
INSTITUTO TECNOLÓGICO Y DE ESTUDIOS
SUPERIORES DE OCCIDENTE

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial

15018, publicado en el Diario Oficial de la Federación el 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

ESPECIALIDAD EN SISTEMAS EMBEBIDOS

BIBLIOTECA DE PROCESAMIENTO DE IMÁGENES

OPTIMIZADA PARA ARM CORTEX-M7

Tesina para obtener el grado de:

ESPECIALISTA EN SISTEMAS EMBEBIDOS

Presenta: Roberto Ortega Hernández

Director: Abraham Tézmol Otero

San Pedro Tlaquepaque, Jalisco. Julio de 2017.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional del ITESO

https://core.ac.uk/display/214795414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

 iii

DEDICATORIA

A mi familia, especialmente a mis padres Leticia y Armando, por estar siempre a mi lado, por

ofrecerme los medios para superarme profesionalmente y por su incansable apoyo para cada uno

de mis proyectos, por esto y más les estaré eternamente agradecido.

A mi esposa Mónica, mi mayor inspiración, por alimentar mis deseos de superación profesional

con su incesante espíritu de aprendizaje y por brindarme su amor incondicional día a día durante

esta aventura.

 iv

AGRADECIMIENTOS

Quiero agradecer al Consejo Nacional de Ciencia y Tecnología (Conacyt) por fomentar la

profesionalización de los ciudadanos y el desarrollo científico y tecnológico de México.

Agradezco también a la empresa Continental por su alto compromiso con el desarrollo de sus

empleados y por las facilidades otorgadas para llevar a cabo este programa de especialidad.

Por último, quiero agradecer al profesor Abraham Tézmol por su destacable dedicación a la

enseñanza y por el apoyo brindado durante la realización de este proyecto.

 vi

Abstract

Most modern vehicles are equipped with systems that assist the driver by automating difficult and

repetitive tasks, such as reducing the vehicle speed in a school zone. Some of these systems require

an onboard computer capable of performing real-time processing of the road images captured by

a camera. The goal of this project is to implement an optimized image processing library for the

ARM® Cortex®-M7 architecture. This library includes the routines to perform image spatial

filtering, subtraction, binarization, and extraction of the directional information along with the

parameterized pattern recognition of a predefined template using the Generalized Hough

Transform (GHT). These routines are written in the C programming language, leveraging GNU

ARM C compiler optimizations to obtain maximum performance and minimum object size. The

performance of the routines was benchmarked with an existing implementation for a different

microcontroller, the Freescale® MPC5561. To prove the usability of this library in a real-time

application, a Traffic Sign Recognition (TSR) system was implemented. The results show that in

average the execution time is 18% faster and the binary object size is 25% smaller than in the

reference implementation, enabling the TSR application to process up to 24 fps. In conclusion,

these results demonstrate that the image processing library implemented in this project is suitable

for real-time applications.

 vii

Resumen

La mayoría de los vehículos en la actualidad están equipados con sistemas que asisten al

conductor en tareas difíciles y repetitivas, como reducir la velocidad del vehículo en una zona

escolar. Algunos de estos sistemas requieren una computadora a bordo capaz de realizar el

procesamiento en tiempo real de las imágenes del camino obtenidas por una cámara. El objetivo

de este proyecto es implementar una librería de procesamiento de imagen optimizada para la

arquitectura ARM® Cortex®-M7. Esta librería provee rutinas para realizar filtrado espacial,

resta, binarización y extracción de la información direccional de una imagen, así como el

reconocimiento parametrizado de patrones de una figura predefinida utilizando la Transformada

Generalizada de Hough. Estas rutinas están escritas en el lenguaje de programación C,

aprovechando las optimizaciones del compilador GNU ARM C, para obtener el máximo

desempeño y el mínimo tamaño de objetos. El desempeño de las rutinas fue comparado con la

implementación existente para otro microcontrolador, el Freescale® MPC5561. Para probar la

funcionalidad de esta librería en una aplicación de tiempo real, se desarrolló un sistema de

reconocimiento de señales de tráfico. Los resultados muestran que en promedio el tiempo de

ejecución es 18% más rápido y el tamaño de objetos es 25% menor que en la implementación de

referencia, lo que habilita a este sistema para procesar hasta 24 cuadros por segundo. En

conclusión, estos resultados demuestran la funcionalidad de la librería de procesamiento de

imágenes en sistemas de tiempo real.

 viii

Table of Contents

Abstract ... vi

Resumen ... vii

Table of Contents ... viii

List of Figures ... x

List of Tables .. xi

List of Acronyms ... xii

Introduction .. 1

1. Background .. 3

2. Conceptual Framework ... 7

2.1. GENERALIZED HOUGH TRANSFORM .. 7
2.2. OBTAINING AN EDGE IMAGE ... 8

2.2.1 Average Filter .. 9
2.2.2 Image Binarization ... 10
2.2.3 Edge Thinning .. 10

2.3. EXTRACTING GRADIENT INFORMATION .. 11
2.4. ATMEL® SAMV71Q21 .. 12

2.4.1 Maximizing Performance ... 13
2.4.2 Six-stage Superscalar Pipeline ... 14
2.4.3 Multi-port SRAM ... 14
2.4.4 Instruction and Data Cache .. 15
2.4.5 Tightly Coupled Memories .. 15
2.4.6 Internal Flash Memory ... 17
2.4.7 Floating Point Unit ... 17

3. Methodology ...19

3.1. IMPLEMENTATION OF THE IMAGE PROCESSING LIBRARY .. 19
3.2. ATMEL® SAMV71Q21 SYSTEM CONFIGURATION ... 20
3.3. IMAGE PROCESSING LIBRARY.. 20

3.3.1 Integer Spatial Filtering 2 x 2 ... 21
3.3.2 Integer Spatial Filtering 3 x 3 ... 22
3.3.3 Image Binarization ... 23
3.3.4 Image Subtraction .. 24
3.3.5 Image Gradient Orientation .. 25
3.3.6 Edge Thinning .. 26
3.3.7 Generalized Hough Transform ... 27
3.3.8 Image Maximum Search .. 28

3.4. IMAGE PROCESSING LIBRARY PERFORMANCE ON FREESCALE® MPC5561 29

4. Results ...31

 ix

4.1. TRAFFIC SIGN RECOGNITION APPLICATION ... 31

4.2. IMAGE PROCESSING LIBRARY PERFORMANCE ON ATMEL® SAMV71Q21 37
4.3. IMAGE PROCESSING LIBRARY BENCHMARKING .. 38

5. Discussion ..41

Conclusions ...43

References ...45

Appendices ..47

A. IMAGE PROCESSING LIBRARY SOURCE CODE .. 48

B. IMAGE PROCESSING LIBRARY HEADER ... 74

 x

List of Figures

Fig. 2-1 Directional information in an image. ... 7
Fig. 2-2 Obtaining the edges of a sample image using unsharp masking. 9

Fig. 2-3 Atmel® SAMV71Q21 - ARM® Cortex®-M7 processor implementation. 13
Fig. 3-1 Spatial filtering of a sample image using a 2 x 2 average mask. 21
Fig. 3-2 Spatial filtering of a sample image using a 3 x 3 Gaussian mask. 23
Fig. 3-3 Binarization of a sample image using a threshold value of 128. 24
Fig. 3-4 Image subtraction application. ... 25

Fig. 3-5 Typical implementation of the Generalized Hough Transform algorithm. 29

Fig. 4-1 Block diagram of the traffic sign recognition application. 31

Fig. 4-2 Traffic Sign Recognition application input. ... 32
Fig. 4-3 Traffic Sign Recognition processing part I. ... 33

Fig. 4-4 Traffic Sign Recognition processing part II. .. 34
Fig. 4-5 Location of the template image’s reference point the target image. 35

Fig. 4-6 Perfect match Hough accumulator. .. 36
Fig. 4-7 Hough accumulator when the image template has been scaled. 37
Fig. 4-8 Performance benchmarking. ... 39

 xi

List of Tables

Table I R-table .. 8
Table II Atmel® SAMV71Q21 performance features ... 14

Table III TCM vs. cache memory ... 16
Table IV Discrete values for tan(θ) ... 27
Table V Freescale® MPC5561 performance of image processing routines 30
Table VI Atmel® SAMV71Q21 performance of image processing routines 37

 xii

List of Acronyms

ADASAdvanced Driver Assistance Systems

AHBAdvanced High-performance Bus

ARMAdvanced RISC Machine

AXIAdvanced Extensible Interface

CPUCentral Processing Unit

DMADirect Memory Access

DSPDigital Signal Processor

DTCMData Tightly Coupled Memory

DWTData Watchpoint and Trace

ECCError-correcting Code

ETMEmbedded Trace Macrocell

FPGAField-programmable Gate Arrays

fpsFrames per second

FPUFloating Point Unit

GHTGeneralized Hough Transform

GNUGNU's not Unix

ISAInstruction set architecture

ITCM..............Instruction Tightly Coupled Memory

ITESOWestern Institute of Technology and Higher Education

MACMultiply–accumulate

MCUMicrocontroller Unit

msmillisecond

NVMNon-volatile Memory

PowerPCPerformance Optimization with Enhanced RISC Performance Computing

RISCReduced Instruction Set Computer

RAMRandom Access Memory

RWWRead While Write

SRAMStatic Random Access Memory

SIMD..............Single instruction, multiple data

TCMTightly Coupled Memories

TSRTraffic Sign Recognition

VFPVector Floating-Point

 1

Introduction

Advanced Driver Assistance Systems (ADAS) are systems that help motorists while

driving. In general, these systems increase automobile and road safety by means of providing the

driver, or other driving assistance systems, with real-time information via an appropriate interface

while automating difficult and repetitive tasks, such as reducing the speed to avoid a collision [1].

ADAS have recently become part of most modern automobiles, including commercial vehicles.

Safety is the main incentive for the growth of ADAS since the number of motor vehicle collisions

is high enough to be considered an epidemic, while driver comfort is also a key motivator [2].

Some examples of ADAS are lane, vehicle, and pedestrian detection, forward collision

warning, and parking assistance, among others. Several of these technologies require image

processing capabilities of the vehicle’s onboard computer, such as Traffic Sign Recognition (TSR).

TSR is used to regulate traffic signs, warn drivers, and command or prohibit certain actions

such as limiting or reducing the vehicle speed in a school zone. By liberating the driver of these

tasks, TSR increases driving safety and comfort [3]. A key aspect of TSR is a fast and robust

embedded system capable of sensing the environment and analyzing the data to detect traffic signs.

To do this, an image sensor is used to capture a picture of the road, then this picture is analyzed

using different detection methods such as color or shape segmentation. The final stage is to present

the information to the driver or send it to other automobile subsystems in order to act accordingly

(e.g. drive the automobile in the correct lane).

The vehicle´s onboard computer must support processor optimized software routines for

image processing when implementing TSR. These routines must perform image filtering and

segmentation to recognize patterns. Given that TSR is required to provide real-time information,

these routines must complete the video frames analysis fast enough so that these are still up to date

[4].

 2

For this reason, the goal of this project is to implement an optimized software library for

the ARM® Cortex®-M7 architecture that contains the image processing routines needed to

perform shape recognition, using Generalized Hough Transform (GHT). These routines include

image spatial filtering, subtraction, binarization, and extraction of the directional information

along with the parameterized pattern recognition of a predefined template using the GHT. The

results will be benchmarked with the existing implementation for a different microcontroller

(Freescale® MPC5561) to prove its usability in a real-time application.

The processor used for this project is the Atmel® SAMV71Q21. It is based on the 32-bit

ARM® Cortex®-M7 architecture. This processor is present in the Atmel® SAM V71 Xplained

Ultra evaluation kits, which have recently been acquired by the Western Institute of Technology

and Higher Education (ITESO) for its Embedded Systems Specialization Program. By using this

evaluation kit, future students will be empowered to develop other interesting projects using the

image processing library implemented for this project as a building block of any system.

