterior, el decisor debe responder a
las siguientes cuestiones: Cudndo se debe tramitar un pedido? y Qué cantidad se debe
pedir?. A la primera pregunta se responde con una de las siguientes alternativas:

1. El inventario se debe reponer cuando la cantidad en él sea igual o inferior a

Sot.

2. El inventario se debe reponer cada t, unidades de tiempo.
La segunda pregunta suele tener una de las siguientes respuestas:

1. La cantidad a pedir deber ser igual a (), unidades.

'El subindice o hace referencia a valor éptimo.
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2. La cantidad a pedir debe ser tal que eleve la cantidad de inventario hasta un
valor de S, unidades.

Las cantidades s, t, () y S reciben el nombre de punto de reposicion, periodo
de planificacion/gestion, cantidad de pedido, y nivel de inventario, respectivamente.
En Naddor [18], Tersine [23], Plossl [20], Narasimhan et al. [19], Chikén [5], Silver
et al. [22] y Axséter [3], entre otros, se puede encontrar una completa recopilacién
de estos sistemas de inventario junto con sus métodos solucién.

Cuando los pardametros varian con el tiempo, solemos referirnos a los sistemas
de inventario como sistemas dindmicos. Asi, la versién dindmica del modelo EOQ
considera un horizonte temporal finito dividido en 7' periodos, y su objetivo es
determinar un plan Q = (Q1,Qs2,...,Q7) con coste minimo. Dado un periodo ¢,
con 1 < < T, la demanda, el coste de reposicion y el de mantenimiento para ese
periodo se denotan por d;, C;(Q;) y H;(I;), respectivamente. Observe que C;(Q;) y
H;(I;) son funciones de la cantidad a pedir @; y de la cantidad final de inventario
para ese periodo I;. De manera mads detallada, (); representa la cantidad a pedir al
comienzo del periodo i, mientras que I; indica la cantidad de inventario al final del
mismo periodo. En ausencia de roturas, el coste total se expresa como la suma de
los costes de reposiciéon y mantenimiento para cada periodo, y de lo que se trata es
de conseguir un plan de pedidos Q = (Q1,Qs, ..., Qr) que minimice el coste total
satisfaciendo la demanda de todos los periodos. Cuando, ademds, se consideran
capacidades de inventario, al problema se le da el nombre de cantidad de pedido
dindmica con limitaciones de almacenaje o, por simplicidad, EOQ dindmico con
capacidad de inventario. Si la capacidad de inventario es fija, ésta se denota por W
permaneciendo constante durante todo el horizonte temporal. Por otro lado, si la
capacidad varfa, la denotaremos por W;, i =1,...,T.

Variantes del Modelo EOQ

Las extensiones del modelo EOQ que se recogen en esta memoria son la cantidad de
pedido dindmica con limitaciones de almacenaje, o EOQ dindmico con capacidades
de almacén, el EOQ dindmico con incertidumbre en los datos de entrada y la can-
tidad de pedido en dos instalaciones, o sistema Inventario/Distribucién. Pasamos a
comentar, en detalle, cada una de ellas.



EOQ dinamico con capacidad de inventario

Como ya comentamos anteriormente, en este tipo de modelos el horizonte temporal
se divide en T periodos, y la demanda se debe satisfacer al comienzo de cada uno
de ellos no permitiendo roturas. Este modelo fue introducido por Wagner y Whitin
[26], e independientemente por Manne [17]. En su versién original, los costes de
mantenimiento eran lineales, los de reposicién constantes y se incurria en un coste
fijo (setup) cada vez que se hacfa un pedido. Ademds, se asumian niveles de in-
ventario cero al comienzo y al final del horizonte temporal. El objetivo consiste en
determinar un vector de pedidos 6ptimo o plan éptimo satisfaciendo las demandas.
Wagner y Whitin establecieron que, entre los planes éptimos, siempre existe uno en
el que sélo se pide en un periodo cuando el inventario final del periodo predecesor es
cero. Esta condicién de optimalidad es conocida como propiedad ZIO (Zero Inven-
tory Ordering) y, a partir de ella, se puede desarrollar un algoritmo de orden O(T?)
basado en programacién dindmica para determinar planes 6ptimos. Esta propiedad
es aun vélida incluso cuando las funciones de coste son céncavas en general (ver
Veinott [24]). En los ultimos anos, Federgruen y Tzur [9], Aggarwal y Park [1] y
Wagelmans et al. [25] han desarrollado, aplicando distintas técnicas, algoritmos de
orden O(T'logT’) para estructura de costes lineales con setup. Zangwill [31] demostré
que este problema se podia ver como un problema de flujo en red, donde las solucio-
nes 6ptimas ZIO se correspondian con flujos aciclicos de la red. Las extensiones al
caso con rotura se analizan en Zangwill [30], quien demostré que, entre las solucio-
nes 6ptimas, siempre habfa una verificando que, entre dos periodos consecutivos con
produccién no nula, deberfa haber al menos un periodo con inventario final igual a
cero. Este autor explot6 esta propiedad para disefiar un algoritmo de orden O(T%3).

En el Capitulo 2 de esta memoria se analiza, en detalle, el problema EOQ di-
namico con capacidad de inventario. Este modelo fue estudiado originalmente por
Love [16], quien desarrollé un algoritmo de orden O(7®) basado en programacién
dindmica para costes céncavos en general.

Caso I) Considerando que Cy(-) y Hy(-) representan, respectivamente, funciones
céoncavas de la cantidad de pedido ); y de la cantidad de inventario I; en el periodo
t,t = 1,...,T, el problema de Cantidad de Pedido Dindmica con Capacidad de
Inventario (o, por simplicidad, P) se puede formular como sigue:
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(P) min 3 (GQ) + H(L)

s.a.
ly=1I7=0
L1+ Q— 1 =d, t=1,....T
It71+Qt§Wt t:].,,T
Q:, I; € Ny t=1,....T

donde Ny = NU {0}.

Para esta estructura general de costes demostramos que se puede disenar un
algoritmo de orden O(T®) que, en la practica, es casi un 30% mas répido que el de
Love, y que, ademds, se comporta de manera lineal (F(7T')) cuando la demanda del
periodo t se elige en el intervalo [0, W], t = 1,...,T. Esta mejora computacional es
posible gracias al desarrollo de una nueva caracterizacién de los planes éptimos que
queda reflejada en los siguientes resultados:

Propiedad 1 Entre los planes 6ptimos para P, existe al menos uno Q = (Q1, ..., Qr)
tal que para cada periodo ¢, (); satisface:

0
Qi:{ min  {dy — L 1, W; — i1} t=1...,T

1<t<T+1

En otras palabras, para 1 <1i <t < T + 1, se verifica la siguiente expresion

(Qi+ 1y —W)(Qi+ L1 —dit)Q; =0

Propiedad 2 Siempre se puede encontrar un plan 6ptimo Q = (Q1,...,Qr) para
Ptal quesi I;_y (j =2,...,T) corresponde a la suma de demandas de los periodos
jakconj<k<T,entonces (; es cero.

Caso II) Cuando Ci(-) = ¢ y Hy(-) = h; son funciones lineales y en ausencia de
costes de setup, el problem P puede reformularse como un problema P’ de flujo de
coste minimo (MCF) de la siguiente manera:
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(P) min Y (6Q: + hil,)
t=1

s.t.
I():IT:O
T
tZIQt:dI,T+1
Itfl+Qt_It:dt tzl,,T
OSItS’LUt tzl,,T—l
Q: € Ny t=1,...,T

Basdndonos en los resultados de Zangwill [31], podemos establecer la siguiente
red para el problema P’. Sea G(V,A) una red dirigida, donde V' es el conjunto de
n =T+1nodos y A es el conjunto de m = 27— 1 arcos. Cadanodot (t=1,...,T)
tiene una demanda igual a —d;, mientras que el nodo 0 (nodo fuente) tiene que
satisfacer la demanda en cada nodo con una cantidad de d; 711 = ZtTZI d; unidades.
En lo que sigue, d;;, = f:_il d;.

Podemos distinguir dos tipos de arcos: arcos de produccion/pedido asociados a
las variables de decisién )y, y arcos de inventario relacionados con las variables de
estado I;, con t = 1,...,T. Cada arco (0,t) en la red tiene un coste unitario igual
a ¢; y una capacidad infinita. Por otro lado, cada arco de inventario (¢,¢ + 1) tiene
un coste unitario igual a h; y una capacidad maxima de inventario de w, = W; — d;
unidades.

De esta manera, el problema P’ se puede resolver empleando cualquier algoritmo
de MCF (ver, por ejemplo, Ahuja et al. [2]). Sin embargo, la red generada para
este problema es un caso particular de red serie-paralela (ver Duffin [8] para una
definicién completa de topologias de redes serie-paralelas), y el mejor algoritmo
para resolver el problema MCF en este tipo de redes se debe a Booth and Tarjan [4].
La adaptacién de las complejidades de este algoritmo al problema P’ hace que el
procedimiento se ejecute en un tiempo de orden O(7 log T'), requiriendo un espacio

de orden O(T'log™ T).

Sin embargo, proponemos un algoritmo ad hoc que explota las caracteristicas de
la red definida anteriormente, requiriendo tiempos de ejecucién de orden O(T logT')
y con una complejidad espacial de orden O(T'), mejorando asi, las complejidades
correspondientes al procedimiento de Booth and Tarjan [4].

Caso III) Por tltimo, si los costes de mantenimiento h; y reposicién ¢; son lineales,
y se admiten costes fijos de setup f;, el problema P’ se puede reescribir para dar el
problema, P”.



T
(P") min Y (fiye + Qs + hely)
=1

s.a.
Iop=1r=0

Qi+ Ly — I, = d, t=1,....T
Ay — Qe >0 t=1,...,T
0<I,<W,—d t=1,....T
Qi I, € Ny, s € {0,1} t=1....T

Observe que, como consecuencia de las restricciones de almacenaje, la cantidad
méxima a ser producida/pedida en un periodo estd acotada. De acuerdo con esto,
sea M, la cantidad méxima a ser producida/pedida en el peridot (t =1,...,7 —1),
que se puede obtener facilmente de la expresién: M; = min(M;,1 + d;, W;), donde
My = dr. Ademds, denotamos por p; al periodo méximo accesible cuya demanda
puede ser completamente satisfecha con inventario mantenido desde el periodo ¢
(t=1,...,T—1),esdecir,p, =max(j: t < j < Ty (M —dij1) >0),conpr=1T.
Los valores M; y p; (t =1,...,T — 1) se determinan en O(T") a partir de los valores
de la demanda y la capacidad de almacén.

Para establecer el método solucién para este caso es necesario introducir previa-
mente algunas definiciones. Sea G(t) el coste 6ptimo del subproblema que abarca los
periodos t hasta T (t =1,...,T), con G(T+1) = 0, y sea AC; = ct+z;fr:t h; el coste
acumulado desde el periodo t al periodo T'. Asimismo, sea @t la decisién 6ptima en
el periodo t cuando se resuelve el subproblema con periodos ¢ hasta T, y sea 6(z)
una funcién delta tal que 6(0) =1y 6(z) = 0 si z # 0. Ademds, denoteremos por

s+ la decisién éptima en el periodo ¢ cuando el subproblema con periodos s hasta
T se resuelve, siendo s < t.

Los siguientes resultados permiten caracterizar planes 6ptimos para el problema
P".
Propiedad 3 Si la decisién 6ptima en el periodo ¢, @t, es producir/pedir M,

entonces la decisién 6ptima para aquellos periodos j € [t+1, p;+1] con @j < My—dy;
es no pedir, es decir, Q7 ; = 0.

Propiedad 4 Si Q; = M,, entonces existe un periodo j € [t +1,p; + 1] con @j >
M; — d; ; tal que su decision 6ptima es Qf ; = Q; — (M — dy ;).

Propiedad 5 Para el problema P”, se obtiene un plan de reposicién/produccién
6ptimo aplicando la siguiente férmula de recurrencia
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G(t) = min [{t<néil'l+1 (ft + AC’tdtJ + G(])), si dt > 0,
I=Pt
omin[G(t+1), m (fi + ACid: j + G(7))], en otro caso},
min - (f+AC,M+G(j) = F(t, 7))

) in
t+1<j<p;+1
t<j<pt+1

QjZMt*dt,j
dondeF (t, j) = AC;(M,—dy;) + 6(My—dy j—Q;) f .

Es evidente, que una implementacién directa de esta férmula de recursién da
lugar a un algoritmo de orden O(7?). Sin embargo, proponemos un algoritmo
O(T'logT) basado en la técnica geométrica de Wagelmans et al. [25]. Estos au-
tores desarrollaron un método geométrico que consistia en el célculo de la envoltura
convexa inferior de los puntos (d;r + 1,G(t)), t = 1,...,T + 1. Sea q(j) el perido
eficiente mds pequeno con pendiente menor que AC;. Lamentablemente, esta téc-
nica no se puede aplicar directamente en el caso de niveles de inventario acotados.
No obstante, podemos adaptar dicha técnica a nuestro modelo de la siguiente ma-
nera. Debemos definir dos listas Lg y Lyg que contendran, respectivamente, los
periodos eficientes y no eficientes. Cuando se esté evaluando el periodo j, si ¢(j) es
menor que p; + 1, entonces el nuevo procedimiento procederd de la misma manera
que el de Wagelmans et al. [25], es decir, produciendo/pidiendo d; 4;) unidades. En
caso que ¢(j) sea igual a p; + 1, podemos tomar dos decisiones: pedir M; o pedir
djp,+1- Sin embargo, se puede demostrar facilmente que cuando AC; < ACy; la
decisién 6ptima consiste en pedir/producir Mj, y d; ;) en otro caso. Por tltimo, si
q(j) > pj+1, el periodo eficiente ¢(j) no es factible para el subproblema que comienza
en el periodo j, y por lo tanto debemos comparar el periodo eficiente con pendiente
mas pequenia ¢g(j) < p; + 1 en Ly con el periodo no eficiente qnp(j) < p; + 1
en Lyg. Segun esto tltimo, denotemos por Gg(j) = f; + ACjd; ¢ + G(ar(j))
y Gne(j) = fj + AC;dj gy i) + G(ane(j)) los costes asociados, respectivamente,
a los periodos ¢g(j) v qvr(j) sucesores de j. Si evaluando ambos costes tenemos
que Gg(j) < Gyg(j), entonces el periodo gg(j) continta siendo eficiente. En otro
caso, es decir, cuando Gg(j) > Gng(7), el periodo qyg(j) debe ser insertado en Lg
transfiriendo el resto de elementos en esa lista a Lyg. Realmente, esta transferencia
entre listas se corresponde con una actualizacién de la envoltura inferior.

Ademss, demostraremos que cuando la estructura de costes del problema coin-
cide con la propuesta en Wagner y Whitin [26], siempre se puede obtener un plan
6ptimo satisfaciendo la propiedad ZIO.

Propiedad 6 Cuando en el problema P” los costes de produccién/reposicién son
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constantes, siempre habra una politica éptima Q = (Q1,...,Qr) tal que I;_1Q; = 0,
t=1,...,T.

A diferencia del modelo EOQ dindmico original, en el que los valores de los
parametros de entrada son conocidos con antelacién, también consideramos, en el
Capitulo 3, la situacién en la que estos pardmetros pueden tomar valores de un
conjunto finito discreto. Como consecuencia de esta caracteristica en los datos de
entrada, se producen diferentes escenarios, y distintas politicas eficientes surgen
frente a las que el decisor tendra que elegir aquella (robusta) que se ajuste, més
adecuadamente, a sus criterios. Proponemos un método eficiente para determinar el
conjunto completo de soluciones no dominadas basado en el esquema de ramificaciéon
y acotacién (BB). De igual forma, demostraremos que extensiones de la propiedad
710 se pueden adaptar con éxito al caso con miiltiples escenarios.

EOQ dindmico multiescenario

En este caso, se consideran simultdneamente M escenarios o réplicas del sistema, y se
asume que s6lamente una (robusta) politica, perteneciente al conjunto de soluciones
no dominadas, va a ser implementada. Estas réplicas modelan la incertidumbre en la
estimacion de los pardmetros, dado que no se conoce a priori ni los verdaderos valores
de los datos de entrada ni una distribuciéon de probabilidad para ajustarlos. Es por
ello, que buscamos soluciones de compromiso que se comporten aceptablemente bien
en cualquiera de los escenarios admisibles.

En adelante, emplearemos la siguiente notacion:
RI(-) : coste de mantenimiento para el periodo j en el escenario i.

cl(-) : coste de producir/pedir en el periodo j en el escenario i.

1; f : inventario al final del periodo j en el escenario .
d’ : demanda para el periodo j en el escenario i.
D : demanda total (erzl d = erzl Vi, s €{l,...,M}).

Qj : cantidad de pedido/produccién en el periodo j.
Asumiremos, sin pérdida de la generalidad, que I? = I =0 parai=1,..., M.

Las siguientes definiciones son necesarias para el planteamiento del problema.
Dado un vector de produccién/pedido Q = (Qy, . ..,Qr) € NI, el vector de niveles
de inventario para el escenario i se denota por I;(Q) = (I},...,I}), donde

I=r"+Q,-d, j=1,...,T.

K3 (2

De la misma manera, el coste acumulado desde el periodo j hasta el k£ en el
escenario ¢ viene dado por
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k
RIMQ) = ri(@Qu 1)
donde r{(Qi, I!) = ci(Qr) + hi(I}).

Por lo tanto, el vector de costes totales R(Q) para todos los escenarios, dado un
vector de produccién/pedido Q € NI es como sigue

RQ) = (B (Q)..... B (Q)

De ahi que el conjunto de planes de produccién/pedido eficientes P se puede
definir como

P ={Q e NI : no hay otro Q' € NI : R(Q') < R(Q), con al menos una de las
inecuaciones siendo estricta}

donde R(Q') < R(Q) indica que R (Q') < R (Q) parai=1,..., M.

Usando las definiciones previas, podemos establecer el problema EOQ dindmico
con miiltiples escenarios de la siguiente manera:

v — min(Ri’T(Q), ceey RJI\}[T(Q))

S.a. .

I'=1T=0 i=1,...,M

Ity -r=d j=1,....,T,i=1,....M
QJENO j=1...,T

Il e Ny j=1,...,T,i=1,....M

donde v — min significa mimizacién vectorial, y el objetivo consiste en determinar
el conjunto de soluciones no dominadas con respecto a las M funciones objetivo.

Dado que la version original con un tinico escenario se resuelve satisfactoriamente
usando programacion dindmica, parece razonable aplicar al problema anterior la
extension de esta técnica para el caso multiobjetivo. Para ello, definimos la siguiente
formula de recurrencia:

| | (Qy) W+ Q; — d)
F(]’ ([{7177[}7\/[71)) :UQ_ Iélln +
i €No ; . . )
ar(Q;) W (O + Q; — diy)
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OF(+1,(H4,..., )}

con A B={a+b:a€ A, b€ B} para cualesquiera dos conjuntos A y B.

En este caso, el conjunto de soluciones no dominadas para el problema correspon-
deria al conjunto de vectores en F'(1,0,...,0). No obstante, debido al inconveniente
de la dimensionalidad asociada, normalmente, a este tipo de problemas, proponemos
un esquema de ramificacién y acotacién (BB) para reducir los tiempos de cémputo
del método solucién. Para ello, introduciremos conjuntos cota superior que serdn
empleados en el método BB. Recordemos que un conjunto cota superior es un con-
junto de vectores que o bien son eficientes o bien estdn dominados por al menos un
punto eficiente.

Para este problema analizaremos los casos con y sin rotura, proponiendo conjun-
tos cota superior para cada caso.

Caso sin rotura)

Definiremos la propiedad ZIO para el caso con miiltiples escenarios como sigue:
diremos que un plan Q es ZIO para el problema EOQ dindmico multiescenario si y
sélo sf

Qjmin{fffl, . .,I]]\;l} =0paraj=1,...,T.

Es evidente que la expresion anterior es una extensiéon natural de la propiedad
710 para el caso con un tnico escenario. Por conveniencia, en el desarrollo de las
demostraciones de siguientes resultados, reformularemos el modelo como un proble-
ma de flujo en red multicriterio, y se demostrara que las politicas ZIO multiobjetivo
representan soluciones extremas y, en consecuencia, se corresponderdn con flujos
aciclicos en la red. Sea G = (V, F') una red dirigida, donde V' representa el conjunto
de n = (T +2)M + 1 nodos, y E el conjunto de m = 3MT aristas. Los nodos se
clasifican en: nodo de produccién/pedido (nodo 0), nodos de demanda por escenario

nds, s =1,..., M,y nodos intermedios. Los nodos intermedios se organizan por ca-
pas, de tal manera que, en el nivel j habrd M nodos denotados por nJ s =1,..., M,
j=1,...,T+1. Ademss, se tienen M arcos desde el nodo 0 a cada nivel con idén-

tido flujo. Este situacion se puede entender como un tnico flujo que es virtualmente
multiplicado por M, de forma que la misma cantidad es enviada a cada nodo de ese
nivel. Estos arcos se pueden considerar como un ”pipeline” que en cierto momento
se transforma en M ramas que reciben el mismo flujo. El arco desde el nodo de
produccién/pedido al nivel j se asocia a la variable de produccién/pedido @; en el
periodo j. La multiplicacién virtual de la produccién/reposicién se debe a que los
distintos escenarios no ocurren simultdneamente en realidad, sino que sélo uno de
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ellos estd sucediendo. El arco desde 0 a n/ tiene un coste de ¢/(-), s =1,..., M y
j=1,...,T

De la misma manera, se establece un arco entre n y ni™' s = 1,... M
j=1,...,T, que se corresponde con la variable de estado I7 y su coste es de hi(-).
Por 1tltimo, tendremos arcos que dejan cada nodo n/ hacia nd, con valores de flujo
ds=1,....Myj=1,...,T.

Para demostrar que las politicas ZIO no dominadas representan soluciones extre-
mas necesitamos introducir la siguiente matriz A de incidencia nodo-arco, en la que
las filas se corresponden con los M bloques de T+ 2 restricciones de este problema.

?

Q1 Q2 Qr [11 11T*1 1}" 111\/1 1?\}*1 [;{4

0y ©2 --- (017 *,2) -.- (TrT-1,7) T.T+1) --- (1,2) --- T-1,T) T, T+1)
0 1 T 1 0 0 0 = 0 0 0
1 -1 0 0 1 0 0 0 0 0
2 0 -1 0 -1 .. 0 0 0 0 0
T 0 0 -1 0 -1 1 0 0 0
T+ 1 0 0 0 0 0 -1 0 0 0
0 1 1 1 0 0 0 0 0 0
1 —1 0 0 0 0 0 1 0 0
2 0 —1 0 0 0 0 —1 0 0
T 0 0 —1 0 0 0 0 —1 1
T+1 0 0 0 0 0 0 0 0 —1

A partir de la matriz A y el vector Q, y denotando por I al vector
(Ii,.... I¢,.... Iy, ..., I3)),

se puede establecer, matricialmente, el conjunto de restricciones del problema
como sigue
(QDA' = —(-D,d},...,d",0,...,—D,dy,,...,d%0).
Propiedad 7 La matriz A de restricciones tiene rango M7 + 1.

Propiedad 8 Cualquier solucién bésica para este problema satisface que
Q; min{I7~",... ,I}Jl} = 0, para cualquier periodo j,j =1,...,T.

Propiedad 9 El conjunto de soluciones no dominadas del problema contiene, al
menos, una politica ZIO.

Para computar los planes ZIO eficientes, necesitamos introducir notacién adicio-
nal. Sea I(j) el conjunto de vectores de estado al comienzo del periodo j. Advierta
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que I(0) = I(T +1) = (0,...,0). Ademés, sea D?* = f;jl d! la demanda acumu-
lada desde el periodo j hasta el k en el escenario i y sea (I/™',..., I};") € I(j) un
vector de estado dado en el periodo j. De igual manera, admitamos que el vector
(II7',..., Ii;") contiene una componente nula, por lo que la variable de decisién
(); deberd ser distinta de cero para evitar roturas. Asi, el conjunto de decisiones
factibles correspondientes a un vector de estado (I{;I, N | ]J\; 1) en el periodo j es
dado por

0 ,si I7" > 0 para todo i

- i1 J-1yy _ . .
W, (1 Ty ) _{ max {0, D* — "'} en otro caso.
1<i<M3j+1<k<T+1

. i1 i1 . .
Asumiendo que (I °,..., I3, ) contiene una componente igual a cero, se puede

- . . ¥y i—1
demostrar, ficilmente, que cualquier decision Q; # max {0,DP" — II7'} [ =
1<i<M

1,..., T+ 1— 7, da lugar a una politica no ZIO. De ahi que, dado un periodo j y
un vector de inventario (I] ™", ..., Il ") € I(j), el conjunto F(j,(I~',... ;")) de
vectores de coste correspondientes a soluciones ZIO eficientes para el subproblema
con inventario inicial (I7 7", ..., ;") viene dado por:

. . (Q;) W(H™ 4+ Q; — DITY
FQ, @™ 0 = v—min : + :
Q; eV, (P, ; P i i
e W@ | L + @i - it

@F(] +1, (I{fl + Qj o D{,j+17 o 7]]{21 +Q] B D‘]Y‘ngl))}

Advierta que el conjunto completo de soluciones eficientes ZIO se obtiene cuando
se resuelve F'(1,(0,...,0)).

Propiedad 10 El algoritmo de programaciéon dindmica anterior tiene una comple-
jidad temporal de O(47 M?).

Esta claro que desde un punto de vista computacional, el algoritmo anterior
es ineficiente y, es por ello, que proponemos un método para obtener un conjunto
soluciéon aproximado. Este método consiste en obtener la solucién éptima para
cada escenario en O(T?), y en caso de soluciones infactibles, resolver, de nuevo,
aquellos escenarios usando un vector de demanda donde cada componente representa
la demanda méxima marginal. Es decir, la componente j en este vector vendria

- 1,j+1 1, :
dada por la expresién ( max. {D}7 11— max. {D;”}). El esfuerzo computacional
1<i< 1<i<
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necesario para llevar a cabo este método es de orden O(MT?). Ademss, los planes
generados de esta manera seran utilizados como conjunto cota superior inicial en el
esquema de ramificacién y acotacion.

Caso con rotura)

Cuando I7 es negativo, representard una rotura de —I7 unidades de demanda
no satisfecha (acumulada) que deberd cubrirse por la produccién/reposicién durante
los periodos j hasta T

Asumiremos, por simplicidad, que hf (If ) representa la funcién de coste de man-
tenimiento/rotura para el periodo j en el escenario 4. Cuando I no es negativa,
Rl (I]) continta siendo el coste de tener I unidades de inventario al final del periodo
j en el escenario 4. Cuando I es negativo, h(I7) pasa a ser el coste de tener una
rotura de —I7 unidades al final del periodo j en el escenario i.

La adaptacién de la propiedad del caso con unico escenario (ver [30]) al caso
multicriterio da como resultado la siguiente condicion

Si@Q; >0y Q>0 para j <, entonces IF =0, paraalgin iy k, j <k <.

A diferencia de la propiedad ZIO para el caso multiescenario, la expresién anterior
no da lugar a infactibilidad en los planes que genera, ya que cualquier plan que la
satisfaga en un escenario dado va a ser factible para el resto de escenarios. Por
lo tanto, se pueden determinar todos los planes cumpliendo la condicién anterior
de manera independiente en O(MT?). Podemos usar de nuevo la red introducida
previamente para caracterizar los planes eficientes de esta versién del problema EOQ
dindmico multiescenario, teniendo en cuenta que, ahora, la demanda para un periodo
k se satisface a partir de la produccién/reposiciéon en un periodo anterior (j < k)
o en uno posterior (I > k). Asi, en la red subyacente, cada nodo (excepto el nodo
productor 0) es accesible desde s6lo uno de los siguientes nodos: el nodo productor,
el nodo de mantenimiento predecesor o el nodo de rotura sucesor.

Propiedad 11 Cualquier solucién bésica para el problema EOQ dindmico multies-
cenario con roturas es aciclica.

Cabe mencionar que no todos los planes pertenecientes al conjunto de soluciones
eficientes son bdsicos, y que el tiempo necesario para determinar el conjunto no do-
minado aumenta drasticamente con el tamano de la entrada. Por ello, la obtencién
de planes eficientes entre los planes extremos no sélo debe verse como una aproxi-
macién razonable al verdadero conjunto no dominado, sino como un conjunto cota
superior inicial a ser empleado en el esquema de ramificacién y acotacion.

El conjunto de decisiones factibles para un estado (I77',... 1) € I(j) es
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-1 1 0, sil7 >0V,
O, (II7,..., L)) = - / =
(]7(1 ’ Ay )) {O}U{—Ig 1+D§7k}, f_ij+1aM7T+1 7

en otro caso.

y, por lo tanto, podemos determinar el conjunto de vectores de coste eficientes
para el estado (I{fl, . 1) en el periodo j segin la siguiente férmula de recu-
rrencia

. . (Q)) W+ Q- DI
FG, @™ B"))= v —min : + :

min : +
QGBI (L@ ] L + - i

OF(G+ 1, +Q; — DY B Q- D))

Donde el conjunto F(1,(0,...,0)) contiene el conjunto de soluciones eficientes
que verifican la adaptacién de la propiedad en caso de roturas a la situacién con
multiples escenarios

El esquema de ramificacién y acotacién

Antes de introducir el método solucion, se requiere introducir cierta notacién adi-

cional. Sea D; € N un vector donde cada componente ¢ = 1,..., M se corresponde
con D}y, ademds, denotaremos por N (j + 1, (,...,I},)) el conjunto de vectores
asociados a los subplanes que alcanzan el vector de estado (I7,...,I3,) € I(j + 1).
Es decir,

N(.] +1, (1{7 s 7I]J\/[)) = {N(J7 (I{_lv s 71]]\4_1)) ©® (T{(Q,I{), ce 7705\4(627]]]\4)) : Q€N07
7'+ Q-DP*Y = [J paratodoiy (II7',..., I ") € I(4)}

De igual forma, denotemos por N*(j + 1, (1 f', ..., 13,)) al conjunto de subplanes
no dominados que alcanzan el estado (I7,...,I},). Con ello, podemos establecer el
siguiente esquema de ramificacién y acotacion.

n ) n—1 . j .
P(n, (It ..., Ify) = v=min[}_ }(Q;)+ X M (X Qx — Dy") +hi(I}), ..,
j=1

j=1 k=1
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> ea(@i)+ Z hi (Z Qr = Dyf ™)+, (7))

k

ZQJ_DZ.U“H k=1,....n—1;i=1....M
]:

ZQ]_D1”+1+I" i=1...,M

]:

Es evidente que P(n, (I7,...,I})) = N*(n+ 1,(I},...,I};)). Ahora podemos

3

determinar los valores eﬁmentes del problema complementario P(n+1, (I, ..., I%,)),
es decir, el problema formado por los periodos desde n+1 a T con vector de inventario
inicial (I7,...,I};), de la siguiente manera
. T T—1 j L
P(n+1,(I{,.... If)) = v—min[ 33 ¢(@)+ X MU+ > Qu—DI"")
j=n-+1 j=n+1 k=n+1
+
T A n+1,N+1 L = n+1,j+1
PP+ Y Qu=Di N, Y @)+ X My (+ Z Qr— Dy ™)
k=n+1 j=n+1 j=n+1 k=n+1
+
T 4 n+1,7+1
ha(Iy+ 2 @k — Dy )]
k=n+1
s.a.:
k
SN QDM k=n4+1,...Ti=1...,M
j=n+1
T
S Q=D o =1 M
j=n+1

Cuando se admiten roturas en el modelo, el primer conjunto de restricciones
en las formulaciones de P y P se debe eliminar. La aplicaciéon del principio de
optimalidad da la siguiente ecuacién de recurrencia.

