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Abstract: This paper is concerned with the power dispatch in a microgrid. The dispatch problem
is formulated as linear program. Thus, the proposed solution is the application of neural network
that solves linear programming on-line. This proposal in motivated by the increasing electric
energy demand and the rising need to incorporate sustainable energy sources to the power grid
in a reliable scheme. A microgrid is an interconnection of distributed energy sources (DES),
with the tendency to include renewable energies that offer many advantages to customers and
utilities. The different DES that compose the microgrid are controlled independently to track
the optimal reference provided by the proposed method in order to supply a demanded power
output minimizing the consumed power from the main grid.
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1. INTRODUCTION

The optimization of the power dispatch within a microgrid
is a big challenge for many engineering areas as control,
power electronics and modeling. Different studies have
been performed in this area, some examples are presented
in Chowdhury and Crossley (2009). In the presented work,
the optimal amount of power to be supplied by each energy
source in a microgrid simulation, to produce a maximum
amount of energy, is analyzed. Because of the varying
output power that renewable energy sources present, large-
scale, real-time optimization procedures are required, most
of them in the form of linear programming. In contrast to
the publications which use recurrent neural networks for
microgrid optimization (Aquino et al., 2010), the proposed
approach provides fixed convergence time to the solution
and the tuning of only one network parameter.

The optimization problem is stated to maximize or
minimize an objective function with the manipulation
of the value of decision variables, sometimes, subject to
equality and/or inequality constraints. These problems
typically require large-scale real-time linear programming
procedures. Most of the time, sequential algorithms
as the classical simplex or the interior point methods
are implemented. However, these approaches have the
disadvantage that the computing time required for a
solution is greatly dependent on the problem dimension
and structure.

Dynamical systems which can solve real-time optimization
were introduced in Pyne (1956) . Since then, other major
contributions have been proposed by Korovin and Utkin
(1974) , Pazos and Bhaya (2009) , Wang (1993) andWilson
(1986). Due to its inherent massive parallelism, these

systems are able to solve optimization problems faster
than those using more popular optimization algorithms
executed on general-purpose digital computers (Cichocki
and Unbehauen, 1993), with great flexibility to parametric
variations (Pyne, 1956).

Although the previous studies exhibit high performance,
it is necessary to tune several network parameters, that
increase linearly with the optimization problem dimension,
since for every decision variable there is an individual
selection of each activation function. In addition, the
fixed time characteristic is not presented in most of the
mentioned references.

In this paper, a dynamical system for the solution of
linear programming in a predefined convergence time
is proposed. Its design is considered as a sliding mode
control problem, where the network structure is based
on the Karush-Kuhn-Tucker (KKT) optimality conditions
(Karush, 1939; Kuhn and Tucker, 1951) and the KKT
multipliers are regarded as control inputs. The problem is
solved without the individual selection of each stabilizing
input, instead, a multivariable function based on the unit
control (Utkin, 1992) is used. On the other hand, the fixed
time stability (Polyakov, 2012)property ensures system
convergence time independent of the initial conditions.
This controller is used in the KKT multiplier design,
enforcing a sliding mode in which the optimization
problem is solved.

The proposed approach has attractive features such
as: fixed time convergence to the optimization problem
solution and a fixed number of parameters (one in this
case), regardless of the optimization problem dimension.
Therefore, it offers the scalability characteristic, that
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allows the possibility of adding other energy sources to
the microgrid.

In the following, Section 2 presents the mathematical
preliminaries and some useful definitions. In Section 3 the
basis of the linear programming problem are established
and the proposed algorithm is presented. Section 4
describes the microgrid connection and the controllers
implemented along with the linear programming problem
for the power dispatch and shows the simulation results.
Finally, in Section 5 the conclusions are presented.

2. MATHEMATICAL PRELIMINARIES

Consider the system

ξ̇ = f(t, ξ) (1)

where ξ ∈ R
n and f ∶ R+ × R

n
→ R

n. For this system, its
initial conditions or initial states are ξ(t0) where t0 ∈ R+.
The time variable t is defined on the interval [t0,∞).
The idea of the sliding mode control is highly related with
the finite- time stability. This time however often depends
on the initial conditions of the system. The case when
convergence time is uniform and independent of the initial
conditions is known as fixed time stability Cruz-Zavala
et al. (2010). Polyakov (2012) gives a precise statement of
the fixed time stability :

Definition 2.1. (Globally fixed-time attraction ). Let a non-
empty set M ⊂ R

n. It is said to be globally fixed-time
attractive for the system (1) if any solution ξ(t, ξ0) of (1)
reaches M in some finite time moment t = T (ξ0) and the
settling-time function T (ξ0) ∶ Rn

→ R+∪{0} is bounded by
some positive number Tmax, i.e. T (ξ0) ≤ Tmax for ξ0 ∈ R

n.