3

1. Background

Nowadays, image processing is an important area of research mainly because of its wide

range of applications. Image processing is applied in different fields such as industrial automation

[5], automotive industry [6], and the medical sector [7]. Sophisticated image processing techniques

are also used to diagnose deviations of the spine in a patient the same way they help identify flaws

in a product assembly line. Modern automobiles can identify traffic signs by means of applying

similar image processing techniques.

One of the most habitual problems in image processing applications is the existence of

noise in the images that are processed [5]. Noise can be introduced during the image acquisition,

transmission, and compression phases [8]. This undesired information must be removed from the

image before further processing; this can be achieved using a digital signal processing technique

known as spatial filtering. In this technique, each pixel of the image is modified by its

neighborhood and a matrix of coefficients named mask. By using this method, several other image

effects can be achieved just by changing the coefficients of the filter’s mask, such as smoothing,

edge detection, noise reduction, and sharpening.

The median filter is a type of spatial filter used to remove noise from an image; it is usually

found in a previous stage of other image processing techniques, such as image segmentation. In an

image, the median filter uses a mask that is applied to each pixel with the purpose of determining

the median value. This resulting value is placed in the same pixel position of the output image [9].

Pattern recognition applications require a method that can identify shapes regardless of the

noise of the image and other visual obstacles. The Generalized Hough Transform is a suitable

method for this purpose [10]. GHT is a technique that searches for occurrences of a template in an

image, and when a match is found, a matrix called accumulator is updated. Finally, the matrix

coordinates with the higher number of votes represent the template’s reference point if the number

of votes is above a given threshold [7]. Fixed orientation shapes can be identified using a two-

 4

dimensional array containing only the coordinates of the shape´s reference point. If the shape has

an arbitrary orientation and scale, these values are added to the shape description array resulting

in four dimensions. The disadvantage of GHT is that its algorithm has a high computational

demand due to the series of nested loops resulting from its implementation [11].

Performance is important in image processing because most of the time real-time results

are required (i.e. processing 30 video frames per second). Given that most of these techniques have

high computational complexity due to the multidimensional nature of the signals applied [11],

implementing image processing applications becomes a challenge, especially in embedded

systems, where the computing power and memory bandwidth are limited.

Moreover, due to the high computational costs of spatial filtering, current research focuses

on increasing the performance of the filter’s core operations so that these techniques can be used

in any system that requires real-time image processing. Optimizations for median filters with 3 x

3 mask using Field-programmable Gate Arrays (FPGA) have been developed, and results show

that this implementation can run 85 times faster than a PC microprocessor. This optimization

process produces 30 images of 640 x 480 pixels in less than a second, enabling this implementation

for real-time applications [5]. Another generic solution focuses on reducing the delay time between

image acquisition and image processing by means of using a line memory instead of a frame,

achieving a time of 13.1 ms for filtering a frame of 640 x 512 pixels [6].

In the case of GHT, recent studies have focused on hardware implementations to achieve

real-time performance. FPGA is used along with algorithm optimizations such as image

downscaling and rotation to reduce the computational cost of this process [12]. Other

implementations take advantage of the fact that depending on the application, only two of the four

dimensions of the shape’s representation are relevant, reducing the complexity by using fixed

orientation match templates with no rotation or scale values [13]. GHT implementations that

support the four dimensions have also been employed using a configurable FPGA architecture.

Results have shown that the implementation of image processing techniques to perform shape

 5

recognition using FPGA can result in a speed gain up to 4.5 times when compared to a high-end

PC microprocessor [11].

On the other hand, FPGA disadvantages include a higher power consumption compared to

microcontrollers (considering similar applications), also the set of tools and skills are very different

compared to the ones used for microcontrollers. Besides, FPGA uses hardware description instead

of a programming language. This increases the level of complexity of these systems along with

the required expertise of the developers. Cost is also a disadvantage; FPGA chips are more

expensive than microcontrollers. For this reason, having an optimized image processing library

integrated into the embedded system’s microprocessor represents an economic advantage

compared to an FPGA dedicated image processing module.

7

2. Conceptual Framework

2.1. Generalized Hough Transform

The Hough Transform is an image processing technique that is useful for identifying

figures that can be represented by an analytic function, such as straight lines, circles, or ellipses by

operating in the edge information of an image. The number of pixels in an image that fit in an

analytical figure is held in a matrix called accumulator. At the end of the process, the accumulator

stores the information of the strongest analytical figure in an image [8].

The GHT was developed with the goal of identifying arbitrary shapes in an image,

particularly, those shapes that cannot be represented analytically. This method requires obtaining

the directional information of the image. Each boundary point Pi(xi,yi) will be represented as a

(r,α) pair. r is the Euclidean distance from a reference point Pr(xr,yr) to the boundary point, and α

is the angle of the line connecting the boundary point and the reference point as shown in Fig. 2-1.

Fig. 2-1 Directional information in an image [14].

 8

These pairs are stored into a list, called the R-table, indexed by the local edge direction, θi,

at the boundary point. In general, the mapping that the R-table represents is a many-to-one

mapping where empty entries are allowed. Table I shows the form of the R-table. The parametric

representation of the image is stored in the R-table in four dimensions, xr, yr, scale (s) and

orientation (ϕ). This four-dimensional space is called Hough space.

Table I

R-table

Edge

Direction

θi

Boundary

Points

(r,α)

Δθ (r1,α1), (r2,α2)

2Δθ (r3,α3)

3Δθ (r4,α4), (r5,α5),(r6,α6)

... …

The discrete representation of the R-table is called accumulator, where every edge point

provides a vote to the corresponding Hough space bin. This is, the (xr,yr,,s,ϕ) bin in the accumulator

is increased by one when a match for the reference point is found. This process is repeated for

every value in the Hough space and then, the bin with the largest number of votes provides the

reference point of the template in the target image [7].

2.2. Obtaining an Edge Image

Given that GHT uses the borders of an image to match the points of a template image using

gradient information, it is important to have a good border image. The unsharp masking technique

is used for this purpose.

Unsharp masking consists in subtracting a blurred version of an image from the original

image. The blurred version of the image is obtained using a Gaussian spatial filter. Equation (2-1)

defines the Gaussian filter function.

 9

 
 

2

22

2, 

ji

ejig




(2-1)

The blurring effect of the Gaussian filter is the same in all directions and it can be controlled

by σ, the greater this value is, the smoother the image will look.

The result of the blurred image subtraction from the original image is an image that contains

only important variations while eliminating the unimportant information (i.e. the image’s

background). Fig. 2-2 shows the unsharp masking technique.

Fig. 2-2 Obtaining the edges of a sample image using unsharp masking. The blurred image

(Gaussian mask) is subtracted from the original image. The resulting image contains the

edges of the image [14].

2.2.1 Average Filter

The average filter is used to remove noise in an image, in this case, the edge image. This

undesired information is presented as pixels changing rapidly in space. A 2 x 2 mask is used

because the goal is only to reduce the noise of the edge image and not remove relevant edge

information. Equation (2-2) shows the 2 x 2 mask used for the average spatial filter.











11

11

4

1
avg (2-2)

-

+
-

 10

2.2.2 Image Binarization

The goal of image binarization is to remove the noise with low grayscale values. Since the

average spatial filter diminishes the pixel intensity of the regions that have few pixels with high

values, it is possible to eliminate these regions by means of applying a threshold value to the image.

Image binarization for a given Image and Threshold values is given by the equation (2-3).

ji,OutImage





1

0

ThresholdImage

ThresholdImage





ji,

ji,
 (2-3)

2.2.3 Edge Thinning

Edge thinning is required when the border images are used in GHT since the computational

cost can be drastically reduced by decreasing the number of points that are analyzed. To preserve

the relevant information of the edge image, edge thinning should not remove endpoints nor cause

excessive erosion of a region [15].

The edge thinning process in this project is given by defining the following sets based on

the actual pixel content

        
        

      
      
      
      220,128,,

220,128,,

125,35,,

125,35,,

255,,,,,),(

,,,,,),(













jiGradjiGradjiD

jiGradjiGradjiC

jiGradjiGradjiB

jiGradjiGradjiA

jiGradjiGradjiGradjiGradjisum

jiGradjiGradjiGradjiGradjisame

yy

xx

yy

xx

yxyx

yxyx

 (2-4)

 11

Then, its corresponding indexes are defined as

        

        

        

        

         

         186,,,,

69,,,,

,,,,

,,,,

,,,,

,,,,













jiGradYjisumjiji

jiGradYjisamejiji

jiDjiCjiji

jiBjiCjiji

jiDjiAjiji

jiBjiAjiji

f

e

d

c

b

a

 (2-5)

Then, the set of indexes to be zeroed-out are defined as

              
fedcbazero jijijijijijiji ,,,,,,,  (2-6)

Finally, single-edge border images are given by

        },,,,0{, zeroyyy jijiGradjiGradjiGrad 

        },,,,0{, zeroxxx jijiGradjiGradjiGrad 

(2-7)

For each pair i and j with 1 ≤ i ≤ rows and 1 ≤ j ≤ cols.

2.3. Extracting Gradient Information

Extracting the gradient information of the template and the target images is performed

before computing the GHT. The directional information θi is calculated using (2-8).

 















x

y

Grad

Grad
yx arctan,

(2-8)

 12

Gradx and Grady represent the first derivative of the image. These are calculated using

equation (2-9).

 

 



































y

x

Grad

Grad

y

x

yx,A

yx,A

 (2-9)

Sobel and Prewitt gradient operators are the most commonly used gradient edge detectors

[8]. Given that these operators are only an approximation of the continuous gradient, Ando’s

gradient operator is used [16]. By providing a higher peak in the GHT accumulator, this operator

is known to perform better than Sobel and Prewitt [7]. The 3 x 3 optimum gradient operators are

shown in equation (2-10).











































 







112737.00112737.0

274526.00274526.0

112737.00112737.0

112737.0274526.0112737.0

000

112737.0274526.0112737.0

y

x

y

x

 (2-10)

2.4. Atmel® SAMV71Q21

In this section, an overview of the hardware selected will be presented, along with the most

relevant features that are directly related to signal processing, which were used to achieve the

maximum performance of the image processing library implemented in this project.

The Atmel® SAMV71Q21 is a high-performance flash microcontroller (MCU), a member

of the SMART SAM V71 family of devices based on the 32-bit ARM® Cortex®-M7 RISC (5.04

CoreMark/MHz) processor with a floating point unit (FPU). Although the Cortex®-M processor

 13

family is more focused on the lower end of the performance scale, these processors are still

powerful when compared to other typical processors.

The device operates at a maximum speed of 300 MHz, it features 2048 kB of Flash, 16 kB

of dual cache memory and 384 kB of SRAM. Fig. 2-3 shows the implementation of this MCU

[17].

Fig. 2-3 Atmel® SAMV71Q21 - ARM® Cortex®-M7 processor implementation [18].

2.4.1 Maximizing Performance

The Atmel® SAMV71Q21 MCU implements the Cortex®-M7 processor according to the

high-performance configuration recommended by ARM®. Table II shows the high-performance

features available in the Atmel® SAMV71Q21 MCU.

 14

2.4.2 Six-stage Superscalar Pipeline

The Cortex®-M7 has a six-stage superscalar pipeline with branch prediction that enables

the processor to execute two instructions in parallel. The pipeline features an optional float pipeline

so that floating point instructions can be dual-issued with integer instructions as well. Memory

accesses are interleaved with computation to reduce latency. The processor features an integer

MAC instruction execution that takes one clock cycle [17].

2.4.3 Multi-port SRAM

Table II

Atmel® SAMV71Q21 performance features [17]

Feature Atmel® SAMV71Q21

FPU Single and Double Precision FPU

ITCM max size 128 kB

DTCM max size 128 kB

I-cache size 16 kB

D-cache size 16 kB

Multi-port SRAM 384 kB

AHB Peripheral (AHBP) size 512 MB

ECC support on caches Implemented

MPU 16 regions

Interrupts 72

Debug watchpoints and

breakpoints

4 data watchpoints + 8

breakpoints

ITM and DWT Trace Implemented

ETM ETM Instruction Trace only

 15

Multi-port SRAM in the Atmel® SAMV71Q21 MCU is 384 kB. This SRAM space

operates at bus clock (i.e. processor clock / 2 = up to 150 MHz) and has four ports to optimize the

bandwidth and latency. The purpose of the multi-port capability is to decrease the latency when

several masters try to access the SRAM simultaneously. The integrated controller manages

interleaved addressing of SRAM blocks so that another master will be able to have access on the

next cycle [17].

