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 ABSTRACT 

  

     Xenotransplantation is considered an alternative to allotransplantation to relieve the 

current shortage of human organs. Due to their similar size and physiology, the organs of 

pigs are of particular interest for this purpose. Endogenous retroviruses are a result of 

integration of retroviral genomes into the genome of infected germ cells as DNA copies 

(proviruses), which are then carried in all cells of the offspring of the organism. Porcine 

Endogenous Retroviruses (PERVs) are of special concern because they are found in pig 

organs and tissue that might be used for xenotransplantation.  

     PERV proviruses, already incorporated into the pig’s genome, can be induced to 

replicate and recombine in pigs, and have been shown to infect human cells in vitro. 

There are three classes of PERVs, namely PERV-A, PERV-B, and PERV-C. PERV-A 

and PERV-B can infect human cells in vitro and can recombine with PERV-C, resulting 

in a recombinant virus with a higher rate of replication in pig and human cell lines.  

    In this study, a PCR based analysis of 50 domestic and 35 feral pigs was carried out to 

study the distribution of PERVs A, B, and C. PERV-A and PERV-B were universal in 

both domestic and feral pigs. The feral varieties of pigs displayed a higher frequency of 

85.67% of PERV-C compared to 42.00% in domestic pigs. However, comparative study 

of presence of PERVs A, B, and C in different breeds of domestic pigs shows there is 

variation in distribution among breeds, and among individuals of same breeds. From the 

results of this study, I hypothesize that presence of endogenized PERV genomes in 

individuals of the same breed is dependent on genetic properties of individual pigs.
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PREFACE  

    This thesis follows the style of Transactions of Kansas Academy of Science.
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 INTRODUCTION  

     Xenotransplantation, the transplantation of living cells, tissues, and organs between 

species, is a widely suggested alternative to allotransplantation due to the shortage of 

viable donated organs (Denner and Tönjes 2012; Takeuchi et al. 1998). As of August 

2018, there were over 114,000 candidates on transplantation waiting list in the United 

States, and only approximately 10,100 donors (Organ Procurement and Transplantation 

Network [https://optn.transplant.hrsa.gov/]). 

     According to the United States Public Health Service, xenotransplantation includes 

any procedure that involves the transplantation, implantation, or infusion into a human 

recipient of either (a) live cells, tissues, or organs from a nonhuman animal source, or (b) 

human body fluids, cells, tissues, or organs that have had ex vivo contact with live 

nonhuman animal cells, tissues or organs (Gola and Mazurek 2014). Although promising, 

xenotransplantation carries its own challenges and risks that include physiological 

incompatibilities, immunological rejection, and transmission of infectious agents. 

Introducing animal tissue and its microbiological flora into the human system and 

lowering the natural host defense mechanisms for the integration of the organ provides 

opportunity for transmission of xenogenic infections crossing the species barrier (Brown 

et al. 1998). Suppressing recipient’s immunological barrier is a mandatory step in 

transplantation of organs, to avoid organ rejection. This, however, also makes the 

recipient more susceptible to infection that would normally be controlled by their 

immune system.  
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     The virulence and clinical outcome of infectious agents are highly unpredictable when 

they enter a new species and cause infections. Brown et al. (1998) exemplified the case of 

cercopithecine herpes-virus 1 (B virus), which in its natural host macaque monkey causes 

persistent latent infection with intermittent, recurrent mucocutaneous disease. However, 

in humans, it causes fatal meningoencephalitis (Brown et al. 1998). Because cases of 

xenographic transmission of infectious diseases in humans have not yet been identified, 

evidence from human retroviral infections and natural occurring zoonoses like AIDS 

have been used to assess transplant related risks of retroviral infections and epidemics in 

humans (Brown et al. 1998). Human retroviral infections commonly manifest as 

neurological disorders, immunodeficiencies, long-latency malignancies, with long 

periods of clinical latency and for which there are limited treatments available (Gallo 

1995; Brown et al. 1998). As such, due to the high risk of retroviral infections, the 

concerns associated with xenotransplantation are legitimate from a public health 

perspective.  

Endogenous Retroviruses 

     A retrovirus is an encapsulated dimer of positive-sense single-stranded RNA, which in 

turn is enclosed in a lipid bilayer envelope (Figure 1). Retroviruses have an 

unconventional life cycle compared to other viruses. Their life cycle starts with reverse 

transcription of the viral genome from RNA to DNA, followed by integration of the 

newly formed DNA into the host genome, resulting in the provirus. The provirus is then 

transcribed to form the RNA genome and messenger RNA (mRNA). The mRNA directs 
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translation of viral proteins and processing of viral particles, resulting in budding of new 

virions from host cell surface (Jern and Coffin 2008).  