Note that there are several choices for Tmax, for example
if T (x0) ≤ Tm for a positive number Tm, also T (x0) ≤ λTm

with λ ≥ 1. This motivates the definition of a set which
contains all the bounds of the settling-time function.

Definition 2.2. (Settling-time set). Let the set of all the
bounds of the settling-time function for system (1) be
defined as follows:

T = {Tmax ∈ R+ ∶ T (x0) ≤ Tmax} . (2)

In addition, the minimum bound for the settling-time
function of (1) is defined as:

Definition 2.3. (Minimum bound for the settling-time set).
Consider the set T defined in (2), let the time Tf ∈ R such
that

Tf = {T ∈ T ∶ T ≤ Tmax,∀Tmax ∈ T } . (3)

Note that for some systems Tmax can be tuned by a
particular selection of the system parameters, this notion
refers to the prescribed-time stability which is given in
Fraguela et al. (2012) and the predefined-time stability
Sanchez-Torres et al. (2015). The prescribed-time stability
based design and the predefined-time stability based
design are explained in the following definitions.

Definition 2.4. (Prescribed-time based design). Consider the
set T defined in (2). The particular case when for the
system (1), Tmax can be tuned by a particular selection
of the system parameters ρ, Tmax = Tmax(ρ), is referred to
the notion of the prescribed-time stability which is given
in Fraguela et al. (2012). This design is performed by

selecting Tmax(ρ) ∈ T and calculating the inverse of the
settling-time function, allowing the tuning of ρ.

It is worth to note, the true fixed stabilization time
for a system designed based on prescribed-time stability
is unknown but bounded by Tmax(ρ). In contrast, a
designed system with predefined-time stability has a
known stabilization time.

Definition 2.5. (Predefined-time based design). The par-
ticular case when for the system (1), the time Tf defined
in (3) can be tuned by a particular selection of the system
parameters ρ, Tf = Tf(ρ), is referred to the notion of the
predefined-time stability.

With the definition of a predefined-time attractive set, the
following lemma provides a Lyapunov characterization of
a class of these sets on the state space:

Lemma 2.1. (Lyapunov function Sanchez-Torres et al. (2015)).
If there exists a continuous radially unbounded function

V ∶ R
n
→ R+ ∪ {0}

such that V (x) = 0 for x ∈ M and any solution x(t) satisfies
V̇ ≤ −

α

p
exp(V p)V 1−p (4)

for α > 0 and 0 < p ≤ 1, then the set M is globally
predefined-time attractive for the system (1) and Tmax =

1

α
+ t0.

Proof See Sanchez-Torres et al. (2015).

Definition 2.6. (Predefined-time stabilizing function). For
x ∈ R

n, the predefined-time stabilizing function is defined
as

Φp(x) =
1

p
exp (∥x∥p) x

∥x∥p (5)

where 0 < p ≤ 1.

With the definition of the stabilizing function, let the
following dynamic system:

Lemma 2.2. (Predefined-time stable dynamical system). For
every initial condition x0, the system

ẋ = −
1

Tc

Φp(x) (6)

with Tc > 0, and 0 < p ≤ 1 is predefined-time stable with
settling-time Tc. That is, x(t) = 0 for t > t0 +Tc in spite of
the x0 value.

Proof See Sanchez-Torres et al. (2015).

In order to apply the previous result to control design,
consider the dynamic system

ξ̇ = ∆(ξ, t) + u (7)

with ξ, u ∈ R
n and ∆ ∶ R+ × R

n
→ R

n. The main
objective is to drive the system (7) to the point ξ = 0
in a predefined fixed time in spite of the unknown non-
vanishing disturbance ∆(ξ, t). A solution to this problem
which does not require an individual selection of each
of the n control variables based on the unit control is
presented in the following theorem:

Theorem 2.1. (Predefined-time multivariable control). Let
the function φ(ξ, t) to be bounded as ∥∆(ξ, t)∥ ≤ δ, with
0 < δ <∞ a known constant. Then, by selecting the control
input
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u = −( 1

Tc

+ δ) ξ

∥ξ∥ exp(∥ξ∥)
with Tc being a scalar, the system (7) is globally
predefined-time stable with settling-time upper bounded
by Tc.

Proof : See Sanchez-Torres et al. (2015).