The Tightly Coupled Memory (TCM) region is shared with the system’s RAM region. The

size of the TCM region can be configured through NVM bits, and the remaining SRAM size is

automatically assigned to the RAM region. Fig. 2-3 shows the implementation of the SRAM.

2.4.4 Instruction and Data Cache

The Atmel® SAMV71Q21 MCU embeds an instruction and data cache (I-cache and D-

cache) to compensate wait state penalty when executing code out from the external memory

(typically flash). The size of I-cache and D-cache is 16 kB each [17].

2.4.5 Tightly Coupled Memories

Real-time applications require algorithms that run fast and deterministically in time. These

applications must be protected against cache misses, interrupts, context swaps, and other run-time

events. The Cortex®-M7 architecture provides a way to avoid the slow memory access time caused

by the cache miss delay, bypassing the standard execution mechanism using TCM [19].

The TCM controller provides a direct channel between the processor and two memory

areas: Instruction TCM (ITCM) and Data TCM (DTCM). The size of these memories is 128 kB

each for the Atmel® SAMV71Q21 MCU. Instructions and data located in the TCM can be directly

accessed at processor speed (i.e.: up to 300 MHz) with no wait state penalty, as opposed to the

other memories such as the flash, which is accessed at bus speed through the AXI master interface

[18].

 16

The purpose of the TCM memories is to store the critical part of the code, which needs to

be processed as fast as possible. TCM memory contents are not cached. TCM memory is directly

connected to the Cortex®-M7 core by a bus. It can be accessed at similar speeds as accessing cache

without the penalty of a cache miss and cache coherence issues. Table III highlights the key

differences between cache and TCM.

Table III

TCM vs. cache memory [18]

Tightly Coupled Memory Cache Memory

TCM is a memory accessed by a

dedicated connection from the

core. There are two dedicated

connections from Cortex®-M7 to

the internal SRAM – for

Instruction TCM and another for

Data TCM.

Cache memory is RAM memory

integrated inside the Cortex®-M7

core itself.

TCM is part of the system memory

map with a definite start address.

The size of the TCM determines

the end address.

Cache memory is not part of the

system memory map. It does not

have a physical memory address.

A programmer can decide the

content to be stored in TCM at

compilation time.

A control logic determines what

is stored in cache memory.

The TCM memory is directly

accessible to software.

During program execution, the

cache is stored with instructions

or data fetched from memory to

the CPU.

TCM can be accessed both by

CPU and by DMA.

Cache memory serves as an

intermediate buffer between the

processor and memory to reduce

memory access time. The number

of cycles needed to access a

memory location differs for a

cache-hit and a cache-miss.

 17

The code that will be executed out of the TCM must be identified by the programmer.

When preparing a software build, the programmer will need to identify which code segments and

data blocks should be allocated to the TCM by modifying the linker script. For this project, the

image processing library routines will be allocated in ITCM.

2.4.6 Internal Flash Memory

Internal flash memory is accessed through the AXI Master and AHB matrix at bus clock.

Wait states must be added depending on the operating frequency (up to five wait states when the

processor is running at a maximum frequency), I-cache and D-cache can be used to compensate

for the high memory access time [17].

2.4.7 Floating Point Unit

The Atmel® SAMV71Q21 MCU integrates a double-precision FPU that supports the

ARMv7 VFPv5 architecture. It is tightly integrated to the ARM® Cortex®-M7 processor pipeline.

It provides trapless execution and is optimized for scalar operations [17].

19

3. Methodology

In this section, the most important elements for the implementation of the image processing

library are presented. The system configuration applied in this project to achieve the maximum

performance and the software routines that comprise this library are described in detail.

3.1. Implementation of the Image Processing Library

In order to achieve the maximum performance of the image processing library, the GNU

ARM assembly language was initially considered in order to take full advantage of the low-level

signal processing functions offered by the ARM® Cortex®-M7 architecture. Given that the

equivalent implementation of a 2 x 2 spatial filter was faster when implemented in GNU ARM C

than in assembly language, the GNU ARM C toolchain was used. To obtain the maximum

performance and improve the object size, the compiler optimization was set to O3.

The performance of the library was determined by two metrics, execution time and object

size. Execution time was measured using the clock cycle counter of the Data Watchpoint and Trace

(DWT) module in the MCU. Clock count was measured only for the core operations of the

routines, neglecting setup and teardown sections. Object size was measured by obtaining the

address offsets of the image processing routines in the memory map.

The target image was precompiled for validating the implementation of the routines, and it

was located in the read-only memory section (internal flash memory). In a real application, this

buffer would be obtained from a camera through an image sensor interface. The R-table buffers

for the template image were also located in the internal flash, provided these values will be

constant.

The image processing buffers are located in RAM since low memory access time for the

image buffer is critical for achieving a maximum performance. The image processing routines

 20

were validated by dumping the memory of these buffers and converting the binary data using

Matlab to either an image or a mesh graph for the case of the output of the GHT routine.

3.2. Atmel® SAMV71Q21 System Configuration

The Atmel® SAMV71Q21 MCU was configured as follows to achieve maximum

performance.

 Operating frequency: 300 MHz.

 TCM enabled; ITCM size: 128 kB; DTCM size: 128 kB.

 Hardware FPU enabled.

 Instruction and data cache enabled.

 Software to run from internal flash memory.

3.3. Image Processing Library

The routines that comprise the Atmel® SMART SAM V71 image processing library will

be reviewed in this section.

 Integer Spatial Filtering 2 x 2 (Correlation)

 Integer Spatial Filtering 3 x 3 (Correlation)

 Image Binarization

 Image Subtraction

 Image Gradient Orientation

 Edge Thinning

 Generalized Hough Transform

 21

A brief description of the routines along with application examples and the proposed

implementation algorithm will be presented. The implementation of these routines is based on a

previous work for the Freescale® MPC5561 microcontroller [14].

3.3.1 Integer Spatial Filtering 2 x 2

Description: Filtering of an 8-bit unsigned integer image based on spatial correlation with

floating-point masks of size 2 x 2. The result is stored into an array of 8-bit unsigned integers

representing the output image.

Application: Using an average mask, this routine is used to soften the lines of an image.

Fig. 3-1 shows an example application.

Algorithm:

 Set Image to be a rows x cols array.

 Set Mask to be a 2 x 2 filtering mask.

 OutImage is the spatial correlation (filtering) of Image using Mask given by

 (a) (b)

Fig. 3-1 Spatial filtering of a sample image using a 2 x 2 average mask. (a) Original; (b) Filtered

image.

 22

2,21,11,2,1

2,11,1,1,1ji,

MaskImageMaskImage

MaskImageMaskImageOutImage

jiji

jiji








 (3-1)

For each pair i and j with 1 ≤ i ≤ rows - 1 and 1 ≤ j ≤ cols - 1.

Note that first column and last row of the output images are not calculated. These values

are left unchanged.

3.3.2 Integer Spatial Filtering 3 x 3

Description: Filtering of an 8-bit unsigned integer image based on spatial correlation with

floating-point masks of size 3 x 3. The result is stored into an array of 8-bit unsigned integers

representing the output image.

Application: Examples of commonly used filtering masks are the following:

 Gaussian

 Ando

 Average

 Prewitt

Fig. 3-2 shows an example application using a Gaussian mask.

Algorithm:

 Set Image to be a rows x cols array.

 Set Mask to be a 3 x 3 filtering mask.

 OutImage is the spatial correlation (filtering) of Image using Mask given by

 23

3,32,2

1,3,23,22,1

1,2,13,12,1,1,1j1,i

...

......

MaskImage

MaskImageMaskImage

MaskImageMaskImageMaskImageOutImage

ji

jiji

jijiji













 (3-2)

For each pair i and j with 1 ≤ i ≤ rows - 2 and 1 ≤ j ≤ cols - 2.

Note that first and last columns, as well as first and last rows of the output image, are not

calculated. These values are left unchanged.

 (a) (b)

Fig. 3-2 Spatial filtering of a sample image using a 3 x 3 Gaussian mask. (a) Original; (b) Filtered

image.

3.3.3 Image Binarization

Description: This function computes the binary representation of an 8-bit unsigned integer

image using a thresholding approach. The binary representation is stored into an array of 8-bit

unsigned integers representing the output image.

 24

Application: By modifying the threshold, this function can erase undesired information

(e.g. noise) of an image. Fig. 3-3 shows an example application.

Algorithm:

 Set Image to be a rows x cols array.

 Set Threshold to be a reference value.

 OutImage is the binary representation of Image given by

ji,OutImage





255

0

ThresholdImage

ThresholdImage





ji,

ji,
 (3-3)

For each pair i and j with 1 ≤ i ≤ rows and 1 ≤ j ≤ cols.

 (a) (b)

Fig. 3-3 Binarization of a sample image using a threshold value of 128. (a) Original; (b) Binary

image.

3.3.4 Image Subtraction

 25

Description: Pixel by pixel subtraction of 8-bit unsigned integer images. The result is stored

into an array of 8-bit unsigned integers representing the output image.

Application: This function can highlight features that differ from an image to another. For

example, a Gaussian filtered version of an image can be subtracted from the original image to

perform an unsharp masking operation. Fig. 3-4 shows an example application.

Algorithm: If ImageA and ImageB are arrays of identical dimensions rows x cols, then their

subtraction is a rows x cols array denoted by OutImage = ImageA - ImageB. The subtraction is

given by

jiOutImage , jiImageA , jiImageB , (3-4)

For each pair i and j with 1 ≤ i ≤ rows and 1 ≤ j ≤ cols.

3.3.5 Image Gradient Orientation

Description: Compute directional information (θ) based on a discrete calculation of the arc

tangent of the gradient operators of the image. Resulting gradient orientation image is stored into

an array of 8-bit unsigned integers.

 (a) (b) (c)

Fig. 3-4 Image subtraction application (a) – (b) = (c). (a) Original; (b) Gaussian filtered image;

(c) Subtracted image (edge image).

 26

Algorithm: The directional information of an image is given by obtained by applying a

spatial filter of a 3 x 3 mask, using the Ando’s gradient operator shown in equation (2-10). Table

IV shows discrete values of tan(θ) in increments of 10°.

3.3.6 Edge Thinning

Description: This function merges dual-edge borders generated using directional gradient

masks (such as Ando’s directional masks) into single-edge borders. The resulting single-edge

border images are stored into same 8-bit unsigned integer input arrays.

 27

Application: After using Ando’s directional gradient masks to obtain Gradx and Grady, this

function merges dual-edge border into single-edge border images. These resulting images can be

used in a Hough transform algorithm, reducing in half the number of border information to be

processed.

Algorithm: Equations (2-4), (2-5), (2-6) and (2-7) show the edge thinning algorithm

implemented for this project.

3.3.7 Generalized Hough Transform

Table IV

Discrete values for tan(θ)

Degrees Radians tan(θ) Discrete

value

95 1.658062789 -11.430052 -732

105 1.832595715 -3.732051 -239

115 2.00712864 -2.144507 -137

125 2.181661565 -1.428148 -91

135 2.35619449 -1.000000 -64

145 2.530727415 -0.700208 -45

155 2.705260341 -0.466308 -30

165 2.879793266 -0.267949 -17

175 3.054326191 -0.087489 -6

5 0.087266463 0.087489 6

15 0.261799388 0.267949 17

25 0.436332313 0.466308 30

35 0.610865238 0.700208 45

45 0.785398163 1.000000 64

55 0.959931089 1.428148 91

65 1.134464014 2.144507 137

75 1.308996939 3.732051 239

85 1.483529864 11.430052 732

 28

Description: Alpha (α) information must be stored in the 16-bit arrays AlphaSine and

AlphaCosine in the form of sin(α) and cos(α) multiplied by a factor of 256, respectively. Theta (θ)

information is stored in ThetaLength and ThetaIndex and must contain the number of elements

with the same orientation and their absolute index within the template images, respectively.

