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Tlaquepaque, Jalisco, México (e-mail: riemannruiz@iteso.mx)

Abstract: In the present paper, a mathematical model for a portfolio is proposed. This model
is valid for operations of buying and selling shares of an asset in constant periods of time,
additionally, it has a state space form which can be used to design a control law using control
theory. The designed control law can be interpreted as a trading signal to reach a portfolio value
desired. The mathematical model and control law proposed are validated by means simulations
using real daily prices of Mexican stock exchange.
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1. INTRODUCTION

The stock market is constantly evolving with the help of
new technologies and new products that can be traded.
Particularly, technology has made it possible for trading
operations to be carried out faster and take advantage
of market opportunities. An algorithm is an specific set
of clearly defined instructions aimed to carry out a task
or process. Algorithmic trading is the process which use
computers programmed to define a set of instructions for
placing a trade in order to generate profits at a speed
and frequency that is impossible for a human trader. The
defined rules set are based on timing, price quantity or
mathematical model Seth (2017); Kirchner (2015); Yadav
(2016).

Currently, algorithmic trading has a relevant importance
in the large securities markets, in such a way that regu-
lations for this type of operations in the stock mar-
ket have been proposed Yadav (2016); BUSCH (2016).
Different algorithm strategies have emerged to make
profits in terms of improve earnings or cost reduction.
The common trading strategies used in algo-trading are
the Trend Following Strategies, Arbitrage Opportuni-
ties, Index Fund Rebalancing, Trading Range (Mean
Reversion), Volume Weighted Average Price (VWAP),
Time Weighted Average Price (TWAP), Percentage of
Volume (POV), Implementation Shortfall and Mathema-
tical Model Based Strategies Seth (2017)TRELEAVEN
et al. (2013).

In the mathematical model based strategies, the ma-
chine learning and artificial intelligence have served as the
basis for trading algorithm design since 15 years ago. In
R.J. Kuo and Hwang (2001), a genetic algorithm based on
a fuzzy neural network is proposed as knowledge base to
measure the qualitative effect on the stock market. The
qualitative effect estimated is used by the neural network
to take the trading decision. The complexity in the imple-
mentation of these algorithms makes it necessary a high

computing capacity to perform online trading. In Bendtsen
and Pena (2016), a gated Bayesian network model is used
to learn the buy and sell decisions in a trading systems;
and the trading algorithm performance is compared to the
benchmark investment strategy buy-and-hold.

In Gunter Schmidt and Kersch (2010), the empirical per-
formance comparison between a threat-based, reservation
price average price and buy-and-hold algorithms is pre-
sented. In that, the performance of the threat-based al-
gorithm is better than all investigated algorithms. In Pe-
ter DeMarzo and Mansour (2006), an algorithm to price
the current value of an option assuming that there are no
arbitrage opportunities, is proposed. The valuation consi-
ders the obtaining of the maximum and minimum limits
for the price. In all these papers, the objective is to propose
a model to estimate the behavior of the instrument price
and, based on that estimation make the trading decision.

There are published contributions on the application of
control theory for optimal design of portfolios. In Sethi and
Thompson (1970), a cash balance problem is formulated as
a control theory problem, where the financtial interpreta-
tion of the Hamiltonian function and, the adjoint function,
is stated. In Fleming and Sheu (2000); Fleming and Pang
(2004), considering the hyperbolic absolute risk aversion
(HARA) as the utility function, a portfolio optimization
is reformulated as an infinite time horizon control problem.
There, the solutions of the dynamic programming equation
are used to derive the optimal investment policies. These
papers consider the portfolio optimization in continuous
time, which can cause problems in a real-time implementa-
tion, because the stock prices generally change in discrete
time.

In this paper, a dynamic mathematical model is proposed
for a portfolio composed of shares in the stock exchange.
The proposed model has the form of state space in discrete
time, which can be used to propose a trading signal
based on control theory. The proposed control law can
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be adapted to different investor profiles by means of the
correct selection of the control gain. The performance of
the control law is validated through simulations using
real prices of the Mexican stock exchange. This paper is
organized as follows: in section 2, the procedure to obtain
the portfolio model is detailed. In section 3, the trading
signal is obtained using a nonlinear control law. The
simulation results of the proposed algorithm are shown
in section 4. Finally, section 5 presents the conclusions of
the paper.