F(1,(0,...,0)) = v — min (P(n, (I, ..., 1Y) @ P(n+ 1, (11, ..., I}y)))
(It,.... 1Y) € I(n+1)
n=1,....,T—1

Ahora estableceremos los conjuntos cota inferior necesarios para desarrollar el
esquema de ramificacién y acotaciéon. Diremos que LB es un conjunto cota infe-
rior para un problema vectorial cuando cualquier solucién no dominada o bien estd
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incluida en él o es dominada por algin vector en LB. Asumiremos que conoce-
mos a priori conjuntos cota inferior LB(n + 1, (17, ..., I};)) para cada subproblema
P(n+1,(17,...,1I},)), y cotas superiores globales UB para el problema original
F(1,(0,...,0)).

Considere f € P(n, (I7,...,I},)) tal que para cualquier b € LB(n+1, (I1,...,I})) :
J+1b > u para algin u € UB. Es evidente que la rama generada por f no necesita
ser explorada. De hecho, u € UB y, por lo tanto, existe f eficiente (pudiendo ocurrir
que lb = f) tal que ng u. Por lo tanto, fg f+1b < f+ (cualquier subplan posible).
Esto implica que ningin subplan que resuelva el subproblema que deja f puede ser
eficiente.

Sistema Inventario/Distribucién

A diferencia de las variantes anteriores del modelo EOQ), en las que las decisiones se
tomaban en relacién a una tnica instalacion, en este clase de sistema de inventario
contaremos con dos instalaciones.

Este sistema fue ya estudiado por Crowston et al. 7], estableciendo la propiedad
de politica de ratio entero, por la cual la cantidad a pedir en la primera instalacién
debe ser un multiplo entero de lo que se pida en la segunda instalacién. Lamenta-
blemente, esta propiedad deja de ser vélida cuando el sistema cuenta con més de
dos instalaciones, ver Williams [28].

Este tipo de sistemas entrana otro aspecto relevante relacionado con los costes
de mantenimiento. Ilustraremos este efecto con el siguiente ejemplo: consideremos
un sistema con dos niveles formado por un almacén (w) y un minorista (7). De
acuerdo con la politica de ratio entero tendremos que

Quw = nQ, n=12,3,...

donde @), vy @, denotan la cantidad a pedir en el almacén y en el minorista,
respectivamente.

La Figura 1.5 (Chapter 1) muestra las fluctuaciones del inventario en cada ins-
talacién para el caso @), = 3Q,. Al reponer el minorista instantdneamente del
almacén, el inventario en el almacén no sigue el tipico patrén de dientes de sierra.
Es por ello, que el inventario en este nivel no pueda determinarse de manera conven-
cional y deba ser calculado a través del concepto de inventario de nivel introducido
por Clark and Scarf [6]. Este inventario en el nivel j se defiene como el nimero
de articulos en el sistema que actualmente estdn, o han pasado a través de él pe-
ro no han dejado atin el sistema. Usando esta definicién, los inventarios en cada
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instalacion siguen un patrén clésico de dientes de sierra.

En el Capitulo 4, se resuelve un sistema de inventario/distribucién formado por
un almacén y un minorista desde la perspectiva biobjetivo. De manera més especifi-
ca, en vez de analizar un tnico criterio (la minimizacién de costes), se propone un
criterio adicional que se corresponde con el niimero total anual de articulos danados
por manipulacién inadecuada.

Introducimos, a continuacién, los pardmetros necesarios para establecer este mo-
delo.

D Razén de demanda constante, en unidades/ano.
A Coste fijo de hacer un pedido en el minorista, en unidades

" monetarias.
A Coste fijo de hacer un pedido en el almacén, en unidades

v monetarias.

Nimero de articulos danados por envio desde el almacén al minorista,

(Qr) que dependerd de la cantidad pedida en el minorista.
h, Coste de mantenimiento en el minorista.
hw Coste de mantenimiento en el almacén.
J Capacidad de inventario en el minorista, en unidades.
V Capacidad del vehiculo de reparto, en unidades.
Qo Cantidad méxima a pedir en el minorista, en unidades (= min{.J,, V'})
HOC Suma total de los costes anuales de mantenimiento y reposicién.
DI Numero total de articulos danados por ano.

El objetivo consiste en minimizar ambos criterios (HOC' y DI) de manera que
se satisfaga la demanda. Las funciones que definen ambos objetivos vienen dadas
por

_A.D  A,D  hQ, (n—1)Q,
HOC(Qyn) = 5=+ 0=+ =55 + by
y
DIQ:) = a(@)

Obviamente 0 < «(Q,) < @, < D, y parece razonable pensar que a medida
que @, aumenta también lo haga a(Q,), pero, por el contrario, asumiremos que el
incremento marginal del nimero medio de articulos danados por envio disminuye.
De esto tltimo, se puede demostrar fécilmente que a(Q),) es una funcién céncava
estrictamente creciente en [0, D], con «(0) = 0. Ademds, asumiremos que DI(Q),)
es una funcién estrictamente decreciente.
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El problema de sistema de inventario/distribucién bicriterio queda definido por

v—min (HOC(Q,,n),DI(Q,))

s.a. Qr - (0, Qo]
n €N

y el correspondiente conjunto de soluciones no dominadas por

P = {(@r,n)| no hay otro (Qj,n’) : HOC(Q},n') < HOC(Q,,n) y DI(Q.) <

DI(Q,), con una de las inecuaciones siendo estricta}.

Antes de presentar el método solucién, debemos introducir algunas definiciones.
La funcién HOC' alcanza su minimo en el punto (Q,n*) con

. 54, D
=N

(hr - hw)Aw
hoA,

n' =

Fijado el valor de n, el valor de @, que minimiza a HOC(Q,,n) es

— B 2D(A.n + Ay)
Q.(n) = \/nzhw + n(hy — hy)

Por el contrario, si fijamos @, el valor de n que hace a HOC(Q),,n) minima es

R 1 [24,D
M=o

Asumiendo valores reales para n y @), se puede demostrar facilmente que las
funciones @, (n) y n(Q,) son estrictamente decrecientes y convexas de n y @, res-
pectivamente. A partir de la definicién de n(Q),) se obtiene la funcién

~ [2A
Qr(n) = % & th

Propiedad 12 Si n > n*, entonces Q,(n) es mayor o igual a Q,(n), y lo contrario
cuando n < n*.
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Propiedad 13 Para un n dado, n > 1, las funciones HOC(Q,.,n) y HOC(Q,,n—j)

2A,D

- . Ademis,
wn(n .7

, 1 < j < mn—1, se interceptan en un tnico valor Q™" =

Qr(n) < Q?’nij < Qr(n - ])
La caracterizacion de las soluciones eficientes necesita considerar las curvas de
nivel de HOC(Q,,n), que vienen definidas por el conjunto F

F ={o(@Qr,n) = 0: 9(Qr,n) = (hy + hu(n — 1))n@Q7 — 20nQ, + 2D(Ay, + Arn),
I > HOC(Qr,n")}.

Dado que la funcion HOC(Q,,n) es convexa, el conjunto ¢,(Q,,n) < 0 corres-
ponde a un conjunto convexo para cualquier valor [ > HOC(QZ,n*). Por otro lado,
la caracterizacion de las soluciones no dominadas dependerd de las posiciones rela-
tivas de Q* y Qq, por lo que debemos distinguir dos situaciones, a saber, si Qg < Q*
o lo contrario.

Si Qo <@
Sea T el valor entero de 12(Qg) donde la funcién HOC(Qy, n) es minima, es decir,
ng = arg{ min C(Qo,n)}, donde |n(Qo)] v [1n(Qo)]| representan,
ne{[n(Qo)],[n(Qo)1}

respectivamente, el menor y mayor valor entero mas préximo a n(Qp). En caso que
HOC(Qo, |n(Qo)]) = HOC(Qo, [1(Qo)]), hacemos ng = [n(Qo)]|. De igual forma,
asumiendo que 7(Qy) es el valor tal que Q,(ng) = Qo, denotemos por 7y al valor
entero mas cercano a m(Qp). Como Qy < Q*, se puede demostrar que Ty > [1n(Qo)|
y, por lo tanto, Ty > 7y. Ademds, sea ¢ el mayor valor de @, donde la curva
©,(Qr,m) = 0 intercepta con la recta n = i.

Propiedad 14 Cuando Qy < @7, el conjunto P de soluciones eficientes, asumiendo
que lo = HOC(Qo, ny), es dado por

1) Si Ng = ﬁo,

P ={(Qr,70) : Qr € [Q,(T0), Qo]}

2) Simy =mng + 1,

a) Si Q,(o) < q° < Qo

b) Si g > Qo
¢) en otro caso

: P={(Qr70): Qr €

U{(Qo,no)}

:P= {(anO) Qr €

: P ={(Qo, 7o)}

Q7o) a1’}

@ (o), Qo] }

3) Siﬁ0>ﬁ0+1,
) Si CInOJrl Qo

b) en otro caso

P = {(QO,ﬁO + 1)7 (Qo,ﬁo)}
: P ={(Qo,n0)}

Si Qo > Q"

En adelante, 1@ denotaré el valor entero més cercano a n* que minimiza a HOC(Q,.(n), n),

es decir, m = arg{ {L ” - HOC(Q,(n),n)}, con Q,(n) < Qo. En caso que
6 n* *
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HOC(Q,(|n*]), [n*]) = HOC(Q,([n*]), [n*]), hacemos @ = |n*] ya que, por con-
cavidad de Q,.(n), el punto (Q,(|n*|), [n*]) estd a la derecha de (Q,([n*]), [n*]) v,
en consecuencia, mejora el segundo criterio. Observe que, de la definicién de 7, se
tiene que > Mg cuando Qg > Q.

Propiedad 15 Cuando Qo > Q7, aquellos puntos (Q,,n) con n < 7y 0 n > 7 no se
incluyen en P.

Se puede demostrar que el conjunto P estd formado por la unién de intervalos
que estdn ubicados en distintas rectas n, con ny < n < m. A partir de este punto,
denotaremos por P(n) al conjunto de puntos no dominados que se encuentran en la

recta n. Por lo tanto, el conjunto de soluciones no dominadas es dado por P = GA
n=ng

P(n).

Propiedad 16 Para todo n con iy < n < 7 , se verifica que HOC(Q,(n),n) <

HOC(Q,(n—1),n = 1)
Propiedad 17 Dadas las rectas n y n—1, los conjuntos P(n) y P(n—1) de soluciones
no dominadas vienen dados por:

1.- SiQ,(n—1)=max{Q™ ' Q,(n— 1)} entonces

P(n) = [Qr(n),q"), conl = HOC(Q,(n—1),n—1),y P(n—1) = [Q,(n— 1), ]
2.- Si Q! = max{Q"" !, Q,(n — 1)} entonces

P(n) = [Q.(n),Qp" ),y P(n—1) = [Qp" ", bi]
donde los valores a; y b; dependeran de los puntos de intercepcién con la curva

Propiedad 18 El conjunto de soluciones eficientes se puede obtener a través de
comparaciones de pares de funciones HOC' correspondientes a valores consecutivos
de n.

El procedimiento solucién para determinar el conjunto P se detalla en el Algo-
ritmo 7.

Conclusiones

A lo largo de esta memoria se han abordado distintas variantes del modelo EOQ),
ofreciendo métodos eficientes para resolverlas. Se considera la versién dindmica del
modelo EOQ admitiendo restricciones de capacidad de inventario, demostrando que
dependiendo de la estructura de costes se pueden disenar distintos algoritmos efi-
cientes. En concreto, se presenta una caracterizacién de planes 6ptimos asi como
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el correspondiente algoritmo para el caso de costes céncavos. En cambio, en au-
sencia de costes de setup (activacién) y admitiendo que la estructura de costes es
lineal , hemos demostrado que se puede desarrollar un algoritmo greedy de orden
O(TlogT') para obtener politicas 6ptimas. Ademds, hemos propuesto un algorit-
mo de orden O(7T'logT') basado en una técnica geométrica para el caso en el que
las funciones de coste sean lineales y se admitan setups. También se han discutido
extensiones del modelo EOQ bajo la perspectiva de la programacién multicriterio.
De manera mas especifica, se ha considerado que el valor que toma la demanda en
un periodo dado no es conocido, sino que se extrae de un conjunto finito de valores
discretos, generando asi distintos vectores posibles de demanda y dando lugar, por
lo tanto, a diferentes escenarios. Esta variante se ha resuelto aplicando un esquema
de ramificacién y acotacion y se ha presentado un método general para identificar el
conjunto de soluciones eficientes. Por iltimo, se ha analizado el sistema de Inven-
tario/Distribucién (I/D) considerando dos criterios y se ha desarrollado un método
eficiente para caracterizar las soluciones no dominadas.
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Preface

In practice, activities related to most organizations concern with using, transforming,
distributing or selling some type of commodity or material. These tasks require
not only having a physical location to store the goods, but also to apply a certain
coordination and control over inventories. Generally, inventories are defined as those
stored commodities with economical value, which are to be required in the future.
Accordingly, in almost all industries, firms and organizations of economy, there
exists a common activity corresponding to the control and the management of the
inventory.

In developed countries, money invested in businesses related to inventory control
and management represents a significant percentage of the annual gross inner prod-
uct. Hence, inventory control and management plays an important role in economy.

Inventory Control is a relevant field in Operations Research that is concerned
basically with the efficient management and control of stocks held by firms to satisfy
customer demand. Thus, it provides the information needed for the day-to-day de-
cisions required to settle tactical and economical objectives. Reconciling these con-
flicting objectives in a modern company, where responsabilities have been sharply
divided and where managers have been encouraged to suboptimize by their perfor-
mance measures, becomes a challenging problem; attempting to solve this problem
is the primary function of inventory planning and control. Colloquially, the function
of inventory control is to reconcile these objectives to meet the overall profit goals
of the company.

Interest in the problems of optimal stock management at a scientific level goes
back to the start of the 20" century. However, the most important impulse came
after World War II when several researches looked into the problem of optimal stock-
ing. The position about inventory management has changed drastically through the
past century; from the beginning when it was thought that carrying large inventory
levels to cover fluctuations of demand was convenient, until nowadays where the
goal consists of reducing inventories to minimum levels. As a result of this develop-
ment, a huge number of articles in specialized journals and books devoted solely to



inventory management and control are periodically published.

Precisely, in works credited to Harris (1913) and Wilson (1934), it was developed
the germinal model to obtain the economic order quantity (EOQ) for a particular
good. Given that applying this model has provided astonishing results in practice, it
is not surprising that currently extensions of the EOQ model keep on being a topic
under consideration. Indeed, new generalizations of the EOQ model can be found
in literature, which reveal the evolution of inventory systems.

In accordance with this evolution, this monograph deals with extensions of the
EOQ model. Accordingly, dynamic versions of the EOQ model, both to the multisce-
nario case and to the case with limited storage capacity, are addressed. Additionally,
we also analyze the extension of the EOQ model to a two-echelon system, providing
an algorithm to determine efficient ordering policies. Therefore, it is remarkable
that approaches given throughout this work can be seen as a compilation of effi-
cient techniques that can aid the decision maker to determine the more convenient
inventory policy in terms of minimization of costs.

Specifically, in Chapter 2, the dynamic version of the EOQ model admitting
limitations on the storage capacity is addressed. For this model, we show that
depending on the cost structure different efficient algorithms can be applied. In
particular, the characterization of optimal plans and its corresponding algorithm for
the case of concave cost functions are included in Gutiérrez et al. [46]. In addition,
when the cost structure consists of linear holding and reorder costs without setup
costs, a greedy algorithm that runs in O(7T'logT') time can be devised as Sedeno-
Noda et al. [81] pointed out. Moreover, in Gutiérrez et al. [47], it is proven that
applying a geometrical technique yields an O(T logT') algorithm even when setup
costs are involved in the linear cost structure. In Chapters 3 and 4, extensions of
the EOQ model are discussed from the multicriteria programming viewpoint. In
particular, in Chapter 3, the dynamic EOQ problem is studied considering that the
demand for each period can take different values from a discrete set, generating so
several scenarios. We solve this problem via a branch and bound scheme, providing
a general method to characterize the set of efficient solutions. Several results in this
chapter have already been published in a paper by Gutiérrez et al. [45]. Finally,
Chapter 4 deals with the bicriteria two-echelon Inventory /Distribution (I/D) system.
The set of non-dominated solutions for this problem is efficiently characterized.
Some contributions in this chapter are compiled in a paper by Gutiérrez et al. [44].
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Chapter 1

Foundations of Inventory Control

1.1 Introduction

From an operational point of view, inventories involve those goods held by an organi-
zation which are to be required by customers in the future. On the other hand, from
the economic point of view, inventories represent invested money which is returned
when the external demand for a specific commodity or facility is satisfied. Essen-
tially, inventories can be seen as a buffer between variable and uncertain supply and
demand. A frequent aim of inventory control is to provide this buffer at minimum
cost. Therefore, inventory control consists of all activities and procedures used to
ensure that the right amount of each item is held in stock. In this sense, inven-
tories play an important role since supply and demand are difficult to synchronize
perfectly. This lack of synchronization is essentially the result of four factors: time,
discontinuity, uncertainty and economy (Tersine [88]). The time factor involves the
time used in scheduling the production and in-process times of intermediate tasks
up to the final product reaches the retailer or the wholesaler. It seems clear that
few customers would be patient enough to wait for such an extended period of time
on all their purchases. The second factor, that is, discontinuity, permits to manage
the different proccess related to firm (retailing, distributing, warehousing, manu-
facturing and purchasing) in an independent way. The uncertainty factor concerns
unpredictable events that modify the original plans of the organization. These events
include mistakes of demand forecasting, strikes, equipment breakdown, etc. Finally,
the economy allows the firm to get cheaper prices ordering or producing items in
economic quantities (e.g. quantity discounts) or reducing transport costs.

Inventories can be classified into several categories depending on its functional-
ity. Thus, fluctuation inventories are those inventories held in warehouse to cover
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the fluctuations in demand and supply. These inventories are also called reserve
stocks, safety stocks or stabilization stocks, and may be provided in production plan
so that production levels do not have to change in order to meet random variations
in demand. Anticipation inventories represent those inventories ordered in advance
of a peak selling season, a marketing promotion program or a plant shutdown pe-
riod. Lot-Size inventories are those inventories obtained in larger quantities than are
needed at the moment as a consecuence of the impossibility to manufacture or pur-
chase items at the same rate at which they will be sold. In addition, transportation
inventories stand for those inventories being moved from one place to another and,
therefore, they cannot serve an useful function for plants or customers. Moreover,
speculative inventories represent those inventories acquired by the organization to
take advantage of lower prices.

Besides, inventories can be grouped by their condition during processing as well.
Accordingly, raw materials are those materials needed to make components of the
finished products. Components/spares are parts or subassemblies ready to be in-
corporated in the final assembly of a product. Also, work-in-process inventories
are assumed to be those materials and components being in process or waiting be-
tween operations in the factory. Finally, finished products are those items carried in
inventory at the warehouse or shipped to a customer.

Interest in the study of inventory systems has significantly increased in the last
decades, and numerous publications have been devoted solely to this subject. Ex-
cellent reviews of inventory systems are given in Hax and Candea [49], Silver et
al. [82], Chikan [18], Waters [98], Narasimhan et al. [65], Tersine [88], Plossl [69],
Zipkin [110] and Axsiter [6], among others. Many articles on the subject now ap-
pear regularly in relevant specialized journals as Management Science, Operations
Research, Journal of the Operational Research Society, Computers and Operations
Research, European Journal of Operational Research, and many other journals.

It is merit to mention the seminal model from which inventory management has been
developed. This model is referred to as EOQ-model (Economic Order Quantity) and
it was introduced by Harris [48] in 1913, but the result is often credited to Wilson
[101] who independently duplicated the model and marketed the results in the 1930s.
The EOQ-model assumes that the demand for the item under study is known. In
Section 1.3, a complete analysis of this model is developed.

We introduce below the terminology and basic definitions which are to be used
throughout this work.



1.2. PRELIMINARY CONCEPTS AND TERMINOLOGY 3
1.2 Preliminary Concepts and Terminology

As it was mentioned before, inventory control intends to manage buffers of goods,
assuring that demand or customer service is covered. The main characteristics or
components inherent to inventory systems are the demand, the replenishment, the
costs and the constraints. We define in detail these features in the following sections.

1.2.1 Demand

Generally, demands cannot be controlled directly. They usually depend on decisions
of people outside the organization which has the inventory problem. The demand
size represents the quantity required to satisfy the demand for inventory. When the
demand size is the same from period to period we say that it is constant. Otherwise
we refer to it as variable. Inventory systems in which the demand size is known
in advance will be referred to as deterministic systems. In deterministic systems
with constant demand, it is convenient to use the demand rate which is the demand
size per time unit. Occasionally, it is possible to recognize numerous ways by which
quantities are taken out of inventory. Precisely, if we consider a period of time over
which the demand occurs, this demand may be withdrawn at the beginning or at
the end of the period; it may be withdrawn uniformly over the period or following a
power pattern; etc (see Naddor [64]). These different ways by which demand occurs
during a period will be referred to as demand patterns. Throughout, we focus our
attention to the case where the demand occurs at the beggining of the period and
also to the case in which the demand follows an uniform pattern.

1.2.2 Replenishment

The replenishment /reorder of inventory systems are generally controlled by decision
makers. Generally speaking, the replenishment refers to the quantities that are
scheduled to be put into inventories, to the time when decisions about ordering
these quantities are made, and to the time when they are actually added to stock.
Accordingly, we can identify the following elements concerning the replenishment.
The scheduling period is the length of time between consecutive replenishments, and
it is not always controllable. Moreover, the replenishment/reorder size represents
the quantity scheduled for replenishment, and it is usually under control of the
decision maker. In analogy to the demand, replenishing can follow different patterns,
namely, uniform, instantaneous, power, etc. Finally, the leadtime is the length of
time between scheduling a replenishment and its actual addition to stock, and it is
generally not subject to control.
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1.2.3 Costs

Since an inventory problem is basically a minimizing costs problem, it is important
to distinguish the costs related to inventory systems. They are the more relevant
economic components to any inventory decision model, and they can be grouped
in several general costs, which are itemized as follows. The purchase unit cost rep-
resents the unit purchase price of an item if it is obtained from external source,
or the unit production cost when it is produced internally. Furthermore, the fixed
charge or setup cost stands for the expense of issuing a purchase order to an out-
side supplier or the internal production setup costs. The setup cost comprises the
costs of changing over the production process to produce the ordered item and it
depends on the number of orders placed. The replenishment/reorder cost includes
those charges related to place an order. This cost is usually assumed to vary directly
with the size of the order. In addition, the holding/carrying cost incorporates the
capital /opportunity costs, taxes, insurance, handling, storage, shrinkage, obsoles-
cence, and deterioration. Normally, the holding costs are proportional to the size of
inventory investment. Finally, the stockout/shortages/backlogging cost reflects the
economic consecuence of an external or an internal shortage. The external shortage
occurs when the customer’s demand is not fulfilled, and the internal one when an
order placed within the organization is not filled. The quantification of these costs
has long been a difficult and unsatisfactorily resolved issue. For this reason, many
organizations avoid the estimating problem by specifying customer service levels.

1.2.4 Constraints

Constraints in inventory systems deal with various properties that in some way place
limitations on the components discussed in the previous sections. They can be clas-
sified in unit constraints (discrete or continuous units), demand constraints, replen-
ishsment constraints and cost constraints. In particular, throughout this monograph
we consider limitations on the replenishment size due to storage capacities in Chap-
ter 2 or to the capacity of the vehicle that distributes the commodity in Chapter 4.
Moreover, we consider that order quantities should be integer in Chapters 2 and 3.

1.2.5 Inventory Policies

It is clear that an inventory problem is a problem of making optimal decisions with
respect to an inventory system. In other words, an inventory problem is concerned
with the making of decisions that minimize the total cost of an inventory system.
Decisions that are made always affect the costs, but such decisions can rarely be
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made directly in terms of costs. Decisions are usually made in terms of time and
quantity. Consequently, the time and quantity elements are the variables that are
subject to control in an inventory system. Accordingly, the decision maker must
answer the following questions: ”When should an order be placed?” and ”How
much should be ordered?”. Depending on the type of reviewing, periodic or not, and
depending on whether the reorder quantity is fixed or not, several ordering policies
are introduced. The first question is usually answered in one of the following ways:

1. Inventory should be replenished when the amount in inventory is equal to or
below s,! quantity units.

2. Inventory should be replenished every t, time units.
The second question is also usually answered in one of two ways:
1. The quantity to be ordered is (), quantity units.

2. A quantity should be ordered so that the amount in inventory is brought to
a level of S, quantity units.

The quantities s, ¢, @ and S will be referred to as the reorder point, scheduling period,
lot-size, and order level, respectively, and they are used in static inventory systems,
that is, inventory systems where the parameters do not change with time. The
stationary inventory systems can be grouped depending on which inventory policy,
namely, (s, @), (t,S), (s,S) or (t,Q) is to be applied. In addition, when the leadtime
is not negligible the reorder point and the order level will be designated by z and Z,
respectively. Consequently, the corresponding policies are (z,Q), (t,Z) and (z, Z).
An exhaustive compilation of these inventory systems and their solution methods
can be found, among others, in Naddor [64], Tersine [88], Plossl [69], Narasimhan
et al. [65], Chikén [18], Silver et al. [82] and Axséter [6].

The notation above is confined to the case in which the constant lot-size should
be determined for a single-item, single-facility and constant input data inventory
system. However, when parameters can change with time, the inventory systems are
usually referred to as dynamic systems. In particular, the dynamic lot-size problem
assumes that a finite planning horizon is divided into 7" periods of time and an order
plan Q = (Q1,Qa, ..., Q) should be determined. Given a period i, with 1 <7 < T,
the demand, the replenishment cost and the holding cost for this period are denoted
by d;, C;(Q;) and H;(I;), respectively. Notice that C;(Q;) and H;(I;) are functions of
the quantity ordered @); and the inventory level held I;, respectively. In particular,
Q; stands for the quantity to be ordered at the beginning of period ¢, whereas I;
represents the inventory level at the end of that period. It is widely accepted that I
and I are zero. In case of being I distinct to zero, the demands of the first periods

!The subscript o refers to an optimal value.
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should be set to zero since they can be fulfilled from the initial inventory. In absence
of shortages, the total cost of the systems is commonly expressed as the sum of the
replenishment and holding costs. Finally, the goal consists of determining an order
plan Q = (Q1, Q2, . . ., @7) such that minimizes the total cost satisfying the demands
of all periods. When an inventory capacity is considered, the problem is referred to
as the dynamic lot-size problem with limited storage. This inventory capacity can
be either fixed or variable. In the first case, it is assumed that the capacity of the
warehouse W is constant through the planning horizon. Otherwise, the capacity of
the warehouse changes with time and it is denoted by W;, i =1,...,T.

1.2.6 Inventory Problems Classification

The combinations of the characteristics above mentioned result in different classi-
fications of inventory problems. Following the classification of inventory problems
due to Tersine [88], we show in Figure 1.1 the main types of problems that can be
found in inventory theory.

The perpetual inventory system designated by Py in Figure 1.1 is a system in
which a order is placed every time the inventory position reaches a prefixed inven-
tory level. The periodic inventory system, Ps, orders stock on a time cycle and,
also, decisions on inventory replenishment are only made at discrete points in time.
Additionally, the material requirements planning (MRP) system, P3, is based on
planning dependent demand requirements for finished items using a time-phased
format. Moreover, the goal in distribution requirements planning (DRP) systems
denoted by P, consists of ordering stock to satisfy distribution center requirements
in multi-echelon networks. Finally, in the single order quantity system or Ps, it is
assumed that the same quantity is ordered to meet unique or short-lived require-
ments.

1.3 The Economic Order Quantity (EOQ) Model

The economic order quantity model (EOQ model) was first published in the book of
F. Harris (1913)[48] and it is considered the first classical model of inventory control.
This model is included in class of problems Py, and it assumes that shortages are
not allowed and the replenishment is instantaneous. In addition, the leadtime is
negligible. The total cost, as a function of the lot-size, consists of a holding cost,
which is dependent on the lot-size held in stock and a replenishment cost that
depends on the number of replenishments. The goal is to determine the optimal
lot-size which minimizes the total cost. One of the characteristics more significant
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8 CHAPTER 1. FOUNDATIONS OF INVENTORY CONTROL

of the EOQ-model is its robustness. This feature justifies the fact that the EOQ-
model keeps being successfully used currently. The economic order quantity EOQ
is the order amount which balances the costs of inventory holding against those of
placing inventory replenishment.

The formula which expresses the value of the EOQ is also credited to R. H.
Wilson (1934)[101]. In the German literature, it is often called the Andler formula
since this formula is proposed in the book of K. Andler [5] published in 1929. This
model is described also in the books of B. Margansky (1933) [62] and K. Steffanic-
Allmayer (1927) [84].

The assumptions of the EOQ model are very restrictive and they are rarely
fulfilled in practice. However, the EOQ is still the model most cited and used for
an approximated solution in inventory control. The success of the EOQ model lies
on the following facts: i) the formula is very simple to implement, to understand
and to apply even for people not well trained in operations research; ii) the model
is robust with respect to the input data, i.e., an inaccurate estimation of the input
data does not result in a significant increase in cost as compared with the optimal
solution of the instance with accurately estimated parameters.

The EOQ model corresponds to a lot-size system in which the order quantity
should be determined, demands are constant and a (s,@) policy is applied with
s = 0, hence, shortages are not permitted. Therefore, the only significant costs are
the carrying cost H(Q) and the replenishment/production cost C'(Q), and the goal
consists of finding the balance between both costs. The inventory fluctuations in
the EOQ model are illustrated in Figure 1.2. From this figure, it is clear that the
demand occurs at a constant rate of d item units per time unit and leadtime is
zero. The objective consists of determining the economic order quantity () to be
replenished /produced every ¢ time units at minimum cost. Hence, variables ) and
t are related through the following expression

Q= dt

Giving that the scheduling period ¢ determines the time interval between con-
secutive replenishments/productions, it can be easily derived the number of replen-
ishments/productions just computing the quotient 1/t = d/Q.

Regarding the costs, it is assumed that there is a constant unit carrying cost h
with dimension [money unit]/([item unit][time unit]) and a constant unit replenish-
ment cost ¢ with dimension [money unit]. Hence, the total cost T'C' as a function of
Q is given by

h@ cd

TC(Q) =32 0
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Figure 1.2: Graphical representation of the EOQ model.

Notice that the first term in T'C' corresponds to the average holding cost whereas
the second term is the average replenishing cost. An illustration of these costs is
depicted in Figure 1.3.

To obtain the optimal EOQ), it suffices to differenciate T'C'(Q) with respect to @
and to set this result to zero. Accordingly, the optimal lot-size @, is given by

[2dc
Qo == T

and, its corresponding optimal cost is TC, = v/2hcd.