Application: The user can take advantage of the Hough transform function to implement

template segmentation techniques. One application is recognition of traffic signs along the road by

an onboard vehicle computer paired with an imaging sensor.

Algorithm: Fig. 3-5 shows the algorithm for the typical implementation of the GHT. The

template image’s R-table is used to compute candidate reference points in the target image. The

accumulator is updated in every iteration.

3.3.8 Image Maximum Search

Description: Search for the maximum value of an 8-bit unsigned integer image of size rows

x cols. The maximum value and its coordinates in the form of 32-bit unsigned integers are the

output values.

Application: This function searches for the maximum value within a bi-dimensional array

(image) and provides the user with the maximum found value and its x and y coordinates. One

application of this function is to search for the maximum number of votes on the discrete Hough

domain (accumulator) and determine its x and y coordinates within this domain.

Algorithm:

 jiMaxValue ,  
ji,max Image (3-5)

 29

For each pair i and j with 1 ≤ i ≤ rows and 1 ≤ j ≤ cols.

Fig. 3-5 Typical implementation of the Generalized Hough Transform algorithm [14].

3.4. Image Processing Library performance on Freescale® MPC5561

Table V shows the performance measurements for the image processing library routines

implemented in this project for a different hardware, a Freescale® MPC5561 MCU.

Although the Freescale® MPC5561 is based on a different architecture, this

microcontroller is designed for ADAS applications, specifically for those that use radar or image

sensors. Its characteristics make it a good choice for digital signal processing applications, among

the most relevant are [20]:

 Core

 30

o 132 MHz PowerPC ISA e200 Core

 SIMD module for DSP and floating-point features

o 32 kB Unified Cache

 Memory

o 1 MB RWW Flash with ECC

o 192 kB SRAM with ECC

 System

o DMA Controller

o Interrupt Controller

o External Bus Interface

Note that the execution time of the image processing routines marked with an asterisk (*)

vary depending upon image content. These values represent the average performance obtained

during development and testing of a limited number of images.

Table V

Freescale® MPC5561 performance of image processing routines [14]

Function name Object size

(Bytes)

Execution time

(Clock cycle / Pixel)

Integer Spatial Filtering 2 x 2 316 13.8

Integer Spatial Filtering 3 x 3 732 20.7

Image Binarization 300 5.8

Image Subtraction 332 3.8

Image Gradient Orientation* 704 8.7

Edge Thinning* 448 8.9

Generalized Hough Transform* 540 51.0

Image Maximum Search 268 9.8

31

4. Results

The image processing library described in the previous section was used to build a TSR

application. During this process, the performance of the image processing routines was

documented with the objective of benchmarking with the implementation for the Freescale®

MPC5561.

4.1. Traffic Sign Recognition Application

The block diagram depicting the high-level approach used for the TSR application is shown

in Fig. 4-1. Each gray block represents a routine of the image processing library implemented for

this project. The image acquisition can be performed using a camera module connected to the

Atmel® SAM V71 Xplained Ultra evaluation kit’s image sensor interface.

Fig. 4-1 Block diagram of the traffic sign recognition application [21].

 32

The R-table for the template image was generated in advance using a Matlab script. The

output of the algorithm is the coordinates of the point with the highest number of votes of the

template image in the target image.

The target and template images selected as an example for this application, are shown in

Fig. 4-2. The target image is a stop sign; this image was preprocessed to convert it to grayscale in

order to be used with the image processing library. The template image was created by extracting

the most relevant border information of the stop sign. It is important to note that the greater the

number of pixels in this template image, the greater the computational cost of the GHT.

 (a) (b)

Fig. 4-2 Traffic Sign Recognition application input. (a) Target image; (b) Template image.

The image processing starts after acquiring the image, in the first place, a 2 x 2 average

spatial filter and binarization is applied. The output of these two processes is an image with low

noise. Then, in another memory buffer, a blurred version of the binarized image is stored. This

image is created using a 3 x 3 Gaussian spatial filter. With these two images, an unsharp masking

technique is applied, subtracting the blurred binarized image to the binarized image. The resulting

image is binarized again to remove the noise introduced in the previous stages. Fig. 4-3 shows the

output images in each of the phases described in this paragraph.

 33

At this point, the working buffer contains an edge image with little or no noise, and the

next step is to apply Ando’s directional mask to obtain the x and y directional information of the

 (a) (b)

 (c) (d)

 (e) (f)

Fig. 4-3 Traffic Sign Recognition processing part I. (a) Original image; (b) 2 x 2 average spatial

filtering; (c) Image binarization; (d) 3 x 3 Gaussian spatial filtering; (e) Unsharp

masking image; (f) Unsharp masking image after image binarization.

 34

image. Then, the edge thinning routine is invoked for the output images with the purpose of

reducing the number of edges in the image. Note that the amount of border information in the

target image also impacts the computational cost. Fig. 4-4 shows the output images for these

routines.

 (a) (b)

 (c) (d)

Fig. 4-4 Traffic Sign Recognition processing part II. (a) Image gradient y; (b) Image gradient x;

(c) Image gradient y after edge thinning routine; (d) Image gradient x after edge thinning

routine.

A new buffer containing the discrete directional information of the image given by the

equation (2-8) and Table IV is fed to the GHT routine along with the R-table of the template image

 35

in the form of three arrays containing the pre-calculated r, sin(α), and cos(α) for a given orientation.

These arrays are obtained in advance using a Matlab script that receives an image as the input

argument and creates a C header file that contains these image template definitions.

The output of the GHT function is a buffer containing the Hough accumulator. The

maximum value in this buffer is located using the image maximum search routine. Fig. 4-5 shows

the composite image of the target and template images, showing the reference point of the template

obtained from the GHT routine.

Fig. 4-5 Location of the template image’s reference point the target image.

Fig. 4-6 shows the mesh graph of the Hough accumulator. It is worth noting that the vote

count that is shown in the Hough accumulator in Fig. 4-6 represents a perfect match of the template

image in the target image. By modifying the scale factor of the template image, no peak at the

Hough accumulator was observed. An example is shown in Fig. 4-7.

In a TSR application, the difference in the Hough accumulator peak value is used as a

software flag to indicate a template match in the target image.

 36

Fig. 4-6 Perfect match Hough accumulator.

 37

Fig. 4-7 Hough accumulator when the image template shown in Fig. 4-2 has been scaled.

4.2. Image Processing Library performance on Atmel® SAMV71Q21

The performance of the image processing library implemented for the Atmel®

SAMV71Q21 is shown in Table VI. The values in this table can be compared to those in Table V,

except for the routines that are marked with an asterisk (*), since the execution time for those

routines is directly related to the image content. Nevertheless, the content and size of the template

and target images were similar to those used for the Freescale® MPC5561 image processing

library implementation so that the execution time could be benchmarked.

Table VI

Atmel® SAMV71Q21 performance of image processing routines

Function name Object size

(Bytes)

Execution time

(Clock cycle / Pixel)

Integer Spatial Filtering 2 x 2 256 9.8

 38

Integer Spatial Filtering 3 x 3 424 19.6

Image Binarization 96 5.7

Image Subtraction 308 3.0

Image Gradient Orientation* 224 5.4

Edge Thinning* 504 4.6

Generalized Hough Transform* 616 66.5

Image Maximum Search 224 6.5

The TSR application shown in Fig. 4-1 implemented with the Atmel® SAMV71Q21 MCU,

can process up to 19 frames of 308 x 308 pixels per second. The signal processing rate varies

depending on the image processing application implementation.

4.3. Image Processing Library Benchmarking

The execution time and object size of the image processing library routines implemented

for the Atmel® SAMV71Q21 were compared with the Freescale® MPC5561 implementation. The

result is shown in Fig. 4-8.

 39

By using the GNU ARM C compiler optimization, the object size is in average 25%

smaller. This enables the embedded system for more robust image processing applications. Yet,

there are two cases where the resulting objects are 13% larger compared to the reference

implementation. These cases correspond to the Edge Thinning and GHT routines.

Fig. 4-8 Performance benchmarking for the image processing library implementation for the

Atmel® SAMV71Q21 and the Freescale® MPC5561 microcontrollers. The execution

time of the image processing routines marked with an asterisk (*) vary depending upon

the image content.

0 10 20 30 40 50 60 70

Integer Spatial Filtering 2x2

Integer Spatial Filtering 3x3

Image Binarization

Image Subtraction

Image Gradient Orientation*

Edge Thinning*

Generalized Hough Transform*

Image Maximum Search

Clock Cycle / Pixel

Image processing library

Execution Time Benchmarking

0 100 200 300 400 500 600 700 800

Integer Spatial Filtering 2x2

Integer Spatial Filtering 3x3

Image Binarization

Image Subtraction

Image Gradient Orientation*

Edge Thinning*

Generalized Hough Transform*

Image Maximum Search

Bytes

Object Size Benchmarking

Atmel® SAMV71Q21 Freescale® MPC5561

 40

Execution time is measured in MCU clock cycles per pixel, in average the implementation

for Atmel® SAMV71Q21 is 18% faster than the reference. This is achieved by the GNU ARM C

compiler optimization techniques such as inline functions, loop unrolling, and automatic

vectorization.

41

5. Discussion

The performance of the image processing library implemented in this project has been

validated with a TSR application. The results show that the execution time and binary object size

were improved compared to the reference implementation.

Benchmarking results were positive for object size provided that the resulting binary

objects are in average 25% smaller than the Freescale® MPC5561 implementation. This difference

is critical for the suitability of the image processing library in embedded applications. The negative

difference of the two image processing routines that resulted in objects 13% larger (GHT and edge

thinning) is a reasonable tradeoff, given that by implementing these routines in a high-level

programming language such as C, the maintainability of the library increases compared to the

implementation in assembly language. Furthermore, the average gain in space is 37% in the rest

of the routines.

Execution time benchmarking results were also positive with an 18% average gain in

performance. It is important to note the role of the GNU ARM C compiler optimizations in this

result. These optimizations offer the possibility of a better performance even though the Atmel®

SAMV71Q21 is not a signal processing microcontroller such as Freescale® MPC5561. This gain

is only achievable when the compiler optimizations are enabled.

The performance of the TSR application example presented in this project is superior for

the Atmel® SAMV71Q21 since the execution time is minor and the processor’s clock speed is 2.3

times faster. Depending on the size of the frames, the optimized image processing library is

suitable for real-time applications by obtaining an fps rate up to 24. It is worth mentioning that the

presented TSR implementation can still be improved and thus, the fps rate can increase.

Other image processing applications can also benefit from the high performance achieved

through this implementation. For instance, according to Table VI, the spatial filtering routine with

 42

a 3 x 3 mask can process 30 frames of 640 x 480 pixels in 602 ms. This represents a gain of 39%

in execution time compared with the FPGA implementation presented by Vega [5]. Nevertheless,

other applications still provide a better performance mostly by reducing the indexing time; for

instance, the 3 x 3 spatial filter presented by Park is 60% faster [6]. However, the reduced cost

when using the main MCU instead of a dedicated FPGA module as an image processing core must

be considered.

Regarding the implementation details of the image processing routines, the PowerPC

assembly implementation makes use of programming optimization techniques. For instance, using

SIMD instructions to perform up to four arithmetic operations in a single clock cycle, employing

dedicated branching registers to avoid unnecessary comparison instructions in every iteration, and

selecting the right order for memory access and computation instructions to avoid pipeline stalls.

Given that these techniques are not automatic, they require relevant programming expertise and

multiple fine-tuning iterations until the maximum performance is achieved.

On the other hand, the ARM® Cortex®-M7 family cannot fully benefit from the SIMD

instruction set due to the reduced number of general purpose registers and the lack of special signal

processing registers. These registers are required to load the multiple operands of SIMD

instructions, and depending on the algorithm, an overhead can be created for every SIMD

computation. Also, this architecture does not include special branching registers and the GNU

ARM C compiler optimization already does a great job of interleaving the memory access and

computing instructions.