2. PORTFOLIO MODELING

A portfolio is a grouping of financial assets such as
stocks, bonds and cash equivalents, as well as their
funds counterparts, including mutual, exchange-traded
and closed funds. Portfolios are held directly by investors
and/or managed by financial professionals INVESTOPE-
DIA (2017). Particularly for a shares portfolio, the port-
folio value can be obtained as a sum based on the share
value and, the shares number available for each asset.

vp = na1p1 + na2p2 + · · ·+ nanpn, (1)

where vp is the portfolio value, nan is the shares number
of the nth asset and pn is the stock market price of the
corresponding nth asset. When there is available capital to
make another investment, the portfolio value may include
this capital as follows:

vp = na1p1 + na2p2 + · · ·+ nanpn +mcap, (2)

where mcap is the capital available.

In general, the value of a portfolio can be expressed as a
matrix operation:

vp = PT
a N +mcap, (3)

whereN = [ na1 na2 · · · nan ]T and PT
a = [ p1 p2 · · · pn ].

In order to facilitate the obtention of a dynamic model for
a portfolio, a single asset portfolio will be considered; after
that, the mathematical model is generalized.

2.1 Buy and Sell

In a financial market, it is normal to carry out stock
purchase and sale operations, driven by the interest of
increasing the value of the portfolio. A purchase transac-
tion means to exchange money for contracts that hold
us as owners of the shares, and correspondingly a sale
operation means to change the shares for their value in
money. Unfortunately, to operate in a financial market,
there are intermediaries who charge commissions for the
use of platforms, information and, investment advice. That
commission usually varies depending on the amount or
type of stocks or assets being traded. In this paper, rcom
is used as the percentage of the intermediary charges for
the operations that are carry out.

In order to simplify the development of the model proposed
in this paper, it is considered that there is an amount m to
be invested in a single type of asset through the purchase
of na shares. Then, if is adquired a number na of shares
at a price p, the amount that has to be paid (real cost) is
defined as:

real cost = (1 + rcom)p× na. (4)

At the same way, when selling na shares at a price p, the
real value received for those shares is defined as:

real value = (1− rcom)p× na. (5)

Then, assuming an initial amount m(0) for investment,
after a buy operation execution of nam(0) shares at the
price p(0), the remaining amount m(1) can be calculated
as m(0) − real cost, then:

m(1) = m(0) − (1 + rcom)p(0)nam(0). (6)

Proposing the variable k to indicate the time step, which is
considered as time interval constant, the amount available
after a buy operation could be calculated as:

m(k+1) = m(k) − (1 + rcom)p(k)nam(k). (7)

On the other hand, if the same reasoning for a sale opera-
tion is applied, the new available amount is calculated as:

m(k+1) = m(k) + (1− rcom)p(k)nam(k), (8)

in both equations (7) and (8), nam(k) denotes the shares
number in the operation at the time step k.

The shares number resulting na(k+1) is a little easier
to calculate because it can be obtained as a sum or
subtraction operation. For the buy case:

na(k+1) = na(k) + nam(k), (9)

and, for a sale case:

na(k+1) = na(k) − nam(k). (10)

Then, the calculation of the amount and the number
of shares available can be expressed by the following
equations systems:

Buy:

m(k+1) =m(k) − (1 + rcom)p(k)nam(k),

na(k+1) = na(k) + nam(k), (11)

Sell:

m(k+1) =m(k) + (1− rcom)p(k)nam(k),

na(k+1) = na(k) − nam(k). (12)

Assuming that it is not permitted to ask for a loan to invest
and neither short sales, the number of shares available to
buy can be bounded as follows:

0 ≤ nam(k) ≤ floor
(

m(k)

(1 + rcom)p(k)

)
, (13)

and the number of shares available to sale is bounded by:

0 ≤ nam(k) ≤ na(k). (14)

2.2 Generalizing the model

From (11) and (12), it can be seen that the commission
(rcom) appears in a buy or sale operation. So, this commi-
ssion can be considered as an uncontrollable known per-
turbation in the system. Then, the buy and sell operation
can be rewritten as follows:

Buy:

m(k+1) =m(k) − p(k)nam(k) − rcomp(k)nam(k),

na(k+1) = na(k) + nam(k), (15)



Sell:

m(k+1) =m(k) + p(k)nam(k) − rcomp(k)nam(k),

na(k+1) = na(k) − nam(k). (16)

So far, two operation conditions have been considered
separately. A unique model can be constructed by adding
a variable that indicates whether the stock is a buy or sell,
αcv, which is defined as:

αcv =

{
1 , Buy
−1 , Sell

. (17)

Then, the equations (15) and (16) can be expresed as an
unique model for both operations.

m(k+1) =m(k) − p(k)αcvnam(k) − rcomp(k)nam(k),

na(k+1) = na(k) + αcvnam(k). (18)

It can be seen that the proposed dynamic model is directly
influenced by buying and selling operations (αcv value) and
the number of shares that are required to operate (nam(k)

value). Then, if u(k) = αcvnam(k) is defined, the system can
explicitly have a control signal that alters their behavior.
This control signal can be seen as a trading signal where
the sign and magnitude of u(k) corresponds to a decision
of purchase or sale and, the number of shares respectively.

m(k+1) =m(k) − p(k)u(k) − rcomp(k)‖u(k)‖,
na(k+1) = na(k) + u(k). (19)

Including the portfolio value vp, the complete model pro-
posed is defined as:

vp(k) = p(k)na(k) +m(k),

m(k+1) =m(k) − p(k)u(k) − rcomp(k)‖u(k)‖,
na(k+1) = na(k) + u(k). (20)

The model (20) has the form of a time variant state space
model as follows:

y(k) =C(k)x(k),

x(k+1) =Ax(k) +B(k)u(k) − g(u(k)),

where y(k) = vp(k), x(k) =
[
m(k) na(k)

]T
, C(k) =[

1 p(k)
]
, A = I2×2, B(k) =

[
−p(k) 1

]T
, and g(u(k)) =

rcomp(k)‖u(k)‖.

In general the model (20) can be rewritten for a portfolio
that considers more than one asset to invest as follows:

Vp(k) = P(k)Na(k) +M(k),

M(k+1) =M(k) − P(k)U(k) − rcomP(k)‖U(k)‖,
Na(k+1) =Na(k) + U(k), (21)

where q is the assets number where the algorithm can

operate, Vp(k) =
[
vp1(k) vp2(k) . . . vpq(k)

]T
is a vec-

tor that includes the portfolio value for each asset,
P(k) = diag

([
p1(k) p2(k) . . . pq(k)

])
is a diagonal ma-

trix with the price at time k for each asset, Na(k) =

[
na1(k) na2(k) . . . naq(k)

]T
is a shares number vector,

M(k) =
[
m1(k) m2(k) . . . mq(k)

]T
is a vector with the

amount to invest in each asset, U(k)=
[
u1(k) u2(k) . . . uq(k)

]
is the control signal vector, or trading signal vector, for
each asset.

3. TRADING ALGORITHM BASED ON CONTROL
THEORY

In the section 2, the procedure to obtain a generalized
model for a portfolio composed of an amount to invest
m(k) in a na(k) shares is presented. Based on the model
proposed, a trading algorithm is designed aplying control
theory.

3.1 Trading algorithm design

From (20), the vp at time k + 1 can be calculated as:

vp(k+1) = p(k+1)na(k+1) +m(k+1), (22)

then using na(k+1) and m(k+1) from (20), the vp(k+1) is
obtained as

vp(k+1) = p(k+1)(na(k) + u(k)) +m(k) − p(k)u(k)
−rcom(p(k)‖u(k)‖),

vp(k+1) = p(k+1)na(k) +m(k) + (p(k+1) − p(k))u(k)
−rcom(p(k)‖u(k)‖). (23)

Considering that the future price p(k+1) can be obtained
from the actual price p(k) adding an increment ∆p(k),

p(k+1) = p(k) + ∆p(k), (24)

then,

vp(k+1) = (p(k) + ∆p(k))na(k) +m(k) + ∆p(k)u(k)

−rcomp(k)‖u(k)‖,
vp(k+1) = p(k)na(k) + ∆p(k)na(k) +m(k) + ∆p(k)u(k)

−rcomp(k)‖u(k)‖,
vp(k+1) = vp(k) + ∆p(k)na(k) + ∆p(k)u(k)

−rcomp(k)‖u(k)‖. (25)

In (25), it can be seen that the future portfolio value
vp(k+1) depends directly on the actual portfolio value vp(k),
the share price p(k), the price increment ∆p(k), the current
shares number na(k) and u(k) value.