We have already pointed out that the EOQ model is robust, in the sense that
the optimal solution for the problem with not very bad estimated parameters does
not significantly differ from the actual optimal solution. This situation arises, for
instance, when the decision maker uses estimates for the parameters of the system
and these differ from the true values. In particular, suppose now that instead of the
optimal (), the decision maker use another lot-size ()’, which is related to @, by

Q =bQ, b>0

Let TC" designate the total cost of the system when @’ is applied. In addition,
let the ratio TC'/TC, be used as a measure of sensitivity. In Table 1.1, extracted
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Figure 1.3: Costs of the EOQ model.
b ‘ 0.5 0.8 0.9 1.0 1.1 1.2 1.5 2.0 3.0

TC’/TCO‘1.250 1.025 1.006 1.000 1.005 1.017 1.083 1.250 1.667
Table 1.1: Sensitivity of the EOQ model.

from Naddor [64], it is shown the values of T'C"/TC, for various values of b. It
is worth noting that underestimating @), by 50%, that is, when b = 0.5 leads the
additional cost to be 25% of the minimum cost. For a more complete analysis of
sensitivity of the lot-size system see Naddor [64].

Below, we introduce the extensions of the EOQ model to the time-varying de-
mand and multi-echelon cases and, we present also the most relevant contributions
collected in the literature for these topics.

1.4 Extensions of the EOQ Model

Among the different classes of inventory systems, this monograph mainly deals with
those concerning with the dynamic lot-sizing and the multi-echelon problem. Due
to the applicability of both systems in practice, we think that the results to be intro-
duced in subsequent chapters can play a relevant role in the inventory management
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of a firm.

1.4.1 Deterministic Dynamic Lot-sizing

This type of inventory systems is included in class of problems Ps since they as-
sume that the demand for a given item does not follow an uniform pattern, but
it can change with time. Therefore, the planning horizon must be divided into T
periods and, the demand for each period should be determined and fulfilled at the
beginning of that period, not allowing shortages. In the classical version of this
model, proposed by Wagner and Whitin [97] and, independently by Manne [61], it
is assumed that in each period there is a linear holding cost, a fixed setup cost and
a constant production/reorder cost. The total cost is expressed as the sum of the
costs associated to each period. In addition, the initial and final inventory levels
are assumed to be zero. The solution consists of determining a production/reorder
time-phased vector or plan which minimizes the total cost. These authors stated
that among the optimal solutions there always exists one such that an order is placed
in a period when the inventory at the end of the predecessor period is zero. This op-
timality condition is usually referred to as ZIO (Zero Inventory Ordering) property
and the solutions which hold this property are called ZIO policies. Based on this
property, an O(T?) algorithm can be devised to determine an optimal solution even
when the cost functions are concave in general (Veinott [91]). Most recently, Fed-
ergruen and Tzur [33], Aggarwal and Park [1] and Wagelmans et al. [95] provided
O(TlogT) algorithms using very different techniques for the case with time-varying
reorder costs, which run in linear time when reorder costs are constant. Zangwill
[105] proved that the production/reorder planning problem can be seen as a network
flow problem where there exists at least one optimal solution (ZIO policy), which
corresponds to an acyclic flow of the underlying network. The extension to the case
with shortages was addressed by Zangwill [104]. Under this assumption and consid-
ering concave costs, Zangwill argued that among the optimal solutions there always
exists one satisfying that between two adjacent periods with production/order dis-
tinct to zero there is at least one period with inventory level equal to zero. This
author exploited this property to devise an O(7?) algorithm. In addition to these
optimal solution methods, there exist others in the literature considering different
assumptions with respect to inventory positions and cost structure (see, for instance,
Wagner [96], Zabel [103], Eppen et al. [29] and Zangwill [106]).

When in each period the production quantity is limited by the capacity of the
resources, namely, manpower and/or material, the model is usually referred to as
Capacitated Lot-Sizing Problem (CLSP). It is well-known that in most cases the
CLSP can not be efficiently solved (see Florian et al.[37], Bitran and Yanasee [12],
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Chen and Thizy [17] and Baker et al. [7]). Only when the production capacities
and setup costs are constant an optimal solution can be determined in O(T*) (see
Florian and Klein [36] and Bitran and Yanasee [12]). Recently, Van Hoesel and
Wagelmans [90] developed an O(T?) algorithm that solves the constant capacities
dynamic lot-sizing problem with concave production costs and linear holding costs.
There also are a significant number of works concerning with the CLSP, but they
are of heuristic nature (see, e.g., Salomon [79]). Unlike the CLSP, which has been
extensively studied in the literature, the Dynamic Lot-sizing Problem with Limited
Inventory (DLSPLI) problem has been barely considered by researchers. In par-
ticular, Love [60] developed an O(T?) algorithm based on dynamic programming
for concave cost functions in general, and Dixon and Poh [24] proposed a heuristic
method for when the model involves more than one item.

Assuming that Cy(-) and Hy(-) represent, respectively, concave functions of the
order amount (); and the inventory level I; in period t, t = 1,...,T, the DLSPLI
can be stated as follows:

T

min Y (Cy(Qy) + Hy (1))

t=1

s.t.
Iy=1Ir=0
Loi—1L+Q, =d, t=1,....T
Z’t,[tGNO tzl,...,T

where Ng = NU {0}.

In this model, the solution method is based on the ZIO property, which postulates
that among the optimal plans there is at least one satisfying

It_th:O tzl,,T

Accordingly, there exists at least one plan in which the optimal decision consists
of producing/ordering the sum of demands from one given period to a subsequent
one.

In Chapter 2 of this monograph, we address the single-item DLSPLI considering
both general concave cost structure and linear cost functions. In the first case,
that is, when the cost structure is defined by general concave cost functions, it is
proven that an alternative characterization of the optimal plans is possible. This
new approach leads to devise an O(T®) algorithm that runs in O(T') expected time
when the demand for a given period varies between zero and the maximum capacity
for that period. On the other hand, in case of linear holding and replenishment costs
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and considering setup costs, the geometrical technique given in Wagelmans et al.
[95] can be extended to develop an O(T logT) algorithm. Additionally, when setup
costs are negligible, one can devise an O(T'logT) algorithm based on the properties
of the network underlying to the problem.

In contrast to deterministic lot-sizing problems where the decision maker knows
in advance the values of the input data through the planning horizon, stochastic
lot-sizing systems assume that the input data can be adjusted to density functions
with known parameters. In particular, in Chapter 3, the case is addressed when the
demand is discrete and it is uniformly distributed. In other words, the demand can
take any value from a finite set of discrete values. Therefore, several scenarios can
arise, and hence the efficient solution set should be determined. It is proven that
extensions of the ZIO property can be adapted successfully to the multi-scenario
case.

1.4.2 Multi-echelon Systems

In contrast to the original EOQ model, where decisions are made for a single loca-
tion, this type of inventory systems involves more than one installation and, hence
they are included in class of problems P3. In general, multi-echelon systems can
be classified into three major categories, namely, distribution systems (also called
arborescent systems), assembly systems and hibrid systems. In these systems, inven-
tory control is applied across the entire supply chain. Precisely, Silver at al. (1998)
[82] define supply chain management (SCM) as the management of materials and
information from suppliers to component producers to final assemblers to distribu-
tion (warehouses and retailers) and, ultimately, to the consumer (see Figure 1.4 for
a sketch of a supply chain).

The main inconvenient in the supply chain structure is that decisions on an
installation affects to the rest of locations. In particular, overestimated orders at one
installation make the lot-sizes increase at predecessor locations. This phenomenon
is often called the bullwhip effect (see Silver at al. [82] for illustrative real world
examples).

The interest for supply chain management and for multi-echelon inventory con-
trol in such chains is growing rapidly. Supply chains are not always part of a single
company, but often different firms work together to improve the coordination of
the total material flow. The Just In Time (JIT) philosophy is a particular case
where several supply chains corresponding to different companies are coordinated
to decrease inventory levels. For further information on JIT systems, the reader is
refereed to Silver et al. [82], Tersine [88], Zipkin [110], Narasimhan et al. [65] and
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Figure 1.4: A scheme of a Supply Chain.

Waters [98], among others.

Multi-echelon inventory systems are common in both distribution and produc-
tion. In particular, Figure 1.5 shows a tipical distribution system, which is charac-
terized in that each installation has at most a single immediate predecessor.

It is worth noting that when each installation has also at most one immediate
succesor the model is refereed to as serial system, which is the simplest fashion within
the multi-echelon systems. The two-echelon serial system with one-warehouse and
one-retailer was studied by Crowston et al. [21]. These authors introduced the well-
known integer lot-size ratio, which states that the lot-size at the first location should
be an integer multiple of the lot-size at the second installation. Unfortunately,
as Williams [100] proved, this property is no longer valid when more than two
installations are involved in the system.

Another relevant aspect in multi-echelon systems is that concerning the holding
costs. In particular, the difficult arises when the average inventory quantity should
be determined. We illustrate this issue with the following example: consider a
two-echelon serial system consisting of one warehouse (W) and one retailer (R).
According to the integer lot-size ratio, one must have

Qw = nQr n=123,...

where QQw and (Qr denote the order amount at the warehouse and at the retailer,
respectively.
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Figure 1.5: Distribution inventory system.

Figure 1.6 shows the behavior of the inventory levels of both installations in such
a system for the particular case Qw = 3Q . Notice that the retailer instantaneously
replenishes from the warehouse and, hence the inventory at the warehouse does not
follow the usual sawtooth pattern. It is clear that this inventory could be calculated
using conventional definitions of inventories, however, the calculations become quite
complex. Instead, it is preferable to use the concept known as echelon stock stated
by Clark and Scarf [20]. The echelon stock of echelon j is defined as the number
of item units in the system that currently are at, or have passed through, echelon
j but have not yet left the system. By virtue of this definition and assuming that
the demand for the finished item follows an uniform pattern, the inventory at each
installation has a sawtooth pattern with time.

Nevertheless, obtaining the total inventory carrying costs cannot be done simply
multiplying each echelon stock by its unit holding cost as usual. In case of directly
summing these quantities makes the same physical stock units are to be counted in
more than one echelon inventory. The way to overcome this difficulty is to value any
specific echelon inventory at only the value added at that particular installation. In
other words, the echelon holding cost actually is the incremental cost of moving the
item from the warehouse to the retailer, thus, the echelon cost at the warehouse is
h%/V = hy and at the retailer is th = hr — hw, where hy and hgr represent the
actual unit holding costs at both locations. In a general multi-echelon system, the
echelon holding cost at a particular installation is given by

hy=hi— Y h

i€ Pred(j)
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Figure 1.6: Fluctuations of inventory levels at the warehouse and the retailer.

where the set Pred(j) contains all the installations immediately predecessor to ech-
elon j.

In Chapter 4, the two-echelon inventory/distribution system consisting of one
warehouse and one retailer is solved from the bi-objective perspective. Specifically,
instead of analyzing only one criterion, namely, the annual inventory cost, an ad-
ditional objective is proposed, which corresponds to the annual total number of
damaged items by improper shipment handling from the warehouse to the retailer.
The whole Pareto-optimal solution set is determined and, additionally, a previous
result due to Bookbinder and Chen [14] that analyzes the same problem with equiv-
alent cost structure is corrected.

1.5 Mathematical Background

We include in this section several topics, which are to be used in subsequent chapters
of this work. In particular, the Dynamic Programming (DP) approach and the
structure of directed network are used in Chapter 2. Moreover, the extension of the
DP approach to the multicriteria case, i.e., Multiobjective Dynamic Programming in
combination with a Branch and Bound scheme is exploited in Chapter 3 to determine
the whole efficient solution set of the Multiscenario Dynamic Lot-sizing problem.
The dynamic determination of the lower envelope of a set of points in R? is discussed
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since it is used as solution method for the dynamic lot-sizing problem with linear
and setup costs dealt with in Chapter 2. In addition, multiobjective optimization is
commented since problems in Chapters 3 and 4 are of multicriteria nature.

1.5.1 Multicriteria Optimization

In most real-world applications we can find several conflicting criteria. Specifically,
in production planning, one could be interested in both maximizing the total net
revenue and, on the contrary, minimizing shortages or overtime. Thus, the concept
of optimal solution characteristic of the single-objective optimization should be re-
placed by efficient solution (also refereed to as mon-dominated or Pareto-optimal
solution). Colloquially, we say that a solution is non-dominated when slight changes
of the criteria values do not yield improvements in the objective functions. Formally,
a multiple criteria program with k criterion can be stated as follows:

v — min(max)(f1(x), fo(x) ..., fr(x))

x € X CR"

s.t.

where v — min(max) (vector minimization(maximization)) is used to differentiate
the problem from the minimization(maximization) single-objective problem.

Accordingly, we denote by P the non-dominated solutions set (or, equivalently,
the Pareto-optimal solutions set), which is defined as follows:

P = {xeX]thereisnoy € X so that fi(y) < fi(x), i =1,...,k, with

at least one inequality being strict}

Further details on methods and applications for multicriteria optimization can
be consulted in Steuer [85], Ehrgott [27], Ehrgott and Gandibleux [28], Goicoechea
et al. [42] and Zeleny [107], among others.

1.5.2 Dynamic Programming
A sequential decision process represents an activity that entails a sequence of actions

taken toward some goal. Using the definition of Denardo [23], Dynamic Programming
is the collection of mathematical tools used to analyze sequential decision process.
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In a dynamic programming problem the following concepts are involved: the
state space, the functional equation and the principle of optimality. Since dynamic
programming handles sequential decision processes, the state of the problem changes
when decisions in each stage are made. Therefore, the problem can be characterized
by a set of states E/. This state set usually contains only one initial state Iy, and,
at least, one final state Ir. Applying a decision () to one state I; yields this state to
transit to another state I, and also, to incur a cost/benefit, say t;;, which depends
on @ and [;. A sequence Q = Q1,Qs, ..., Qr of decisions is refereed to as a plan or
policy. It is said that a policy Q is feasible when starting from the initial state, it
reachs one of the final states. The cost associated to a policy Q corresponds with
the sum of the costs of each decision contained in Q. We can now state a general
dynamic discrete optimization problem in the following way:

min(max) f(Q)

QeF

s.t.

where F' is the set of all the feasible policies, and f represents the objective function
to optimize.

The principle of optimality was originally stated by Bellman and Dreyfus [9] as
follows: A policy is said to be optimal whether for any initial state and decision, the
rest of decisions are optimal with respect to the resultant state of the former decision.
This principle is closely related to the functional equation, which characterizes the
set of solutions to the optimization problem. Thus, if f; represents the cost/benefit
of the optimal solution to the problem starting with state j, then the functional
equation can be stated as follows:

fi Zggg {ti + fi}

These concepts can be extended to the multicriteria framework as Villarreal
and Karwan [93] pointed out. Let M be the number of objectives in a multistage
decision process where N stands for the number of stages. In addition, let Rfk be
the return function for criterion i evaluated from stage j to stage k. In what follows,
we admit that R** is obtained applying a (k — j 4 1)-dimensional vector A of binary
operators. Specifically, we calculate this function as Rfk = Zf:j r(Qy), for any 1,

j and k. Hence, Rfk is a stagewise separable function since it can be reconstructed
by the iterative use of the corresponding vector of operators A. Thus, the serial
muticriteria multistage problem would be formultated as follows:



1.5. MATHEMATICAL BACKGROUND 19

v — min(max)g{R;™(Q), BN (Q),.... Ry (Q)}

QcF CRY

s.t.

where g{ R (Q), Ry (Q), ..., Ry (Q)} denotes the multicriteria return function
of the decision process. The solution to this problem would be a set of non-dominated
policies P.

Assuming that g; denotes the set of cost/benefit vectors associated to non-
dominated solutions of the problem starting with state 7, the multicriteria problem
above can be formulated using the following functional equation

g; =v — min(max) {T};; ® g;}
JEECRM

In this equation, the set of states F contains real-valued M-dimensional vectors
and T;; represents the M-dimensional cost/benefit vectors corresponding to all the
possible policies that start at state ¢ and reach state j.

Applying dynamic programming in both single and multicriteria frameworks
entails the curse of dimensionality. That is, computer time and storage requirements
become prohibitive for large problems.

1.5.3 Branch and Bound

This technique is usually applied to solve integer programming (IP) problems.
Specifically, Branch-and-Bound (BB) methods find the optimal solution to an IP
problem by efficiently enumerating the points in a subproblem s feasible region. It
is well-known that whether the solution to the linear programming (LP) relaxation
of a pure IP is integer, then this solution is also the optimal solution to the IP.
Accordingly, the BB method begins by solving the LP relaxation of the IP. If all
the decision variables assume integer values in the optimal solution to the LP relax-
ation, then the optimal solution to the LP relaxation will be the optimal solution
to the IP. On the contrary, the feasible region should be partitioned by arbitrarily
choosing a fractional variable, say z;, in the solution to the LP relaxation. With this
in mind, we ”branch” on this fractional variable to generate two new subproblems,
namely, a subproblem considering the additional constraint that z; < |z;] and the
complementary subproblem assuming that xz; > [z;], where operators |-] and [-]
indicate, respectively, the smaller and greater integer values closest to a given value.
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We proceed to branch a subproblem whenever its LP relaxation provides fractional
variables. This branching process finishes because either an infeasible integer solu-
tion is reached or the converse. In the latter case, the cost associated to this feasible
solution represents an upper bound when minimizing or a lower bound when maxi-
mizing to the original IP. Hence, this upper or lower bound can be used to discard
subproblems that do not yield better solutions.

1.5.4 Convex Set and Lower Envelope

Let U be a set of points in R". We say that U is a convex set if for any pair of
points p,q € U the line segment pg is completely contained in U. Moreover, the
convex hull of a set U, conv(U), is defined as the intersection of all convex sets that
contain U. Algorithms to determine the convex hull of a set of points can be found,
among others, in Preparata and Shamos [70], Berg et al. [10] and Hershberger and
Suri [51].

A segment s in R? is defined as a function of x whose domain is an open interval
(left(s),right(s)). If s is a line segment, then this function s(x) is linear. Moreover,
we denote by LE(U) the lower envelope of a set U of n segments in R? which
is a function of x whose domain is the whole real line: min(co, {s(z)|s € U and
left(s) <z < right(x)}).

An efficient algorithm to calculate the lower envelope of a set of segments is given
in Hersberger [50].

1.5.5 Computational Complexity

A relevant aspect in this work concerns the evaluation of the algorithms proposed
in the subsequent chapters. The efficiency of an algorithm is measured in terms
of quantity of resources that the algorithm needs. That is, as a function of the
input size of the instance under consideration. In particular, we are interested in
estimating the asymptotic behavior of the running time of the algorithm. Formally,
let R* denote the set of real numbers greater than 0 and let f and g be two functions
f,g: N —R". We say that f(n) =0(g(n)) (f is asymptotically at most g) if there
exist positive integers ¢ and ng so that for every integer n > ng

f(n) < cg(n)

On the contrary, we say that f(n) = Q(g(n)) (f is asymptotically at least g) if
there exist positive integers ¢ and ng so that for every integer n > ny
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f(n) > cg(n)

Finally, we say that f(n) = ©O(g(n)) (f is asymptotically equal to g) if there
exist positive integers ¢, d and ng so that for every integer n > ng

dg(n) < f(n) < cg(n)

For a complete survey on computational complexity, we refer to the books of
Garey and Johnson [40], Papadimitriou [68], and Johnson and Papadimitriou [55],
among others.

1.5.6 Network Flows

For the sake of simplicity, in Chapters 2 and 3, we will reformulate the original
IP problems as network flow problems. Accordingly, a directed graph G = (N, A)
consists of a set N of n nodes and a set A of m arcs whose elements are ordered
pairs of distinct nodes. A directed network is a directed graph whose nodes or arcs
have associated numerical values (typically, costs, capacities, and/or supplies and
demands). In Figure 1.7, it is shown an illustration of a simple directed network
with N ={0,1,2,..., 7,7 + 1} and A = {(0,1),(0,2),...,(0,T), (1,T + 1), (2, T +
1),...,(T,T+1)}. In general, it is assumed that a flow of x;; units is sent through
the arc (i,7), ¢ = 1,...,7 and j = 1,...,T. Moreover, flows in the network are
limited by lower (/;;) and upper (u;;) bounds, namely, [;; < x;; < w;j, ¢ = 1,..,T
and j =1,...,T.

In particular, an appropiate assignment of flows in Figure 1.7 to parameters
and variables of the Dynamic Lot-sizing problem allows us to reformulate it as
a Minimum Cost Flow (MCF) problem (Zangwill [105]). Let ¢;; be the cost of
transferring one unit of flow through arc (7,7), and let b; denote the net supply
(outflow-inflow) at node i. Accordingly, the MCF problem can be formally stated
as follows

min Z Cij T4
(i,5)€A
s.t.
Z Tij— Z T =b; forallie N
j k

lij S Lij S Uyj for all (Z,j) € A

Further information about network flows can be found in Ahuja et al. [2], Dolan
and Aldous [25] and Bazaraa et al. [8], among others.
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Figure 1.7: Hlustration of a directed network.

1.5.7 Multiscenario Analysis

In many real-world applications, it is often needed to consider other information dif-
ferent to that appearing in historic files, e.g. new markets, new products, etc. This
lack of information concerns the uncertainty. In such situations, it is appropriate to
employ the scenario analysis approach where the uncertainty of the parameters of
the system is modeled by several replications (subproblems) of the original problem.
These subproblems correspond to different scenarios, and the goal of this approach
can be either to determine the set of Pareto solutions or to find a robust policy
among the feasible solutions for all scenarios such that satisfies a particular mea-
sure. Further information about scenario analysis can be found in Rockafellar and
Wets [75], Wets [99], Escudero and Kamesan [31] [32], Dempster [22] and Birge and
Louveaux [11], among others.

We address, in Chapter 3, the Dynamic Lot-sizing problem but admitting uncer-
tainty in the values of parameters. We show that classical properties of the dynamic
lot-sizing problem can be rewritten to generate efficient policies. These plans can be
helpful to the decision maker in order to determine good policies to be implemented.



Chapter 2

The Dynamic EOQ with Limited
Inventory

2.1 Introduction

Dynamic lot size problems describe a relevant class of production/inventory systems
which are often met in practice. The goal consists of finding the production/order
plan satisfying the demands over a given number of periods at minimum cost. When
the lot sizes to be produced are restricted by bounds, the problem is called capac-
itated. On the other hand, when the inventory levels are bounded variables, this
problem is usually known as bounded/limited inventory model. Although these two
latter problems are mathematically related, the principles which characterize the
optimal plans in both cases are different.

This chapter is devoted to the dynamic lot-size problem in which the order
quantities are restricted by the warehouse capacity. In this type of problems, the
planning horizon is divided into T' periods. We assume that the demand for each
period is known and shortages are not permitted. Moreover, in a given period t,
the production/order plus the available inventory at the end of the preceding period
must not exceed the storage capacity Wy, t =1,...,T.

The uncapacitated version of this model was introduced by Wagner and Whitin
[97] and, independently, by Manne [61]. These authors proposed an O(T?) algorithm
based on the Zero Inventory Order (ZIO) policies to reduce the state space. Later,
Veinott [92] approached the model as a minimum cost flow problem considering con-
vex costs. Zangwill [104] proposed a polynomial algorithm to solve the production
scheduling problem when backorders are allowed. An excellent survey on capaci-
tated and uncapacitated versions of this model is presented in Wolsey [102]. The
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algorithm of Wagner and Whitin considering variable production/reorder costs can
be improved to run in O(TlogT) as Federgruen and Tzur [33], Wagelmans et al.
[95] and Aggarwal and Park [1] shown. Besides, these authors proved that an O(T")
algorithm can be devised when costs are of the form like in Wagner and Whitin [97],
that is, assuming that production/reorder costs are constant.

The capacitated version of the dynamic lot-size problem has been studied in de-
tail by many authors. These authors have considered distinct assumptions on the
cost functions and the boundaries of the production quantities. For instance, Florian
and Klein [36] devised a dynamic programming shortest path algorithm for the case
of constant capacity and concave costs. Extensions to more general production cost
functions were proposed by Jagannathan and Rao [54]. Swoveland [86] considered
piecewise concave production and holding-backorder costs. Louveaux [59] presented
a formulation, based on Swoveland’s results, which assumes concave production costs
and holding-backorders costs that are piecewise linear and convex. Later, Baker et
al. [7] exploited properties satisfied by the optimal plans in the case of time-varying
production capacity constraints, devising an O(27) algorithm. Karmarkar et al.
[56] extended the model to consider startup costs incurred for switching on the pro-
duction facility and a separate reservation cost charged for keeping the facility on,
whether or not it is used for production. They proposed a dynamic programming
algorithm for the uncapacitated case, and a branch and bound approach using La-
grangian relaxation for the capacitated problem. Pseudopolynomial algorithms can
be obtained by using dynamic programming as discussed in Florian, Lenstra and
Rinnooy Kan [37]. The reader is referred to Bitran and Yanasse [12] and Bitran
and Matsuo [13] for a comprehensive discussion of the computational complexity
of the capacitated lot-size problem. Chung and Lin [19] developed an O(T?) algo-
rithm that solves the problem under very specific assumptions of the holding and
production costs and the production capacity.

In contrast, the bounded inventory model can be found in few references in the
literature. Precisely, Love [60] studied this problem providing an O(7?) algorithm
based on the Dynamic Programming approach. In this chapter, we introduce new
properties to determine optimal plans of the dynamic lot-size problem with lim-
ited inventory considering general concave costs in Section 2.2, linear costs without
setup costs in Section 2.3 and, finally, in Section 2.4 admitting linear and setup
costs. Thus, results in Section 2.2 are based on the dynamic programming par-
adigm. Moreover, the computational results indicate that this new algorithm is
almost thirty times faster than Love’s procedure. Besides, it can be proved that
the algorithm runs in linear expected time when each demand value d; takes values
in the interval [0, W;]. In addition, we also study, in Section 2.4, the model ad-
mitting a particular cost structure, namely, linear costs with setup. In particular,
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we face the problem extending the geometrical technique proposed by Wagelmans
et al. [95]. This technique leads to develop an O(TlogT) algorithm. Finally, Sec-
tion 2.3 is devoted to the dynamic lot-sizing problem with limited inventory but
considering linear costs without setup costs. In this case, the solution method con-
sists of formulating the problem as a network flow problem. Thus, sorting the costs
and determining the residual capacities of the network allow to devise an O(TlogT)
algorithm.

2.2 The General Concave Costs Case

In this section we discuss the deterministic single item dynamic lot-size problem
with limited inventory (DLSPLI) considering concave reorder and holding costs and
nonnegative inventory levels. We introduce an O(7?) algorithm for this problem
which was first solved by Love [60]. Both procedures run in the same worst-case
complexity. However, as we will show in a later computational experience, this
algorithm is almost thirty times faster than Love’s procedure. Moreover, when
demands vary in the interval [0, 2], with k,t = 1..., T, the new algorithm runs in
O(Tk?) expected time for k < T and it runs in O(kT? + k%) expected time otherwise.
Note that for values of k adequately small with respect to 7', this algorithm runs
in O(T') expected time. This assertion is proved in an additional computational
experiment.

2.2.1 Formulation and Notation

According to the material balance equation, the inventory level I, is given by
t
L=1Io+ > (Q;—dy)
j=1

Thus, the Dynamic Lot Size Problem with Limited Inventory (DLSPLI), or P
for short, can be formulated as follows:
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T
(P): min tZ:l (Cy(Qy) + Hi(1y))
s.t.
Iy=1Ir=0 (2.1)
L 1+ Q— 1, =d, t=1,....T
I 1+ Q< W, t=1,....T
Q:, I; € Ny t=1,....T

As the first constraint in (2.1) suggests, we assume that both the inventory
level at the beginning of the first period and the inventory level at the end of the
last period are zero. The second group of constraints represents the well-known
material balance equations which determine the inventory levels from the previous
decisions. The next set of constraints indicates that the sum of the inventory level
and the reorder quantity in period ¢ must be smaller than or equal to the storage
capacity in items units, and it avoids the reorder quantity exceeding the free storage
capacity. The fourth group of constraints in (2.1) forces the reorder quantities and
the inventory levels to be nonnegative integers.

Note that the second and third set of constraints in (2.1) can be used to obtain
the following new constraints: d; + I; < W,, that is, [, < W, —d;,t = 1,...,T.
Therefore, the problem P can be reformulated as follows:

T
(P): mintZ1 (Cy(Qy) + Hi(1y))
s.t.
Iy=1r=0
Li+Q,—I,=d, t=1,....T
0< I, <W,—d, t=1,....T—1
QtENO t:].,,T

Since the inventory levels must be nonnegative and considering the third con-
straint, the problem reaches a feasible solution whenever d; < Wy, t = 1,...,T.
Should d; > W, for some period ¢, then the warehouse must contain d; units of item
at the beginning of period ¢ but this would be impossible since the inventory level
would exceed the capacity W;.

Now, we proceed to introduce a functional equation to find an optimal reorder
plan by using dynamic programming. Notice that the cost of operating the system
during periods t through 7" depends on the inventory I, ; at the beginning of period
t, but neither on prior inventories nor on prior reorder quantities. So, the pair (¢, I;_1)
constitutes a state. Let f(t, I;_1) be the minimum cost of satisfying demand during
periods t through T if the inventory is I;_; at the beginning of period t.
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The quantity f(t,1;—1) is intended to include the holding cost Hy(I;) that is
incurred immediately as well as all future reorder and holding costs. The cost of an
optimal inventory plan is f(1,0).

As we mentioned before, the final inventory must be zero. Therefore, if the
inventory level I7_; is below dr, then the difference must be produced. Inventory
levels in excess of dp are forbidden. Hence,

f(T, IT—I) = HT<IT) + CT(dT — IT—l) for IT—l = 0, ]_, N dT

Consider a state (¢, ;1) with ¢ < T, and let @); denote the quantity ordered in
period t. The sum of the inventory at the beginning of period ¢ and the ordered
quantity during period t, that is, I; 1 + @);, must be at least as large as the demand
d; during that period. Also, the sum I;_; 4+ Q); can not exceed the minimum between
the warehouse capacity and the total demand during all remaining periods. Thus,
the order level @ is called feasible for state (t,I;—1) if @; is a nonnegative integer
satisfying

di < L1+ Q¢ <min{W,,d; +--- +dr} (2.2)

For instance, note that @); can take any integer value in the set {d;,d; +1,d; +
2, ... min{W;,d,+---+dr}}. Therefore, the number of possible decisions per period
can be enormous.

The optimality principle gives rise to the functional equation

f(t, It—l) :Qtrfl"eligilble {Ht(lt) —+ Ot(Qt) + f(t + 1, It—l + Qt - dt)},t <T (23)

Taking into account (2.2) and (2.3), a dynamic programming algorithm can be
devised. Since the decision states set increases drastically with W, and/or the sum
of demands, searching optimal solutions for this problem becomes an arduous task.

