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Abstract—In this paper, a recurrent neural network is
proposed using the augmented Lagrangian method for solving
linear programming problems. The design of this neural
network is based on the Karush-Kuhn-Tucker (KKT) optimality
conditions and on a function that guarantees fixed-time
convergence. With this aim, the use of slack variables allows
transforming the initial linear programming problem into
an equivalent one which only contains equality constraints.
Posteriorly, the activation functions of the neural network are
designed as fixed time controllers to meet KKT optimality
conditions. Simulations results in an academic example and an
application example show the effectiveness of the neural network.

I. INTRODUCTION

Linear programming is an important field of optimization,
since many applications can be formulated and solved through
a linear representation, which has generated major research
within this area. Over the years, for many applications, a
variety of numerical algorithms have been developed, being
Pyne one of the first to introduce the use of dynamic systems
to solve optimization problems. The main advantage of this
technique is that the system constantly seeks new solutions as
the parameters of the problems are varied [1].

Since then, many extensions of these systems have been
developed in which recurrent neural networks have received
substantial attention. In 1986, Tank and Hopfield proposed the
first recurrent neural network for solving linear programming
problems [2], which inspired the development of numerous
neural networks in the area of optimization. In 1988, Kennedy
and Chua [3] proposed a neural network with a finite penalty
parameter for nonlinear programming, with the disadvantage
that the penalty parameter had to grow infinitely to achieve
convergence. To avoid using the penalty parameter, others
methods such as Lagrange multiplier were introduced [4].

In this sense, Wang [5] proposed a recurrent neural
network with a time-varying threshold vector to solve
linear programming problems, with the disadvantage that the
proposed network is asymptotically stable. Similarly, it was
shown [6] that the use of differential algebra, in conjunction
with KKT conditions, has a faster convergence than other
methods used in linear programming; other investigators [7]–
[9] also use recurrent neural networks to study the convergence

of a linear problem, obtaining the optimal solution of a system
in finite time.

In the same way, investigations have also been carried out in
nonlinear systems with discontinuous activation function [10],
[11]. Similarly, in later studies a neural network was proposed
that solved problems where the objective function may or may
not be continuously differentiable [12] and a neural network
capable of solving non-convex problems [13] was successfully
proposed, which expanded the universe of systems that can be
solved.

Other studies have used the augmented Lagrangian
method for solving optimization problems, achieving better
numerical stability [14]. For this reason, the aim of this
paper is to develop a recurrent neural network based on
Lagrangian augmented and slack variables to solve linear
programming problems, thus illustrating its operation in a
classic optimization problem.

The remainder of this paper is organized as follows: in
Section II, the preliminaries related to the development of the
neural network are presented. Section III describes the model
of the recurrent neural network and its performance through an
academic example. In Section IV an application is presented
were the energy that is delivered by the different generation
units of a microgrid are maximized. Finally, conclusions are
given in Section V.

II. MATHEMATICAL PRELIMINARIES

In this section, the important concepts for the development
of the network structure are presented.

A. Slack Variables

Proposition 1. If a and b are two real numbers, then a ≤ b
if and only if a+ y2 = b for some number y [15].

A classical optimization problem usually has both equality
and inequality constraints that, when combined, often interact
in complex ways, so that slack variables can be used to
transform the original problem into a problem that only has
equality restrictions.



Now, consider the general programming problem

min cT x
s.t. Ax = b

l ≤ x ≤ h
(1)

where x ∈ Rn is the vector of decision variables, c, l,
h ∈ Rn, b ∈ Rm and A ∈ Rm×n is a full row-rank matrix
(rank(A) = m,m ≤ n).