Usually, the objective of an investment is to have a
portfolio that reaches a target value (vrefp ) or desired
profit, then we define an error variable (ep) to make
decisions. Then, the error variable is defined as

ep(k) = vrefp − vp(k), (26)

where vrefp is a constant desired portfolio value constant.
Evaluating the ep(k) at the time k+ 1, the error dynamics
can be obtained as:



ep(k+1) = vrefp − vp(k+1),

ep(k+1) = vrefp − vp(k) −∆p(k)na(k) −∆p(k)u(k)

+rcomp(k)‖u(k)‖,
ep(k+1) = ep(k) −∆p(k)na(k) −∆p(k)u(k)

+rcomp(k)‖u(k)‖. (27)

Then, the u(k) signal is designed to manipulate the beha-
vior of the error variable ep(k). The desired dynamic beha-

vior to reach the expected value vrefp is ep(k+1) = Keep(k),
then the control signal u(k) is defined as:

u(k) =
(
∆p(k)

)−1 (
ep(k) −∆p(k)na(k) −Keep(k)

)
, (28)

where, ∆p(k) is known and measurable, ∆p(k) 6= 0 and
‖Ke‖ < 1 to ensure convergence. If ∆p(k) = 0, means that
there has been no change in the price of the stock. Due that
it is not necessary to apply some operation then, u(k) = 0.

Substituting (28) in (27), the error dynamics in closed-loop
is obtained as follows

ep(k+1) = Keep(k) + rcomp(k)‖u(k)‖. (29)

It can be seen that closed-loop dynamics is not asymptoti-
cally stable, because the perturbation term rcomp(k)‖u(k)‖
depends on the magnitude of the control law. The per-
turbation is bounded due to rcom is a small percentage of
operation cost p(k)‖u(k)‖. Considering (13) and (14), the
control signal u(k) is bounded as follows:

−na(k) ≤ u(k) ≤ floor
(

m(k)

(1 + rcom)p(k)

)
. (30)

3.2 Stability analysis

In order to simplify the stability analysis, lets define the

control signal limits as umax = floor
(

m(k)

(1+rcom)p(k)

)
and

umin = −na(k), then control signal limits (30) can be
rewrritten as

umin ≤ u(k) ≤ umax. (31)

Assumming, ‖Ke‖ < 1, rcom << 1, ∆p(k) 6= 0, and there
is α1 > 0 such that max(‖umin‖, ‖umax‖) < α1, then

ep(k+1) =Keep(k) + rcomp(k)‖u(k)‖,
ep(k+1) ≤Keep(k) + rcomp(k)α1. (32)

Let define a candidate Lyapunov function V(k) = e2(k), and

∆V(k) = V(k+1) − V(k). If 0 ≤ ‖uk‖ ≤ α1 then

∆V(k) = V(k+1) − V(k),
∆V(k) = e2(k+1) − e

2
(k),

∆V(k) ≤ (Keep(k) + rcomp(k)α1)2 − e2(k),

∆V(k) ≤K2
e e

2
p(k) + 2Keep(k)rcomp(k)α1

+r2comp
2
(k)α

2
1 − e2(k),

∆V(k) ≤ (K2
e − 1)e2p(k) + 2Keep(k)rcomp(k)α1

+r2comp
2
(k)α

2
1,

∆V(k) ≤ (K2
e − 1)e2p(k) + γ1, (33)

where it can be seen that V(k) decreases because the term

(K2
e − 1)e2p(k) is always negative, and ∆V(k) is bounded

by γ1 = 2Keep(k)rcomp(k)α1 + r2comp
2
(k)α

2
1. Then, when

ep(k) → 0, γ1 → r2comp
2
(k)α

2
1.

4. SIMULATION RESULTS

In order to test the behavior of the proposed trading
algorithm, simulations with real stock shares were im-
plemented. Software used for simulation was MATLAB 1

and, the stock prices were obtained from Yahoo Fi-
nance 2 . Simulation conditions for all tests scenarios are
the following:

• Amount to invest: m(0) = 50000 MXN (Mexican
pesos)

• Operation commision: rcom = 0.29%
• Control gain: Ke = 0.8
• Simulation period: 249 days (05/23/2016-05/23/2017)
• Portfolio value desired: vrefp = 1.1m(0) = 55000 MXN
• Shares to test: GRUMAB, AXTELCPO, AMXL and

BOLSAA from mexican stock exchange, which are
chosen randomly in order to test the algorithm.

• For the simulations it is considered that the buying
and selling operations are executed instantly.