To overcome the above difficulty, in the following sections we reduce significantly
the decision states set introducing properties that identify optimal policies.
2.2.2 Love’s Approach

As we mentioned before, Love [60] devised an algorithm to identify optimal solutions
even when shortages are allowed. He defined an inventory point as a period in which
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the inventory on hand equals its lower bound, zero or its upper bound. Based on
this definition, Love [60] proposed a property which states that between any two
adjacent inventory points there can be at most one period of nonzero production.
Since in problem P shortages are not permitted, the inventories on hand can be
equal to either zero or their upper bound. Let [;* and I} be the inventories on hand
at the end of periods i and k respectively, where v and v represent the two feasible
values of these inventories. In other words, u and v represent boolean variables
such that v = 0 indicates that the inventory on hand at the end of period 7 is zero,
otherwise this inventory is at its upper bound. The same argument is applied to
superscript v, which is related to period k. Thus, the values for the inventories on
hand of two adjacent inventory points, say ¢ and k, when stockouts are not allowed,
along with the quantities to order in each case are shown in Table 2.1

Let f} be the minimum cost in periods ¢+ 1, ..., 7T, having an inventory level at
the end of period 7 equals I*. Then, setting f2 = 0 and f} = co, we have

i :i<j§1?§111£;1v:071 e+ fil, i=0,....T—Lu=0,1
where
j—1 ¢ k-1 ¢
A= CiQ)+ Y Hi(Ii= > d)+ Y Hi(I+ Q= D di)+ Hi(I}) (24)

t=it+1 I=it1 t=j I=i+1

u| v I Iy Quantity to order (Q;) j

010 0 0 dit1,k+1 i+1

01| 0 | Wr—ds Drip + Wi it 1

10| W;,—d; 0 i1 —W; 1<j<k

11| W,—d; | Wp — dy dip, + Wi — W; i<j<]€

Table 2.1: Values for u,v,I}*, I}, Q); and j

where W; — d; and W), — dj, represent the upper bounds for the inventories in periods
i and k respectively, according to the formulation in (2.1). For the sake of simplicity,
in what follows , we denote by d;, = Zf;il d;. Remark that, once the accumulated
demands dyr, dar, . . ., dpr are obtained in O(7T'), any value dy is determined in O(1)
applying d;, = dir — dp1,7-

From this point, we will show that this result can be improved using a new approach
to identify the extreme plans for the DLSPSC.
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2.2.3 Characterizing Optimal Plans

Let us introduce new results which allow us to characterize the optimal plans for
problem P. The following theorem identifies reorder quantities for each period,
reducing the number of possible decisions to be considered in the dynamic program-
ming approach.

The result below states that there always exists an optimal policy where the
reorder quantity for each period must be equal to zero, or to the sum of demands
minus the inventory level at the end of the previous period, or to the total capacity
minus the inventory level at the end of the previous period.

Theorem 1 Among the optimal plans for P, there exists, at least, one solution
Q= (Q1,...,Qr) such that for each period i, Q; satisfies:

0
Qi: dzt—fz_l,l<t§T+1 ,’izl,...,T (25)
m/i_ i—1

In other words, for 1 <i <t < T + 1, the following expression holds

(Qi+Lima —Wi)(Qi + -1 — di)Q; =0

Proof. Let Q be an optimal plan that does not fullfil (2.5). Then, there exists a
period ¢ such that

Qi #0,Ii-1 +Q; #W; and I,_1 + Q; # dit

Since Q is feasible, the following inequalities must hold

Li 1+ Qi <Wjiand I + Q; > dy (2.6)

The conditions in (2.6) are depicted in Figure 2.1. Plan Q is characterized by
the sequence [A, B,C, D, E, F| in that figure.

Let g; be the minimum between {I; 1, W; — (Q; + I;,_1)}. Then, following a
reasoning similar to that in Denardo [23], we can generate two new plans Y and Z
from Q such that:
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Figure 2.1: Illustration of Theorem 1.

Y =Q except for period i Y,=Q;+q
and for period t: Y, =0Q;— ¢ (2.7)
7= except for period i: Z;,=0Q; — g '
and for period t: 2y =Qi+q

As one can see, plans Y and Z are represented by sequences [A, B,C", D', E, F|
and [A, B,C", D", E, F] respectively in Figure 2.1.

These perturbed plans cannot decrease the cost below the optimum. Thus

Q)+ C@Q)+ S Hill) < ClQi+4) + @ —a)+ S Hilly +4) (28)

k=1 k=1

and

CQ) + Ci@)+ S Hyll) < Qi —4) + Qi+ a)+ Y Hilly —4) (29)
k=1

k=i

Adding (2.8) to (2.9), and rearranging the sum we obtain

Ci(Qi + @) + Ci(Qi — ¢i) — 2C5(Qs)] + [Co(Qr — @) + Co(Qr + ¢;) — 2C(Qy)]
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Hi Hi. (I + q:)+ i Hi(Ik — q;) — 2 i Hi(I)] = 0 (2.10)

Since the cost functions are concave, each term in brackets in (2.10) corresponds
to the sum of nonpositive quantities. Then, inequalities (2.8) and (2.9), of which
(2.10) is the sum, must hold as equations. Hence, if ¢; = I;_1, plan Z is also
optimal and it holds that I;,_y + Z; = dj, verifying (2.5). Otherwise, when ¢; =
W; — (Q; + I;_1), plan Y is optimal and it holds that I, ; + Y; = W, verifying
(2.5). m

Colloquially, the following theorem states that if the final inventory level for a
given period is equal to the sum of demands for any latter period, then the optimal
decision in the following period is not to order.

Theorem 2 There always exists an optimal plan Q = (Q1,...,Qr) for problem P
such that if I;_y (j =2,...,T) corresponds to the sum of demands of periods j to t
for somet, j <t <T, then Q); is zero.

Proof. Assume that there exists an optimal plan Q such that I;_; = d; and
Q; # 0. Since [;_; corresponds to the sum of demands and in view of Theorem
1, the only two possible decisions are: @); = 0 or Q; = W, — I;_;. Moreover, note
that if I;_y = d;; this is because in a previous period i: I;,_1 + @; = d;;. Consider
Qj = W; — I;_4, then following a similar argument to that in the proof of Theorem
1, let ¢; be the minimum between {I,_;, W; — (I;_1 + Q;)}. Again, two new plans
Y and Z can be generated perturbing plan Q in the same manner as in (2.7). If
¢; = I;_1, plan Z is also optimal being the new I;_; equal to zero. Thus, this new
plan Z is collected within the set of plans generated by (2.5). Otherwise, when
¢ = Wi — (Ii-1 + Q;), plan Y is optimal being the new I,y = W, — d;;, and this
new plan is also generated by (2.5). Therefore, the decision of ordering in period
J when I;_; = dj need not be analyzed because this decision has the same cost as
one of the plans Y or Z obtained considering I;_; = W; — d,; or I,_y = 0. That is,
it is necessary to evaluate only the decision ¢); = 0. W

Using the above results, the number of decisions per period is reduced with
respect to the set of decisions generated by Theorem 1. Accordingly, we devise an

efficient dynamic programming algorithm to calculate an optimal plan for problem
P.

In the following section we explain in detail the dynamic programming algorithm,
and we calculate its theoretical complexity as well.
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2.2.4 Algorithm

We introduce the notation required to implement the algorithm. Let M;; be the
set of feasible states obtained aplying Theorem 1, which contains both the sum of
demands from period 7 + 1 to a period j and the states corresponding to capacities
minus the sum of demands from period ¢ down to a period [. That is,

Mijl = {07 di+17 d’iJrl + di+27 s 7di+1,j+17 VVZ - d’i7 m,1 - dl - di*l? RN I/I/vl - dl,’iJrl}

It is clear that only those values d;;1 41 < W; and W) — d; ;41 > 0 are allowed.
Moreover, given a period ¢ with ¢ = 0,...,7T, let L; denote the set of feasible states
at the end of period ¢, which can be obtained as follows

Li= _ U My
1<I<i<j<T

Each state in L; is characterized by three components: the inventory level I,
the minimum cost among all paths that reach this state (Cost[i, I]) and the reorder
quantity related to this cost (X[i, ]). From the formulation of the problem, we
know that Ly = Ly = {0}. In the worst case, a set L; contains 7'+ 1 states at most.
Moreover, let Q;(I) be the set of feasible reorder quantities in the ith period when
the inventory level at the beginning of that period is I € L; ;. This means that

QI<I): {QZENI—|—Q@:d7ﬂ+1,Z§jSTWlth]+Qz<Wl}
U{Ql GNII—FQi:Wi}
u{0}.

By virtue of Theorem 2, note that if [ € L; ; corresponds to the sum of demands
then @Q;(I) = {0}. Taking the above reasoning into account, we now outline the
algorithm proposed.

In the following section we introduce the theoretical complexity of Algorithm 1
using the worst-case and the average-case analysis.

2.2.5 Complexity of the Algorithm

The following notation is needed to show the complexity of Algorithm 1. For a period
i, let A; denote the number of states with inventory level corresponding to the sum
of demands and let B; be the number of states with inventory level corresponding
to W; minus the sum of demands. Note that the cardinal of L; equals A; + B; + 1,
where 1 stands for the zero inventory level. Observe that A; and B; are at most
T — i and 17, respectively. Therefore, the maximum number of states in L; is T+ 1.
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Algorithm 1 Determine an optimal plan Q = (Q1,...,Qr) for problem P
Data: vectors d and W, functions C;() and H;(), and the number of periods T’
1: Initialize L;, 1 =0,...,T
2: fori+—1to T do
3: foralll €L, ;do

4: for all @ € Q;(I) do

6: if Cost[i —1,1]+ C;(Q) + H;(J) < Cost[i, J| then
7 Costli, J] < Cost[i — 1,1] + C;(Q) + H;(J)

8: X[i, J] =Q

9: end if

10: end for

11:  end for

12: end for

13: return(Cost|[T, I7))

Proposition 3 Algorithm 1 runs in O(T?) time.

Proof. For a period ¢ with¢ = 1,...,T—1, the number of decisions when I; ; = 0 is
A; +2. For each I;_; corresponding to the sum of demands only one decision should
be made. In this case, the total number of decisions is A; ;. On the other hand, for
each I;_; corresponding to W; minus the sum of demands, A;+ 3 decisions are made.
Hence, the total number of decisions for this type of inventory level is Zf:ﬁl A;+3.
Consequently, the overall number of decisions carried out by the algorithm is

T-1 Bi1
D (Ai+2+Aia+ Y Ai+3)+ (A1 +2)+ (Ar1 + Brog +1)

i=1 j=1
The above summation leads to the following maximum number of decisions

5 13
T3 —T? 4+ =T +2
6 + 16 +

Hence, Algorithm 1 runs in O(7?). B

Now, we proceed to analyze the complexity of the algorithm considering the
average-case. Throughout, we denote by F(T) the running time of a randomized
algorithm which runs in O(T) expected time. For the sake of simplicity, we can
admit, without loss of generality that W, =W, t=1,...,T. Let us assume that the
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demand for a period ¢ ranges in [0, %], k=1,...,T. The value % has been chosen
to facilitate the proof of the following proposition, which states the average-case
complexity of Algorithm 1.

Proposition 4 Algorithm 1 runs in E(Tk?) for k < L, and runs in E(kT? + k?)
when k > %

Proof. We denote by v the expected value of the random variable v. Thus, to deter-
mine the average-case complexity, the maximum values of A; and B; are calculated,
where A; and B; have been previously defined:

. — —_i -5 T« — i (f— W —
max A; L max (t—i:d i indi <W) max (t—i:(t—d)5 <W)

max (t—i:(t—1i)<k)=k

Since T'—i is the maximum value of A;, then max A; =min(T —1, k). In addition,
as 1 < (t —i) < T, only values for k ranging in [1, 7] are significant.

:tl_nlax.(i—thl:(i—t—Fl) <k =k
Similarly, i represents the maximum value of B;, then max B; =min(i, k). Again,
as 1 <1i < T, only values for k ranging in [1,T] are significant.

Observe that for those values of k greater than 7' the algorithm runs in O(T 3)
because A; and B; are at most 7' — ¢ and i, respectively. Under this assumption,
Proposition 3 follows.

For a period ¢ with i = 1,...,T — 1, the maximum expected number of decisions
when I;_; = 0 is max A; + 2. For each I,_; corresponding to the sum of demands
only one decision should be made. In this case, the maximum expected number of
decisions is max A, ;. On the other hand, for each I;,_; corresponding to W minus
the sum of demands, max A; + 3 decisions, at most, are expected to be made.
Hence, the maximum expected number of decisions for this type of inventory level is

Z;n:af Bi-tmax A; +3. Consequently, the overall expected number of decisions carried

out by the algorithm is

T-1 max B;_1
Z(maxE—i—Q—kmaxAi_l—i- Z max A; +3) +
i=2 J=1

max A_l + 2) + (max AT,1 + max BT,1 + 1)
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Observe that when i < T — k then max A; = k, otherwise, max A; = T — i.
Therefore, the above summation can be separated into two summations:

T—-k max B;_1 T-1 max B;_1
(k+2+kt > k+3)+ Y (T—i+2+T—i+1+ » (T—i)+3)
i=2 j=1 i=T—k+1 j=1

Taking into account that max B; 1 =min(k,7 — 1), the above expression results
in

S

3 (2k + 5 + kmin(k,i — 1))+ i (2(T — i) + 6+ (T — 4)min(k, i — 1))

i=T—k+1

[|
N

i

Therefore, the overall expected number of decisions can be formulated as

N

- (2k+5+ kmin(k, i — 1))+ Z_: (2(T—i)+6+ (T —di)min(k,i— 1))+ 2(k+2)

i=T—k+1

N
[|
N

(2.11)

To simplify (2.11), we can distinguish two cases: when k& < T — k or when
k > T — k. In the first case, as ¢ ranges in [0,7 — k| in the first summation, if
i < k then min(k,i — 1) = (¢ — 1). On the other hand, when k < ¢ < T — 1, then
min(k,i — 1) = k. Accordingly, (2.11) can be written as follows

(2k+5+k(i—1))+ i (2k+5+Kk%)+ i (2(T—i)+6+ (T —i)k)+2(k+2)

Or, in other words
Tk? + 2Tk + 5T — k* — 2k* + 2k — 2

Thus, when k < T — k, that is k < Z, Algorithm 1 runs in E(Tk?).
Considering that k > T — k, (2.11) can be expressed as

y (2k+5+k(i—1)+ Y (2T —i)+6+(T—i)(i—1))

=2 i=T—k+1

+ ) T =)+ 6+ (T —i)k) + 2(k + 2)

i1=k+1
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That is,

T T 14 kK 8
kT2 — T — — + — 4+ — T+ 4 k-2
6 2 3 T373

Therefore, when k > . Algorithm 1 runs in E(kT? + k*). &

For values of k adequately small respect to T', Algorithm 1 runs in E(T). If
k =0(y/1ogT), then Algorithm 1 runs in E(TlogT); for k varying between Q(1/logT)
and O(v/T) then the algorithm runs in £(7?). Otherwise, Algorithm 1 runs in E(T%).

In particular, when k = 2, the demands vary in the interval [0, W] and Algorithm
1 runs in E(T).

2.2.6 Computational results

In this section, we compare the running times of Algorithm 1 with those obtained
from the adaptation of Love’s algorithm [60] to the case without shortages. We
have chosen to compare this method with Algorithm 1 because, to the best of our
knowledge, it is the unique procedure which solves problem P. Both, Algorithm 1
and Love’s procedure have been coded in C++ using LEDA libraries [58] and were
tested in a HP-712/80 workstation.

In the computational experiments the values for 7' (number of periods) and W
(maximum number of items to be stored, i.e., W; € (0, W] for t = 1,...,T) have
been chosen as follows: T = 25,50, 75,100,150,200 and 500 periods and W =
100,500 and 1000. Assuming integer input data, demands have been chosen to
be smaller than the capacity for any period. Therefore, the feasibility has been
assured. In Table 2.2 we present a comparison of the average running times of
Algorithm 1 considering that k = Z, that is, when demands range in [0, 2¥], and
Love’s procedure. For this computational experiment, we consider linear reorder
and holding costs varying randomly in the interval [0,100]. For each combination
(T, W) ten replications have been considered.

The first and second columns in Table 2.2 represent the number of periods and
the maximum capacity, respectively. The third column gives the average running
times of Algorithm 1. The fourth column in Table 2.2 shows the average running
times for Love’s algorithm. In the last column, the ratio between both running times
is presented. As we pointed out at the beginning of this paper, our procedure is
almost thirty times faster than that proposed by Love.

Table 2.3 gives the average running times of Algorithm 1 when demands d,
range in [0, W;]. In this case, the values for 7" and W have been chosen as follows:
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Capacity(W) Algorithm 1 Love’s algorithm
average time (sec.) average time (sec.) Ratio
T =25
100 0.008 0.184 23.00
200 0.009 0.189 21.00
1000 0.008 0.190 23.75
T =50
100 0.054 1.309 24.24
200 0.054 1.273 23.57
1000 0.050 1.268 25.36
T=175
100 0.174 3.994 22.95
200 0.154 3.933 25.53
1000 0.151 3.907 25.87
T =100
100 0.347 8.923 25.71
500 0.339 8.857 26.12
1000 0.347 8.923 25.71
T =150
100 1.246 28.711 23.04
200 1.123 28.471 25.35
1000 1.103 28.496 25.83
T = 200
100 3.056 66.136 21.64
200 2.620 66.057 25.21
1000 2.563 66.524 25.95
T =500
100 36.548 999.887 27.35
200 36.583 999.547 27.32
1000 36.196 998.760 27.59

Table 2.2: Comparison between Algorithm 1 and Love s algorithm
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T = 25,50, 75,100, 150, 250, 500, 750, 1000 and 1500 periods and W = 100, 500 and
1000. Again, for each combination (7', W) ten replications have been considered.

Capacity(W) Algorithm 1 Capacity(W) Algorithm 1
average time (sec.) average time (sec.)

T =25 T =250

100 0.001 100 0.012

500 0.001 500 0.010

1000 0.001 1000 0.010
T =50 T = 500

100 0.003 100 0.026

500 0.002 500 0.027

1000 0.001 1000 0.029
T="75 T =750

100 0.003 100 0.041

500 0.004 500 0.040

1000 0.005 1000 0.041
T =100 T = 1000

100 0.005 100 0.058

500 0.005 500 0.057

1000 0.005 1000 0.056
T =150 T = 1500

100 0.008 100 0.084

500 0.008 500 0.086

1000 0.007 1000 0.082

Table 2.3: Average times of Algorithm 1 when k = 2

From data in Table 2.3, we estimate the C'PU time using regression analysis.
We obtain the following expression of the running time (with R? equal to 0.999):

CPU time = 6 - 107°T

This result corroborates the fact that when demands range in [0, W;] the algo-

rithm runs in E(7T).

2.3 The Linear Costs without Setup Case

In this section, we address problem P but assuming that C;(Q;) = ¢;Q; and Hy([;) =
hd; for t = 1,...,T. Hence, we focus our attention on the case where produc-
tion/reorder and holding costs are linear. Notice that, in this case, setup costs are
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not included in the cost structure. Considering setup costs is studied apart in a later
section. Although considering zero or near zero setup costs seems to be a non realis-
tic assumption, there exist instances in practice where this assumption is admissible.
For example, in electronic commerce, setup costs are assumed to be zero as discussed
in Rockelein [76]. The same concern can be applied to firms where delivery charges
(including shipment and handling of commodities) are assumed to be covered by the
suppliers or to firms where fixed charges can be considered negligible in comparison
with the unit purchase and holding costs, among other examples. Moreover, the
assumption of zero costs leads to instances of economic lot scheduling [52] and lot
sizing [30] problems.

It is assumed that inventory levels are to be non-negative. We introduce the
network corresponding to this version of P. Furthermore, we devise an O(T'logT)
greedy algorithm to obtain optimal policies for this problem and we provide a nu-
merical example to illustrate such an algorithm. Moreover, computational results
on a randomly generated problems set are reported.

According to this cost structure, problem P can be reformulated to give problem
P/

(P'):  min i (c:Qt + hely)
t=1

s.t.
I():IT:O
It_1+Qt—It:dt tzl,,T
0< I, <W,—d, t=1,...,T—1
Q: € Ny t=1,...,T

2.3.1 Greedy Algorithm

As in Zangwill [105], problem P’ can be formulated as a Minimum Cost Flow prob-
lem. Assuming linear costs, the underlying network for this problem is as follows.
Let G(V,A) be a directed network, where V' is the set of n = T'+ 1 (there are as
much nodes as periods plus 1) nodes and A is the set of m = 2T — 1 arcs. Each
node t (t = 1,...,T) has a demand equals —d;, whereas the node 0 (source node)
has to fulfill the demand in each node with an amount equal to d; 7.

We can distinguish two types of arcs: production/reorder arcs which are related
to the decision variables ();, and the inventory arcs associated to the state variables
I, witht = 1,...,T. We can assume without loss of generality that Iy = Ir = 0.
Each reorder arc (0,¢) in the network has an unit cost equals ¢; and a capacity equal
to infinite. On the other hand, each inventory arc (¢,¢+ 1) has an unit cost equal to
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Figure 2.2: Network of problem P’.

h; and a maximum inventory capacity of w; = W; — d; units. The network for the
problem is depicted in Figure 2.2.

Using the previous definitions, we can state problem P’ as a Minimum Cost Flow
problem with the following mathematical formulation:

s.t.

T
min Z (CtQt + htIt)
t=1

Io=1r=0

L. +Q—L=d t=1,...,T
0<1I, <w, t=1,...,T—1
Q: € Ny t=1,...,T

As it is well-known, there is an optimal solution to the above problem, which
is an integer extreme point as a consequence of both the unimodularity property,
inherent in the network flow problems, and the integrality of the input data.

Thus, problem P’ can be solved using any Minimum Cost Flow (MCF) algorithm
(see, for example, Ahuja et al. [2]). Currently, the best available time bounds for
the MCF problem are shown in Table 2.4, where the third column contains the

complexities adapted to the network of problem P’

Furthermore, the network

depicted in Figure 2.2 for problem P’ is also an instance of a series-parallel network.
We refer to Duffin [26] for a comprehensive definition of topologies of series-parallel
networks. The best known algorithm for solving the MCF problem in such networks
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is due to Booth and Tarjan [15], which runs in O(mlogm) time and requires an
O(mlog* m) space. Adapting these complexities to problem P’ leads this procedure
to run in O(7T'logT') time with O(T'log™ T") space.

Authors(year) Theoretical complexity — Complexity for problem P
Goldberg and Tarjan [43] (1986) O(mnlog(n?/m)lognC) O(T?logTlogTC)
Ahuja et al. [2] (1992) O(mnloglogUlognC') O(T?loglogUlogTC)
Orlin [67] (1993) O(mlogn(m + nlogn)) O(T?10g?T)

Table 2.4: Complexities of MCF' algorithms

However, we propose an ad hoc algorithm that exploits the characteristics of
the above network. We will show, in a subsequent section, that this new algorithm
runs in O(7T'logT') time and requires only O(7') space, improving so the complexity
corresponding to the procedure of Booth and Tarjan [15]. In constrast to the data
structures (e.g. finger search trees) used by these authors, our procedure needs only
vectors which simplifies the implementation of this approach.

The algorithm is devised according to the following idea: for any period ¢ (¢t =
1,...,T), the demand d; can be satisfied from reorders in any previous period and/or
reordering in that period. In the network, the possible paths connecting node 0 and
node ¢ depict this situation. Notice that there are ¢ possible paths (one with length
1, one with length 2,..., one with length t). The production/reorder quantity sent
through each of those nodes to node t is limited by the capacities of the arcs in the
path.

Assuming that the costs associated to the paths connecting node 0 to node t
have been evaluated, then let us consider node 1. The demand for this node only
can be fulfilled through arc (0, 1). Therefore, the unique decision is to send d; flow
units through this arc. Now, let us consider node 2. The demand of this node can
be met from node 1 and/or from node 0. Thus, assume that the paths to node 2
are sorted in non-decreasing order of their costs. Accordingly, the minimum cost
path to node 2 is selected. Then, a flow corresponding to the minimum between the
demand dy and the minimum remaining capacity of the inventory arcs in such path
is sent to node 2. If this quantity is greater than or equal to ds, then the demand
for node 2 is satisfied. Otherwise, the remaining quantity of flow to reach ds is sent
through the next minimum cost path to node 2. Once the demand for node 2 is
fulfilled, we consider node 3 and so until node 7' is attained. Remark that in this
process, if an inventory arc (t,t + 1) becomes saturated, that is, I; = wy, then this
arc is not to be considered in future decisions. Such a situation implies that the
number of paths to the rest of periods decreases in ¢ units.
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The following matrix AC' of accumulated costs is required for the statement of
the algorithm:

ACy = j—1 -
k=i

where AC;; is the cost of reordering one unit of item in period ¢ and holding to
period j. The jth column in AC' shows the costs corresponding to the j paths from
node 0 to node j. Remark that column 7, with 7 = 1,...7 —1, can be obtained from
column 7" in AC. That is, AC;; = ACyr — AC)r + ¢; with i = 1,..., j. Note that to
obtain column j, the same quantity —AC)r + ¢; is added to the first j elements of
column 7. In other words, the order in column 7" determines the order in the rest
of columns. Therefore, only column 7" must be considered to devise the algorithm.
Throughout, we use the notation AC(t) = AC,r with t = 1,...,T. Also, we denote
column T in AC by ACT.

Given that problem P’ involves time varying storage capacities, we need to de-
termine the residual capacity RW. This value represents the remaining capacity
of the inventory arc (i,7 + 1) when the accumulated demands from period @ + 1
to 7 (including both) are sent through this arc. The elements in matrix RW are
calculated by the following expression:

RWij =wi —diy1j1 =Wi—dijp1 1<i<j<T

Following a similar argument to that used in matrix AC, any column j =
1,...T'—1in RW can be obtained from column 7" according to RW;; = RW;p —
RWii1r+Wj11 withe =1, ..., j—1. Note that the values of matrix RW can be neg-
ative. Moreover, given a column j in RW, the minimum of its values represent the
bottleneck of previous inventory arcs to period j. To obtain the minimum, only is
necessary to order this column. As in matrix AC, the order in column 7" determines
the order in the rest of columns. Therefore, only column 7" must be considered
to devise the algorithm. Throughout, we use the notation RW (t) = RW,;r with
t=1,..,T — 1. Also, we denote by RW?" column T in RW.

The algorithm uses two sorted sequences: SSAC and SSRW that represent
ACT and RWT, respectively. Both sequences are dynamically generated when new
reorder periods or inventory arcs are considered. Sequence SSAC contains the
visited periods and their corresponding costs to node T'. Periods in SSAC' are sorted
in increasing order of the costs of the paths to node T. In addition, let ¢ be any
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period in SSAC, then any period tt < t with AC(tt) > AC(t) is deleted from SSAC.
This last operation is carried out immediately after period ¢ is inserted in SSAC.
In sequence SSRW are included the visited inventory arcs and their corresponding
residual capacity values associated to the paths to node 7. The inventory arcs
in SSRW are sorted in increasing order of the residual capacity values. Also, let
(7,7 + 1) be an inventory arc in SSRW, then any inventory arc (i,i + 1) such that
i < j with RW(i) > RW (j) is deleted from SSRW. Again, this last operation is
performed immediately after inventory arc ¢ is inserted in SSRW.

Assuming that t is the size of a sorted sequence, the following procedures: insert
(IN) and delete-subsequence (DS) require a computational effort of O(logt). The
operations min-key (MINK) and delete-min-key (DMK) are carried out in O(1) time.
Finally, the function clear (Clear) runs in O(¢) time. The class sorted sequence
(sortseq) and its procedures can be found in LEDA User Manual [58].

Taking the above notation and commentaries into account, we introduce the
greedy method to solve the problem:

The algorithm starts calculating the accumulated demand from period i, D; =
dir+1 with s = 1,...,T, and the cost of ordering one unit of item in period 1 and
holding to period T', that is, C'ost equals AC(1). The next step consists of satisfying
the demand for the first period updating d;. Also, in this step, the procedure
inserts the pair {Cost, 1} in SSAC and sets Minkey = 1. In each iteration ¢ of the
algorithm, Minkey stores the period with smallest cost and greatest index. Then,
within the loop, all periods with demand distinct to zero are chosen. When iteration
t starts, the cost associated to period ¢ is added to SSAC and all the elements with
position greater than the position of ¢ (pos) in SSAC' are deleted (DS(SSAC, pos+
1),maxsize(SSAC)). Also, the residual capacity, RW (¢t — 1), of the inventory arc
(t—1,t) is inserted in SSRW. Again, all the elements with position greater than the
position of t—1 in SSRW are removed (DS(SSRW, (pos—1)+1),maxsize(SSRW)).
Now, if the minimum value in SSAC (MINK(SSAC)) corresponds to period ¢, then
the new reorder period is t and its demand is satisfied from this period. Moreover, the
algorithm sets Minkey =t and deletes the sorted sequence SSRW (Clear(SSRW))
because only inventory arcs greater than (¢ — 1,¢) must be considered. Notice that
in this case SSAC = {AC(t),t} and SSRW is empty. If MINK(SSAC) is not
equal to t, two cases can occur. The first case arises when MINK(SSAC) is greater
than Minkey. Under this assumption, the algorithm sets Minkey = MINK(SSAC')
and searches in SSRW the inventory arc with smallest residual capacity and index
greater than or equal to Minkey. In the second case, Minkey is already equal to
MINK(SSAC). In both cases, the inventory arc with minimum residual capacity
is calculated and stored in the variable C'apacity. This inventory arc is the first in
SSRW and represents the bottleneck of the reorder quantity. If Capacity > d;, then
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Algorithm 2 Determine an optimal plan Q = (Q1, ..., Qr) for problem P’
Data: vectors d, ¢, h and W, and the number of periods T
1: Dpyy <« 0; Dy «— dp; Cost «+— ¢
2: for t < T — 1 downto 1 do
3: Dy« Dyiq +dy; Cost «— Cost + hy;
end for
Q1 < dy; dy «— 0; MinKey « 1; IN(SSAC, Cost, 1);
: fort —2toT do
Qi 0
IN(SSRW,W;_y — Dy_1,t — 1); DS(SSRW, (pos — 1) 4+ 1,maxsize(SSRW));
Cost «+ Cost —c;_1 — hy_1 + ¢4
10:  IN(SSAC, Cost,t); DS(SSAC, pos + 1,maxsize(SSAC));
11:  while d; > 0 do
12: if MINK(SSAC) =t then

13: Q; — Q + dy; dy — 0; Minkey < t; Clear(SSRW);
14: else if MINK(SSAC) > Minkey then

15: Minkey — MINK(SSAC);

16: while Minkey >MINK(SSRW) do

17: DMK(SSRW);

18: end while

19: end if

20: Capacity «— Wyinkssew) — Duink(ssew) + D + di;
21: if Capacity > d; then

22: QMinkey — QMink:ey + dt: dy Oa

23: else

24: QMinkey — QMinkey + Ca'pa'CZtya dt — dt - CapCLCZtya
25: while MINK(SSRW) > MINK(SSAC) do

26: DMK(SSAC);

27: end while

28: end if

29: end while
30: end for
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d; units are reordered in period Minkey and the algorithm proceeds to visit period
t+1. Otherwise, that is, when Capacity < d;, Capacity units are reordered in period
Minkey and the demand for this period is updated to d; — Capacity. From this
point, the reorder period with smallest cost and index greater than MINK(SSRW)
is searched in SSAC. The same period t is revisited until d; is zero. The process
finishes when period T is attained.