2.1 Linear Programming Problem Statement

Let the following linear programming problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
minx cTx

s.t. Ax = b

l ≤ x ≤ h

(8)

where x = [ x1 . . . xn ]T ∈ R
n are the decision variables,

c ∈ R
n is a cost vector, A is an m × n matrix such that

rank(A) = m and m ≤ n; b is a vector in R
m and,

l = [ l1 . . . ln ], h = [ h1 . . . hn ] ∈ Rn.

Let y = [ y1 . . . ym ]T ∈ R
m and z = [ z1 . . . zn ]T ∈ R

n.
Hence, the Lagrangian of (8) is

L (x, y, z) = cTx + zTx + yT (Ax − b) . (9)

The KKT conditions establish that x∗ is a solution for (8)
if and only if x∗, y and z in (8)-(9) are such that

∇xL (x∗, y, z) = c + z +AT y = 0 (10)

Ax∗ − b = 0 (11)

zix
∗

i = 0 if li < x∗i < hi, ∀i = 1, . . . , n. (12)

3. A RECURRENT NEURAL NETWORK (RNN) FOR
LINEAR PROGRAMMING PROBLEM

Following the KKT approach, from Loza-Lopez et al.
(2015) a recurrent neural network which solves the
problem (8) in finite time is proposed. For this purpose, let
Ωe = {x ∈ R

n
∶Ax − b = 0} and Ωd = {x ∈ R

n
∶ l ≤ x ≤ h} .

According to (8), x∗ ∈ Ω where Ω = Ωd ∩Ωe.

From (10), let

ẋ = −c +AT y + z, (13)

then, y and z must be designed such that Ω is an attractive
set, fulfilling conditions (10)-(12). For this case, in addition
to condition (12), z is considered such that

{zi ≥ 0 if xi ≥ hi

zi ≤ 0 if xi ≤ li
, (14)

and the variable σ ∈ R
m is defined as

σ = Ax − b. (15)

In order to obtain predefined-time stability to the solution
x∗, the terms y and z are proposed in (13) as

y = (AAT )−1 [Ac −Az +
1

Ts

φ (σ)] (16)

and

z = (∥c∥ + 1

Ts

)ϕ (x, l, h) (17)

respectively, where Ts > 0.

For this case, the multivariable activation functions

are ϕ (x, l, h) = [ ϕ1 (x, l1, h1) . . . ϕn (x, ln, hn) ]T , with
ϕi (x, li, hi) of the form

ϕi (x, li, hi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
xi − li∥x − l∥ exp(∥x − l∥) if xi ≤ li

0 if li < xi < hi

−
xi − hi∥x − h∥ exp(∥x − h∥) if xi ≥ hi

(18)
and

φ (σ) = −
σ

∥σ∥ exp(∥σ∥). (19)

Therefore, with the structure given by (13) and the KKT
multiplier as in (16) and (17), with activation functions
(18) and (19), the following theorem presents a RNN which
solves (8) in predefined-time.

Theorem 3.1. (Predefined-time RNN for linear programming).
For the RNN

ẋ = −cΛ + (∥c∥ + 1

Ts

)Λϕ (x, l, h) + 1

Ts

A+φ (σ) (20)

where Λ = I − AT (AA
T )−1A, A+

= AT (AA
T )−1 and

Ts > 0, the point x∗ is globally predefined-time stable with
settling-time Ts.

Proof : The dynamics of (15) is given by

σ̇ = A (−c +AT y + z) . (21)

Therefore, with the selection of y as in (16), the system
(21) reduces to

σ̇ = −
1

Ts

σ

∥σ∥ exp(∥σ∥).
Thus, from Theorem 2.1, a sliding mode is induced on the
manifold σ = 0. Therefore, the set Ωe is predefined-time
attractive with settling-time Ts.

On the manifold σ = 0, the equivalent value of φ is
the solution of σ̇ = 0. Resulting to φeq = 0 or yeq =(AAT )−1 [Ac −Az]. Therefore, the dynamics of (13) on
that manifold is

ẋ = −cΛ +Λz. (22)

With the selection of z as in (17), the resulting system (22)
is

ẋ = −cΛ +Λ(∥c∥ + 1

Ts

)ϕ (x, l, h) .
Consider the Lyapunov function V = ∥x∥. Its derivative is

given by V̇ =
xT

∥x∥
ẋ. Therefore

V̇ =
xT

∥x∥ [−cΛ +Λ(∥c∥ + 1

Ts

)ϕ (x, l, h)]
≤

xT

∥x∥ [ 1

Ts

ϕ (x, l, h)] .
(23)

Replacing the Lyapunov function

V̇

⎧⎪⎪⎪⎨⎪⎪⎪⎩
≤ −

1

Ts

exp(V ) if x < l or x > h

= 0 if l ≤ x ≤ h
(24)

From Theorem 2.1, the set Ωd is predefined-time attractive
with settling-time Ts.