    Although retroviruses usually infect somatic cells, occasionally infection of a germline 

cell by a retrovirus may lead to an integrated provirus that is passed to the offspring and 

inherited in Mendelian fashion: this is known as an endogenous retrovirus (ERV) (Jern 

and Coffin 2008). It has been postulated in some cases that this process may have 

provided some evolutionary advantage to the animal, perhaps in surviving an ongoing 

epidemic of the exogenous form of the virus (Brown et al. 1998). Once integrated into the 

host genome, these viruses accumulated random mutations along with the cellular genes 

of the animals and with time attained a dormant stage.  

     ERVs are present in all vertebrate species studied thus far, and a majority of ERVs are 

inactive. However, of those that are active and replication competent, some have been 

associated with spontaneous tumors as in endogenous murine leukemia viruses (MLV) 

and mouse mammary tumor viruses (MMTV) (Frankel et al. 1990; Stoye 2001). 

Vertebrates have over time developed a variety of silencing mechanisms to limit the 

activity of newly-acquired, replication-competent ERVs. These silencing mechanisms are 

generally less effective in cases of viruses that have switched hosts (Hayward and 

Katzourakis 2015) and thus exposure to ERVs from different vertebrate species poses a 

risk of infections.  

Porcine Endogenous Retroviruses 

     Pigs are one of the preferred choices for xenotransplantation because of anatomical 

and physiological similarities to humans, relatively short generation time, and ease of 
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production of transgenic pigs (Cozzi et al. 2009; Gola and Mazurek 2014). The 

phylogenetic distance between pigs and humans reduces the risk of transmission of viral 

infections and screening and qualified breeding further lowers the risk of other zoonotic 

infections (Gola and Mazurek 2014). However, the presence of PERVs and their 

capability to transcribe viral particles hinders the use of porcine xenografts.  

     According to the International Committee on the Taxonomy of Viruses (ICTV), 

PERVs are classified as family: Retroviridae, subfamily: Orthoretrovirinae, genus: 

Gammaretrovirus, Porcine type-C oncovirus species (The 9th Report of the ICTV 2011). 

Retroviruses have been infecting mammalian species for more than 100 million years, 

according to genomic fossil records and gammaretroviruses as a group have jumped 

between species frequently (Hayward and Katzourakis 2015). There are three replication 

competent subtypes of PERVs: PERV-A, PERV-B, and PERV-C, identified based on 

variation of the env gene. PERV-A and PERV-B are present in the genomes of all pig 

strains, at different copy numbers, and are polytropic, which means they are able to infect 

human cells in vitro (Figure 2) (Wilson et al. 1998; Denner and Tönjes 2012) and cells of 

other species. PERV-C is integrated into the genome in many, but not all, pigs and is 

ecotropic, meaning they are restricted to infecting pig cells (Takeuchi et al. 1998; Denner 

2016).  

     The genomes of replication-competent PERVs are encoded by RNA, which is then 

transcribed into proviral DNA by the viral enzyme reverse transcriptase (RT) (The 9th 

Report of the ICTV 2011). Viral particles are assembled at the cellular membrane, 

composed of lipids and protein derived from host cell, and are released by a budding 
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process. The length of the provirus is about 9000 base pairs (bp) and contains coding 

sequences gag (group-specific antigen), pol (polymerase gene), and env (envelope gene) 

(Figure 3) (Łopata et al. 2018). At the proviral stage, these genes are bounded by non-

coding terminal regions known as long terminal repeats (LTR), which contain promoter, 

enhancer, and regulatory elements (Kimsa et al. 2014). The gag genes encode the 

structural proteins of the matrix (MA), the capsid protein (CA) which is the main 

structural protein, and the nucleocapsid (NC).  

     In gammaretroviruses, there is an additional protein localized in the Gag polyprotein 

between MA and CA, the p12 protein, which contributes in the integration of the double-

stranded DNA (dsDNA) within the genome of the host cell, as well as in the release of 

new virus particles (Łopata et al. 2018). The pol genes code for the RT, the integrase 

(IN), and protease (PR) that participate in the transcription process and integration of the 

viral DNA copy into the host genome (Denner and Tönjes 2012). The env gene encodes a 

precursor molecule which is cleaved by a cellular furin-like protease into two envelope 

protein components: the surface envelope protein SU (gp70) and the transmembrane 

envelope protein TM (P15E) (Denner and Tönjes 2012; Łopata et al. 2018). The TM 

protein, which is buried in the lipid bilayer, mediates the membrane fusion reactions and 

anchors the SU protein to the surface of viral particles. The SU protein is responsible for 

binding with the host receptor (Łopata et al. 2018). Comparisons of the TM protein of 

PERV-A and PERV-B have shown 92% amino acid identity to one another and 63 to 

66% identity to the corresponding region from gibbon ape leukemia virus (GALV), feline 

leukemia virus (FLV), and friend virus (FV) strain of MLV.  
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     The origin of PERVs was most likely a murine retrovirus (Denner and Tönjes 2012). 