As one can see, the above method is greedy. Since, for each period, the procedure
chooses the remaining paths in non-decreasing cost order and it sends a quantity of
items, which equals the minimum between the demand and the minimum residual
capacity of the inventory arcs in such paths.

Theorem 5 The greedy algorithm generates optimal plans for problem P'.

Proof. It is clear that the algorithm generates feasible solutions to problem P’.
Then, we only have to show the optimality of the plans. In each iteration, the
demand for a given period is satisfied. Let ¢ be any given period. Obviously, the
demands for the previous periods have been fulfilled. Now, let x be the optimal
solution for the first ¢t — 1 periods and let g(x) be its cost. In period ¢, the algorithm
chooses the path from 0 to ¢ with minimum cost, say ¢. Suppose that this path allows
to send d; units of item. Thus, the partial solution cost is g(x) + qd;. Moreover,
assume that x contains a saturated path with cost p from node 0 to a node tt (tt < t)
and a path with cost r from tt to ¢ (see Figure 2.3). Let us admit that the cost
p + r is smaller than ¢q. Now, we can perturb the plan z in such a way that o flow
units from path with cost p are sent through an alternative path with cost s. If
this alternative path does not exist, then there is no alternative solution. Since the
algorithm selects the minimum cost path to node ¢, then ¢ must be smaller than or
equal to s 4+ r. Therefore, we can send « flow units with cost p + r and d;—a with
cost ¢g. This new alternative plan will be optimal if

g(x) +qdy > g(z) —ap+as+alp+7) + (d — a)g

However, as one can see, the previous expression yields q to be greater than s+,
which contradicts our hypothesis. We can conclude asserting that optimal plans can
be obtained choosing the minimum cost path in each period. B

We bear out the previous result with the following example.
An Example

Let us consider the parameters given in Table 2.5 corresponding to a dynamic lot
size problem with time-varying storage capacities:
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Figure 2.3: Ilustration of Theorem 5.

1|1 2 3 4 5
d; 4 3 4 2 3
ci 0 4 16 6 9
h; 1 2 2 1 x
Wi 6 5 7 5 3
D; 6 12 9 5 3

Table 2.5: Data set for an instance of problem P’

For each iteration (Iter) of the algorithm, Table 2.6 shows the period (t), the re-
maining demand (d;) and the sorted sequences SSAC and SSRW . These sequences
contain the period ¢t and the inventory arc (¢ — 1,t), respectively. Also, this table

contains variables Minkey and Capacity, the decision vector Q, and finally, the
updated sequences SSAC and SSRW.

From Table 2.6, the optimal decision for period 1 (I/ter 2 and 3) consists of
ordering the demand for this period plus two units of the demand of the second
period. Therefore, the inventory arc (1,2) is saturated. The optimal decision for
period 2 (Iter 3 and 4) is to order the remaining demand of this period plus two
units of the demand of period 3. In this case, the inventory arc (2,3) is saturated.
The remaining demand for period 3 is satisfied in this period (Iter 5). Finally, the
demands of periods 4 and 5 are met by reordering in period 4 (Iter 6 and 7).
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Iter t d: SSAC SSRW Minkey Capacity Q SSAC SSRW
1 1 4 {(6,1)} - 1 - 40000  {(6,1)} -
2 2 3 {(61),09.2)} - 1 6-16+94+3=2 60000  {(9,2)} {(-10.1)}
3 2 1 {(9,2)} {(-10,1)} 2 - 61000 {(9.2)} -
4 3 4 {(9,2),(19,3)} {(-7,2)} 2 5-1245+4=2 63000 {(19,3)} {(-7,2)}
5 3 2 {(19,3)} {(-7,2)} 3 - 63200 {(19,3)} -
6 4 2 (T} {23} 4 . 63220 {(74)} :
7 5 3 {(7,4),(9,5)} {(0,4)} 4 5-5+0+3=3 63250 {(9,5)} {(0,4)}

Table 2.6: Execution of Greedy Algorithm for the example

Complexity of Greedy Algorithm

In this section, we will prove that the complexity of the algorithm under the worst-
case hypothesis is O(T"logT').

Theorem 6 The Greedy algorithm runs in O(T logT)

Proof. The algorithm iterates as many times as periods are considered. The same
period is dealt until its demand is fulfilled. If a period t is visited ¢t times, then
tt —1 inventory arcs have been saturated. Therefore, they are not involved in partial
paths of subsequent periods to t. Thus, since the number of arcs is m = 27 — 1 and,
at least, one inventory arc is saturated when one period is visited more than once,
then the overall number of examinations is at most, 27" — 1, that is, the sum of the
number of reorder and inventory arcs.

Furthermore, both routines insert (IN) and delete-subsequence (DS) require an
O(logt) computational effort, the operations min-key (MINK) and delete-min-key
(DMK) take O(1) time and function clear (Clear) runs in O(¢) time. In a period
t, the computational effort of deleting t¢ < t elements from any sorted sequence,
using either the function clear or iteratively the routine delete-min-key, is O(tt).
Therefore, at most, T — tt elements can be removed in the rest of periods. Hence,
the algorithm runs in O(ZL logi+T), which yields the complexity of the algorithm
to be O(T'logT). W

2.3.2 Computational Results

In this section, we report computational results for a set of randomly generated
problems. The values for T" and the maximum storage capacity (W) have been
chosen as follows: T" = 1000, 2000, 3000, 4000, and 5000 periods and W = 100, 500
and 1000. Assuming integer input data, the storage capacity W; for a period ¢ ranges
in the interval [0, W]. The demand d; ranges in [0, W};) (feasibility assumption),
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T %4 Greedy Algorithm
average CPU time (sec.)
1000 100 0.080
1000 500 0.079
1000 1000 0.081
2000 100 0.156
2000 500 0.151
2000 1000 0.154
3000 100 0.235
3000 500 0.231
3000 1000 0.233
4000 100 0.311
4000 500 0.303
4000 1000 0.306
5000 100 0.392
5000 500 0.387
5000 1000 0.387

Table 2.7: Average running times for Greedy Algorithm

whereas the unit carrying and reorder costs were randomly generated in the interval
[0,100]. For each combination of 7" and W, ten replications have been considered.
Therefore, the number of instances for the experience was 150 (5x3x10).

The greedy algorithm (Greedy) has been coded in C++ using LEDA libraries
[58] and they have been tested in a HP-712/80 workstation. The results for the set
of problems, considering different periods and capacities, are shown in Table 2.7.
This table contains the number of periods (7"), the maximum storage capacity (W)
and the average running times for the Greedy algorithm. From the results in Table
2.7, it seems that the algorithm is not sensible to the storage capacities.

2.4 The Linear Costs with Setup Case

In this case, we modify the cost structure of problem P’ to consider setup costs.
Under this assumption, the greedy algorithm introduced in the previous section
cannot be longer applied, a different approach should be developed instead. In
particular, we generalize the geometrical technique proposed by Wagelmans et al.
[95] to deal with storage capacity. Additionally, we also consider the cost structure
given in Wagner and Whitin [97], namely, we disallow speculative motives for holding
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stock making the ordering costs to be constant. In this case, we get a surprising
result since among the optimal policies, there exists one satisfying the zero inventory
ordering (ZIO) property. Furthermore, we provide an O(7 log T) algorithm to obtain
optimal policies for this variant of problem P’ along with a numerical example, which
illustrates the algorithm. Moreover, we report computational results on a randomly
generated problems set.

According to this cost structure, problem P’ can be reformulated to give problem
P". Also, the statement of the cost function requires the following variable related
to setup costs: y; = 1 if @y > 0, and y; = 0 otherwise. Then, we can state the
dynamic lot size problem with storage capacities, or P” for short, as follows:

T
(P") min Y (fiye + cQr + hidy)
=1

s.t.

Iy=I1I7=0

Qi +1Li— 1, =d, t=1,....,T (2.12)
dir1ys — Q¢ >0 t=1,....T
OSItSWt_dt t: ,...,T

Q:, I € No, y, € {0,1} t=1,...,T

Notice that constraints in (2.12) coincide with the constraint set in previous
models excepting those constraints related to 1;, which are binary variables, and
feasibility is assured by the assumption that d; < W, (t =1,...,T).

Observe that, as a consequence of the storage constraints, the maximum quantity
to be produced/ordered in a period is limited. Accordingly, let M; be the maximum
quantity to be produced or ordered in period t (t = 1,...,T7 — 1), which can be
easily derived from the following expression: M; = min(M;;; +d;, W;), where My =
dr. We also denote by p; the maximum reachable period with demand completely
satisfied with inventory held from period ¢ (t = 1,...,7—1), that is, p, = max(j : t <
Jj < T and (M; —d; +1) > 0), with prr = T The values M; and p; (t=1,..., 7 —1)
are determined from demand and storage capacity values in O(T).

We introduce below the solution method which determines an optimal plan for
problem P” in O(T'logT).

2.4.1 Solution Method

Let G(t) be the optimal cost of the subproblem consisting of periods t to T' (t =
1,...,T), with G(T + 1) = 0, and for simplicity, let AC, = AC, 7,1 = ¢, + S0, hs
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be the accumulated cost from period ¢ to period T'. Moreover, let @t be the optimal
decision in period ¢ when the subproblem consisting of periods ¢ to T is solved, and
let 6(z) denote a delta function such that 6(0) = 1 and 6(z) = 0 if z # 0. In addition,
we denote by @, the optimal decision in period ¢ when a subproblem consisting of
periods s to T is solved, being s < t.

By virtue of Theorem 1, when cost functions are concave, an optimal produc-
tion/ordering plan Q = (Q, . .., Qr) can always be found in O(7?) so that for each
production/ordering period ¢t (t = 1,...,T), I;_1 + Q; corresponds to either the sum
of demands of consecutive periods or the maximum quantity M; to be produced or
ordered in that period. However, when cost functions are of the form as in problem
P", we can exploit the following results to develop an O(T?) algorithm.

Lemma 7 If @t = M; for a given period t, then there is at least one period k €
[t +1,p; + 1] such that Q) > M; — dy, for some period j € [t + 1,k —1].

Proof. By Theorem 1, we know that when the subproblem starting with period
k is independently solved (i.e., assuming that [,_; = 0), the only two decisions
to consider are either Q, = dy; for some period | € [k + 1,px + 1], or Qs = M.
Moreover, we know that the quantity @t = M, is enough to completely satisfy the
demands for periods ¢ to p;, and to partially satisfy the demand in period p, 4+ 1
(i.e., My — dip,41 < dp,+1, or equivalently, M; = dyp, 11 + Adp,+1 with A € (0,1)).

Additionally, taking into account the way in which the values M; (i =1,...,T)
are obtained, it is clear that M; —d;; < M, for all | € [i + 1, p; + 1], otherwise there
would be a period in [i + 1, p; + 1] where the storage constraint is violated.

By contradiction, let us admit that Q%, < M; —dy for all k € [t+1,p + 1]
with j € [t + 1,k — 1], In particular, let us consider period j, so we obtain that
Qr; = @j < My —dij = djp,41 + Adp,41 < M; with A € (0,1), and according to
Theorem 1, the optimal decision @j consists of the sum of demands, i.e., @j < djp,+1-
Hence, to prevent a shortage, there should be a period in [j+1, p;+ 1], say i, where a
quantity at least equal to d,,+; must be produced/ordered. However, by hypothesis,
period 4 also holds that Q%;, < M; — dy; = dip,41 + Adp,41 < M, or equivalently,
by Theorem 1, Q3 < d;p, 11, and hence it must be a period in [i + 1, p; + 1] such
that at least d,, ;1 units should be produced/ordered. Following the same argument,
we attain period p; + 1, where Q7,1 < M; — dip41 = Adpp1 < My, 11, and in
accordance with Theorem 1, Q5 , 1 = 0. As a result, the demand for period p; + 1
has not been produced/ordered through periods from j to p; + 1 and, therefore, a
stockout occurs. Consequently, to avoid this infeasible fact, there must be at least a
period k € [t+1, p;+1] such that Q5 > M;—dy, for some period j € [t+1,k—1]. W
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Lemma 8 If the optimal decision in period t, @t, is to produce/order My, then the
optimal decision for those periods j € [t +1,p + 1] with Q; < M, — d,; is not to
order, i.e., Qf ; = 0.

Proof. Let ¢, j and k be three periods with production/ordering different from
zero with j < k and j,k € [t + 1,p; + 1]. Furthermore, let Q\j and (), be the
optimal production/ordering quantities for periods j and k respectively, when the
subproblem consisting of periods j to 7' is solved. Moreover, we assume that j is
the first period in [t + 1,p; + 1] such that Q); < M; — d,;, and let k denote the
first period in [j + 1,p; + 1] such that @}, > M; — d . The existence of a period
k € [j+1,p;+1] such that Qjx = My —dy is proved in Lemma 7. In addition, recall
from the proof in Lemma 7 that any production/order period i € [j, k — 1] satisfies
Qi < My —dy; < M;. Therefore, by virtue of Theorem 1, the optimal decision @},
for any production/order period ¢ € [j, k — 1] is either zero or sum of demands (i.e.,
ZIO subpolicies). Hence, for all period i € [j, k] such that Q7; # 0, it holds that
Q5 = @, In particular, @, = @k

Accordingly, let A denote the set of indices related to production/order periods
in [j,k], and let B = {j,7 + 1,...,k} be the set of indices of all periods between
j and k, including both. Additionally, let ¢ € [0, min(M; — @j, @k)] be a quantity,
which can be feasibly produced/ordered through periods j to k — 1. Moreover, let
B* C B be the set of periods i where an additional amount is added to the optimal
quantity @7, = @Q; for that period. Given that the net result in this process should
be null, the same quantity ¢ must be subtracted from the inventory in other periods.
Thus, let B~ C B denote the set of periods ¢ where an amount is withdrawn of the
optimal decision ()}; = @Q;. Finally, let B~ C B be the set of periods which will not
be modified. It is clear that B = BTUB~UB™, and that BTNB~ = BtUB~ = B~ U
B~ = . Besides, observe that & ¢ B/\*. Given that, by hypothesis, we are assuming
that it is optimal to order Q); in j, @ in k and @); in any intermediate production
period, then for any feasible combination (g;,qjt1,...,qx) such that > . .. ¢ =
Y icn- 4i = ¢, the following expression holds

Z (fi + AC'L'@\Z') <

i€A

STFHHACQL + @)+ D, (FHACQi—a)+ D (fi+ ACQ:)

i€BT i€EANB~ 1€EANB=

that is,
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Yo (FHACQ) <Y (F+ACQL +a)— D> ACiq

i€ANBT i€eBt 1€ANB~

~

If AN B" # @, then any period in that set (A N BY) satisfies @5, = Q.
Accordingly,

0< > ACig+ Y (F+AC(Q; +a)— > ACiq

1€ANBT i€Bt /A 1€ANB~

Since the optimal decision of those periods in BT /A is Q;; =0, then

Z ACiq; < Z AC;q;+ Z (fi + AC;q:) (2.13)

1€ANB~ 1€EANBT+ 1€BtT/A
Note that in (2.13), the sum of ¢; on the right-side hand is equal to ¢ and the
sum of ¢; on the left-side hand in (2.13) is also equal to g.

Assume now, by contradiction, that producing/ordering quantity g through pe-
riods in B leads to a cost smaller than solely producing/ordering Qt M; in period
tand Qj, = Qk — (M — dyj—1) in period k. That is,

fi+ ACM+ Y. (fi+ACiq)+ Y (fi+ACiq)— > ACiq; + fr.+

icANB+ ieBt /A icAN(B— /{k})
ACK(Qr — (My — dy 1) — qr) < fr + AC, My + fr. + ACL(Qr — (M; — dy 1))

or equivalently,

Y (fi+ACa)+ Y. (i+ACa) < > ACig+ ACk

i€ANB+ i€B+/A i€ AN(B— /{k})

Note that if £ € AN B~, then the expression above can be reformulated to yield

Z (fi + ACiq;)+ Z (fi + ACiq;) < Z ACig;

i€ANB+ i€BT/A i€ANB~

which contradicts (2.13). Otherwise, if k ¢ AN B~, then k € B~ and hence ¢ = 0,
obtaining the same expression.

As a consequence of the above result, we can conclude that the optimal decision
for those periods i € [j,k — 1] with Q; < M; — d;;1 is not to order (i.e., Q;, =
0,vi € [j,k—1]).m
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Lemma 9 IfQ; = M,, then there exists a pemodj € [t+1, p;+1] with Q] > M;—d;
so that its optimal decision is Qj ; QJ (M —dy ;).

Proof. We know, by Lemma 8, that there exists a period j € [t+ 1, p;+ 1] such that
CAQJ- > M; — d;;—1, and that the optimal decision for those periods i € [t 4+ 1,5 — 1]
with Q\l <My —di;qis in = 0. Moreover, since the optimal decision in period ¢
is @t =M, =dy ;1 + (M —dij_1), then we can assert that

ACt(Mt - dt,jfl) < ACj(Mt - dt,jfl)

even when Mt —dyj1 = @j, since ACj(M; — dij—1) < f; + AC;(My — dyj—1).
Otherwise, Qt M; would not have been an optimal decision. l

Theorem 10 An optimal production/ordering plan for problem P" is given by the
following recurrence formula

G(t) = min H mln (ft + ACyd ; + G(j)), if dy > 0,
or mm[G(t +1), mln (ft + ACyd,; + G(j))], otherwise},

t+1<
(i (fﬁACtMtJrG() F(t,5))]
Qj>Mi—dy

(2.14)

where F(t,j) = AC;(M;—d; ;) + 6(Mt_dt,j_@j>fj‘

Proof. Assuming that I,y =0 (t =1,...,T), Theorem 1 states that the produc-
tion/ordering quantity in period ¢ consists of the sum of demands corresponding
to consecutive periods or M;. The former decision corresponds to the first ”min”
term within the brackets in (2.14). On the other hand, the latter decision concerns
the second "min” term in the same expression. Indeed, when Qt M, only those
periods j in [t + 1, p; + 1] satisfying Q] > M, —d; j must be considered as it is shown
in Lemmas 8 and 9. &

It is clear that a straightforward implementation of this recursion leads to an
O(T?) algorithm, reducing the complexity O(T®) of both Love’s procedure and
Algorithm 1, which have been devised for more general cost structures. Never-
theless, a more efficient algorithm can be devised applying a procedure based on
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the approach proposed by Wagelmans et al. [95]. In particular, these authors ar-
gued that only the efficient periods should be considered for the determination of
min,j<r11{ACd, ; +G(j)} in the uncapacitated case. Accordingly, a period is said
to be efficient when it corresponds to a breakpoint of the lower convex envelope of
points (d;7+1,G(t)),t = 1,...,T+1. The implementation of this technique consists
of evaluating the periods from T to 1 and holding the efficient periods in a list L.
This list is sorted by ratios which represent the slopes of the line segments joining
consecutive efficient periods (breakpoints) of the lower convex envelope. Each time
a new period j is considered, the procedure looks for the smallest efficient period
q(y) in L with ratio smaller than AC;, and the lower envelope is updated removing
from L the non-efficient periods j + 1 to the predecessor of ¢(j) in L.

Unfortunately, this technique can not be used directly when the inventory levels
are limited. Unlike the geometrical approach proposed by Wagelmans et al. [95], in
our procedure the non-efficient periods can not be discarded since a period that is
not efficient for a subproblem consisting of periods j to p; + 1 could be efficient for
a subproblem involving periods ¢ to p; + 1, with j > ¢t. However, we can adapt this
geometrical technique to our model in the following way. We should define two lists
Lg and Lyg containing, respectively, the efficient and non-efficient periods. When
evaluating period j, if ¢(j) is smaller than p; + 1, then the new procedure proceeds
in the same way as the approach in Wagelmans et al. [95], i.e., producing/ordering
dj q(;) units. In case of ¢(j) equals p;+1, we can make two decisions, namely, to order
either M; or d;, 1. Nevertheless, it can be easily proved that when AC; < AC,(;) the
optimal decision consists of producing/ordering M;, and d; ;) otherwise. Finally,
when ¢(j) > p; + 1, the efficient period ¢(j) is not feasible for the subproblem
starting in period j, and hence we must compare the efficient period with smallest
ratio ¢g(j) < p; + 1 in Lg with the non-efficient period gng(j) < p; + 1 in Lyg.
Accordingly, we denote by Gg(j) = f; + AC;d;qu.;) + Glee(j)) and Gyge(j) =
fi + ACjd; ¢ () + Glane(j)) the costs associated to, respectively, periods gz (j)
and gyg(j), which are the successors of j. If evaluating both costs we obtain that
Gr(j) < Gng(j), then period ¢g(j) remains to be efficient. Otherwise, the following
proposition shows that since Gg(j) > Gnge(j), period qyg(j) should be inserted in
list Lg and the rest of periods in this list have to be moved to Lyg. Actually, this
process of transferring periods from one list to the other represents an update of the
lower envelope.

Proposition 11 If evaluating a period j, both q(j) > p; +1 and Gg(j) > GnE(j)
hold, then period qng(j) should be included in list Ly and the rest of periods in this

list must be moved to list Lyg.

Proof. Without loss of generality, we assume that ¢(¢g(j)) = ¢(j) and ¢(j) is the
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period successor to gg(j) in Lg. Notice that G(gng(j)) + AC;di gy i) < G(1) for
any period [ in Lg smaller than or equal to gg(j), and hence G(qnr(j)) < G(I).
Otherwise, f; + AC;d;x + G(k) < fj + ACjdj4yp,, + Grer(j) for some k < gp(j)
in Lg, and therefore gr(j) = k with Gg(j) < Gng(j), which contradicts the
hypothesis. Recall that for a production/reordering period t, Q. € {M;,dy gy} In
addition, since qng(j) < qr(j), the straight line connecting _points (djr41,GnE(F))
and (dQNE(j)yT"Fl - (Q] - dj,QNE(j))7G(qNE< ) — ACQNE(J (QJ - JQNE(J) 1)) inter-
cepts the line segment joining points (qu(J) r+1, G(qr(7))) and (dg(j) 41 — (QqE

danirai)s G(a(3) — ACy(3)(Qau(s) — daw(ipa())) in a point smaller than gp(j), and
hence the result below follows

GnE(§)—(Glane())— A/\CqNE(j)(Qj_dj,qNE(j))) < G(QE(j))_(G(Q(j))_{Cq(j)(@qE(j)_qu(j),q(j)))
Qj Qqp ()

Moreover, given that the term on the right-hand side in the above expression is

smaller than the ratio %ﬁfj(k)), for any period k < ¢g(j) in Lg, these periods
»qd

are to be dominated by gng(j). For that reason, these periods should be moved
to list Lyg. Figure 2.4 shows the case where Q; = d; ., (- Notice that periods
highlighted by the gray line are not accessible from period 7. R

Following a similar argument to that in the previous proposition, we can state
the following result

Proposition 12 If evaluating a period j, it holds that q(j) > p; + 1, Gg(j) <

G
—(d) (@eG)) 4hen, every

GnE(j) and the ratio related to period qg(j) is greater than »
2.9 J

period k < qg(j) in Lg should be moved to list L.

The method outlined above is shown in Algorithm 3, where pred(j) and succ(j)
denote, respectively, the period predecessor and succesor of period j in both lists.
We also follow the convention that if d; = 0, then the efficient period j+1 is replaced
by the efficient period j. Regarding the complexity of this procedure, notice that
the value ¢(j) can be obtained by binary search in O(log T'). In case of ¢(j) > p; +1,
the procedure should inspect by sequential search both Lr and Lyg to determine
the actual period, qg or qyEg, succesor of j. Specifically, if we are evaluating period
J, there would be, at most, (T' — j) periods distributed in both lists. Each time the
sequental search reaches a period greater than p; 4 1, this period is removed from
the corresponding list, and it will not be considered in subsequent search processes.
Observe that each comparison in any of the two lists, when ¢(j) > p; + 1, yields
a deletion of the corresponding period. Hence, the overall number of comparisons
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Figure 2.4: Illustration of the case ¢(j) > p; + 1 and Gg(j) > GnEe(j).

is O(T'). Therefore, the process of searching all values ¢(j)’s (j = 1,...,T) runs in
O(T 1log T)+O(T). Additionally, notice that any period j can be moved between the
lists at most two times, and so, the transferring process is O(T'). According to the
previous arguments, the algorithm runs in O(7'logT).

In addition to the case where production/ordering costs are time-varying, we
also address the problem admitting that production/ordering costs are constant,
i.e., when ¢; = ¢ for all £. Under this assumption, the formulation of problem
P" adopts an equivalent form to the one in the Wagner and Whitin model and,
hence, AC:, ACs, ..., ACr represent a non increasing sequence of values. Therefore,
speculative motives for holding stock are not allowed. It is well-known that, under
this assumption of the costs and in absence of capacities, the problem admits an
optimal plan Q = (Q1,...,Qr) verifying I, 1Q; = 0, for ¢t = 1,...,T. This result
is commonly refereed to as Zero Inventory Ordering (ZIO) property. Indeed, the
Z10 property still holds when the cost functions are concave in general (see Wagner
[96] and Zangwill [105]). Moreover, as we show in Proposition 13, the ZIO property
holds even when inventory levels are limited. Therefore, the use of the ZIO property
is not conditioned to limitations on the inventory levels as the following proposition
states.

Proposition 13 When production/ordering costs in problem P" are constant, there
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Algorithm 3 Determine an optimal plan x = (xy,...,zr) for problem P”

Data: vectors d, ¢, h, f, W and the number of perlods T

1: calculate AC;, My and p;,, t=1,...,T+1
2: G(T + 1) —0
3: insert T+ 1 in Lg
4: for i «— T downto 1 do
5. search for q(i) « min[T 4+ 1,min{j € Lg % < AC:}]
6: if (¢(i) <pi+1)or (q(i) =p; + 1 and AC; > ACy;)) then
T G) — fit ACidig + Cla(0)); O — dig)
8:
9: if q(i) = p; + 1 then R
10: G(l) = fi + AC; M; + G(q(z)) — ACq(i)<Mi — di,q(i)); Q; — M;
11: else
12: j < pred(q(i)); while j > p; + 1 do j < pred(j)
13: delete all k : qp(i) < k < j from Lg
14: q(i) «— j; Gp(i) «— fi+ ACid; gp) + G(qr()); Gnp(i) «— —1
15: if Lyg is not empty then
16: j < first element in Lyg; while j > p; + 1 do j « pred(j)
17: delete all k: 1 <k < j from Lyg; qne(i) < j
18: if (qne(i) <pi+1) or (gnp(i) =p;+1 and AC; > AC,, ;) then
19: GnE(i) — fi+ ACid; gy wi) + Glave(1)); 2 — digypi)
20: else
21: GNE(Z) <_ fl""ACzMz—i_G(QNE(l)) ACQNE(Z (Mi_di,QNE(i)); z— M,
22: end if
23: end if
24: if GNE(Z) > 0 and GNE(Z) < GE(thhen
25: G(i) «— Gnyg(i); q(i) «— qve(i); Q; «— =
26: else R
27: G(i) — Gp(i); q(i) < qp(i); Qi — 2
28: end if
29: end if
30:  end if R
31 at this point, values G(i) and @; have been already determined
32:  call the routine to update the lower envelope
33: end for

34: call the routine to arrange the optimal solution
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Algorithm 4 Routine to update the lower envelope

1 if q(i) < p;+ 1 or (¢(i) = gr(7) and G(i)éG(q(i) > G(q(i))fg(succ(qw))) then
i a(%)

2. ifd;=0and G(i +1) < G(i) then

3 G(i) — G(i +1); s « succ(i + 1)

4:  else

5 if d; > 0, then s <+ i+ 1 else s < succ(i + 1)
6: while Z-60) < GE)-Cluecl)) apd 5 < g(i) do
7 § — sucé(s) )

8 end while

9: end if

100 moveall k:i+1<k<sfrom Lg to Lyg; insert ¢ in Lg
11: else

12:  move all periods in Lg to Lyg; insert ¢ in Lg

13: end if

Algorithm 5 Routine to arrange the optimal solution
1: Cost +— 0; i+« 1; x < 0; Rest +— 0
2: while 1 <7T do

3 if d;=0and G(i) = G(i + 1) then

4: 1—1+1

5 else

6: if (i) = p; + 1 and AC; < ACy;) then

7 @, «— M; — Rest; x «+— @, + Rest — d;; Rest < M; — d; 40
8: else R

9: Qi « d; g — Rest; v« Q; + Rest — d;; Rest «+ 0
10: enQ if

11: if ; =0 then f «— 0 else f « f;

12: Cost « Cost + f + AC;Q; + zh;

13: for k —i+1toq(i) —1do

14: x «— x — dy; Cost «— Cost + xhy,

15: end for

16: i« q(7)

17:  end if

18: end while
19: return Cost
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always exists an optimal policy Q = (Q1, ..., Qr) such that I, 1Q;=0,t=1,...,T.

Proof. Let us assume that there exists an optimal plan QQ with at least one period j
such that I;_1Q); # 0. According to Lemma 9, since (); # 0, there must be a period

t, t < j, such that @); is strictly greater than M; — d; ;, which corresponds to [;_;.
Therefore, the following inequality holds

fo+ ACM, + G(j) — AC; (M, — du;) < f, + Cidys + G(j)

that is, AC; < AC;, which contradicts the fact that AC, > AC;. R

The above proposition allow us to reformulate expression (2.14) as follows

o min (fo+ ACdy; + G(7)) it d, >0,
min[G(¢+1),  min  (f, +ACidy; +G()))] if =0

which only differs from that proposed by Wagelmans et al. [95] in the range of j.
Unfortunately, this result does not imply a computational improvement since each
non-efficient period should be sorted in O(logT") when it is inserted in Lyg.

As an illustration of this latter result, we present a numerical example. Assuming
that the production/ordering unit costs are equal to zero, the rest of the input
data are shown in Table 2.8, where the first column corresponds to the period
and the following columns represent, respectively, the demand, the setup cost, the
accumulated cost and the storage capacity.

The corresponding trace to the instance introduced in Table 2.8 is shown in Table
2.9. In particular, the rows in this table stand for the iterations (periods), and the
second and third columns show the maximum quantity to be produced/ordered and
the maximum reachable period for each period, respectively. Additionally, we show
in columns four to six the values of ¢(j), G(j) and Ratio = (G(j) — G(succ(7)))/Q;-
Finally, the last two columns contain lists Lr and Lyg, where the symbol {¢} in-
dicates that the list is empty. Notice that, in absence of capacities, the optimal
solution for the example in Table 2.8 is (22,0, 0,24,0,22,0,0,8,0) whereas consid-
ering capacities yields the optimal plan to be (5,10,7,9,15,12,0, 10,8, 0).

2.4.2 Computational Experience

We show in Table 2.10 the average running times of Algorithm 3 introduced above,
and the average running times of the dynamic programming algorithm developed
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j_d; f; AC; W
1 5 1 10 10
2 10 30 9 15
3 7 20 8 10
4 9 2 7 20
5 15 40 6 25
6 4 1 ) 22
7T 8 30 4 10
8 10 25 3 10
9 2 10 2 10
10 6 28 1 10

Table 2.8: Input data for one instance of problem (P”)

from the recurrence formula (2.14). Both algorithms have been implemented using
C++ along with LEDA 4.2.1 libraries [58] and were tested in a HP-712/80 worksta-
tion. For simplicity, we denote by T'log T the Algorithm 3 and by 72 the algorithm
obtained from (2.14), respectively. The different values for the maximum storage
capacity (W) and the number of periods (7') are shown in the first row and column,
respectively. For each pair (W, T'), we have run thirty instances with d; varying in
[0,Wy],t=1,...,T. Moreover, for each pair (W, T, we show two columns: the first
containing the average running times of the dynamic programming algorithm based
on the recurrence formula (2.14) and the second showing the average running times
of Algorithm 3.