CHAPTER 13. POWER SYSTEMS

457



In the set Ωd the equivalent value of ϕ, ϕeq, is the
solution to ẋ = 0. With the application of Theorem
2.1, the conditions (11) and (12) are satisfied, providing
predefined-time convergence to the set Ω. Now, by using
the equivalent control method, the solution of ẋ = 0 and
σ̇ = 0 in (13) for t > Ts has the form

c +AT yeq + zeq = 0.

Therefore, the condition (10) is fulfilled, implying the point
x∗ ∈ Ω is globally predefined-time stable. ∎

Remark 3.1. Note that, in contrast to the most of the
RNN presented in the literature, this scheme only needs
the tuning of one variable, namely Ts in spite of the
problem dimensions.

4. OPTIMIZATION OF THE POWER DISPATCH IN
A MICROGRID SIMULATION

The optimization algorithm previously presented is
applied to the power dispatch problem within a simulated
microgrid in order to minimize the consumption of power
provided by the utility grid.

4.1 Microgrid Description

The simulated microgrid is connected as in Loza-Lopez
et al. (2014), with a wind power system (WPS), a
connection point with the utility grid system (UGS) and
a DC voltage bus, which includes the output load, a solar
power system (SPS), and a battery bank system (BBS).

The microgrid simulation is performed in Simulink with
the Simscape Power Systems 1 libraries, which include the
dynamic simulation of electronic components in order to
produce a better approach to a real electrical microgrid.
Discrete sliding modes controllers are applied to solar,
battery bank and wind power systems.

Wind Power System. The connection and control of
the WPS is as in Ruiz et al. (2011) which includes a
doubly fed induction generator (DFIG) with a mechanical
interconnection to a wind turbine. The DFIG stator is
directly connected to the utility grid while the rotor is
coupled by a back to back converter. This connection
scheme requires two different controllers; one is the grid
side controller (GSC), which is in charge of maintaining a
fixed voltage in the capacitor, and the second one is the
rotor side controller (RSC), which controls the electrical
torque Te according to the mechanical torque Tm in the
connection with the wind turbine. Both of these controllers
maintain a desired power factor of the energy delivered to
the grid.

In Rapheal et al. (2009) the maximum mechanical power
for a wind turbine is directly related to a constant value
of its tip speed ratio λ :

λ =
ωtRt

v

where wt is the turbine rotor angular speed in rad/s , v
is the wind speed m/s and Rt is the wind turbine rotor

1 Simulink/Simscape Power Systems are trademarks of The
MathWorks, Inc.
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Figure 1. WPS lambda tracking under wind speed
variations.

Time(sec)

0 1 2 3 4 5 6 7 8 9 10

P
o

w
e

r 
(W

)

0

200

400

Photovoltaic Cells Power

Pv Power

Pv Maximum Power

Time (sec)

0 1 2 3 4 5 6 7 8 9 10

Ir
ra

d
ia

n
c
e

 (
W

/m
2
)

0

1000

2000

3000
Irradiance

Figure 2. SPS maximum power tracking under irradiance
variations.

radius (m). In order to produce the maximum power from
the WPS under wind speed variations, λ needs to be
transform to an electrical torque (Ruiz et al. (2011)) and
be passed as the reference to track by the RSC. In Fig.
1, the performance under wind speed variations of the
WPS can be observed, in this case the λ reference to track
corresponds to the maximum power point given by the
wind turbine block in Simulink.

Solar Power System. The SPS is simulated by a 213W
Simscape Power Systems block with a maximum power
point tracker (MPPT) control system, which includes an
perturb and observe algorithm (de Brito et al. (2013)) to
obtain the photovoltaic panel voltage that corresponds to
the maximum power Vpvmax

, and a DC-DC buck converter
in order to track this voltage.