The C programming language with GNU ARM C compiler optimization was the toolchain

selected to implement the image processing routines since the assembly language optimization

techniques did not achieve the maximum performance in the Atmel® SAMV71Q21, but instead,

increased the complexity of the library. Moreover, due to the portability of the C programming

language, this library can be easily adapted to other systems even though achieving the maximum

performance out of every system, might require a proper configuration.

43

Conclusions

An optimized image processing library was developed with all the necessary routines to

perform image segmentation. This software library was implemented for the Atmel®

SAMV71Q21 MCU and can be used in other members of the ARM® Cortex®-M7 family. The

software library was verified using a TSR application by testing with multiple patterns of different

sizes. The performance of these routines was measured on run time and it provided an average

gain in execution time of 18% compared to the Freescale® MPC5561 implementation.

The performance results of the spatial filter routines are competitive with the current FPGA

implementations. When using all the image processing routines in a TSR application the results

were also improved compared to the reference implementation, doubling the fps rate. The

maximum performance configuration of the Atmel® SAMV71Q21 MCU is critical for this

achievement. By enabling the data cache, instruction cache, and TCM, the working image buffers

can be accessed at the processor’s clock speed. Besides, the image processing fps rate can still be

increased by improving the TSR application implementation.

During the development phase, it was noted that the main drawback of GHT was its

execution time. It is critical to select the appropriate template image so that the edge information

is enough to find a match in the target image without having a high computational cost. It is also

important to have an automated process for obtaining the template information.

The code for the image processing routines was written in the C programming language,

leveraging GNU ARM C compiler optimizations to obtain maximum performance and a minimum

object size. Given the ubiquity of this programming language, it is possible to use this library in

other systems, not limited exclusively to the embedded realm; although it is possible that the

performance will not be the best in every system without proper configuration. Using a high-level

programming language also increases the maintainability and extensibility of this library compared

to the implementation in assembly language.

 44

 45

References

[1] A. Tigadi, R. Gujanatti, G. Anil and K. Belagavi, "Advanced Driver Assistance Systems," Int. J. of Eng.

Research and General Sci., vol. Volume 4, no. Issue 3, 2016.

[2] K. A. Brookhuis, D. D. Waard and W. H. Janssen, "Behavioural Impacts of Advanced Driver Assistance

Systems—An Overview," European J. Transport and Infrastructure Research, vol. 1,

no. 3, pp. pp. 245 - 254, 2001.

[3] A. Lorsakul and S. Jackrit, "Traffic Sign Recognition Using Neural Network on OpenCV: Toward Intelligent

Vehicle/Driver Assistance System," in 4th Int. Conf. on Ubiquitous Robots and

Ambient Intelligence, 2007.

[4] K. Dyczkowski, P. Gadecki and A. Kułakowski, "Traffic sign recognition system," in World Conf. on Soft

Computing, San Francisco, USA, 2011.

[5] M. A. Vega-Rodríguez, J. M. Sánchez-Pérez and J. A. Gómez-Pulido, "An FPGA-based implementation for

median filter meeting the real-time requirements of automated visual inspection

systems," in 10th Mediterranean Conf. Control and Automation, 2002.

[6] H. D. Park and J. Jae Wook, "FPGA design and implementation of edge enhancement by using 3×3 mask filter,"

in Ind. Technology (ICIT), 2014 IEEE Int. Conf., 2014.

[7] A. Tezmol, H. Sari-sarraf, A. Mitra, R. Long and A. Gururajan, "Customized Hough transform for robust

segmentation of the cervical vertebrae from x-ray images," in Southwest Symposium

on Image Analysis and Interpretation, 2001.

[8] A. C. Bovik, The essential guide to video processing, Academic Press, 2009.

[9] G. A. Baxes, Digital image processing: principles and applications, New York: Wiley, 1994.

[10] D. H. Ballard, "Generalizing the Hough transform to detect arbitrary shapes," Pattern recognition, vol. 13, pp.

111-122, 1981.

[11] K. Gundolf, M. Vahl, J. Sarcher and M. Schaeferling, "A configurable architecture for the generalized hough

transform applied to the analysis of huge aerial images and to traffic sign detection," in

ReConFigurable Computing and FPGAs (ReConFig), 2016 Int. Conf., 2016.

[12] S. R. Geninatti, J. I. Benavides Benítez, M. Hernández Calviño, N. Guil Mata and J. Gómez Luna, "FPGA

implementation of the generalized Hough transform," in Reconfigurable Computing

and FPGAs, 2009. ReConFig'09. Int. Conf., 2009.

 46

[13] F. Schumacher and T. Greiner, "Two stage Real-Time stereo correspondence algorithm and FPGA architecture

using a modified Generalized Hough transform," in Systems, Signals and Image

Processing (IWSSIP), 2014 Int. Conf., 2014.

[14] Freescale Semiconductor, Appl. Note 3806, 2009, pp. 3-21.

[15] R. C. Gonzalez and R. E. Woods, Image processing, Addison-Wesley, 1993.

[16] S. Ando, "Consistent Gradient Operators," IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 22, no. 3, pp. 252-255, 2000.

[17] Atmel, Appl. Note 44047, 2016, pp. 3-15.

[18] Atmel, Appl. Note 42510, 2015, pp. 3-11.

[19] J. Wilbrink and L. Perdigon, "Run Blazingly Fast Algorithms with Cortex-M7 Tightly Coupled Memories,"

2015.

[20] Freescale, MPC5561 Microcontroller Data Sheet, 2012.

[21] A. Tézmol and J. Shockey, "Enabling Automotive Vision Systems with the MPC5561 Microcontroller," in

Freescale Technology Forum, 2008.

 47

Appendices

48

A. IMAGE PROCESSING LIBRARY SOURCE CODE

/**/

/**

 \file ipl.c

 \brief Image processing library

 \author Roberto Ortega

 Based on the ASM implementation by Abraham Tezmol

 \version 1.0

 \date 2/January/2017

 */

/**/

/***

 * Include files

 **/

/** board definitions */

#include "board.h"

/** standard types */

#include <stdint.h>

/***

 * Definition of module wide VARIABLEs

 **/

/* Public variable to store the clock cycle count of the last IPL API call

 * when IPL_MEASURE_CLK_CYCLES is defined */

uint32_t ipl_clk_cycles = 0;

/***

 * Declaration of module wide FUNCTIONs

 **/

/***

 * Definition of module wide MACROs / #DEFINE-CONSTANTs

 **/

/* Enable this switch to copy the pixels for first and last rows and columns

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 49

 * for the spatial filter functions - this has an impact on performance.

 * If disabled, the image_delete function removes the last two columns of the

 * image to avoid unnecessary calculation in later stages of the process.

 */

#define IPL_COPY_PIXELS_FROM_ORIGINAL_IMG

/* Enable this switch to measure the execution time of each function call.

 * This value is stored in the global function ipl_clk_cycles and is valid

 * until the next call of the IPL API.

 */

#define IPL_MEASURE_CLK_CYCLES

#ifdef IPL_MEASURE_CLK_CYCLES

 #define IPL_MEASURE_RESET RESET_CYCLE_COUNTER()

 #define IPL_MEASURE_GET GET_CYCLE_COUNTER(ipl_clk_cycles)

#else

 #define IPL_MEASURE_RESET

 #define IPL_MEASURE_GET

#endif

/* --- Image Processing Library algorithm constants --------------------------*/

#define IPL_MASK_SCALE_FACTOR 0x00010000 /* 65536 */

#define IPL_MASK_SCALE_FACTOR_SHIFT 16 /* 2^16 */

#define IPL_PHI_TABLE_SCALE_FACTOR_SHIFT 8 /* 2^8 */

#define IPL_PHI_TABLE_SCALE_FACTOR 256 /* 2^8 */

#define IPL_BINARIZE_MIN 0x00

#define IPL_BINARIZE_MAX 0xFF

#define IPL_GRADIENT_WORD_NAN (uint32_t)0x12121212u

#define IPL_GRADIENT_BYTE_NAN 0x12 /* 18 */

#define IPL_GRADIENT_SCALE_FACTOR 0x40 /* 64 */

/***

 * Declaration of module wide TYPEs

 **/

/***

 * Definition of module wide (CONST-) CONSTANTs

 **/

/* phi orientation table based on the order of ArcTanTable

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 50

 i.e.: 90 deg -> 80 deg

*/

const static uint8_t PhiTable[18] =

 {9,10,11,12,13,14,15,16,17,0,1,2,3,4,5,6,7,8};

/***

 * Code of module wide FUNCTIONS

 **/

/**/

/**

 * \brief Search the maximum value in a the Hough accumulator pu8HoughAcc, this

 * value and its x and y coordinates are passed back to the caller as a

 * reference

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8HoughAcc pointer to Hough accumulator

 * uint16_t u16rows rows in pu8HoughAcc

 * uint16_t u16cols cols in pu8HoughAcc

 * uint8_t * pu8HoughMax pointer to max value in Hough accumulator

 * uint16_t * pu16HoughMax_x x coordinate of max value in Hough accumulator

 * uint16_t * pu16HoughMax_y y coordinate of max value in Hough accumulator

 *

 * \return void

 */

void hough_space_max_search (

 const uint8_t * pu8HoughAcc,

 uint16_t u16rows,

 uint16_t u16cols,

 uint8_t * pu8HoughMax,

 uint16_t * pu16HoughMax_x,

 uint16_t * pu16HoughMax_y)

{

 uint32_t i_index;

 uint32_t byte_count = (u16rows * u16cols);

 uint16_t ha_x_index = 0;

 uint16_t ha_y_index = 0;

 /* initialize max values */

 *pu8HoughMax = 0;

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 51

 *pu16HoughMax_x = 0;

 *pu16HoughMax_y = 0;

 /* init cycle counter */

 IPL_MEASURE_RESET;

 /* Traverse byte by byte the Hough accumulator searching for a max */

 for (i_index = 0; i_index < byte_count; i_index++, pu8HoughAcc++) {

 /* if current Hough space max value is greater, update */

 if (*pu8HoughAcc > *pu8HoughMax) {

 *pu8HoughMax = *pu8HoughAcc;

 *pu16HoughMax_x = ha_x_index;

 *pu16HoughMax_y = ha_y_index;

 }

 /* adjust accumulator x index */

 ha_x_index++;

 if (ha_x_index >= u16cols) {

 /* reset accumulator x index */

 ha_x_index = 0;

 /* adjust accumulator y index */

 ha_y_index += 1;

 }

 }

 /* get clock cycle count */

 IPL_MEASURE_GET;

 return;

}

/**/

/**

 * \brief Set a zero in all Hough accumulator's bins

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8HoughAcc pointer to Hough accumulator

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 52

 * uint32_t u32ImageSize size of Hough accumulator

 *

 * \return void

 */

void clear_accumulator (

 uint8_t * pu8HoughAcc,

 uint32_t u32ImageSize)

{

 uint32_t i_index;

 uint32_t word_count = u32ImageSize / 4;

 uint32_t long_count = word_count / 2;

 uint32_t * pu32HoughAcc_1 = (uint32_t *) pu8HoughAcc;

 uint32_t * pu32HoughAcc_2 = (uint32_t *)(pu8HoughAcc + 4);

 /* init cycle counter */

 IPL_MEASURE_RESET;

 /* Loop for Horizontal lines */

 for (i_index = 0; i_index < long_count; i_index++,

 pu32HoughAcc_1 += 2,

 pu32HoughAcc_2 += 2) {

 /* clear two words at a time */

 *pu32HoughAcc_1 = 0x00000000;

 *pu32HoughAcc_2 = 0x00000000;

 }

 /* get clock cycle count */

 IPL_MEASURE_GET;

 return;

}

/**/

/**

 * \brief Performs Hough-space transform based on edge gradient information

 *

 * This function traverses the Hough-space matrix by double word, word

 * and then byte by byte looking for directional information.

 * When directional information is found, the number of phi elements

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 53

 * for the same orientation is obtained from pu16PhiLength.

 * Then the template values r, sin(alpha) and cos(alpha) are loaded

 * for the same orientation.