2.5 Conclusions

In this chapter, the dynamic lot size problem with time-varying storage capacities
has been studied. This model was solved previously by Love [60] using a different
characterization approach. We have provided new properties which identify optimal
plans. These new properties allow to devise an efficient algorithm which determines
optimal policies over thirty times faster than the procedure proposed by Love [60].
Indeed, we have shown that Algorithm 1 runs in E(7") when demands range in
[0, W]. Moreover, we have shown that more efficient algorithms can be obtained for
more specific cost structures. In particular, we have provided an O(T logT') greedy
algorithm to determine optimal plans in the case of linear costs and in absence of
setup costs. Furthermore, we have introduced an efficient recurrence expression for
the case with linear and setup costs, which permits to devise an O(T?) algorithm.



2.5. CONCLUSIONS 61
j_M; pj q(j) G(j) Ratio Lg Lng
10 6 10 11 34 5.66 {11, 10} {0}
9 8 10 11 26 3.25 {11, 9} {10}
8§ 10 8 9 81 5.50 {11, 9, 8} {o}
7T 10 7 8 143 775 {11,9,8, 7}  {¢}
6 14 7 8 142 5.08 {9, 6} {8, 7}
5 25 6 6 272 8.66 {9, 6, 5} {8, 7}
4 20 4 5 337 7.22 {6, 4} {5}
3 10 3 4 413 10.85 {6, 4, 3} {5}
2 15 2 3 533 12.00 {6, 3, 2} {s}
1 10 1 2 584  10.20 {3, 1} {2}
Table 2.9: The output related to the instance in Table 2.8
T
25 50 75 100 150
w T? TlogTT T°? TloglT T* TlogI' T? TlogT T* TlogT
100 0.016 0.005 0.046 0.012 0.088 0.023 0.138 0.035 0.274 0.066
500 0.015 0.005 0.040 0.013 0.070 0.025 0.103 0.037 0.179 0.069
1000  0.015 0.006 0.041 0.013 0.071 0.023 0.104 0.036 0.180 0.069
2000 0.015 0.006 0.041 0.013 0.069 0.022 0.106 0.037 0.186 0.069
5000 0.016 0.006 0.043 0.014 0.074 0.024 0.108 0.036 0.193 0.070
10000 0.014 0.005 0.044 0.013 0.074 0.024 0.111 0.036 0.193 0.069
100000 0.015 0.005 0.040 0.015 0.071 0.024 0.105 0.038 0.188 0.069

Table 2.10: Average running times in sec. for the dynamic programming algorithm
based on (2.14) (7?) and Algorithm 3 (TlogT)

Nevertheless, we have also proven that an adaptation of the geometrical technique of
Wagelmans et al. [95] can be exploited to develop an O(T'log T') algorithm. Another
relevant aspect introduced in this chapter is that the Zero Inventory Ordering (Z10)
property holds when cost specifications are as in Wagner and Whitin [97].

Future research will focus on the extension of the model to the situation in which
shortages are allowed and to the multi-item case.
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Chapter 3

The Dynamic EOQ under
Uncertainty

3.1 Introduction

Unlike the original dynamic lot size problem introduced by Wagner and Whitin
[97], where the demands through the whole horizon are known, in this chapter we
consider that the demand vector is unknown rather than the total demand, which
is assumed to be a fixed value. Furthermore, for each period, the demand can be
chosen from a discrete finite set. As a result, different scenarios can arise combining
the different admissible values of the demand per period. One of the most common
examples for this problem are the promotions to clear stock. In this case, although
we know in advance the total number of items to be sold, we cannot determine
an optimal reorder plan because it is impossible to know with certainty how the
demand is to occur period by period. Another instance happens when a wholesaler
of bricks should satisfy the demands for distinct builders. Despite the wholesaler
may know in advance the total demand of bricks needed to carry out the different
constructions, he does not know how this total demand is distributed through the
planning horizon. However, the decision maker can assume that the demand per
period is taken from a discrete finite set. Besides, we allow in our model that the
production/reorder and holding cost vectors change from one scenario to another.
Taking into account these assumptions, the decision maker can not predict what
scenario is to occur. Therefore, this problem deals with the optimization under
uncertainty and, it takes place when a firm has to make a decision under variable
market conditions. In fact, the uncertainty is present up to a point in almost all the
decisions made in the real world.

63
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How to handle the uncertainty in the scenario occurrence is not easy at all. One
may want to come up with a unique solution using conservative techniques or the
principle of incomplete reason (utilities). On the other hand, one may want to obtain
the whole range of solutions that are non-dominated componentwise, as a first step
in the analysis of the problem, in order to shed light on the decision process. This set
can be seen as a sensitivity analysis of the solutions of the scenario problem for any ‘a
priori’ information on the occurrence of the scenarios. This is the way that we follow
in subsequent sections. The former analysis is normative: it prescribes a concrete
course of action (based on a utility), the latter is descriptive: it informs on the
variability of the solution space. Both analyses have advantages and disadvantages.
The final decision should be made according to the goals of the decision maker.
Notice that our goal in this chapter is to study the second approach. It is worth
remarking that similar analyses have been followed for other scenario problems in
the recent literature of Operations Research (see, for instance, Puerto and Ferndndez
[72], Ferndndez et al. [35], Ferndndez and Puerto [34], Rodriguez-Chia [77]).

Dantzig [53] mentions the importance of considering uncertainty in the systems.
In this sense, the so-called scenario analysis has been developed to deal with the
problem of the uncertainty. Assuming that all the different situations of the sys-
tem can be identified, this approach calculates the non-dominated solutions. These
solutions are robust with respect to any possible occurrence because they are non-
dominated, componentwise, by any other. Therefore, the approach consists of ob-
taining the Pareto-optimal solution set.

This chapter is devoted to the problem of determining the Pareto-optimal poli-
cies for the multiscenario dynamic lot sizing problem. As in Chapter 2, we assume
a planning horizon splitted into T" periods for each scenario. Three T-tuple vectors
represent the input data for each scenario: a deterministic demand vector, the car-
rying cost vector and the replenishment cost vector. Also, in the shortages case,
a shortage cost vector is considered. As usual, in absence of shortages, the overall
cost function consists of the sum of carrying and replenishment costs. The goal is to
schedule production/reorder in the various periods of each scenario so as to satisfy
demand at minimal cost simultaneously in all the scenarios.

The problem under study fits into the Multi-Objective Combinatorial Optimiza-
tion (MOCO). MOCO problems are an emergent area of research in many fields of
Operations Research (see e.g. Gandibleux et al. [38], Ulungu and Teghem [89]).
Nowadays, Multi-Objective Combinatorial Optimization (MOCO) (see Ehrgott and
Gandibleux [28]; Ulungu and Teghem [89]) provides an adequate framework to tackle
various types of discrete multicriteria problems. Within this research area, several
methods are known to handle different problems. T'wo of them are dynamic program-
ming enumeration (see Villarreal and Karwan [93] for a methodological description
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and Klamroth and Wiecek [57] for a recent application to knapsack problems) and
implicit enumeration (Zionts and Wallenius [109]; Zionts [108]; Rasmussen [74]). In
particular, the branch and bound scheme corresponds to an implicit enumeration
method and, although it is widely used in the single objective case, only a few papers
apply this technique for MOCO since bounds may be difficult to compute (see, e.g.,
Villarreal et al. [94], Ramesh et al. [73] and Alves and Climaco [4]. The reader is
referred to [28] for a complete survey of multiobjective combinatorial optimization
methods).

It is worth noting that most MOCO problems are NP-hard and intractable.
In most cases, even if the single objective problem is polynomially solvable, the
multiobjective version becomes NP-hard. This is the case of spanning tree problems
and min-cost flow problems, among others. As we have mentioned, an important
tool to deal with these problems is the multi-criteria dynamic programming (MDP)
[28]. In the single objective case, Morin and Esoboque [63] exploited the embedded-
state recursive equations to overcome many of the problems caused by the curse of
the dimensionality (see, for example, Bellman and Dreyfus [9] and Nemhauser [66]).
As an extension of the previous result, Villarreal and Karwan [93] introduced a
procedure based on the Dynamic Multicriteria Discrete Mathematical Programming
(DMDMP) to generate the Pareto-optimal solution set for problems with more than
one objective function. We will make use of these techniques to resolve our model.
In this context, when time and efficiency become a real issue, different alternatives
can be used to approximate the Pareto-optimal set. One of them is the use of
general-purpose MOCO heuristics (Gandibleux et al.[38]). Another possibility is the
design of ad hoc methods based on computing the extreme non-dominated solutions.
Obviously, this last strategy does not guarantee that we obtain the whole set of
non-dominated solutions. Nevertheless the reduction in computation time can be
remarkable.

The rest of this chapter is organized as follows. Section 3.2 introduces the no-
tation and the model. In Section 3.3, we show that when the objective function is
concave and shortages are not allowed, the extreme points of the region of feasible
production plans satisfy a modified version of the ZIO (Zero Inventory Order) prop-
erty, and that the Pareto-optimal set will always contain modified ZIO solutions.
Therefore, we propose an algorithm to compute this approximated solution set: the
non-dominated modified ZIO policies. A subset of such policies will be used later as
initial upper bound set in the general algorithm. Furthermore, in Section 3.4, when
shortages are allowed, we show that the extreme points of the polyhedron satisfy
a modified version of the property for the single scenario case. Again, a subset of
the non-dominated policies satisfying the latter property are proposed as the ini-
tial upper bound set for the algorithm when shortages are allowed. In Section 3.5,
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we propose a multicriteria dynamic programming procedure (MDP) that solves the
problem and a branch and bound scheme to reduce the computational burden of the
MDP algorithm. Also, in Section 3.6, computational results are reported for a set of
dynamic multiscenario lot size instances. Finally, Section 3.7 contains conclusions
and some further remarks.

3.2 Notation and Problem Statement

It is assumed that M scenarios or replications of that system are to be considered
simultaneously and a unique (robust) policy belonging to the Pareto-optimal set is to
be implemented. These replications model uncertainty in the parameter estimation,
since neither the true values of the parameters of the system nor a probability
distribution over them are known before hand. Therefore, we look for compromise
solutions which must behave acceptably well in any of the admissible scenarios.
This sort of system represents a multiple/serial decision process, since each scenario
behaves as a serial multiperiod decision system and each production /reorder decision
implies a parallel decision process. A graphical representation of this process is
shown in Figure 3.1.

Throughout we use the following notation.
hf () : holding cost for the jth period in the ith scenario.
c(-) : production/reorder cost for the jth period in the ith scenario.

(3

I{ : inventory on hand at the end of the jth period in the ith scenario.
d’ : the demand for the jth period in the ¢th scenario.
D : the total demand (Zle d = Z?:l d’ for any i and s in {1,..., M}).

Qj : the production/reorder quantity for the jth period.
We assume, without loss of generality, that I? = I =0 fori=1,..., M.

The following definitions are required to simplify the formulation of the prob-

lem. Given a production/reorder vector Q = (Qy, ..., Qr) € NI, the inventory level
vector for a scenario 4 is denoted by I;(Q) = (I},...,IT), where
D=0"'"4+Q,-d, j=1,...,T. (3.1)

In addition, the accumulated cost from period j to period k in scenario ¢ is given by

R*(Q) = er(@t, 1) (3.2)
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Figure 3.1: The multi-scenario lot-sizing problem scheme.

where 75(Q, I7) = ¢;(Q¢) + hi(I}).
Therefore, the total cost vector R(Q) in all the scenarios for a production/reorder
vector Q € NI is as follows

RQ) = (R7(Q)..... B (Q)) (33)

Then, the Pareto-optimal or non-dominated production/reorder plans set P can
be stated as

P = {QecN]: thereisnoother Q € N : R(Q) < R(Q),
with at least one of the inequalities being strict} (3.4)

where R(Q') < R(Q) means that R (Q') < R'(Q) fori=1,..., M.

Using the previous definitions, we can state the Dynamic Multiscenario Lot Size
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Problem (DMLSP), or P for short, as follows:

(P) v—min(R;"(Q),.... Ry (Q))

s.t.:

=17 =0 =1,...,M

o1, i i LT (3.5)
IZ +Q]_Iz:dz j:17...,T7Z:1, .7M

QjGN() g=1,...,T

Il e N j=1,....T,i=1,....M

where v — min stands for finding the Pareto-optimal set. Thus, the goal consists of
determining the Pareto-optimal solutions with respect to the M objective functions.
The first constraint in P forces both the initial and the final inventory level to be
zero in all the scenarios. The second constraint set concerns the well-known material
balance equation, and hence it states the flow conservation among periods in all the
scenarios. The production/reorder quantity must be always a nonnegative integer.
Finally, the last set of constraints in P disallows shortages.

As we mentioned in Chapter 2, the single objective version for this problem can
be solved using a dynamic programming algorithm, hence it seems reasonable to
apply MDP for problem P. Accordingly, let F(j, 177" ..., I3;") be the set of the
reachable non-dominated values, which correspond to production/reorder subplans
(subpolicies) from the state (I ',...,IJ;") in period j. Since there are finitely
many nonnegative integers ); that satisfy (3.1), the principle of optimality gives
rise to the following functional equation

| | A4(Qy) M +Q; —d))
FG, (7' . BY) :vgeréloin E o | (3.6)
J (@) Wy (I + Q — dy)

SF (G +1,(1,..., i)}

where A B={a+b:a€ A, be B} for any two sets A, B.

Therefore, the set of Pareto-optimal production/reorder plans of problem P is
given by the policies associated with the vectors in the set F'(1,0,...,0), and hence
MDP algorithms give a solution for our problem. However, due to the inherent
curse of the dimensionality of the MDP approach, we introduce a branch and bound
scheme to decrease the running times of the solution method. For this reason, before
introducing our procedure, we propose two upper bound sets to be applied in the
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branch and bound algorithm. Recall that an upper bound set is a set of vectors that
are either non-dominated or dominated by at least one efficient point. Accordingly,
the first upper bound set concerns the case without shortages and the second one
represents the upper bound set for when stockouts are allowed.

In the next section, we propose an initial upper bound set assuming that both
the carrying and the production/reorder costs are concave and stockouts are not
permitted.

3.3 Case without Shortages

In this section we assume that the cost function R7*(Q) is concave in Q for i =
1,...,M,57=1,...,T and k > j. Therefore, the following inequality holds:

RM(Q+1) - R(Q) < RM(Q) - RM(Q-1) (3.7)

where plan Q + 1 differs from plan Q only in two periods where one unit of pro-
duction/reorder is added or subtracted. In other words, let j and k be the periods
(components) where the plan Q is to be modified, then Q + 1 is equal to Q except
for period j where one more production/reorder unit is added and in period k where
one production /reorder unit is subtracted. On the other hand, plan Q — 1 is equal
to Q excepting in period j in which one production/reorder unit is subtracted and
in period k where one production/reorder unit is added.

Recall that the single objective model given in [97] can be formulated as a net-
work flow problem (see [105]). Moreover, for each partition over the state set, there
is always a representative plan fulfilling the ZIO property. Therefore, we can use an
O(T?) algorithm (see [97]) to determine a minimum cost plan via pairwise compar-
ison.

We define now the ZIO property for the multiscenario case as follows: a plan Q
is said to be ZIO for P if

Qmin{l{', ... /'y =0forj=1,...,T. (3.8)

It is worth noting that this modification is the natural extension of the corre-
sponding property in the scalar case. As it will be shown later on, efficient ZIO
policies play an important role in the determination of the Pareto set because they
represent the set of basic solutions, namely, extreme solutions of P. For the sake
of simplicity, we formulate problem P as a multicriteria network flow problem since
efficient ZIO plans correspond to acyclic flows in the network as well. Accordingly,
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assuming non-negative concave costs, the underlying network for this problem, de-
picted in Figure 3.2, is as follows. Let G = (V, E) be a directed network, where
V stands for the set of n = (T'+ 2)M + 1 nodes, and E represents the set of
m = 3MT edges. The nodes are classified in: production/reorder node (node 0),
demand per scenario nodes nd,, s = 1,..., M, and intermediate nodes. The inter-
mediate nodes are organized per layers. Thus, in layer j, there are M nodes denoted
bynls=1,....M,j7=1,...,T + 1.

There are M arcs from node 0 to each layer. The flow entering these arcs is
the same. It can be seen as a single flow that is virtually multiplied M times so
that the same amount is directed to each one of the nodes in this layer. These
arcs can be considered as a pipeline that at a certain point is transformed into M
branches. Each one of these branches receives exactly the same flow that the one
that enters through the initial node of the arc. The arc from production/reorder
node 0 to layer j is related to the production/reorder variable @); in period j. The
virtual multiplication of the production/reorder is because the different scenarios do
not occur simultaneously in reality. Actually, only one of them is to occur, and we
are considering simultaneous (parallel) network flow problems with the same kind
of input. The arc from 0 to n/ has a cost ¢/(-), s=1,...,M and j =1,...,T.

In addition, there are also arcs from n? ton/™ s=1,....M and j = 1,...,T.
Each arc in this category is an inventory arc associated to the state variable I and
its cost is A(-). Finally, there are arcs leaving each node n! towards nd, with flow
valuesd? s=1,...,M and j=1,...,T.

We proceed now to show that non-dominated ZIO policies represent the set
of extreme solutions of problem P. Previously, let us consider first the explicit
representation of the multicriteria node-arc incidence matrix A in which the rows
correspond to the M blocks of T' 4 2 constraints of problem P.

01 Q2 Q 7T =T T i T-T1 T

T 1 1 1 o M M
©01n ©2 --- OnH @2 - T-1,T) T.T+1) - (@,2) --- (T-1,T) (T,T+1)

0 T T 0 0 0 0 0
1 -1 0 0 1 0 0 0 0 0
2 0 -1 0 -1 0 0 0 0 0
T 0 0 -1 0 -1 1 0 0 0
T+1 0 0 0 0 0 -1 0 0 0
0 1 1 1 0 0 0 0 0 0
1 -1 0 0 0 0 0 1 0 0
2 0 -1 0 0 0 0 -1 0 0
T 0 0 -1 0 0 0 0 -1 1
T+1 0 0 0 0 0 0 0 0 -1

Notice that each block of T+ 2 rows represents a scenario and the columns are
divided in two groups: the first T columns are related to the arcs from the producer
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Figure 3.2: The network of problem P.
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node to the T periods, and the rest of columns concern the inventory holding be-
tween two consecutive periods for each scenario. Using matrix A and vector Q, and
denoting the vector (I{,...,IT, ... I}, ... I1) by I, it is straightforward that we
get the set of constraints of problem P as follows:

(Qv:[)At = _<_D7d%7"'7d,{707’"7_Dvd}\/17'--7d?\1/170)‘
Proposition 14 The constraint matrixz A for problem P has rank MT + 1.

Proof. Indeed, each block of T'+2 rows has one row (e.g. the last one) being linearly
dependent since the sum by blocks equals zero. According to this argument, the rank
is, at most, M (T +1). In addition, in the remaining matrix the row corresponding to
node 0 appears M times (one per block), hence (M — 1) of them could be removed
resulting in a matrix with M7 + 1 rows.

Now, removing the last constraint in each block and using the columns cor-
responding to Qp, I7,..., [T, ... Ii,. ..., I}, a triangular matrix is obtained with
elements in the diagonal equal to one.

(0.7) (1,2) - (T-17) (LT+1) - (1,2) - (T-1T) (I,T+1)
1 0 - 0 0 0o --- 0 0
1 0 1 0 0 0 0 0
2 0 -1 .- 0 0 0 0 0
T -1 0 —1 1 0 0 0
1 0 0 0 1 0 0
2 0 0 0 -1 0 0
T -1 0 0 0 -1 1
(3.9)

Therefore, since a submatrix with rank M7T + 1 exists the result follows. B

The following theorem states that the basic solutions for our problem fulfill that
the demand in each period is satisfied from either the production/reorder in that pe-
riod or the units carried in the inventory, but not from both simultaneously. Thus, in
the underlying network of the problem, each node (excepting the production/reorder
node) is attainable either from the production/reorder node or from the predecessor
holding node, but never from both. Hence, the graph associated to the non-null
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variables of any feasible basic solution verifies for any period j : either Q; = 0 or
min{l{",..., I};'} = 0.

Theorem 15 Any basic solution of problem P fulfills that Q; min{[f;l, e ,Iﬂ;l} =
0 for any period 5, j =1,...,T.

Proof. Assume without loss of generality that the variables ()1, Q)2 are non-null.
Let us consider the columns that correspond with these variables and the inventory
carrying variables from period 1 to 2, i.e. I},...,I;,. The matrix has two columns
(0,1) and (0, 2), for the variables )y and ()2; and M columns, one per scenario, for
the I! variables s = 1,..., M.

[ Q@ I Iy - Iy ]
(071) (072) (172) (172) (172)
e
1 1 0 0 0
-1 0 1 0 0
0 -1 -1 0 0
0 0 0 0 0
1 1 0 0 0
-1 0 0 1 0
0 -1 0 -1 0
0 0 0 0 0
1 1 0 0 0
—1 0 0 0 1
0 -1 0 0 -1

0 0 0 0 0 |

It is easy to see that the linear combination of columns with coefficients +1, —1,
+1,---, +1 gives the null vector. Therefore, all the considered variables cannot be
part of any basic solution. Hence, the condition holds. B

For linear cost problems this result implies that there is always a non-dominated
Z10 policy. However, for general concave cost problems this result must be proven.

Proposition 16 The Pareto-optimal solution set of problem P contains, at least,
one ZI0 policy.
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Proof. By contradiction, assume that all ZIO policies are dominated. Let Z be a
non extreme efficient point such that Z makes the function R;”(-) minimal. That
is, Z is a plan with cost smaller than or equal to the rest of non-dominated policies
in the ith scenario. We can assert that Z exists, otherwise, the efficient point that
minimizes R, (-) would be an extreme point and the theorem would follow. Fur-
thermore, assume Q being a feasible extreme point such that the following inequality
holds

R(Z) < R (Q)

(2

We can also guarantee that Q always can be found, otherwise, R, (Z) = R (Q)

(2
for all the extreme points Q, that is, the ith component of the cost vector of Q is

equal to the minimal value for this component and Z could have been taken an
extreme point.

Also, by concavity of the cost functions, the following expression must be fulfilled
RyN(0Z + (1-60)Q) > 0R"(Z) + (1 - )Ry "(Q)

where 0 is a scalar that ranges in [0,1].

In addition, let P be a point on a facet of the feasible set such that P is aligned
with Z and Q, and Z can be expressed as a convex combination of P and Q. Hence,
the following inequality holds

R (0Q+ (1 —0)P) > ORI (Q) + (1 - )R} (P)

Since Z is minimal for R; T()
RYT(Z) < RYT(P)
Taking 9 such that Z = gQ +(1- g)P, the following expression holds

RYT(6Q+ (1—0)P) = RI"(Z) > 0R}T(Q) + (1 - O)R}" (P)

7 7

Notice that R (Z) < R (Q) and R} (Z) < R}""(P), then we have that

RYT(Z) 2 OR;T(Q) + (1= )Ry (P) > OR;™(2) + (1 - )R (2) = Ry (2)

(2 (2 3

That is, R} (Z) > R)""(Z), which is a contradiction. B
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Since we know that there exist Pareto policies satisfying the ZIO property and the
procedure in (3.6) that computes the complete Pareto set has a large complexity, we
are now interested in determining the Pareto policies within the ZIO plans. This may
be considered in some cases as an approximation to the actual Pareto set (indeed,
ZIO plans coincide with extreme solutions as Theorem 15 shows). The fact is that
the non-dominated ZIO policies represent an initial upper bound set to be used in
the branch and bound algorithm.

In order to compute the Pareto ZIO plans, we need to introduce some notation.
Let I(j) denote the set of state vectors at the beginning of period j. Notice that
1(0) = I(T +1) = (0,...,0). In addition, let D?* = Zf:_jl d! be the accumulated
demand from period j to k in scenario i and let (II™",... Il;") € I(j) be a given
state vector in period j. Moreover, let us admit that there is a null component
in (IJ7',...,I};"), hence the decision variable Q; should be distinct to zero to
prevent shortages. Thus, the set of feasible decisions corresponding to a state vector

(I7',..., 5" in period j is given by

R o - ifrTt > 0foralld,
() = max {0, D¥* — 7" ptherwise.

1<i<M;5+1<k<T+1

Assuming that (I{;I, N | ]J\; 1) contains a component equals zero, it can be easily

proved that any decision @); # max {0, Df’jH — Iij_l}, [=1,...,T+1—j, results

in a non ZIO policy.

Accordingly, given a period j and an inventory vector (7Y, 0N € I(5),
the set F(j, (I] ", ..., I3, ")) of cost vectors corresponding to Pareto ZIO subpolicies
for the subproblem with initial inventory vector (I3~', ..., [37") is as follows:

. , A4(Q)) W+ Q; — DY
FG,(H7' . BN =  v—min S 5
Q;ev(, (I Y. . [i 1 , C o

OF(+1,(I{ " + Q- DI, I+ Q- D)) (3.10)

Notice that the whole set of Pareto ZI1O policies for P is determined when F'(1, (0, ...,0))
is achieved.

Proposition 17 The multicriteria dynamic programming algorithm for problem
(3.10) runs in O(47 M?).
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Proof. Given an initial inventory vector (I} ',...,Il;") € I(j), it is clear that
(); can only take values in W(j, (7', ... Ii7Y) to satisfy property (3.8). Thus, if
If ~1 £ 0 for all 4, the unique decision is Q); = 0, otherwise, the number of decisions
for state (II 7", ..., I J]\Z ") is at most T'— j + 1. Each different decision leads to a new
state vector in the following period, hence the maximum number of states at the
beginning of stage j + 11is T'— j + 1 as well. Remark that the computational effort
to make up the accumulated demands matrix Dyyp = {di; = D' '} is O(MT),
and also O(M (T — j) + 1) comparisons must be carried out to obtain the maximum
values. Hence, the determination of W(j, (IJ ™", ..., I’;")) requires of O(M (T —j)+1)
operations.

By virtue of the ZIO property, there are at most two vectors reaching one
state in period 2 and, at most, four vectors can achieve any state in period 3.
In general, in one state of period j there are at most 2/~! vectors to be evalu-
ated via pairwise comparison. Therefore, the number of comparisons for one state
of period j is given by O(WM ). Accordingly, the number of comparisons

in period j is O((WM)(M(T — 7) 4+ 1)). Thus, the procedure carries out
o(M Z;F:Q 2072(2771 —1)(M(T — j) + 1)) comparisons, and hence the complexity is

O4"™M?). m

As Proposition 17 states, the implicit enumeration process of the whole set of
efficient ZIO policies for P requires a number of operations which grows exponen-
tially with the input size. This is not a surprising result since the multicriteria
network flow problem, which is in general NP-hard (Ruhe [78]), can be reduced to
the problem we deal with.

From the computational point of view, the algorithm based on (3.10) is inefficient,
hence we propose a different approach to obtain an approximated solution set. This
method consists of obtaining the optimal solution for each scenario in O(T?). Notice
that, as a consecuence of disallowing shortages, some of these solutions could be
infeasible for problem P. In this case, all the scenarios with infeasible solutions
are solved again using a demand vector where each component corresponds to the
marginal maximum demand, namely, the jth value in this vector coincides with

max {DM™M— max {D1). Remark that the demand vector obtained in this
1 1
1<i<M 1<i<M

way is a ZIO plan and, hence, is feasible for P. Moreover, the computational effort
to determine this set of policies is O(MT?). In addition, these plans can also be used
as the starting upper bound set of the branch and bound scheme when shortages
are not permitted.

We proceed below to analyze the case when both the carrying and the produc-
tion/reorder costs are concave and shortages are allowed.
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3.4 Case with Shortages

This section is devoted to the case in which inventories on hand are not restricted
to be nonnegative. When I f is negative, it now represents a shortage of —1I, f units of
unfilled (backlogged) demand that must be satisfied by production/reorder during
periods j through T'.

We assume, for simplicity, that hf (1 f ) represents the holding/shortage cost func-
tion for period j in scenario i. When I is nonnegative, h(I]) remains equal to the
cost of having Iij units of inventory on hand at the end of period j in scenario .
When I7 is negative, hJ(I7) becomes the cost of having a shortage of —I7 units of
unfilled demand on hand at the end of period j in scenario .

In the single scenario version, there exists at least one period with inventory
on hand equal to zero between two consecutive periods with production/reorder
different from zero (see [104]). That is, if Q; > 0 and @; > 0 for j < [, then I* =0
for at least one k so that j < k < [. This idea is exploited to develop an O(T?)
algorithm that determines an optimal policy.

Assuming that inventory levels are unconstrained, we can adapt the previous
property to the multiscenario case as follows:

If Q; >0 and @, > 0 for j <[, then I} =0, for some i and k, j <k <l. (3.11)

In contrast to the ZIO property for the multiscenario case, the above expression
allows us to obtain all the plans satisfying (3.11) independently. In other words,
any plan satisfying (3.11) for one scenario is to be feasible for the rest of scenarios,
hence a straightforward approach to generate the whole plans set is to determine
each set (one per scenario) separately. Again, these plans play a relevant role for
obtaining the Pareto set of problem P with stockouts, since, as Theorem 18 shows,
they represent the extreme points of the feasible set.

We can use again the network previously introduced to characterize the extreme
solutions of P with shortages. Accordingly, the following theorem states that such
extreme points represent acyclic policies. That is, demand in a period k is satisfied
from the production/reorder either in a previous period (j < k) or in a successor
period (I > k). Therefore, in the underlying network of the problem, each node
(excepting the production/reorder node) is attainable from only one of the following
nodes: the production/reorder node, the predecessor holding node or the succesor
backlogging node.

Theorem 18 Any basic solution for problem P with shortages is acyclic
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Proof. Following a similar argument to that in Theorem 15, let us select, for each
block (scenario), any two columns corresponding to production/reorder arcs in (3.9),
e.g., columns j and [. Moreover, we select, for each scenario, the columns related
to periods j up to [. It is easy to see that a linear combination of these columns
with coefficients +1,—1,41,...,+1 respectively, gives the null vector. Therefore,
any basic solution is acyclic. B

Proposition 19 The Pareto-optimal set of problem P with shortages contains, at
least, one plan satisfying property (3.11).

Proof. Similar to that in Proposition 16. B

Notice that not all the basic plans belong to the Pareto-optimal set and, the solu-
tion time required to determine the whole set of non-dominated solutions increases
with the input size. Therefore, obtaining the efficient plans among the extreme
plans seems to be a reasonable approach, not only as approximation to the real
Pareto-optimal set but also as an upper bound set to be used in the branch and
bound scheme. Thus, taking into account that the set of feasible decisions verifying
(3.11) for one state (I7",..., I}, ") € I(§) is as follows

» . 0 ifIZ-j_1>0for all 7,
O, (I ,.... ;7)) = - ; =3
U, (L Iy ) {oyu{-r by D?’k}, k JHL.,T+1 , otherwise.
¢ v i=1,....M
we can determine the set of non-dominated cost vectors for the state (/ f 71, Y | 5\2 1)

in period j according to the following functional equation

. . A4(Q)) W+ Q- DT
FG, @™ ...,8") = v—min : + :
] =1 j—1 ) ) . ..
OF(+ 1, +Q; - DY 7+ Qi - D)) (3.12)
Remark that when F'(1,(0,...,0)) is evaluated, the non-dominated solutions set

satisfying (3.11) is achieved.