The DC-DC buck converter is directly connected to the
output of the SPS as in Koutroulis et al. (2001),this allows
the Vpvmax

tracking without the problem of high voltage in
the output of the converter. A discrete equivalent control
is applied to the insulated-gate bipolar transistor (IGBT)
of the DC-DC converter with a pulse width modulation
(PWM) block interface. The IGBT switching produces
noise in the required measurements for the control system
as it would in real time application. In Fig 2, the
performance of the SPS along with the MPPT control
system under irradiance variations is displayed, the blue
line corresponds to the maximum power obtained by the
buck converter with the perturb and observe algorithm,
and the red dot line is the maximum theoretical power in
the photovoltaic panel.
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Battery Bank System. The BBS is simulated by a lead-
acid 24V,100Ah battery Simulink block. The control
system for this BBS is implemented using a parallel buck
and boost DC-DC converters; the first one is used under
discharge conditions and the second one under charge
conditions. A discrete equivalent controller is applied to
the each converter, and they switch according to the sign
of the reference power to track. In Fig 3, the performance
of these controllers acting together is displayed. The blue
line is the power given or extracted by the BBS, and the
red dot line is a sinusoidal power reference to track.

4.2 Microgrid Optimization Approach

The main goal for this test is to optimize the power
dispatch of the microgrid based on the output power of
the load at time k (PLk

).

The optimization problem is expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize 10PGk
− 500PWk

− 500PSk
− 200PBk

s.t. PGk
+ PWk

+ PSk
+ PBk

= PLk

PGmin
≤ PGk

≤ PGmax

PWmin
≤ PWk

≤ PWmax

PSmin
≤ PSk

≤ PSmax

PBmin
≤ PBk

≤ PBmax

(25)

In order to match the form of the equation (8), the
needed matrices are established as: cT = [10 − 500 −

500 − 200]T , x = [PGk
PWk

PSk
PBk

]T , A = [1 1 1 1],
b = [PLk

], l = [PGmin
PWmin

PSmin
PBmin

] and h =[PGmax
PWmax

PSmax
PBmax

]. Where PGk
, PWk

, PSk
and

PBk
are the UGS, WPS, SPS and BBS powers at time k,

and the matrices l and h are their corresponding minimum
and maximum power values according to the wind speed
in the WPS, the temperature and irradiance in the SPS
and the state of charge of the BBS.

4.3 Simulation Results

The presented optimization method uses the measured
load power as the vector b and the matrices defined in
the previous section to set the references of power for the
microgrid. Due to incentivize the use of the available power
given by the SPS, WPS and BBS, the expectation is that
the power references for these three systems are set near to
their maximum power limits. For this test the settling time
Tc is set to 5e−5 sec to guarantee an appropriate reference
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Figure 5. UGS and WPS power tracking

tracking, the wind speed is set to 12m/s which correspond
to a PWmin

and PWmax
of 0 and 53.5W. The temperature

and irradiance in the photovoltaic panel are set to 25 ○C
and 3000W /m2 with a PSmin

and PSmax
of 0 and 530W.

The state of charge of the battery is 50% which is a neutral
state with a discharging and charging maximum powers
of −500 and 500W respectively. Even though the UGS is
simulated by an infinite bus, in this test the PGmin

, and
PGmax

are fixed to −1000 and 1000W . Three different
loads are implemented, at the beginning a 0.13Ω resistor
is connected to the DC voltage bus, at 5 seconds a 0.5Ω
is added in parallel and at 10 seconds another 0.5Ω is
connected in the same way.

In Fig 4, the red dot line represents the sum of all the
power references given by the optimization method, and
the blue line is the measured load power. It can be seen
that the equality restriction given in (25) is respected.

In Fig. 5, the UGS and the WPS power dynamics are
shown. It can be seen that wind power reference is near
to the maximum power limit as expected to the related
cost fixed in (25). In the UGS power dynamics it can be
seen that when the WPS, BBS and SPS powers are not
enough to supply the power of the load, the remaining
power is delivered through the UGS. This condition occurs
particularly when the two 5Ω parallel resistors are added
to the DC bus in 5 and 10 seconds.

In Fig. 6, the blue lines represent the SPS and BBS power
and the red dot lines are the optimal power references. It
can be seen that the limits established in (25) for these two
systems and the reference tracking are fulfilled. The SPS
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Figure 6. SPS and BBS power tracking.

power reference remains almost all the simulation in the
maximum value allowed for this system, this is because of
the previously fixed cost related to this system.

5. CONCLUSION

In this paper the optimal power dispatch within a
microgrid is found. The microgrid consists of a connection
point with the utility grid, a battery bank system, a solar
panel system and a wind power system, with appropriate
control systems for the last three. A novel recurrent
neural network which solves linear programming problem,
provides the references to be followed by each controller.
The main features of the proposed neural network are
predefined convergence time and the tuning of only one
parameter. The simulation results validate the use of the
presented optimization algorithm. In all simulations, the
component dynamics with real parameters were taken into
account, which provide a feasible framework for future
real-time implementation.
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