The general problem (1) can be transformed into a problem
of equality constraints by well-knows techniques such as
adding slack variables. For this to occur, first the inequality
is converted into independent inequalities, as follows

min cT x
s.a. Ax− b = 0
−x ≤ −l

x ≤ h

(2)

Note that problem (2) is equivalent to problem (1); once this
form is obtained, the slack variables are introduced in order
to eliminate the inequality

min cT x
s.t. Ax− b = 0
−x + s1 + l = 0

x + s2 − h = 0

where s1 =
[
y21 , ... , y

2
n

]
and s2 =

[
y2n+1, ... , y

2
2n

]
are the

vectors that contain the slack variables.
When a problem has equality constraints, it can be written

in vectorial form as shown below

min cT x
s.a. Mz− d = 0

(3)

where

M =

 A Om×n Om×n
In×n In×n On×n
−In×n On×n In×n

 , d =

 b
h
−l

 (4)

z =
[
x1, ... , xn, y

2
1 , ... , y

2
2n

]T (5)

A is the matrix containing the equality constraints, Om×n is
a matrix of zeros of dimension m×n, On×n is another matrix
of zeros of dimension n × n, In×n is an identity matrix of
dimension n× n, z is the vector containing both the decision
variables (x) and the slack variables (y2i ), which represent the
additional value that needs to be added to satisfy the equality;
each slack variables is elevated to the square to ensure that it
is positive.

B. Augmented Lagrangian

The augmented Lagrangian method is a technique used to
solve constraint optimization problems by transforming those
problems into unconstrained equivalent ones. This method can
be considered a hybrid between the method of the Lagrange

multipliers and the penalty method, since it consists of adding
an additional term to the Lagrangian.

Given σ = Mz − d and parting from problem (3), the
augmented Lagrangian is defined as

Lρ(x, z,λ) = cT x + λTσ +

∫ σ

0

ψ(σ)dz (6)

where λ = [λ1, ... , λk]
T represents the vector of the

Lagrange multipliers and
∫ σ

0
ψ(σ)dz is the penalty function.

Usually, the penalty term most commonly used is ρ
2 ‖ σ ‖

2,
but in this work, a different function is used to illustrate its
behavior.

III. STRUCTURE OF THE NETWORK

A. Recurrent Neural Network Design

Starting from (6) and according to the KKT conditions [16],
(x*,λ*, z*) is an optimal solution if

∇xLρ(x*, z*,λ*) = 0
∇yLρ(x*, z*,λ*) = 0
∇λLρ(x*, z*,λ*) = 0

Subsequently, the following conditions must be fulfilled

c +
∂z
∂x

∂σ

∂z
λ+

∂z
∂x

∂σ

∂z
ψ(σ) = 0 (7)

∂z
∂y

∂σ

∂z
λ+

∂z
∂y

∂σ

∂z
ψ(σ) = 0 (8)

σ = 0 (9)

where y = [0 ...0 y1 y2 ... y2n]
T ∈ Rk and x =

[x1 x2 ... xn 0 ... 0]T ∈ Rk; this is done so they are of the
same dimensions as z, such that ∂z

∂y y ∂z
∂x are square matrices

k × k, of the form

∂z
∂y

=


∂z1
∂y1

∂z2
∂y1

... ∂zk
∂y1

∂z1
∂y2

∂z2
∂y2

... ∂zk
∂y2

...
... ...

...
∂z1
∂yk

∂z2
∂yk

... ∂zk
∂yk



∂z
∂x

=


∂z1
∂x1

∂z2
∂x1

... ∂zk
∂x1

∂z1
∂x2

∂z2
∂x2

... ∂zk
∂x2

...
... ...

...
∂z1
∂xk

∂z2
∂xk

... ∂zk
∂xk

 .
The KKT conditions (7)-(9) are used to propose the

following recurrent neural network in order to solve the linear
program given in (3)

ẋ = −γ
[

c +
∂z
∂x

∂σ

∂z
ψ(σ) +

∂z
∂x

∂σ

∂z
λ

]
(10)

ẏ = −γ
[
∂z
∂x

∂σ

∂z
ψ(σ) +

∂z
∂x

∂σ

∂z
λ

]
(11)

λ̇ = γασ (12)

where γ is a positive scaling constant, α is a nonnegative gain
and ψ(σ) is the derivative of the penalty function.