Proposition 20 The multicriteria dynamic programming algorithm for the problem

. M (M 2T
(3.12) runs in O(%)
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Proof. In period j, Q; can take values from ®(j, (I{",..., [;;")). Accordingly,
the maximum number of states in any period is M (T — 1) + 1. Also, in one
state of period j there are, at most, (MT + 1)7=! vectors. Therefore, at most,

M(MT’Ll)jfl(Q(MTH)jfl_l) comparisons have to be made. Consequently, the total num-

ber of comparisons is O(M ZJTZQ (MTJrl)jfl((yTH)jfl*l)), and hence the procedure

M(MT+1)2T
2(MT)? ). |

runs in O(

Since the implementation of the algorithm based on (3.12) involves a number of
operations, which increases exponentially with the input size, we propose a different
approach to obtain an approximated solution set. This method consists of obtaining
the optimal solution for each scenario in O(T?) using the procedure proposed by
Zangwill [104]. In contrast to the case without shortages, all the single scenario
solutions are to be feasible for problem P. Therefore, the computational effort to
determine the set of optimal solutions for each scenario is O(MT?), and the non-
dominated plans in this set are proposed as the initial upper bound set of the branch
and bound scheme when shortages are allowed.

Once the initial upper bound sets for both shortages and not shortages situations
have been introduced, we present in the following section the branch and bound
scheme, as well as an initial lower bound set to determine the Pareto-optimal set.

3.5 The Solution Method

Before introducing the solution method, we need some additional notation. Let
D; € N} be a vector where each component i = 1,..., M corresponds to Di1 7 and,
also, let N(j+1,(l,..., I3))) denote the set of cost vectors associated to subplans
that attain the state vector (I{,...,I3,) € I(j + 1). That is,

NG+1.(H,....B)) = NGB e Q1) ..., ri,(Q. 1) - QeNo,
I 4 Q-pW — [ foralliand (7. 1Y) e I(j)}

Since we are interested in calculating the non-dominated policies that reach the
state (0,...,0) € I(T 4 1), we must determine the efficient plans among those
in N(T + 1,(0,...,0)) via pairwise comparison. As Villarreal and Karwan [93]
pointed out, a necessary condition for a Pareto-optimal point is that it must contain,
as its first n — 1 components, an efficient solution to an (n — 1)-stage problem,
hence the previous process must be applied in all the attainable states. Thus, the



80 CHAPTER 3. THE DYNAMIC EOQ UNDER UNCERTAINTY

efficient subplans should be selected in every attainable state. Therefore, we define
N*(j+1,(I{,...,13,)) to be the set of non-dominated subplans that attain the state

(H,....I3).

Moreover, the interval for the decision variable ) can be calculated according to
the following argument: the lot size for the state (17, ..., I};) must be at least equal
to zero or max {0, DIT19%2 _ [7} respectively, depending on whether shortages are
permitted or not. On the other hand, the upper bound for the interval corresponds
to the remaining quantity to reach the total demand, hence @ ranges in [0, max

1<i<M

1T i . _ Lo
{0, DJ*H" — [71] in case of allowing shortages or in [ max {0, DJ™"/"* — [/} max
1<i<M 1<i<M

{0, DI ), otherwise. In addition, given a period j, let s be the scenario so
that D11 = max {D;?*'}. Then, we consider as initial state vector in I() either

1<i<M
vector (DY+ — Dp7*t L DL — DU i shortages are not allowed, or vector
(=Dyp7*t ..., —=D37™) otherwise. Thus, the rest of vectors in I(j) are obtained

just augmenting one unit each component as many times as D — (Dy7*" — Dt
or D — (=D}’ for any i, respectively.

Taking into account that I(1) = I(T'+ 1) = (0,...,0), we can now outline the
Multicriteria Dynamic Programming (MDP) algorithm.

Algorithm 6 Determine the Pareto-optimal set for problem P

Data: matrices d/, ¢/, h}, numbers M and T, and sets 1(j), j =1,..., T +1

19 “19

1: for j <+ T downto 1 do

2.  for all state (I7,...,I3,) € I(j + 1) do

3: for all state (IJ~',..., IJ;") € I(j) do

4: if I/ -7+ d >0and I/ — )" +d/ =17 — 77" + di for i # s then

5 Q=I-I"+d

6: insert ; and its cost vector in state (1{71,.”’11{21) and update
NG (Y )

7 end if

8: end for

9: end for

10: end for

11: return N*(1,(0,...,0))

Example 21 For the sake of completeness, we present the following numerical
example to illustrate the previous results for the case without shortages.
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(0,0,0)
0=3.1112,270,100}
0 =2,{113,268,200}
0=1,1114,266,300}
0=0,{115,264, 400}

— (2,1,0)
0 =2.197.255.85}
Y 0=1,198,283,185}"
0=2 T O=0B9 LT
| O=3
(10,5,0) 0=4
185,250,75} =
O=5 N (3.2,1)
—1.0=1 Q =3,{103,258,190}
aLen 192 o 0=2,{104,268,290}*
91, 280.180; | 22 0=1,{105,314,390} *
o=4 0=10,{106,342,490} *
0=0
a272 0=
y {97,310, 285} 0=2 — (4,3,2)
0.0,0) [— 0=3
(0,0,0) »  O=4{109,261,295
0.0,0 0-0 o 0=3.1110,289,305)*
13.83) | 0=1 0=2.1111317,495)* |
103,340,390} =3 0=1.{112.345,595}*

0=0,{113,373,695}
=0
0 D

(14,9.4)
100,370,495} O=1

(5.4.3)
0 =5.1115,264,400}
0 =4.{116,304,500} *
0 =3,{117,320,600}*
o O=2.{118,348,700}
0 =1,{119,376,800} *
O =0,{120,404,900}*

(15.10.5 | 0=0 R
{115,400, 600}

Figure 3.3: The MDP graph of Example 21.

d; G hi
J=11y=2]j=3|j=1|j=2|j=3|j=1]j=2]j=3
i=1] 5 | 10 | 5 5 5 5 1 1 0
i=2| 10 | 6 | 4 | 10| 2 5 | 20 | 1 0
i=3] 15 | 2 3 5 5 5 | 100 | 100 | 0

As one can see, all possible plans are collected in the graph depicted in Figure
3.3. In this graph, each node represents one state that is identified by its inventory
level vector (in parenthesis). Also, within each node, the partial cost vectors (in
brackets) associated to subplans that attain this node are shown. Those subplans
which are dominated by any other subplan in the same node are marked with an
asterisk. For each node, the leaving arcs (arrows) represent the possible decisions
for this node. The right-most node contains the set of non-dominated solutions.

Figure 3.3 illustrates also the case where a non-ZIO plan dominates a ZI1O plan,
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namely, the ZIO plan (17,0,3) with cost vector {114,326,300} is dominated by the
non-ZIO plan (15,3,2) with cost vector {113,268,200}.

Since Algorithm 6 becomes intractable as the difference (D— max {d}}) in-

creases, a branch and bound approach is proposed. We first focus our attention
on the case without shortages. The other case is commented later on. We should
reformulate problem P without shortages in a more appropriate way. Accordingly,
we denote by (I7,...,I};) € I(n+1) a state vector at the beginning of period n+1,
and let P(n, (I7,...,I};)) be the set of Pareto-values of the subproblem consisting
of periods 1 to n with final inventory vector (I7,...,I};). Therefore, we can now
state the problem as follows

n n=1 _ J .
P(n, (I, Iiy)) = v-min[} 6/(Q))+ X hi(é Qr — D7 + hy(Iy), ..
Jj= Jj= =
. n—1 j .
Al X Ma(3 Qu— D) +hy (13)
Z

n
= k=1

7j=1

s.t.:

k

S Q,; > D! k=1,....n—1;i=1....M
j=1

S Q=D+ Ir i=1...,M

j=1

It is worth noting that P(n, (I7, ..., I3;)) = N*(n+1, (I}, ..., I})). Now, one can
determine the Pareto values of the complementary problem P(n + 1, (17, ...,13)),
i.e., the problem consisting of periods n + 1 to 7' with initial inventory vector

(13, ..., I},), as follows

—= T . T-1 ) j )
Pln+ 1, (I I) = o-min| Y @)+ S W+ 3 Qu— D)
Jj=n+1 j=n+1 k=n+1
+
a 1,N+1 L = . J Lt
LI+ Y. Q=D ™™, 00 Y @)+ S my(Ip+ Y Qp— Dy
k=nt+1 j=nt+1 j=nt+1 k=nt+1
+
a nt+1,T+1
h(Ty+ 32 Qe—Diy ")

k=n+1
s.t.:
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k
SN QDM k=n41,...,Ti=1....M
j=n+1
T
S Q=DM o i=1....M
j=n+1
Remark that when shortages are allowed, the first set of constraints in both
formulations P and P should be removed. Again, the optimality principle gives rise
to the following recursive equation which provides the Pareto-optimal set for P.

F(1,(0,...,0)) = v — min (P(n,(I,..., 1Y) @ P(n+ 1, (17, ..., IY)))
(It,.... 1Y) € I(n+1)
n=1,....T—1

These equations along with the upper and lower bound sets allow us to introduce
the branch and bound scheme into the dynamic programming heap. In particular,
we say that LB is a lower bound set for a vector-valued problem when any non-
dominated solution either belongs to LB or it is dominated by some vector in LB.
In addition, recall that all the vectors in an upper bound UB set are either non-
dominated or dominated by at least one efficient point.

Assume that we know both lower bounds LB(n + 1, (17, ..., I};)) for each sub-
problem P(n + 1,(I7,...,1};)) and also global upper bounds UB for the original
problem F'(1,(0,...,0)).

Consider f € P(n,(I1,...,1};)) such that for any Ib € LB(n+1,(I1,...,1})) :
J+1b > u for some u € UB. It is straightforward that the branch generated by
J needs not being explored. Indeed, u € UB and, therefore, there exists f efficient
(it may occur that b = f) so that f < u. Hence, f < f +1b < f+ (any feasible
completion). This implies that no completion of f can be efficient.

Once the branch and bound scheme has been outlined, the following step consists
of determining how the UB and LB sets are initialized. We set UB to the non-
dominated ZIO policies which are obtained in previous sections. On the other hand,
different L B sets can be determined depending on the cost functions type. In case of
linear costs, we propose two sets. The first concerns with the continuous relaxation
of the problem. The second approach consists of determining the optimal policies
for each scenario using the Wagelmans et al. algorithm [95] and applying, for each
pair of optimal plans, a procedure to calculate the lower envelope.

When the cost functions are concave, we can exploit the notion of linear minorant
to obtain an LB set for problem P. Specifically, for a given scenario ¢, we say
that a linear function L;(Q) is a linear minorant of function R (Q) if L1 (Q) <
R;"(Q) holds for all feasible plan Q. Accordingly, L(Q) = (L7 (Q), ..., Ly (Q))

(3
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is called a linear minorant vector of vector (Ry(Q),..., Ry (Q)) if L' (Q) is a
linear minorant of R"" (Q) for any scenario i. We can now formulate the following
linear multiobjective (LM ) problem

LM v—min(Li’T(Q), e L}\}T(Q))

s.t.:
IB:IZ-T:O . ' 1=1,.... M
[iJflJer_]g:dg j=1,....,T,i=1,....M
I >0, Q; integer j=1..., T «=1,...,M

Let X be a Pareto-optimal solution to LM. As Geoffrion [41] proved, X minimizes
a scalarization of LM with suitable positive weights adding up to 1. If X is the
unique optimal solution to such scalarization, then it must be an extreme point of
the feasible polyhedron, and thus by Theorem 15 it must satisfy the modified ZIO
property. Moreover, the following result shows that obtaining a linear minorant
vector reduces to the problem of finding an LB set for the original problem.

Theorem 22 The Pareto-optimal solution set to LM is an LB set for problem P .

Proof. Let us denote LB = L(E(Ly", ..., Ly))) where E(Ly", ..., Ly/) is the set
of Pareto-optimal solutions of LM. Furthermore, we denote by E(R;", ..., Ry ) the
Pareto-optimal set of the original problem P. Accordingly, if Q € E (Ri’T, ey R}\f)
then either Q € E(Ly",...,Ly) or Q ¢ E(LYT,... Ly"). In the first case,
L(Q) = (L7"(Q),..., L3} (Q)) € LB and hence L(Q) < R(Q), where R(Q) was
defined in (3.3). In the second case, it must exist Q' such that Q' € E(L;", ..., Ly))
and L(Q’) § L(Q). Thus, L(Q') € LB and L(Q') < R(Q). Therefore, LB is an

actual lower bound for problem P. R

3.6 Computational Experience

This section is divided into two parts. In the first part, the Pareto-optimal set for
ten randomly generated problems is reported. On the other hand, the second part
is devoted to test the efficiency of the two algorithms, the MDP procedure and the
Branch and Bound (BB) approach, as a function of both the number of scenarios
and the number of periods.

To simplify the computational experiment, we have chosen the cost functions to
be linear and the inventory levels to be non-negative. Taking into account these as-
sumptions, the instances have been solved using the procedure given in the previous
section.
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In this part, Tables 3.1 and 3.2 show the input data for ten instances and the non-
domimated plans with their overall cost vectors, respectively. Table 3.1 is organized
as follows: the first column indicates the number of the problem, the rows represent
the scenarios and the rest of columns give for the different periods the values for the
demand, unit reorder cost and unit holding cost, respectively. Given that the final
inventory vector is null, the unit carrying cost for the last period does not affect
the optimal solution, and hence it is denoted by x. This computational experience
involves instances with two scenarios and four periods up to instances with five
scenarios and five periods. In Table 3.2, for each problem, the efficient plans with
their respective costs are located in consecutive cells of the same row.

The MDP solution procedure was coded in C++ using LEDA libraries [58]. The
main difficulty to implement this code was the storage requirement which increases
with the difference (D— max {d:;}). This difficulty, known as curse of dimensional-

ity, was already discussed by Villarreal and Karwan [93]. These authors argued that
as the number of objective functions increases so does the solution time. The in-
stances proposed in Table 3.1 were solved in a workstation HP 9000-712/80. Another
interesting aspect of the problem concerns its sensitivity. After several samples, we
notice that slight changes in the input data make the Pareto-optimal set to vary
drastically.

The BB scheme has been incorporated to the MDP procedure as follows: for
each subproblem P(n+ 1,17, ...,I%,), the LB set is obtained from calls to the AD-
BASE code developed by Steuer [85]. This code gives the supported non-dominated
solutions for continuous linear multicriteria problems. As a consecuence of both the
input to and the output from the ADBASE code is file typed, conversions of the form
matrix(C++)-file(ADBASE) and file(ADBASE)-matrix(C++) are required. More-
over, since all the parameters are integer and the constraints matrix is unimodular,
the extreme solutions given by ADBASE are integer-valued as well, i.e., feasible for
P. Hence, the non-dominated solutions associated to the first subproblem are also
considered as the initial UB for the original problem F(1,(0,...,0)).

Now, we provide, in Table 3.3, the average running times for different instances
of this problem. For each pair (M, T) ten instances were run. The parameters have
been generated according to the following values: the total demand D ranges in the
interval [1,1000], the unit carrying and reorder costs vary between 1 and 100. The
burden in the computational experience arises as a consequence of the ADBASE
limitations. As the number of scenarios or periods increases so does the number of
rows and columns in the constraint matrix of the linear multiobjective problem and
the problem becomes intractable. Therefore, only some (M, T') combinations can be
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Table 3.1: Parameter values for ten randomly generated instances
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1 17.2.3} 18.1.3} 19,03}
(51, 26) (48, 31) (45, 36)
ERRY 18.3.4} 19.2.4} 110,1,4} 111,04}
P2 (74, 62, 78) (70, 62, 83) (66, 62, 88) (62, 62, 93) (58, 62, 98)
112,037 113,027 114,017 715,0,07
(54, 67,103) (50, 72, 108) (46, 77,113) (42, 82,118)
771} 18.6.1} 195.1} 110,41} 11,31}
P3 (64, 69, 78, 35) (61,76, 81, 37) (58, 83, 84, 39) (55,90, 87, 41) (52,97, 90, 43)
112,217 113,117 111,017
(49,104, 93, 45) (46,111, 96, 47) (43,118, 99, 49)
17.5.5.3] 17.6,4.3) T7.7.3.3] 17.8,2.3] T7.0,1.3]
- (112, 116) (111, 117) (110, 118) (109, 119) (108, 120)
{7,10,0,3}
(107, 121)
76,5,5.4} {7.4,54) 18.3.5.4} 79.2.5.4} 110,1.5.4]
(70, 88, 49) (68,93, 55) (66,98, 61) (64,103, 67) (62,108, 73)
Ps {11,0,5.4] {12,0.4.4] {13,0.3.4] [14,0,2.4] {15,0.1,4]
(60,113, 79) (59,123, 88) (58,133, 97) (57,143, 106) (56,153, 115)
116,0,0,47
(55,163, 124)
(8.4,7,5} (8.5,6,5} (8,6,5,5 {(8,7,4,5} (8.8,3,5}
PG (153,116, 134, 110) (152, 119, 139, 112) (151, 122, 144, 114) (150, 125, 149, 116) (149, 128, 154, 118)
18.9,2.5] T8,10,1.,5] T8.11,0,5]
(148, 131, 159, 120) (147,134, 164, 122) (146, 137, 169, 124)
{11,4,4,2} 112,3,4,2} 113,2,4,2} {14,1,4,2} 115,0,4,2}
(132,134, 112,95,107) | (132,137,116,90,106) | (132,140,120,85,105) | (132,143,124,80,104) | (132,146,128, 75,103)
P7 716,0,3.2] 117,0,2.2] 718,0,1.2] 719,0,0.2] 720,0,0.1]
(138,151,132, 73,102) | (144,156,136,71,101) | (150,161,140, 69, 100) (156, 166, 144, 67,99) | (163,180,151, 66, 101)
721,0,0,0]
(170,194, 158, 65, 103)
18.2.6,5.4) 19.1,6,5.4) 710,0,6,5.4] T11,0,5,5.4] 112,0,4,5.4}
P8 (167,118, 117) (172,114, 122) (177,110, 127) (187,107, 137) (197, 104, 147)
{13,0,3,5,4} {14,0,2,5,4} 115,0,1.5.4] 116,0,0,5.4}
207,101, 157 217,98, 167 227,95, 177 237,92, 187
710,4,6,2,3} 710,5,5,2,3} 110,6,4.2,3) 110,7,3.2,3) 110,8,2.2,3)
(139, 154, 159, 160) (148, 152, 161, 164) (157, 150, 163, 168) (166, 148, 165, 172) (175, 146, 167, 176)
Po {10,9,1,2,3} {10,10,0,2,3} {10,4,7,1,3} {10,4,8,0,3} {10,4,9,0,2}
(184, 144, 169, 180) (193,142, 171, 184) (135, 160, 164, 165) (131, 166, 169, 170) (129, 177,177, 181)
T10,4,10,0,1] 110,4,11,0,0]
(127, 188, 185, 192) (125, 199, 193, 203)
BA1.1.1) 93.1.1.1) {10,2,1,1.1} (1,1,1,1.1} {12,0,1,1.1}
(84, 89, 78, 96, 105) (80, 97, 80, 96, 107) (76,105, 82, 96, 109) (72,113, 84, 96,111) (68,121, 86, 96, 113)
P10 18.5,0,1,1] 19.4,0,1,17 110,3,0,1,1] T11,2,0,1,1] T12,1,0,1,1]
(87,90, 75, 99, 105) (83,98, 77,99, 107) (79,106, 79, 99, 109) (75,114, 81,99, 111) (71,122, 83,99, 113)
113,0,0,1,1]

(67,130, 85, 99, 115)

Table 3.2: Pareto-optimal sets for the ten instances in Table 3.1
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Scenarios (M) | Periods (T) | Average time (MDP) | Average time (BB)
2 3 7.08 4.98
2 4 8.90 0.66
2 5} 24.67 12.80
3 3 19.93 13.25
3 4 11.23 1.24
3 5) 2.76 0.63
4 3 10.70 4.65
4 4 15.94 5.90
4 5) 22.85 1.46
5) 3 20.54 5.00
) 4 76.47 13.15
5) 5) 17.06 11.28

Table 3.3: Comparison of running times (in sec.)

tested.

Our computational experiments show that the BB scheme outperforms the MDP
approach in all cases. The small difference in some instances between the average
running times of both procedures is due to each subproblem in the BB calls the
ADBASE code. Therefore, the bottleneck of the BB procedure is just the time
required to obtain the LB set for each subproblem. In spite of this difficulty, the
BB results in CPU times smaller than the MDP method.

3.7 Conclusions

In this chapter, we introduce different algorithms to solve the multiscenario lot
size problem considering concave costs. The solution procedures for this case have
been implemented using the DMDMP approach and exploiting the dynamic lot
size problem’s properties. Moreover, a BB procedure has been implemented with
a reasonably good behavior in most cases. We are interested in improving this
procedure by finding LB sets that are not obtained from external routines, which
will decrease much more the running times of the BB versus MDP.



Chapter 4

The Bicriteria I/D Problem

4.1 Introduction

We deal with two-echelon Inventory/Distribution (I/D) systems, where it is appro-
priate to coordinate the control of different stock keeping units. We look at the case
of an item being stocked at two locations with resupply being made between them.
In particular, we consider the situation of a two-echelon system consisting of one
warehouse and one retailer.

The retailer outlet is replenished from the warehouse which is supplied from an
outside supplier. In such a situation, coordinated control makes sense in that, for
example, replenishment decisions at the retailer outlet impinge as demand on the
warehouse. We consider that the demand at the warehouse is dependent on the
deterministic demand (and stocking decisions) of the customers. We refer to this as
a dependent demand situation in contrast to classical demands for different stock
keeping units, which are considered as being independent. We assume that, at each
location, a continuous review (s,@) is used, and stockouts are not permitted.

The decision involves the choice of a lot size for each facility (warehouse and
retailer) which minimizes the inventory cost, that is, the sum of the holding cost
plus the ordering cost at both the warehouse and retailer. Determination of the
optimal policy for a two-echelon serial I/D system is not obvious, mainly because of
the complex interactions between echelons (see Schwarz [80]). However, it is possible
to model a multi-echelon system using the concept of echelon stock, first introduced
by Clark and Scarf [20]. They defined the echelon stock of echelon j (in a general
multi-echelon system) as the number of units in the system that are at, or have
passed through, echelon j but have as yet not been specifically committed to outside
customers (when backorders are permitted the echelon stock can be negative). With

89
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this definition and uniform end-item demand, each echelon stock has a sawtooth
pattern with time.

Taking into account the integer-ratio policy proposed by Taha and Skeith [87]
(its optimality was proved by Crowston et al. [21] and Williams [100]), it is simple
to compute the average value of an echelon stock and the echelon holding costs.
This policy tells us that an optimal set of lot sizes exists such that the lot size at
each facility is a positive integer multiple of the lot size at its successor facility. This
fact was used by Crowston et al. [21] in the development of a dynamic programming
approach for determining optimal lot sizes. Some other interesting models about
multi-echelon systems are also studied in Silver et al. [82].

Traditional approaches for multi-echelon I/D systems usually have one global ob-
jective, cost minimization, typically optimized in an unconstrained manner. Whereas
the conventional methods study multi-echelon systems with only one objective, that
of inventory cost minimization, in recent years a number of new approaches consider-
ing different objectives in multi-echelon systems have been developed. In particular,
these objectives involved in inventory management concern the reduction of the
inventory cost, the minimization of the transportation cost, the reduction of the
expected number of shortages per year (customer service), among others.

A remarkable number of researchers in inventory management have made notable
efforts to deal with more than one performance measure or objective. Starr and Miller
[83] determined a trade-off between two measures: the number of annual orders (i.e.
workload) and the average investment in inventory. They developed the concept of
an optimal policy curve, where the points on this curve represent policies between
which the decision maker is indifferent. Points off the curve are either infeasible
or sub-optimal, but can be improved by moving back to the curve. Gardnet and
Dannenbring [39] extended the above concept to a three-dimensional optimal policy
surface by adding the performance measure of customer service when they analyse
a probabilistic multi-item distribution system. Brown [16] also derived an exchange
curve between two performance measures such as workload, investment in inventory
or customer service for both deterministic and probabilistic inventory problems.
Zeleny [107] discussed Star and Miller s work in the sense that the optimal policy
curve (or surface) is equivalent to non-dominated solutions in Multiple Criteria
Decision Making (MCDM). Recently, Puerto and Ferndndez [71] also analyzed some
inventory models from the MCDM perspective using the level curves approach.

Bookbinder and Chen [14] applied the MCDM methodology to a two-echelon
serial inventory/distribution system. They discussed different models with deter-
ministic and probabilistic demand, and they assumed that marginal inventory costs
were known. Three non-linear multiobjetive programming models and correspond-
ing solution approaches were presented to obtain non-dominated inventory policies
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achieving trade-offs among objectives such as customer service, inventory invest-
ment and transportation cost. Their results were MCDM generalizations of Brown “s
exchange curve, Starr and Miller s optimal policy curve and Gardner and Dannen-
bring “s optimal policy surface.

In this chapter, we show a new MCDM approach for determining all the admis-
sible lot sizes for a two-echelon inventory /distribution system considering determin-
istic demand. This problem can be seen as a two-objective non-linear mixed-integer
programming model. The first objective consists of minimizing the annual inventory
cost, i.e., the sum of the total holding and ordering costs both at the warehouse and
at the retailer. The second objective concerns the minimization of the total average
number of damaged items by improper shipment handling, which is assumed to be
proportional to the number of shipments per year and to the order quantity at the
retailer. Thus, as the annual number of shipments increases so does the number
of items which could be damaged due to negligence of the personnel handling the
items. The minimization of this latter objective is mainly justified when fragile
goods are handled. In addition, two constraints are considered: the first concerns
the inventory capacity at the retailer and the capacity of the vehicle for delivery,
and the second one is related to the restriction of the integer-ratio policy previously
commented. We solve with exactitude the problem by finding the complete set of
non-dominated policies by means of an exhaustive case analysis of the model.

Notice that the cost structure of the problem under study is similar to that
presented in Bookbinder and Chen [14]. Therefore, as it could be expected, their
solution approach should give the set of non-dominated solutions for our problem
as well. However, as we will prove further on, their solution method for the deter-
ministic case is not correct since it provides no good solutions generating dominated
policies.

The rest of the chapter is organized as follows. In Section 4.2 we introduce some
notation and we state the model. We continue, in Section 4.3, introducing some
preliminary results, which simplify the determination of the Pareto solution set. In
Section 4.4, the form of the non-dominated solution set is studied. This form is
not unique, depending on the case studied. Several results show us how this set
will be with respect to both objectives. In addition, we use our solution method,
in Section 4.5, to show that the approach proposed by Bookbinder and Chen to
calculate efficient policies is not correct. Some computational results are reported
in Section 4.6. We conclude in Section 4.7 with a summary and a brief discussion of
implications of the model.
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4.2 Notation and Problem Statement

We consider a two-echelon inventory /distribution system where a single item is pro-
vided by an outside supplier, stocked at the warehouse and distributed to customers
through one retailer.

It is assumed throughout that the demand is known with certainty. Perhaps,
this is admittedly an idealization, but it is important to study for two reasons.
First, the model may reveal the basic interactions among replenishment quantities
at the different echelons. Second, we could choose, where possible, the pragmatic
route of developing replenishment strategies based on deterministic demand, and
then, conditional on these results, establishing safety stocks to provide appropriate
protection against uncertainties.

If there are delays in moving between echelons, the delays are constant and not
a function of lot size. No stockouts are permitted in the system.

Let us introduce some preliminary notation. Let ), and ()., denote the variables
of the problem, which correspond to the order quantity at the retailer (in units) and
the order quantity at the warehouse (in units), respectively. In addition, we present
below the parameters of the model.

D Constant deterministic demand rate, in units/year.
A Fixed ordering cost of a replenishment at the retailer, in money

" units.
A Fixed ordering cost of a replenishment at the warehouse in money

v units.

Number of damaged items per shipment from the warehouse to the retailer,

o(Qr) which depends on the order quantity at the retailer.
h, Inventory holding cost rate at the retailer, in money /unit/year.
P Inventory holding cost rate at the warehouse, in money /unit/year.
J Inventory capacity at the retailer, in units.
V Vehicle capacity, in units.
Qo Maximum quantity to order at the retailer, in units (i.e., min {.J,., V'})
HOC' Sum of the total holding and ordering costs per year.
DI Total number of damaged items per year.

The goal is the minimization of the criteria so that all the demand is satisfied
and no backorders occur. Two general criteria are considered. The first objective
(HOCQ) represents the sum of costs, which are assumed to depend upon the echelon
(warehouse or retailer), there being a fixed charge for ordering, and a linear instal-
lation inventory holding cost per unit. The second one (DI) represents the annual
total number of damaged items which is proportional to the number of shipments
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from the warehouse to the retailer and to the order quantity at the retailer.

The two controllable (or decision) variables are the replenishment sizes @, and
Q- We have to take into account that the optimality of the integer-ratio policy
(the lot size at a given echelon is an integral multiple of the lot size at its successor
echelon) was proved for two-echelon systems (see Crowston et al. [21] and Williams
[100]). Therefore, we follow this integer-ratio policy and set

Qw = nQr

where n is a positive integer.

The HOC objective corresponds to the annual inventory cost which depends on
the two decision variables @), and n. Thus, this cost will be

A.D A,D h.Q, (n—1)Q,
H = 4.1
oC(Qy,n) 0. + 0. + 5 + hy 5 (4.1)
The DI objective is a function of the variable @, i.e.,
D

Obviously 0 < a(Q,) < @, < D, and it seems reasonable to think that as @,
increases so does a(Q),), however, we assume that the marginal increment of the
average number of damaged items per shipment decreases. Hence, it can be easily
proved that «(Q),) is a strictly increasing concave function on [0, D], with «(0) = 0.
In addition, we assume that DI(Q,) is a strictly decreasing function.

There are two constraints for the problem. The first concerns the maximum
quantity to order at the retailer, which depends on the minimum between the inven-
tory capacity at the retailer and the capacity of the vehicle for delivery. The second
constraint restricts n to be a positive integer. Thus, the problem consists of finding
@, and an integer n that minimize (4.1) and (4.2), subject to 0 < @, < Q.

It is worth noting that this problem is a two-objective non-linear mixed-integer
programming problem. Unfortunately, these kinds of problems are not easy to solve.
Continuous multiobjective problems can be solved using scalarization results or con-
strained parametric optimization which in most times is a tedious task. Integer or
combinatorial multiobjective problems are very complex enumeration problems that
can be tackled using techniques such as dynamic programming, branch and bound
and branch and cut, among others, to obtain a formal approach to the optimal so-
lution set. Non-linear mixed-integer multiobjective problems have all the difficulties
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inherent in the two former families of problems. In fact, it is not possible to use any
of the tools valid either for the continuous or the discrete multiobjective problems
and therefore, it is necessary to develop specific approaches for each new problem.
In spite of their difficulty, we have found an appropriate way to solve the considered
model performing a complete case analysis of the problem and identifying the com-
plete set of non-dominated solutions. These results are presented in the following
sections.