 * Hough-space indexes are calculated and Hough accumlator gets

 * a vote for this point.

 *

 * Note: alpha sine and cosine tables are assumed to be scaled by 2^8 (256)

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8PhiImage pointer to input image represented with

gradient orientation info

 * uint16_t u16rows pu8PhiImage rows

 * uint16_t u16cols pu8PhiImage cols

 * uint16_t * pu16PhiLength pointer to input array that describes number

of phi-sorted template elements

 * uint16_t * pu16PhiIndex pointer to input array that provides indexes

of phi-matching template elements

 * int16_t * pafAlphaSine pointer to input array with pre-calculated

template values of sin(alpha)

 * int16_t * pafAlphaCos pointer to input array with pre-calculated

template values of cos(alpha)

 * int16_t * pafR pointer to input array with pre-calculated

template values of r

 * uint8_t * pu8HoughAcc pointer to output image of Hough-space

accumulator

 *

 * \return void

 */

void hough_transform_accumulate (

 const uint8_t * pu8PhiImage,

 uint16_t u16rows,

 uint16_t u16cols,

 uint16_t * pu16PhiLength,

 uint16_t * pu16PhiIndex,

 int16_t * pafAlphaSine,

 int16_t * pafAlphaCos,

 int16_t * pafR,

 uint8_t * pu8HoughAcc)

{

 uint32_t i_index;

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 54

 uint32_t j_index;

 uint32_t k_index;

 uint32_t byte_count = (u16rows * u16cols);

 uint32_t word_count = byte_count / 4;

 uint32_t long_count = word_count / 2;

 uint32_t bytes_cycle = 4;

 uint32_t * pu32Phi_1 = (uint32_t *) pu8PhiImage;

 uint32_t * pu32Phi_2 = (uint32_t *)(pu8PhiImage + 4);

 uint16_t im_x_index = 0;

 uint16_t im_y_index = 0;

 uint16_t TempLength = 0;

 uint16_t TempIndex = 0;

 uint16_t phi_index = 0;

 int32_t r_value = 0;

 int32_t alpha_sine = 0;

 int32_t alpha_cos = 0;

 int32_t hough_x_idx = 0;

 int32_t hough_y_idx = 0;

 uint32_t hough_space_idx = 0;

 uint8_t hough_value = 0;

 /* init cycle counter */

 IPL_MEASURE_RESET;

 for (i_index = 0; i_index < long_count; i_index++,

 pu32Phi_1 += 2,

 pu32Phi_2 += 2) {

 /* if the first word is equal to the reference update the indexes */

 if (*pu32Phi_1 >= IPL_GRADIENT_WORD_NAN) {

 /* if first and second words are equal */

 if (*pu32Phi_1 == *pu32Phi_2) {

 /* two words have been analyzed

 * adjust the indexes and repeat words loop */

 pu8PhiImage += 8;

 im_x_index += 8;

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 55

 if (im_x_index >= u16cols) {

 /* reset image x index */

 im_x_index = im_x_index - u16cols;

 /* adjust image y index */

 im_y_index += 1;

 }

 continue;

 }

 /* one word has been analyzed

 * adjust image x index */

 pu8PhiImage += 4;

 im_x_index += 4;

 if (im_x_index >= u16cols) {

 /* reset image x index */

 im_x_index = im_x_index - u16cols;

 /* adjust image y index */

 im_y_index += 1;

 }

 /* iterate byte by byte for one word only */

 bytes_cycle = 4;

 } else {

 /* iterate byte by byte for two words */

 bytes_cycle = 8;

 }

 /* load byte by byte */

 for (j_index = 0; j_index < bytes_cycle; j_index++, pu8PhiImage++) {

 /* if phi orientation is NaN, don't accumulate */

 if (*pu8PhiImage >= IPL_GRADIENT_BYTE_NAN) {

 goto skip_acc;

 }

 /* get the number of phi elements for this orientation */

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 56

 TempLength = pu16PhiLength[*pu8PhiImage];

 /* If template does not have matching phi angle,

 * continue with next point */

 if (TempLength == 0) {

 goto skip_acc;

 }

 /* load all template indexes that match same phi

 * angle of current pixel */

 for (k_index = 0, phi_index = *pu8PhiImage;

 k_index < TempLength;

 k_index++, phi_index += 18)

 {

 /* get the index and adjust for zero index */

 TempIndex = pu16PhiIndex[phi_index] - 1;

 /* Load corresponding r value */

 r_value = pafR[TempIndex];

 /* Load corresponding alpha sine value */

 alpha_sine = pafAlphaSine[TempIndex];

 /* Load corresponding alpha cosine value */

 alpha_cos = pafAlphaCos[TempIndex];

 /*---

 * Hough-space mapping (x-coordinate)

 * Hough_x_index = Im_x_index - r*cos(alpha)

 *

 * Hough-space mapping (y-coordinate)

 * Hough_y_index = Im_y_index - r*sin(alpha)

 --/

 /* alpha sine and cosine tables are scaled by 2^8 */

 hough_y_idx = (int32_t)(im_y_index - ((r_value * alpha_sine) /

IPL_PHI_TABLE_SCALE_FACTOR));

 hough_x_idx = (int32_t)(im_x_index - ((r_value * alpha_cos) /

IPL_PHI_TABLE_SCALE_FACTOR));

 /* make sure resulting X and Y indexes fit within

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 57

 * accumulator dimensions else, do not accumulate */

 if ((hough_y_idx >= 0) && (hough_y_idx < (int32_t)u16rows) &&

 (hough_x_idx >= 0) && (hough_x_idx < (int32_t)u16cols))

 {

 /* ----------------- Hough accumulate ------------------- */

 /* calculate absolute index into Hough space */

 hough_space_idx = (uint32_t)((hough_y_idx * u16cols) +

hough_x_idx);

 /* get current value at Hough space location */

 hough_value = pu8HoughAcc[hough_space_idx];

 /* increment accumulator value at location */

 hough_value++;

 /* store accumualor value into Hough space */

 pu8HoughAcc[hough_space_idx] = hough_value;

 }

 }

skip_acc:

 /* adjust image x index */

 im_x_index++;

 if (im_x_index >= u16cols) {

 /* reset image x index */

 im_x_index = im_x_index - u16cols;

 /* adjust image y index */

 im_y_index += 1;

 }

 }

 }

 /* get clock cycle count */

 IPL_MEASURE_GET;

 return;

}

/**/

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 58

/**

 * \brief Deletes redundant information about horizontal and vertical

 * straight lines

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8Image pointer to image to be processed

 * uint16_t u16rows rows in pu8Image

 * uint16_t u16cols cols in pu8Image

 *

 * \return void

 */

void image_delete (

 uint8_t * pu8Image,

 uint16_t u16rows,

 uint16_t u16cols)

{

 uint32_t i_index;

 uint32_t byte_count = (u16rows * u16cols);

 uint32_t word_count = byte_count / 4;

 uint32_t long_count = word_count / 2;

 uint32_t * pu32Image_1 = (uint32_t *) pu8Image;

 uint32_t * pu32Image_2 = (uint32_t *)(pu8Image + 4);

 /* init cycle counter */

 IPL_MEASURE_RESET;

 /* Loop for Horizontal lines */

 for (i_index = 0; i_index < long_count; i_index++,

 pu32Image_1 += 2,

 pu32Image_2 += 2) {

 /* load words from gradien images X and Y and look for blank pixels */

 if (*pu32Image_1 == 0x00000000u) {

 *pu32Image_1 = IPL_GRADIENT_BYTE_NAN;

 }

 if (*pu32Image_2 == 0x00000000u) {

 *pu32Image_2 = IPL_GRADIENT_BYTE_NAN;

 }

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 59

 }

 /* Loop for Vertical lines */

 for (i_index = 0; i_index < byte_count;) {

 /* Compare byte by byte for vertical orientation */

 if ((9 == pu8Image[i_index]) &&

 (pu8Image[i_index] == pu8Image[i_index + u16cols]) &&

 (pu8Image[i_index + u16cols] == pu8Image[i_index + (u16cols * 2)])

&&

 (pu8Image[i_index + (u16cols * 2)] == pu8Image[i_index + (u16cols * 3)])

&&

 (pu8Image[i_index + (u16cols * 3)] == pu8Image[i_index + (u16cols * 4)]))

 {

 pu8Image[i_index + (u16cols * 4)] = IPL_GRADIENT_BYTE_NAN;

 }

 /* Increase index and check for when when a row is done to

 * jump to the next row, three below... */

 i_index++;

 if ((i_index % u16cols) == 0)

 i_index += u16cols * 3;

 }

#ifndef IPL_COPY_PIXELS_FROM_ORIGINAL_IMG

 {

 uint32_t last_row_offset = (u16rows * u16cols) - u16cols;

 uint32_t prev_last_row_offset = (u16rows * u16cols) - (2 * u16cols);

 /* Delete first and last two columns */

 for (i_index = 0; i_index < u16rows; i_index++) {

 pu8Image[(u16cols * i_index)] = IPL_GRADIENT_BYTE_NAN;

 pu8Image[(u16cols * i_index) + 1] = IPL_GRADIENT_BYTE_NAN;

 pu8Image[(u16cols + (u16cols * i_index)) - 1] = IPL_GRADIENT_BYTE_NAN;

 pu8Image[(u16cols + (u16cols * i_index)) - 2] = IPL_GRADIENT_BYTE_NAN;

 }

 /* Delete first and last two rows */

 for (i_index = 0; i_index < u16cols; i_index++) {

 pu8Image[i_index] = IPL_GRADIENT_BYTE_NAN;

 pu8Image[i_index + u16rows] = IPL_GRADIENT_BYTE_NAN;

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 60

 pu8Image[i_index + last_row_offset] = IPL_GRADIENT_BYTE_NAN;

 pu8Image[i_index + prev_last_row_offset] = IPL_GRADIENT_BYTE_NAN;

 }

 }

#endif

 /* get clock cycle count */

 IPL_MEASURE_GET;

 return;

}

/**/

/**

 * \brief Compute directional information based on a discrete calculation of

 * the tangent of theta. The resulting gradient orientation image is

 * stored into pu8PhiImage.

 *

 * Note: array of discrete values of tan(theta) is assumed to be scaled

 * by 2^6 (64)

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8GradY pointer to gradient Y information of an image

 * uint8_t * pu8GradX pointer to gradient X information of an image

 * uint8_t * pu8PhiImage pointer to the resulting gradient orientation

image

 * uint32_t u32ImageSize size of pu8PhiImage

 * int16_t * p16ArcTanTable array of discrete values of tan(theta)

 *

 * \return void

 */

void image_gradient_orientation (

 const uint8_t * pu8GradY,

 const uint8_t * pu8GradX,

 uint8_t * pu8PhiImage,

 uint32_t u32ImageSize,

 int16_t * p16ArcTanTable)

{

 uint32_t i_index;

 uint32_t j_index;

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 61

 uint32_t k_index;

 uint32_t word_count = u32ImageSize / 4;

 int16_t division = 0;

 uint32_t * pu32GradY = (uint32_t *)pu8GradY;

 uint32_t * pu32GradX = (uint32_t *)pu8GradX;

 uint32_t * pu32PhiImage = (uint32_t *)pu8PhiImage;

 /* init cycle counter */

 IPL_MEASURE_RESET;

 for (i_index = 0; i_index < word_count; i_index++,

 pu32GradY++,

 pu32GradX++,

 pu32PhiImage++) {

 /* load words from gradien images X and Y and look for blank pixels */

 if (*pu32GradY == 0x00000000u) {

 if (*pu32GradX == 0x00000000u) {

 /* empty words, set NaN word in gradient image,

 * increase image indexes and continue */

 *pu32PhiImage = IPL_GRADIENT_WORD_NAN;

 pu8GradY += 4;

 pu8GradX += 4;

 pu8PhiImage += 4;

 continue;

 }

 }

 /* words are not empty, start analyzing byte by byte for the

 * current word */

 for (j_index = 0; j_index < 4; j_index++,

 pu8GradY++,

 pu8GradX++,

 pu8PhiImage++) {

 if ((*pu8GradY == 0) && (*pu8GradX == 0)) {

 /* blank pixel */

 *pu8PhiImage = IPL_GRADIENT_BYTE_NAN;

 continue;

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 62

 }

 /* if divisor is zero, phi = 90 deg */

 if (*pu8GradX == 0) {

 *pu8PhiImage = PhiTable[0];

 continue;

 }

 /* divide gradY/gradX */

 division = ((int8_t)*pu8GradY * IPL_GRADIENT_SCALE_FACTOR) /

(int8_t)*pu8GradX;

 /* traverse the arctan table looking for the matching gradient */

 for (k_index = 0; k_index < 18; k_index++) {

 if (division <= p16ArcTanTable[k_index]) {

 /* set gradient direction for the

 * corresponding angle */

 *pu8PhiImage = PhiTable[k_index];

 break;

 }

 if (k_index == 17) {

 /* greater than 85° - set 90 deg gradient value */

 *pu8PhiImage = PhiTable[0];

 }

 }

 }

 }

 /* get clock cycle count */

 IPL_MEASURE_GET;

 return;

}

/**/

/**

 * \brief This function merges dual-edge borders generated by using directional

 * gradient masks, as in Ando’s directional masks into single-edge borders.