Given that σ = Mz− d, then σ̇ = M ∂z
∂x ẋ + M ∂z

∂y ẏ. Hence,
from (10) and (11), it results

σ̇ =− γ

(
M
∂z
∂x

c−M

[(
∂z
∂x

)2

+

(
∂z
∂y

)2
]
∂σ

∂z
λ

)

− γ

(
M

[(
∂z
∂x

)2

+

(
∂z
∂y

)2
]
∂σ

∂z
ψ(σ)

)
.

(13)

Selecting ψ(σ) in (13) as

ψ(σ) = −

(
γM

[(
∂z
∂x

)2

+

(
∂z
∂y

)2
]
∂σ

∂z

)−1

[
γ

(
M
∂z
∂x

c + M

[(
∂z
∂x

)2

+

(
∂z
∂y

)2
]
∂σ

∂z
λ

)
− φ(σ)

]
(14)

the dynamics of σ in (13) reduces to σ̇ = −φ(σ).
In addition, when (14) is substituted in (7)-(9) is obtained:

c+
∂z
∂x

∂σ

∂z

{
M

[(
∂z
∂x

)2

+

(
∂z
∂y

)2
]
∂σ

∂z

}−1

φ(σ)−

∂z
∂x

[(
∂z
∂x

)2

+

(
∂z
∂y

)2
]−1

∂z
∂x

c = 0

(15)

∂z
∂y

∂σ

∂z

{
M

[(
∂z
∂x

)2

+

(
∂z
∂y

)2
]
∂σ

∂z

}−1

φ(σ)−

∂z
∂y

[(
∂z
∂x

)2

+

(
∂z
∂y

)2
]−1

∂z
∂x

c = 0

(16)

σ = 0. (17)

Since

∂z
∂x

[(
∂z
∂x

)2

+

(
∂z
∂y

)2
]−1

∂z
∂x

= I (18)

∂z
∂y

[(
∂z
∂x

)2

+

(
∂z
∂y

)2
]−1

∂z
∂x

= 0 (19)

and φ(0) = 0 it follows that the KKT conditions (15)-(16) are
fulfilled when σ = 0.

If φ(σ) is defined as

φ(σ) = k1
σ

‖ σ ‖1/2
+ k2σ + k3σ ‖ σ ‖1/2 (20)

with k1, k2 and k3 positive gains, then the dynamics of σ in
(13) is given by

σ̇ = −k1
σ

‖ σ ‖1/2
− k2σ − k3σ ‖ σ ‖1/2 . (21)

Finally, from (21), σ = 0 in fixed time [17]. Therefore,
from the KKT conditions (15)-(17), the linear programming
problem (3) is solved in fixed time.

B. An Academic Example

Consider the linear programming problem [18]

min 4x1 + x2 + 2x3

s.t. x1 − 2x2 + x3 = 2

− x1 + 2x2 + x3 = 1

− 5 ≤ x1, x2, x3 ≤ 5

The proposed neural network (10)-(12) with the design
function (14) and (20) is tested, with k1 = 8, k2 = 3, k3 = 3,
α = 1, ρ = 1, γ = 105 and initial conditions are randomly
selected within a range from −10 to 10. Results are shown in
Fig.1 and Fig.2.
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Fig. 1. Transient States of the Neural Network
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Fig. 2. Transient States of the Slack Variables

Hence, it can be observed that the network converges
to the optimal solution x∗ = [−5,−2.75, 1.5] with z∗ =
[−5,−2.75, 1.510, 7.75, 3.5, 0, 2.25, 6.5]. Note that the first
positions of the vector correspond to the decision variables
x. Fig. 3 shows the dynamics of σ which becomes zero in
fixed time and satisfies the constraint.
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IV. APPLICATION EXAMPLE

An optimization problem is presented where the energy
delivered by a non-autonomous microgrid (connected to the
main system) must be minimized. The energy availability of
each of the generation and storage units is considered, given
that the demand required by the load is satisfied.