4.3 Preliminary Results

As we commented previously, the one warehouse one retailer system fits into a two-
objective non-linear mixed integer programming model. To deal with this problem
it is appropriate to use the multiple criteria decision making (MCDM) methodology.
The goal is to find the set of non-dominated solutions, or Pareto-optimal solution
set, of the Bicriteria Biechelon Inventory/Distribution (BBID) problem given by:

BBID: v—min (HOC(Q,,n),DI(Q,))

s.t. Qr € (0,Q0] (4.3)
n €N

Thus, the Pareto-optimal solution set P is defined as

P = {(Q,,n)]| there is no other (Q;,n') : HOC(Q,,n") < HOC(Q,,n) and DI(Q.) <
DI(Q,), with at least one of the inequalities being strict}.

Before characterizing the set P, some specific properties of the objective functions
are stated. First, it is clear that function HOC(Q,,n) is convex over the region:
K={(Q.,n):0<n<o00,0<Q,<B(n)}, where

1 |24,D A
B(n):ﬁ\/ (214 S0 - 1), (4.4)

and HOC(Q,,n) reaches its global minimum at (Q*,n*), where

. 24,D
Qr = P (4.5)
n* = oy = Poy) A (4.6)



4.3. PRELIMINARY RESULTS 95

Furthermore, for a fixed n, the value of @, which minimizes function HOC(Q,,n)
is given by

= 2D(A;n + Ay)
@ (n) = \/ W2l + n(hy — hay) (4.7)

On the contrary, when @), is fixed, the value of n which makes function HOC(Q,., n)
minimal can be obtained by

Q) = | 5

Qr vV hy

Assuming that n and @, are real-valued variables, both @, (n) and 7(Q,) are

strictly decreasing convex functions of n and (@),, respectively. This statement is

easily proved since the first derivatives of both functions exist and they are increasing

with respect to n and @), respectively. In addition, it can be easily shown that
functions @, (n) and 7(Q,) coincide at the point (QF,n*) given by (4.5) and (4.6).

In order to show when function Q,.(n) is greater than n(Q,.) or vice-versa, let us
define the following expression derived from (4.8).

(4.8)

(4.9)

Lemma 23 Ifn > n*, then Q,(n) is greater than or equal to @r(n), and the reverse
holds when n < n*.

Proof. If n > n*, then n? > L=t2ls and, hence 2Dhy, A,n? > 2D(h, — hy) Ay,
Thus, adding 2D A,,nh,, and multiplying by n both terms of the previous expression,
we obtain that

2D(An + Ay) < 2A,D
n2hy +n(h, — hy) = n2hy,

or, in other words, Q,(n) > Q,(n) (see Figure 4.1).
Otherwise, if n < n*, it is clear that Q,(n) < Q,(n). W
Lemma 24 For a fired n, n > 1, the functions HOC(Q,,n) and HOC(Q,,n — j)

, 1 < j <n—1, intercept in a unique value Q"7 = , /22D~ Besides, @T(n) <

o hwn(n—j3)"
Qi < Qu(n — j).
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‘Q!'(”) a;‘(”)

n 4

n

Qo Q;* O Oy Qo O,
a) b)

Figure 4.1: Ilustration of Q,(n), Q,(n) and some level curves in F : a) situation
when Qp < @7, and b) when @ > Q.

Proof. Just computing HOC(Q,,n) = HOC(Q,,n — j) and, taking into account
that Q,(n) = /2l < Qmn=i and Q,(n — j) = 240D~ Qnn=i | the result

n2hy (n—35)2hy
follows. &

Characterizing the non-dominated solutions set P requires to consider the level
curves of function HOC(Q,,n). Accordingly, let us denote the family F of level
curves by

F ={0(Qr,n) = 0 9(Qr,n) = (hr + hu(n — 1))nQF — 2InQ, + 2D (A, + An),
[ > HOC(Q:,n*)}.

Notice that these curves are the level curves of HOC(Q,,n), i.e., they are sets
of the form {(Q,,n) € R? : HOC(Q,,n) = l}. Since HOC(Q,,n) is convex in K,
set ¢;(Qr,n) < 0 corresponds to a convex set for any value [ > HOC(Q?*,n*) (see
Figure 4.1).

4.4 Characterizing Pareto-optimal Solutions

We start this section discarding those points in R? which are not to be included in P
with certainty. The following lemmas reduce the admissible set of candidate points
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to be Pareto solutions to those that belong to a given region.

Lemma 25 The non-dominated solution set P is included inside region R, charac-
terized by

R= {(Q.n): Q.(n) <Q,.<Qy neN} (4.10)

Proof. By contradiction, let us assume that point (Q,.,n) is a feasible solu-
tion which is not in R, i.e., Q, < min{Qo, @,(n)}. Then (Q,,n) is dominated by
(min{Qo, @, (n)},n) since both criteria would be improved by convexity of HOC
and because DI is strictly decreasing with (). R

Since the characterization of the Pareto solution set depends on the relative
positions of Q* and )y, we should distinguish two possible cases, namely, if Qg < Q*
or the reverse. The candidate points to be Pareto-optimal solutions are plotted as
bold lines in Figure 4.1.

4.4.1 When Q) < Q*

We need to introduce the following notation before characterizing the non-dominated
solution set. Let ny denote the integer value of n(Qy) where function HOC(Qo, n)

reaches its minimum, i.e., ng = arg{ min HOC(Qo,n)}, where |1(Qo)]
ne{[A(Qo)],[M(Qo)1}
and [1(Qo)] represents, respectively, the floor and the ceiling of n(Qp). In case of

HOC(Qo, |n(Qo)]) = HOC(Qy, [1(Qo)]), then we set ng = |1(Qp)]. Furthermore,
assuming that 7(Q,) stands for the value such that Q,(ng) = Qo, let My be the
closest integer value greater than 7((Q). Since Qo < Q*, by virtue of Lemma 23, it
is clear that Ty > [n(Q)] and hence Ty > np.

Lemma 26 Those points (Q,.,n) in R with n > Ty or n < ng are not included in

P.

Proof. By contradiction, we assume that (Q,.,n) is an efficient point with n >
np. Let (Qo,n1) be the point where the straigth line joining points (Q,,n) and
(Qr,n*) intercepts with line @y (see Figure 4.2 a) ). Since function HOC' is convex,
HOC(Qo,n1) is smaller that HOC(Q,,n) and, also, DI(Q,) > DI(Qo) because
Q, < Q. Therefore, (Q,,n) is dominated by (Qo,n;). Moreover, by Lemma 23
and by convexity of function @T(n), point (Qo,n1) is even dominated by (Qo, 7).

Therefore, point (Q),,n) cannot be an efficient point.

Following a similar argument, it can be shown that any point (Q,, n) with n < ng
is dominated by point (Qg, 7). B



98 CHAPTER 4. THE BICRITERIA 1I/D PROBLEM

We can now use the level curves of function HOC' introduced before to sim-
plify the characterization of set P. Accordingly, let ¢/ denote the greatest value
of @, where curve ¢;(Q,,n) = 0 intercepts with line n = i. In particular, let qZO
be the greatest value, if exists, on the straight line my with ly = HOC(Qo, o),
i.e., the greatest value such that H OC’(qZO,ﬁo) = HOC(Qo,np). Additionally, let
qZOH denote the greatest value, if exists, on the straight line ng + 1 such that

HOC (qZOH,ﬁO + 1) = HOC(Qo,np). The following theorem uses these values to
identify the non-dominated solutions set in the case of Qy < Q.

Theorem 27 When Qo < @, the Pareto solutions set P, assuming that ly =
HOC(Qo, o), is given as follows

1) if ng = ;L\(), P = {(QmﬁO) : Q?" € [Qr(ﬁ0)7Q0]}

2) ifﬁ():/ﬁo-l-l, o B - _
a’) if Qr(ﬁO) S qZ)O S QO : 73 = {<Q7‘7ﬁ0) : QT € [Qr(ﬁo%qif(ﬁo)}

U{(Qo,70) } _

b) if qzo > Q() P = {(QmﬁO) : Q?" S [Qr(ﬁ0)7Q0]}

c) otherwise : P ={(Qo,70)}

3) ifﬁ0>ﬁ0+1, N
a) if CIZJOH = Qo 1 P ={(Qo, 10 +1),(Qo,m0) }
b) otherwise 0 P ={(Qo,n0)}

Proof. By virtue of Lemma 26, the candidate points to be Pareto solutions are of
the form (Q,, n) with g < n <7y. In particular, when 7y = ng or g = np+ 1, these
points lie on the line 7y from Q, () to the value corresponding to min{qﬁo, Qo} and,
also point (Qo, np), which is represented by the largest black dot in Figures 4.2 a)
and b). Moreover, the fact that qZO does not exist implies that there is not any point
on Tip with HOC' cost equal to ly = HOC(Qo, np). Indeed, what this result indicates
is that the HOC value of any point on line 7y is greater than HOC(Qo, 1), since
any point on this line can be seen as the interception point between ¢;(Q,,n) =0
and T, with | > HOC(Qo,no). Therefore, when either qZO does not exist or qZO is
Qo, the Pareto solution set is of the form: P = {(Qo,7o)}. On the contrary, if ¢
exists, two cases can arise, namely, Q,.(Tp) < qzo < Qoor Qg < qZO. Notice that, by
Lemma 25, the case Q,(7g) > qZO leads to non-dominated solutions.

Thus, when Q,.(T) < qZO < o, there exists a point (qZO,ﬁo), depicted as a
diamond in Figure 4.2 b), with the same value of HOC cost than point (Qg,79) but
with worst value for the second criterion. Hence, (g°,7) is dominated by (Qq, o).
In addition, since function @, (n) reachs its minimum at (Q, (7o), ) when n = 7,
all the points in [@T<ﬁ0),QZO) have smaller HOC' value than point (qzo,ﬁo) and,
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Figure 4.2: a) Illustration of Lemma 26, and b) Illustration of Theorem 27 when
Tig = N + 1.

therefore, they are non-dominated solutions. Accordingly, the Pareto solutions set
is as follows: P = {(Qr,T0) : @y € [Q,.(T0), q1°) } U (Qo, o).

On the contrary, if @, (7) < Qo < ¢°, we can also exploit the fact that Q,(n) is
strictly convex to guarantee that points [@, (T), Qo] on line 77y have smaller HOC

values than (Qg,ng) and, hence, P = {(Q,, 7o) : @, € [Q, (), Qo]}-

When 75 > 7ng + 1, the unique non-dominated solution is point (Qg,n0) unless

qZOH = (o, in such a case, the Pareto solution set contains points (Qo, 7o + 1) and
(QO? h\()) u

4.4.2 When Q, > Q

From now on, let 7@ denote the closest integer value to n* which minimizes HOC(Q,.(n), n),

that is, m = arg{ {Lmﬁn( . HOC(Q,(n),n)}, with Q,(n) < Qo, and where |n*|
ne{|n*|,|n*

stands for the closest integer value smaller than n*, and [n*] is the closest integer

value greater than n*. In case of HOC(Q,.(|n*]), [n*]) = HOC(Q,([n*]), [n*]), we
set M = [n*| since, by convexity of @Q,.(n), point (Q,.(|n"]), [n*]) is on the right of
(@,([n*]), [n*]) and, therefore, the second criterion is improved. Observe that, from

definition of @, m > ng when Qo > Q%.
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o D O,
Figure 4.3: Hlustration of Lemma 28.

The admissible set of candidate points to be Pareto solutions can be more specif-
ically charaterized, according to the following lemmas.

Lemma 28 When Qg > QF, those points (Q,n) in R with n < ng orn > 7 are
not to be included in P.

Proof. Let (Q,,n) be an efficient point with n > 7. To show, by contradiction, that
(Qr,n) cannot be a non-dominated point we should distinguish two cases, namely,
when @, < @QF and Q, > Qf. We first focus our attention on the case @, < QF,
accordingly, let p; denote point (@, n). Since function HOC is strictly convex, point
p1 is dominated by that point corresponding to the interception point (plotted by
a white dot in Figure 4.3) of the segment line joining points p; and (QF,n) with
straight line 7. On the other hand, when @, > Q% let p, denote point (Q,,n). In
this case, since function @T(n) provides the point with minimum HOC' cost for a
fixed @, it is easy to see that point p, is dominated by point (Q,, [7(Q,)]) depicted
by a white dot in Figure 4.3. Therefore, in both cases, point (Q,,n) is dominated.

Moreover, applying the same reasoning, namely, that function @r(n) provides
the point with minimum HOC cost for a fixed @, it can be easily shown that any
point p3 = (Q,,n) with n < ng is dominated by point (Q.., 7). B

As a result of Lemma 28, the maximum number of intervals containing non-
dominated solutions is k =n —ngy + 1.
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We show below that the Pareto solution set P consists of union of intervals,
which are located on diferent lines n, with ng < n < 7. In what follows, we denote
by P(n) the set of non-dominated points on line n. Therefore, the Pareto solutions

set is given by P = GA P(n). Previously, we need to show that HOC(Q,(n), ),
n=ng

HOC(Q,(m—1),mn—1),..., HOC(Q,(ny),no) represent a sequence of increasing
values.

Proposition 29 For all n with ng < n < W , it holds that HOC(Q,(n),n) <

HOC(Q,(n—1),n—1)

Proof. Without loss of generality, consider values n*, m and m— 1. By contradiction,

let us admit that HOC(Q,(7),n) > HOC(Q,(n—1),m—1). Since (Q%, n*) represents

the point where function HOC' reachs the minimum, it holds that HOC(Q,.(n*) =

¥ n*) < HOC(Q,(n),m). Therefore, there should be two interception points a =
(QY,m) and b = (Q* ) on W, with Q' < Q% and | = HOC(Q,(m — 1),m — 1)
(see Figure 4.4). Accordingly, the HOC' value in points a and b on 7T coincides
with HOC(Q,(m — 1), — 1), so points a, b and (Q,(m — 1), — 1) are included
in the same level curve ¢;(Q,,n) = 0. However, this result contradicts the fact

that (@, (7),7) is the unique point that minimizes function HOC for 7, and hence,

inequality HOC(Q,(n),n) > HOC(Q,(7 — 1), — 1) is not feasible. W

According to Proposition 29 and taking into account that Q,(n) < Q,(n — 1)
since Q,(n) is a strictly decreasing function, the only two combinations of HOC
values for consecutive values of n are depicted in Figure 4.5. Therefore, it is clear
that the Pareto set is updated adding a new interval on line n — 1, which starts from
point max{Q™"*, Q,(n — 1)} for iy < n < 7. The following corollary sheds light
on the determination of efficient solutions when only two consecutive values of n are
considered.

Corollary 30 Given lines n and n — 1, the sets of non-dominated solutions P(n)
and P(n — 1) on these lines are given as follows:

1.- IfQ,(n —1) = max{Q™»"*,Q,(n — 1)} then

P(n) = [Q,.(n),q), with | = HOC(Q,(n —1),n — 1), and P(n — 1) = [Q,(n —
1)7 al]

2.- If Q! = max{Q"" 1, Q,(n — 1)} then

P(n) = [Q,(n), Q)" "), and P(n — 1) = [Q}" !, b)]

where values a; and b; depend on the interception points with curve HOC(Q,, n—2).
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Figure 4.4: Nlustration of Proposition 29.

HOC % HOC A
HOC(Q,.,n=1)
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q;lp ,,,,,, - [
0,(m  0.(n-1) Or 0,(n) O,(n-1y o
a) b)

Figure 4.5: Feasible cases when two HOC' functions corresponding to two consecu-
tive values of n are faced.
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The following result shows that the determination of P is reduced to successively
evaluate functions HOC' corresponding to two consecutive values of n.

Theorem 31 The Pareto-optimal solution set can be computed via pairwise com-
parison of functions HOC' corresponding to consecutive values of n

Proof. Assume that the efficient points related to lines n and n — 1 have been
already determined. In accordance with Corollary 30, only two cases are feasible,
namely, 1 and 2. Moreover, consider that we analyze line n — 2 in the process of
detetermination of P. Hence, the possible relationships between curves HOC(Q,, n),
HOC(Q,,n—1) and HOC(Q,,n —2) are of the form 1-1, 1-2, 2-1, 2-2 (see Figure
4.6). We proceed to evaluate each combination separately:

a) When the pairs of curves HOC(Q,,n), HOC(Q,,n—1) and HOC(Q,,n—1),

HOC(Q,,n — 2) are both of the form 1, it is easily proved that P(n) = [Q,.(n), q"),
with | = HOC(Q,(n—1),n—1), P(n—1) = [Q,(n—1), g} '], with ' = HOC(Q, (n—
2),n — 2) and the interval associated to P(n — 2) begins at point Q,(n — 2) (see
Figure 4.6 a)). Therefore, case 1-1 is reduced to independently analyze two cases of
the form 1 since adding curve HOC(Q,,n — 2) does not alter the efficient solutions

corresponding to curves HOC(Q,,n) and HOC(Q,,n — 1).

b) When the combination of curves HOC(Q,,n) and HOC(Q,,n — 1) is of the
form 1 and the pair of curves HOC(Q,,,n—1) and HOC(Q,.,n—2) corresponds to the
type 2, it can be easily shown that P(n) = [Q,(n), ¢F"), with | = HOC(Q,.(n—1),n—
1), P(n—1) =[Q,.(n — 1),Q""5"2] and the interval associated to P(n — 2) begins
at point Q" 1"2 (see Figure 4.6 b)). Again, the inclusion of curve HOC(Q,,n —
2) does not affect the efficient solutions corresponding to curves HOC(Q,,n) and

HOC(Q,,n — 1), and hence, case 1-2 can be considered separately.

¢) When the combination of curves HOC(Q,,n) and HOC(Q,,n — 1) is of the
form 2 and the pair of curves HOC(Q,,n — 1) and HOC(Q,, n — 2) corresponds to
the type 1, two different situations can arise. In particular, we must distinguish two
cases, namely, if HOC(Q,(n —2),n —2) > HOC(Q™"',n — 1) or HOC(Q,(n —
2),n —2) < HOC(Q™™ ' n — 1). The latter case, depicted in Figure 4.7, is not
feasible since ¢ ' < ¢ < Q,(n — 2) with I’ = HOC(Q,(n — 2),n — 2), which
contradicts the fact that the lower level set ¢, (Q,,n) < 0 is a convex set containing
level sets ,(Q,,m) < 0, with n < m < m and | = HOC(Q,(m), m). Thus, the
unique valid alternative is that HOC(Q,(n — 2),n — 2) > HOC(Q™" ', n — 1)
(see Figure 4.6 ¢)), and hence, combination 2-1 can be analyzed separately to give
P(n) = [Q,(n), Q" Y), P(n—1) = [Q™" !, ¢/ ') and the interval P(n —2) starting
from Q,(n — 2).
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Figure 4.6: Admissible cases when three consecutive HOC' functions are compared.

d) When the pairs of curves HOC(Q,,n), HOC(Q,,n—1) and HOC(Q,,n—1),
HOC(Q,,n — 2) are both of the form 2 (see Figure 4.6 d)), combination 2-2 is
reduced to independently evaluate two consecutive cases of type 2 to give P(n) =
[Q,.(n),Qm" 1), P(n—1) = [Q™" L, Qn1"=2) and P(n — 2) starting from Q7 1"~2,

Concluding, any feasible combination between two pairs of consecutive curves
HOC is reduced to consider each pair separately. B

The procedure to determine the whole Pareto-optimal solution set, which is based
on the previous results, is sketched in Algorithm 7.

In the next section we use this characterization of P to show that the approach
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Algorithm 7 Procedure to determine the Pareto-optimal set for problem BBID

Data: D, A,, A, h,, hy, Qo and function «
1: Determine Q)

2: Calculate 7
3. if Qo < Q7 then

4:  Calculate ng
5:  Determine P according to Theorem 26
6: else
7. Calculate @
8: n<—n
9: P(n) — 0
10: P10
1 Q«—Q,(n)
12:  while Q < Qg and n —1 > ng do
13: if Q.(n —1) =max{Q™" 1, Q,(n — 1)} then
14: P(n) = [Q,min{Qy, ¢"'}), with | = HOC(Q,(n —1),n — 1)
15: Q@ = min{Qo, @, (n — 1)}
16: else
7 P(n) = [Qmin{Q, Q2
18: Q = min{Qo, Q™" '}
19: end if
20: P — PUPn)
21: n—n-—1
22:  end while
23: if n —1 < ny then
24: P —PUP(n)=[Q,Q)
25:  end if
26: end if

27: return P
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Figure 4.7: Infeasible case when HOC(Q,(n — 2),n —2) < HOC(Q™" ', n — 1).

proposed in Bookbinder and Chen [14] to solve their bicriteria problem is not correct.

4.5 Bookbinder and Chen’s Approach

Bookbinder and Chen [14] likewise addressed a bicriteria two-echelon inventory /
distribution system. In their problem, the first criterion coincides with our function
HOC, and the second one concerns the annual transportation cost (7'C'). However,
even though both objectives, their cost T'C' and our criterion DI, are conceptually
different, they are characterized by the same type of function, namely, a strictly
decreasing function in (),.. Therefore, it seems reasonable to think that our solution
method and their approach should provide the same solution for the same instance.
Nevertheless, as we show below, their approach does not always provide good so-
lutions. In particular, when demand is assumed to be known, their solution set
consists of either the point (Qg,n*) if Qy < QF, or otherwise, an infinite number
of points (Q,,n), with n = n* and Q, € [QF, Q1], where @)1 = min{B(n*), Qo }.
Moreover, when @y < @, they claim that the problem has its global minimum
at (Qo,n*), (see their theorem on page 710 [14]). This assertion is wrong. As our
Theorem 27 states, the problem formulated in (4.3) does not have a unique solution.
Moreover, different solutions can be reached depending on the input data.

We consider example 1 described in Bookbinder and Chen [14], and change only
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the demand D = 10000 by D = 90000, leaving the same values for the rest of
parameters. That is, A, = 30, A,, = 20, (transportation unit cost ) 7, = 100, h, =
1,hy = 0.5 and Qo = J, = V = 1000. According to (4.5), Q* = 600+/30 = 3286.33,
then we have @} > @Q)y. Following Bookbinder and Chen’s method, the global

minimum is achieved at (Qg,n*). Since @y = 1000 and n* = 0.816, their solution is
given by (Qo, [n*]) = (1000, 1) with HOC = 5000 and TC' = 752 = 9000.

However, the solution above is not good, since we can find a new point that
dominates the former. Thus, following our method, we obtain that ny = 11 and
ng = 3. Therefore, my > ny + 1, and according to Theorem 27, the optimal solution
is (Qo = 1000, n = 3) with costs HOC = 4300 and T'C' = 9000, respectively.

Secondly, when Q% < )y, Bookbinder and Chen pointed out (see assertion (2) of
their theorem on page 710) that the problem has non-dominated solutions (Q,,n),
with n = n* and @, € [QF, Q1], where @1 = min{B(n*),Qo}. B(n*) is given in (4.4)
and represents an upper bound necessary to guarantee that the function HOC(Q,., n)
has its global minimum at (Q*, n*). Nevertheless, as it has been shown in previous
sections, non-dominated solutions are arranged at different intervals, changing the
n integer value in each interval.

To show this effect, we consider the same example 2 proposed in [14], where
the parameters are given as: A, = 100, A4, = 200,7, = 400,D = 10000, h, =
3,h, = 1,J, = 1500 and V = 2000. Their procedure yields the following results:
n* = 2,0 = 1000 and @)y = 1500. Since Q; < @)y, Bookbinder and Chen asserted
that the problem has an infinite number of non-dominated solutions with n = 2 and
1000 < @, < 1500. Also, they even showed some of these solutions in their Table 1
on page 711. Again, the authors have been wrong, because point (Q, = 1500, n = 2),
with HOC' = 4333 and T'C = 2667, was proposed as non-dominated solution in that
table. However, this point is dominated by (Q, = 1500,n = 1), with HOC = 4250
and T'C' = 2666.66.

Therefore, the non-dominated solution set P should be determined according to
Algorithm 7. First, we must calculate m = 2 and g = 1, hence k =7 —ng + 1 = 2.
Moreover, @, (1) = max{Q*',Q, (1)} = 1000v/2, I = HOC(Q, (1),1) = 6000/+/2
and thus ¢7 = 1000y/2. Hence, P(2) = [Q, (2), ¢?) and we proceed to evaluate n = 1
with Q@ = @, (1). Since n — 1 = 0 < 7y, the algorithm finishes determining P(1) =
[@Q, (1), Qq), therefore, the Pareto-solution set contains two intervals, namely,

P= {(Q.2:Q:€(Q,(2,Q,MW)}U{(@r1): Qr €@, (1),Qul}
= {(Q.2): Q. € [1000,1000v2]} U {(Q,, 1) : @, € [1000v/2, 1500]}

Hence, for @, > 1000+/2, all those solutions proposed by Bookbinder and Chen’s
method are not efficient and are dominated by points (Q,,n = 1).
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4.6 Computational Results

The procedure corresponding to Algorithm 7 was implemented in C++ using LEDA
libraries [58] on a HP-712/60 workstation. In order to check the efficiency of this
algorithm, multiple instances were randomly generated. The input data were ob-
tained from uniform distributions on intervals, where the minimum and maximum
values were different random numbers. In Table 4.1, thirty instances are shown.

The Pareto-optimal solution sets for the instances in Table 4.1 are shown in
Table 4.2.

The efficiency of our procedure has been tested. This test consists of generating
one thousand random points for each instance. Then, we choose among them those
which are non-dominated by using an enumerative comparison algorithm. We com-
pare our Pareto solution set with the non-dominated randomly generated points.
For each non-dominated generated point, we have to determine whether the point is
included in the Pareto-optimal solution set proposed, or it is dominated by a point
in that set. In all the instances, the considered points either belong to our solution
set or they are dominated by points in our Pareto-optimal solution set.

4.7 Conclusions

In this chapter, we have studied a non-linear biobjective optimization model for
a two-echelon serial inventory/distribution system with deterministic demand. We
have characterized the non-dominated optimal solution set and proposed an algo-
rithm to generate it.

A similar model was studied by Bookbinder and Chen [14], but unfortunately
their solution method is not correct as we have shown in a previous section. The
complete analysis of the problem requires a detailed study of the model. In this
analysis, it is not possible to use the classical tools in multiobjective optimization
because the problem is a mixed-integer non-linear two-objective optimization model,
where neither the tools of continuous nor discrete optimization are directly applica-
ble. We have performed this analysis decomposing the problem and integrating the
solutions obtained in each subproblem into the final solution set. Two goals have
been achieved in this chapter: to study a mixed-integer non-linear two-objective
optimization model, which is completely resolvable and to correct the solution of a
model already proposed in the literature.

Further research could be carried out to analyze the biechelon inventory /distribution
system here studied, but considering more than two criteria. Also, it could be in-
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hw

hr

Qo0

P1

4.70

1.98

3.79

5.24

90.90

256.56

P2

3.26

7.86

0.14

0.33

44.34

38.95

P3

5.89

5.57

4.04

7.42

28.13

918.46

P4

5.70

7.31

0.14

1.50

60.30

77.23

P5

7.13

5.13

0.18

1.68

64.10

19.76

P6

1.00

4.60

0.41

0.79

77.33

63.40

pP7

9.05

3.86

0.14

1.12

68.65

45.32

P8

8.17

8.83

6.60

6.79

52.36

652.69

P9

3.37

8.09

0.63

1.72

6.36

4.11

P10

9.39

9.49

1.04

4.83

60.05

611.55

P11

8.07

2.21

0.01

0.06

75.25

18.22

P12

4.17

4.25

1.20

4.32

38.81

587.49

P13

1.98

5.49

0.43

0.55

99.49

92.27

P14

8.81

7.44

1.43

5.75

97.99

416.01

P15

5.91

8.33

0.22

1.31

38.02

69.45

P16

6.52

0.47

2.24

9.26

48.30

758.28

P17

8.25

9.39

2.32

9.94

17.48

97.77

P18

2.04

4.99

0.81

1.43

13.26

26.43

P19

9.08

8.42

0.18

1.93

52.90

52.47

P20

7.94

3.13

1.08

6.16

29.23

689.42

P21

1.07

7.53

0.08

0.10

62.92

43.00

P22

7.59

6.46

0.04

0.12

13.35

76.87

P23

9.90

2.12

2.75

5.73

26.70

166.27

P24

5.34

5.90

0.36

1.85

29.17

44.79

P25

9.37

6.52

0.05

1.37

37.24

97.04

P26

7.51

8.53

0.20

0.77

68.50

94.92

P27

1.05

4.98

0.26

1.67

19.85

73.75

P28

4.45

6.17

0.11

0.26

42.89

12.90

P29

1.87

6.52

0.62

1.07

39.12

97.09

P30

7.48

8.01

0.97

0.99

58.16

96.30

Table 4.1: Thirty randomly generated instances of the BBID problem.
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Problem | Variables Pareto Optimal Solution Set
P1 Qr [25.57,90.90]
n 1
P2 Qr [34.52,44.34]
n 2
P3 Qr [28.13,28.13]
n 2
P4 Qr [36.66,60.30] | [26.57,36.66) | [24.60,25.37)
n 2 3 4
P5 Qr [23.73,64.10] | [14.35,23.73)
n 1 2
P6 Qr [29.98,77.33] | [18.67,26.12)
n 1 2
P7 Qr [35.34,68.65] | [28.10,35.34)
n 1 2
P8 Qr [52.36,52.36]
n 1
P9 Qr [5.09,6.36]
n 2
P10 Qr [54.27,60.05]
n 2
P11 Qr [75.25,75.25]
n 1
P12 Qr [36.60,38.81]
n 2
P13 Qr [50.06,99.49]
n 1
P14 Qr [48.49,97.99] | [38.10,46.31)
n 1 2
P15 Qr [30.24,38.02] | [26.25,29.54)
n 2 3
P16 Qr [44.31,48.30] | [34.93,42.94)
n 1 2
P17 Qr [17.48,17.48]
n 1
P18 Qr [13.26,13.26] [10.34,12.21]
n 1 2
P19 Qr [49.54,52.90] | [28.60,49.54) | [23.33,28.60)
n 1 2 3
P20 Qr [29.23,29.23]
n 2
P21 Qr [48.06,62.92]
n 2
P22 Qr [13.35,13.35]
n 12
P23 Qr [26.41,26.70]
n 1
P24 Qr [27.09,29.17] | [18.33,27.09)
n 1 2
P25 Qr [37.24,37.24]
n 4
P26 Qr [63.62,68.50] | [48.00,63.62)
n 1 2
P27 Qr [15.34,19.85] | [11.88,15.34) | [10.55,11.88)
n 3 4 5
P28 Qr [32.46,42.89]
n 1
P29 Qr [39.02,39.12] | [24.27,29.23)
n 1 2
P30 Qr [54.89,58.16]
n 1

Table 4.2: Pareto-optimal solution sets for the problems shown in Table 4.1.
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teresting to extend the results of this non-linear biobjective optimization model to
multi-echelon serial inventory /distribution systems or, in general, to multi-echelon
systems.
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