Fig. 1-4 will show: 1) stock value variations during the
given period, 2) portfolio value calculation based on the
control algorithm, stock price value and commissions
payed for each operation and, 3) control signal behavior.
Additionally, figures will show the number of days it took
each scenario to reach the desired portfolio value.
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Fig. 1. GRUMAB simulation results

In Fig 1, simulation results using GRUMAB stock prices
are shown. In top graph, the GRUMAB prices behavior
in the given period is displayed. The portfolio value
behavior and the control signal are presented in middle
and bottom graphs respectively. It can be seen that, the
desired portfolio value (vrefp ) is reached at the day 100,
even thought the stock prices had a lateral tendency during
the chosen period.

1 Trademark of The MathWorks, Inc.
2 https://finance.yahoo.com/
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Fig. 2. AXTELCPO simulation results

In Fig. 2, results with the AXTELCPO stock prices
are presented. The target (vrefp ) is reached before 100
days of simulation, even when AXTELCPO prices had a
downward tendency. Additionally, once the target value
vrefp was reached, the algorithm did not perform more
operations.

0 50 100 150 200 250
10

15
BMV:AMXL

price

50 100 150 200
0

5

10

15

real yield

desired yield

0 50 100 150 200 250
-1000

0

1000

Fig. 3. AMXL simulation results

The simulation results using AMXL stock prices are dis-
played in Fig. 3. Similarly as previous results, the vrefp
value is reached before the 100 days, and the operations
number falls as vp(k) approaches the target value.

The simulation results obtained using the BOLSAA stock
prices (Fig. 4) validate the good performance of the
trading algorithm proposed. It must be considered that the
trading algorithm decreaces the operations number and
the amount per operation when the vp(k) approaches the

target value vrefp . This is because the control signal u(k)
is calculated as a function of the error variable e(k), then
as the error e(k) decreases, the control signal also does.
The convergence time depend heavily on the control gain
Ke. The proposed value for Ke in the previous simulations
is selected considering only the condition ‖Ke‖ < 1, but
this control gain can be considered as a parameter that is
related to the investor profile. From (29), it can be seen
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Fig. 4. BOLSAA simulation results

that the ep(k+1) is approximately a proportional fraction
of ep(k) determined by the Ke value.
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Fig. 5. GRUMAB simulation results with Ke variations

In Fig. 5, the GRUMAB investment behavior with
different Ke values is shown. It is easy to see that, for
Ke values near to 0, the desired portfolio value is reached
in a shorter time. Due to control law (u(k)) is limited by
(30), in the first days of simulation the performance of
the investment is similar for Ke values between 0.2 and
0.6, which implies that in each operation a larger shares
amount is traded.

When the target portfolio value (vrefp ) is reached, the
trading operations is automatically reduced to maintain
the desired level. The vrefp value can be updated by means
of rules proposed by the investor so that the algorithm
takes advantage of new market opportunities. In Fig. 6,
the simulations results for the trading algorithm proposed
with vrefp update are shown. In this simulation, the vrefp

is updated when the ep(k) is less than 0.5%.

It can be seen that when a reference update occurs, the
trades number increases to reach the new target and again
it will decrease when this new target is close to being
reached.
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Fig. 6. GRUMAB simulation results with reference update
and Ke = 0.8

5. CONCLUSIONS

In the present paper, based on the buying and selling
operations, a mathematical model is proposed to describe
the behavior of the shares number and amount to be
invested in an asset, which includes the operation commi-
ssions by the platform owner. Based on the portfolio model
a control law is designed which can be interpreted as
trading signal.

From the simulations results, it can be seen that the
trading algorithm achieves the portfolio desired value on
every test case. It is important to mention that the trading
signal proposed is theoretically realizable because it is
necessary to know the price variation (∆p(k)) in each time
interval (which is difficult to satisfy). The main advantage
of the trading algorithm proposed is that it is simple and
it can be adjusted according to the investor profile by
means of gain control Ke, where Ke values near to 0
means a agresive investor profile and Ke values near to
1 corresponds to a conservative profile. The proportional
controller proposed in this work is sufficient to achieve
the control objective because ∆p(k) is considered known,
otherwise, it is necessary to provide a robust controller and
a price estimator.

Additionally, once the target value is reached, the algo-
rithm can continue to take advantage of market opportuni-
ties if vrefp is updated with rules proposed by the investor.
Another advantage of the proposed portfolio model is that
it can be used to design new controllers based on different
control strategies which will be explore in future work.
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