A general case of study considers both a wind and a solar
power system as generation units, and also acknowledges a
battery bank system as a storage unit, all connected to the main
electrical system. This optimization problem can be expressed
as follows:

min PG − PW − PS − PB
s.t. PG + PW + PS + PB = PL

PGmin ≤ PG ≤ PGmax
PWmin ≤ PW ≤ PWmax

PSmin ≤ PS ≤ PSmax
PBmin ≤ PB ≤ PBmax

where x = [PG PW PS PB ], c = [1 − 1 − 1 − 1],
A = [1 1 1 1], b = PL, l = [PGmin PWmin PSmin PBmin]
and h = [PGmax PWmax PSmax PBmax].

In order to use the neural network (10)-(12), it is necessary
to transform the problem into form (3):

min PG − PW − PS − PB
s.t. PG + PW + PS + PB = PL

−PG + y21 = PGmin

PG + y22 = PGmax

−PW + y23 = PWmin

PW + y24 = PWmax

−PS + y25 = PSmin

PS + y26 = PSmax

−PB + y27 = PBmin

PB + y28 = PBmax

Once expressed in this way, the matrix M and the vectors z
and d can be formed, as shown in (4) and (5). The maximum
and minimum values defined in [18] are taken according to

the available energy in an electrical microgrid prototype that
was available at the time.

For this reason, PWmin = 0 and PWmax = 240 Watts
were selected for the aero-generator. In the case of the photo-
voltaic panel, its minimum energy is equal to 0 Watts, while
the maximum that the module is able to deliver is 1.2 Watts.
On the other hand, the values of the battery were chosen to
increase its lifespan as much as possible, reason for which
Pmin is set to 10% of its load and PBmax to 60%. Therefore,
the main system is like an infinite bus, but in this work its
maximum and minimum energy are respectively considered
as 250 and 0 Watts.

To solve this problem, the proposed neural network (10)-
(12) is used with k1 = 8, k2 = 3, k3 = 3, α = 1,
ρ = 1, γ = 104, PL = 350 Watts and the initial
conditions are randomly selected within a range from 0 to
255 Watts. In Fig. 4 it can be seen how the decision variables
converge to the optimal solution x∗ = [36.8, 240, 1.2, 72]
in fixed time. Fig. 5 shows the transient states of the
slack variables until they reach stabilization in z∗ =
[36.8, 240, 1.2, 72, 213.2, 0, 0, 0, 36.8, 240, 1.2, 60].
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Subsequently, a variable load profile is used, as shown in
Fig. 6, so the behavior of the proposed neural network can be
observed when there are changes in the demand of the load. If
the same characteristics mentioned above are used, the result
obtained is presented in Fig. 7.
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Fig. 6. Load Profile
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Fig. 7. DER’s Power

When the load demand is low, the energy delivered by the
main system is practically zero, since the energy supplied by
the microgrid is sufficient to satisfy the demand. However,
when the demand increases, the microgrid cannot provide
enough energy, reason for which it takes what is additionally
needed from the main system. At 30s, the demand of the load
becomes so large that the system has to provide its maximum
energy so that together with the microgrid, its load can be
satisfied.

V. CONCLUSION

In this paper, a recurrent neural network for solving linear
programming problems was proposed based on the augmented
Lagrangian method and slack variables. The penalty function
used was selected because of its capacity to provide fixed time
convergence. Simulations results were presented to illustrate
its performance on an academic example and on an application
to distribute energy in an electrical microgrid. In the microgrid
example, its power distribution maximized the use of the
alternative power sources by minimizing the use of the main

grid when a variable load profile was used. This shows that
the proposed recurrent neural network operates successfully
in real applications that can be defined as linear programming
problems.
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