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 63

 * The resulting single-edge border images are stored into the same

 * input images pu8GradY and pu8GradX.

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8GradY pointer to gradient Y information of an image

 * uint8_t * pu8GradX pointer to gradient X information of an image

 * uint16_t u16rows rows in pu8GradY

 * uint16_t u16cols cols in pu8GradY

 *

 * \return void

 */

void image_edge_thinning (

 uint8_t * pu8GradY,

 uint8_t * pu8GradX,

 uint16_t u16rows,

 uint16_t u16cols)

{

 uint32_t i_index;

 uint32_t j_index;

 uint32_t pixel_count = u16rows * u16cols;

 uint32_t word_count = pixel_count / 4;

 uint32_t * pu32GradY = (uint32_t *)pu8GradY;

 uint32_t * pu32GradX = (uint32_t *)pu8GradX;

 /* init cycle counter */

 IPL_MEASURE_RESET;

 for (i_index = 0; i_index < word_count; i_index++, pu32GradY++, pu32GradX++) {

 /* load words from gradien images X and Y */

 if (*pu32GradY == 0x00000000u) {

 if (*pu32GradX == 0x00000000u) {

 /* empty words, increase image indexes and continue */

 pu8GradY += 4;

 pu8GradX += 4;

 continue;

 }

 }

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 64

 /* words are not empty, start analyzing byte by byte for the

 * current word */

 for (j_index = 0; j_index < 4; j_index++, pu8GradY++, pu8GradX++) {

 if ((*pu8GradY == 128) || (*pu8GradX == 128)) {

 /* blank pixel */

 goto pixel_blank;

 }

 if (*pu8GradY + *pu8GradX == 255) {

 /* complement */

 if (*pu8GradY < 186)

 goto pixel_blank;

 continue;

 }

 if (*pu8GradY == *pu8GradX) {

 /* same */

 if (*pu8GradY < 69)

 continue;

 goto pixel_blank;

 }

 /* compare with patterns */

 if (*pu8GradY > 35) {

 /* compare with straigh line */

 if (*pu8GradY > 125) {

 /* compare high */

 if (*pu8GradY < 128) {

 continue;

 }

 if (*pu8GradY > 220) {

 continue;

 }

 }

 /* compare X */

 if (*pu8GradX > 35) {

 /* compare with straigh line */

 if (*pu8GradX > 125) {

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 65

 /* compare high */

 if (*pu8GradY < 128) {

 continue;

 }

 if (*pu8GradY < 220) {

 goto pixel_blank;

 }

 continue;

 }

 goto pixel_blank;

 }

 }

 continue;

pixel_blank:

 /* set blank pixels */

 *pu8GradY = 0;

 *pu8GradX = 0;

 }

 }

 /* get clock cycle count */

 IPL_MEASURE_GET;

 return;

}

/**/

/**

 * \brief Subtracts each element in pu8ImageA from the corresponding element

 * in pu8ImageB and returns the difference in the corresponding element

 * of the output pu8ImageResult

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8ImageA pointer to input image A

 * uint8_t * pu8ImageB pointer to input image B

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 66

 * uint16_t u16rows rows in pu8ImageA

 * uint16_t u16cols cols in pu8ImageA

 * uint8_t * pu8ImageResult pointer to result image = A - B

 *

 * \return void

 */

void image_subtract (

 const uint8_t * pu8ImageA,

 const uint8_t * pu8ImageB,

 uint16_t u16rows,

 uint16_t u16cols,

 uint8_t * pu8ImageResult)

{

 uint32_t i_index;

 uint32_t pixel_count = u16rows * u16cols;

 /* init cycle counter */

 IPL_MEASURE_RESET;

 for (i_index = 0; i_index < pixel_count; i_index++,

 pu8ImageResult++,

 pu8ImageA++,

 pu8ImageB++)

 {

 *pu8ImageResult = *pu8ImageA - *pu8ImageB;

 }

 /* get clock cycle count */

 IPL_MEASURE_GET;

 return;

}

/**/

/**

 * \brief Converts the grayscale image pu8Image to a binary image. The output

 * image pu8OutImage replaces all pixels in the input image grater than

 * u8Threshold with the value IPL_BINARIZE_MAX and replaces all other

 * pixels with the value IPL_BINARIZE_MIN

 *

 * \author Roberto Ortega

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 67

 *

 * \param uint8_t * pu8Image pointer to input image

 * uint16_t u16rows pu8Image rows

 * uint16_t u16cols pu8Image cols

 * uint8_t u8Threshold threshold value

 * uint8_t * pu8OutImage pointer to output filtered image

 *

 * \return void

 */

void image_binarize (

 const uint8_t * pu8Image,

 uint16_t u16rows,

 uint16_t u16cols,

 uint8_t u8Threshold,

 uint8_t * pu8OutImage)

{

 uint32_t i_index;

 uint32_t pixel_count = u16rows * u16cols;

 /* init cycle counter */

 IPL_MEASURE_RESET;

 for (i_index = 0; i_index < pixel_count; i_index++)

 {

 if (*pu8Image <= u8Threshold) {

 *pu8OutImage = IPL_BINARIZE_MIN;

 } else {

 *pu8OutImage = IPL_BINARIZE_MAX;

 }

 pu8Image++;

 pu8OutImage++;

 }

 /* get clock cycle count */

 IPL_MEASURE_GET;

 return;

}

/**/

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 68

/**

 * \brief Filtering of a u16rows x u16cols Image using a 3x3 mask based on

 * spatial correlation. The result is stored into pu8OutImage.

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8Image pointer to input image

 * uint16_t u16rows pu8Image rows

 * uint16_t u16cols pu8Image cols

 * float * pfMask pointer to filter's mask

 * uint8_t * pu8OutImage pointer to output filtered image

 *

 * \return void

 */

void spatial_filt_int_3x3 (

 const uint8_t * pu8Image,

 uint16_t u16rows,

 uint16_t u16cols,

 float * pfMask,

 uint8_t * pu8OutImage)

{

 uint32_t Filtered3x3scaled;

 int32_t Mask3x3Scaled[3][3];

 uint16_t i_index;

 uint16_t j_index;

 /* Convert to integer and scale up correlation mask in order to avoid

 * loosing resolution */

 for (i_index = 0; i_index < 3; i_index++)

 {

 for (j_index = 0; j_index < 3; j_index++)

 {

 /* Mask to be scaled up by a factor of 2^16*/

 Mask3x3Scaled[i_index][j_index] = (int32_t)((*pfMask++) *

IPL_MASK_SCALE_FACTOR);

 }

 }

 /* init cycle counter */

 IPL_MEASURE_RESET;

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 69

#ifdef IPL_COPY_PIXELS_FROM_ORIGINAL_IMG

 /* keep first row pixels as original image */

 for (i_index = 0; i_index <= (u16cols - 1); i_index++)

 {

 *pu8OutImage++ = *pu8Image++;

 }

#else

 /* set image index to row i + 1 */

 pu8OutImage += u16cols;

 pu8Image += u16cols;

#endif

 /* Perform correlation operation */

 for (i_index = 0; i_index <= (u16rows - 3); i_index++)

 {

#ifdef IPL_COPY_PIXELS_FROM_ORIGINAL_IMG

 /* set first pixel - keep first col pixels as original image */

 *pu8OutImage++ = *pu8Image;

#else

 /* get next filtered image index */

 pu8OutImage++;

#endif

 for (j_index = 0; j_index <= (u16cols - 3); j_index++)

 {

 Filtered3x3scaled = (uint32_t)(

 (*(pu8Image - u16cols) * Mask3x3Scaled[0][0]) +

 (*(pu8Image - u16cols + 1) * Mask3x3Scaled[0][1]) +

 (*(pu8Image - u16cols + 2) * Mask3x3Scaled[0][2]) +

 (*(pu8Image) * Mask3x3Scaled[1][0]) +

 (*(pu8Image + 1) * Mask3x3Scaled[1][1]) +

 (*(pu8Image + 2) * Mask3x3Scaled[1][2]) +

 (*(pu8Image + u16cols) * Mask3x3Scaled[2][0]) +

 (*(pu8Image + u16cols + 1) * Mask3x3Scaled[2][1]) +

 (*(pu8Image + u16cols + 2) * Mask3x3Scaled[2][2]));

 /* Scale down result */

 *pu8OutImage++ = (uint8_t)(Filtered3x3scaled >>

IPL_MASK_SCALE_FACTOR_SHIFT);

 /* get next image pixel */

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 70

 pu8Image++;

 }

#ifdef IPL_COPY_PIXELS_FROM_ORIGINAL_IMG

 /* get next image pixel */

 pu8Image++;

 /* keep last col pixels as original image */

 *pu8OutImage++ = *pu8Image++;

#else

 /* get next image pixel */

 pu8Image += 2;

 /* set filtered image pixel position to next row */

 pu8OutImage++;

#endif

 }

#ifdef IPL_COPY_PIXELS_FROM_ORIGINAL_IMG

 /* keep last row pixels as original image */

 for (i_index = 0; i_index <= (u16cols - 1); i_index++)

 {

 *pu8OutImage++ = *pu8Image++;

 }

#endif

 /* get clock cycle count */

 IPL_MEASURE_GET;

 return;

}

/**/

/**

 * \brief Filtering of a u16rows x u16cols Image using a 2x2 mask based on

 * spatial correlation. The result is stored into pu8OutImage.

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8Image pointer to input image

 * uint16_t u16rows pu8Image rows

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 71

 * uint16_t u16cols pu8Image cols

 * float * pfMask pointer to filter's mask

 * uint8_t * pu8OutImage pointer to output filtered image

 *

 * \return void

 */

void spatial_filt_int_2x2 (

 const uint8_t * pu8Image,

 uint16_t u16rows,

 uint16_t u16cols,

 float * pfMask,

 uint8_t * pu8OutImage)

{

 /* Intermediate scaled up image - temporary pixel calculation */

 uint32_t Filtered2x2scaled;

 /* Intermediate Mask in integer numbers to accelerate execution */

 int32_t Mask2x2Scaled[2][2];

 uint16_t i_index;

 uint16_t j_index;

 /* Convert to integer and scale up correlation mask in order to avoid

 * loosing resolution */

 for (i_index = 0; i_index < 2; i_index++)

 {

 for (j_index = 0; j_index < 2; j_index++)

 {

 /* Mask to be scaled up by a factor of 2^16*/

 Mask2x2Scaled[i_index][j_index] = (int32_t)((*pfMask++) *

IPL_MASK_SCALE_FACTOR);

 }

 }

 /* init cycle counter */

 IPL_MEASURE_RESET;

#ifdef IPL_COPY_PIXELS_FROM_ORIGINAL_IMG

 /* set first pixel - first column is not calculated */

 *pu8OutImage = *pu8Image;

#endif

 /* Perform correlation operation */

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 72

 for (i_index = 0; i_index <= (u16rows - 2); i_index++)

 {

 /* get next filtered image index */

 pu8OutImage++;

 for (j_index = 0; j_index <= (u16cols - 2); j_index++)

 {

 Filtered2x2scaled = (uint32_t)(

 (*(pu8Image) * Mask2x2Scaled[0][0]) +

 (*(pu8Image + u16cols) * Mask2x2Scaled[1][0]) +

 (*(pu8Image + 1) * Mask2x2Scaled[0][1]) +

 (*(pu8Image + 1 + u16cols) * Mask2x2Scaled[1][1]));

 /* Scale down result */

 *pu8OutImage++ = (uint8_t)(Filtered2x2scaled >>

IPL_MASK_SCALE_FACTOR_SHIFT);

 /* get next image pixel */

 pu8Image++;

 }

#ifdef IPL_COPY_PIXELS_FROM_ORIGINAL_IMG

 /* get next image pixel from original image */

 *pu8OutImage = *++pu8Image;

#else

 /* get next image pixel - first column is not calculated */

 pu8Image++;

#endif

 }

#ifdef IPL_COPY_PIXELS_FROM_ORIGINAL_IMG

 /* keep last row pixels as original image */

 for (i_index = 0; i_index <= (u16cols - 2); i_index++)

 {

 *++pu8OutImage = *++pu8Image;

 }

#endif

 /* get clock cycle count */

 IPL_MEASURE_GET;

A. IMAGE PROCESSING LIBRARY SOURCE CODE

 73

 return;

}

/**/

74

B. IMAGE PROCESSING LIBRARY HEADER

/**/

/**

 \file ipl.h

 \brief Image processing library header file

 \author Roberto Ortega

 Based on the ASM implementation by Abraham Tezmol

 \version 1.0

 \date 2/January/2017

 */

/**/

#ifdef __IPL_H_

#define __IPL_H_ extern

#endif

#ifndef __IPL_H_

#define __IPL_H_

/* custom type definitions */

#include "typedefs.h"

/* This variable stores the clock cycle count of the last IPL API call if

 * the compiler switch IPL_MEASURE_CLK_CYCLES is enabled.

*/

extern uint32_t ipl_clk_cycles;

/*~~~~~~~~~~~~~~~ Image Processing Library definitions ~~~~~~~~~~~~~~~~~~~~*/

/* Discrete table for tan(theta) -- scaled by 2^6 (64) -- 90 deg -> 80 deg */

#pragma alignvar(4)

const __IPL_H_ INT16 ArcTanTable[1][18] =

{-732,-239,-137,-91,-64,-45,-30,-17,-6,6,17,30,45,64,91,137,239,732};

/* Gaussian mask 3x3 for spatial filter */

#pragma alignvar(4)

__IPL_H_ float GaussianMask_3x3[3][3] =

{

 0.1088, 0.1123, 0.1088,

B. IMAGE PROCESSING LIBRARY HEADER

 75

 0.1123, 0.1158, 0.1123,

 0.1088, 0.1123, 0.1088

};

/* Average mask 3x3 for spatial filter */

#pragma alignvar(4)

__IPL_H_ float AvgMask_3x3[3][3] =

{

 0.11111, 0.11111, 0.11111,

 0.11111, 0.11111, 0.11111,

 0.11111, 0.11111, 0.11111

};

/* Average mask 2x2 for spatial filter */

#pragma alignvar(4)

__IPL_H_ float AvgMask_2x2[2][2] =

{

 0.2500, 0.2500,

 0.2500, 0.2500

};

/* Ando directional Y mask 3x3 for spatial filter */

#pragma alignvar(4)

__IPL_H_ float AndoMaskY_3x3[3][3]=

{

 -0.112737, 0.000000, 0.112737,

 -0.274526, 0.000000, 0.274526,

 -0.112737, 0.000000, 0.112737

};

/* Ando directional X mask 3x3 forspatial filter */

#pragma alignvar(4)

__IPL_H_ float AndoMaskX_3x3[3][3]=

{

 -0.112737, -0.274526, -0.112737,

 0.000000, 0.000000, 0.000000,

 0.112737, 0.274526, 0.112737

};

/*~~~~~~~~~~~ Image Processing Library API Definition ~~~~~~~~~~~~~~~~~~~~~~~~*/

B. IMAGE PROCESSING LIBRARY HEADER

 76

/**/

/**

 * \brief Filtering of a u16rows x u16cols Image using a 3x3 mask based on

 * spatial correlation. The result is stored into pu8OutImage.

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8Image pointer to input image

 * uint16_t u16rows pu8Image rows

 * uint16_t u16cols pu8Image cols

 * float * pfMask pointer to filter's mask

 * uint8_t * pu8OutImage pointer to output filtered image

 *

 * \return void

 **/

void spatial_filt_int_3x3 (const uint8_t * pu8Image,

 uint16_t u16rows,

 uint16_t u16cols,

 float * pfMask,

 uint8_t * pu8OutImage);

/**/

/**

 * \brief Filtering of a u16rows x u16cols Image using a 2x2 mask based on

 * spatial correlation. The result is stored into pu8OutImage.

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8Image pointer to input image

 * uint16_t u16rows pu8Image rows

 * uint16_t u16cols pu8Image cols

 * float * pfMask pointer to filter's mask

 * uint8_t * pu8OutImage pointer to output filtered image

 *

 * \return void

 **/

void spatial_filt_int_2x2 (const uint8_t * pu8Image,

 uint16_t u16rows,

 uint16_t u16cols,

 float * pfMask,

 uint8_t * pu8OutImage);

B. IMAGE PROCESSING LIBRARY HEADER

 77

/**/

/**

 * \brief Converts the grayscale image pu8Image to a binary image. The output

 * image pu8OutImage replaces all pixels in the input image grater than

 * u8Threshold with the value IPL_BINARIZE_MAX and replaces all other

 * pixels with the value IPL_BINARIZE_MIN

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8Image pointer to input image

 * uint16_t u16rows pu8Image rows

 * uint16_t u16cols pu8Image cols

 * uint8_t u8Threshold threshold value

 * uint8_t * pu8OutImage pointer to output filtered image

 *

 * \return void

 **/

void image_binarize (const uint8_t * pu8Image,

 uint16_t u16rows,

 uint16_t u16cols,

 uint8_t u8Threshold,

 uint8_t * pu8OutImage);

/**/

/**

 * \brief Subtracts each element in pu8ImageA from the corresponding element

 * in pu8ImageB and returns the difference in the corresponding element

 * of the output pu8ImageResult

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8ImageA pointer to input image A

 * uint8_t * pu8ImageB pointer to input image B

 * uint16_t u16rows rows in pu8ImageA

 * uint16_t u16cols cols in pu8ImageA

 * uint8_t * pu8ImageResult pointer to result image = A - B

 *

 * \return void

 **/

void image_subtract (const uint8_t * pu8ImageA,

B. IMAGE PROCESSING LIBRARY HEADER

 78

 const uint8_t * pu8ImageB,

 uint16_t u16rows,

 uint16_t u16cols,

 uint8_t * pu8ImageResult);

/**/

/**

 * \brief Compute directional information based on a discrete calculation of

 * the Arc tangent. The resulting gradient orientation image is stored

 * into pu8PhiImage.

 *

 * Note: alpha sine and cosine tables are assumed to be scaled by 2^6 (64)

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8GradY pointer to gradient Y information of an image

 * uint8_t * pu8GradX pointer to gradient X information of an image

 * uint8_t * pu8PhiImage pointer to the resulting gradient orientation

image

 * uint32_t u32ImageSize size of pu8PhiImage

 * int16_t * p16ArcTanTable array of discrete values of tan(theta)

 *

 * \return void

 **/

void image_gradient_orientation (const uint8_t * pu8GradY,

 const uint8_t * pu8GradX,

 uint8_t * pu8PhiImage,

 uint32_t u32ImageSize,

 int16_t * pu16ArcTanTable);

/**/

/**

 * \brief Deletes redundant information about horizontal and vertical straight lines

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8Image pointer to image to be processed

 * uint16_t u16rows rows in pu8Image

 * uint16_t u16cols cols in pu8Image

 *

 * \return void

B. IMAGE PROCESSING LIBRARY HEADER

 79

 **/

void image_delete (uint8_t * pu8Image,

 uint16_t u16rows,

 uint16_t u16cols);

/**/

/**

 * \brief This function merges dual-edge borders generated by using directional

 * gradient masks, as in Ando’s directional masks into single-edge borders.

 * The resulting single-edge border images are stored into the same

 * input images pu8GradY and pu8GradX.

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8GradY pointer to gradient Y information of an image

 * uint8_t * pu8GradX pointer to gradient X information of an image

 * uint16_t u16rows rows in pu8GradY

 * uint16_t u16cols cols in pu8GradY

 *

 * \return void

 **/

void image_edge_thinning (uint8_t * pu8GradY,

 uint8_t * pu8GradX,

 uint16_t u16rows,

 uint16_t u16cols);

/**/

/**

 * \brief Performs Hough-space transform based on edge gradient information

 *

 * This function traverses the Hough-space matrix by double word, word

 * and then byte by byte looking for directional information.

 * When directional information is found, the number of phi elements

 * for the same orientation is obtained from pu16PhiLength.

 * Then the template values r, sin(alpha) and cos(alpha) are loaded

 * for the same orientation.

 * Hough-space indexes are calculated and Hough accumlator gets

 * a vote for this point.

 *

 * Note: alpha sine and cosine tables are assumed to be scaled by 2^8 (256)

B. IMAGE PROCESSING LIBRARY HEADER

 80

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8PhiImage pointer to input image represented with gradient

orientation info

 * uint16_t u16rows pu8PhiImage rows

 * uint16_t u16cols pu8PhiImage cols

 * uint16_t * pu16PhiLength pointer to input array that describes number of

phi-sorted template elements

 * uint16_t * pu16PhiIndex pointer to input array that provides indexes of

phi-matching template elements

 * int16_t * pafAlphaSine pointer to input array with pre-calculated

template values of sin(alpha)

 * int16_t * pafAlphaCos pointer to input array with pre-calculated

template values of cos(alpha)

 * int16_t * pafR pointer to input array with pre-calculated

template values of r

 * uint8_t * pu8HoughAcc pointer to output image of Hough-space accumulator

 *

 * \return void

 **/

void hough_transform_accumulate (const uint8_t * pu8PhiImage,

 uint16_t u16rows,

 uint16_t u16cols,

 uint16_t * pu16PhiLength,

 uint16_t * pu16PhiIndex,

 int16_t * pafAlphaSine,

 int16_t * pafAlphaCos,

 int16_t * pafR,

 uint8_t * pu8HoughAcc);

/**/

/**

 * \brief Set a zero in all Hough accumulator's bins

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8HoughAcc pointer to Hough accumulator

 * uint32_t u32ImageSize size of Hough accumulator

 *

 * \return void

B. IMAGE PROCESSING LIBRARY HEADER

 81

 **/

void clear_accumulator (uint8_t * pu8HoughAcc,

 uint32_t u32ImageSize);

/**/

/**

 * \brief Search the maximum value in a the Hough accumulator pu8HoughAcc, this

 * value and its x and y coordinates are passed back to the caller as a

 * reference

 *

 * \author Roberto Ortega

 *

 * \param uint8_t * pu8HoughAcc pointer to Hough accumulator

 * uint16_t u16rows rows in pu8HoughAcc

 * uint16_t u16cols cols in pu8HoughAcc

 * uint8_t * pu8HoughMax pointer to max value in Hough accumulator

 * uint16_t * pu16HoughMax_x x coordinate of max value in Hough accumulator

 * uint16_t * pu16HoughMax_y y coordinate of max value in Hough accumulator

 *

 * \return void

 **/

void hough_space_max_search (const uint8_t * pu8HoughAcc,

 uint16_t u16rows,

 uint16_t u16cols,

 uint8_t * pu8HoughMax,

 uint16_t * pu16HoughMax_x,

 uint16_t * pu16HoughMax_y);

/*==*/

#endif /* __IPL_H_ */