Both viruses are phylogenetically related (Figure 4) (Klymiuk et al. 2002). Sequence 

alignment of the IN protein shows 79% identity between PERVs and MLV, and they 

show similarities in genomic integration target site selection, preferentially integrating 

near transcription start sites (Moalic et al. 2006). Due to the high homology of PERVs to 

ape and murine leukemia viruses, researchers have suggested PERV may be capable of 

inducing leukemia in a receptive host (Boneva et al. 2001). To date, no evidence of 

human infection with PERV has been documented in patients exposed to pig tissue, in 

spite of the presence of long-term PERV microchimerism (stable presence of a minority 

of non-self-cells in a host) in some patients (Boneva et al. 2001).  

     Numerous transgenic pigs have been generated to produce organs that are more 

readily accepted by the human body, however, it is not currently possible to use 

genetically engineered pigs for xenotransplants due to lack of knowledge about the role 

of PERVs, high variability, and copy numbers of PERV genomes in pigs. Niu et al. 

(2017) have been able to produce PERV-inactivated live pigs from PERV-inactivated 

primary porcine cell lines obtained by using a combination of CRISPR-Cas9, apoptosis 

inhibitor, and growth factors. Long-term studies on these PERV inactivated pigs are 

being conducted to collect information on the functionalities of PERVs in relation to the 

hosts (Niu et al. 2017). However, use of these PERV-inactivated pigs is limited to 

research.  

     Currently, there is very limited information about the evolutionary history, distribution 

patterns, roles and potential infectious capability of PERVs. A better understanding of 
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PERVs in essential to prevent the possible emergence of novel xenozoonoses from pig to 

human transplantations. The purpose of this research was to study and compare the 

distribution of three types of PERVs in feral and domestic varieties of pigs and to 

establish whether a pattern exists among various breeds. It was hypothesized that if there 

was a relationship between PERV distribution and breeds of pigs, then the distribution of 

PERVs would be universal in individuals of the same breed.  
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           MATERIALS AND METHOD  

Sample collection: 

     The total sample size for this study was 85 samples. Tails from 50 domestic piglets of 

four breeds, namely Berkshire, Hampshire, Yorkshire, Blue Butt Cross (blue spotted 

cross from a Hampshire X Yorkshire) were collected from Fort Hays State University 

(FHSU) farm (Table 1). Samples from 35 feral pigs of unknown breeds were obtained 

from towns Trenton and Ravenna in Texas (Figure 5). The docked tail samples were 

placed in 95% ethanol and stored in -20° C freezer until DNA was extracted. 

DNA extraction and isolation: 

     Before performing extraction, the tissue samples were washed with distilled water. 

Genomic DNA was extracted using Qiagen DNeasy extraction kit (Hilden, Germany) 

following the manufacturer’s instructions and eluted in 50 µl of nuclease free water. The 

extracted DNA was visualized in 1% agarose gel and quantified using a spectrophotometer 

(Nanodrop Technologies, Wilmington, DE). Following isolation, DNA samples were 

stored at -20°C until further analysis.  

Amplification and analysis: 

     Polymerase Chain Reaction (PCR) was used to detect presence of PERV genomes in 

samples of pig genomic DNA. Primer sets and PCR cycling conditions followed Liu et al. 

(2011). Three primer sets (Table 2) which amplify a small region of the env gene (Sigma-

Aldrich, St. Louis, MO) were used to individually detect three PERV genotypes. PCR 
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was conducted using Phusion High-Fidelity Polymerase kit from New England Biolabs 

(Ipswich, MA).  

     PCR reaction was conducted in 50 µl of reaction mixture: 10 µl of 5X Phusion High 

Fidelity Buffer, 2.5 µl of 10 µM PERV-A, PERV-B, or PERV-C forward primer, 2.5 µl 

of 10 µM of reverse primers, 1 µl of 10 mM dNTPs, 0.5 µl Phusion Polymerase, 2 µl of 

template DNA and 31.5 µl of nuclease free water. PCR reaction conditions were as 

follows: 95°C for 5 minutes for initial denaturation, 95°C for 30 seconds, 55°C for 45 

seconds, 72°C for 1 minute, repeated for 30 cycles with final extension at 72°C for 7 

minutes. Amplicons were visualized by 2% agarose gel (Agarose low EEO, Thermo 

Fisher Scientific, Waltham, MA) electrophoresis with TAE (i.e., Tris-acetate-EDTA) and 

SYBER safe DNA gel stain (Thermo Fisher Scientific, Waltham, MA, USA). A 1 kb 

DNA ladder (Promega, Madison, WI, USA) was used to estimate the sizes of the 

amplicons.  

     After electrophoresis, the gel was transferred to a Kodak Gel Logic 100 Imaging 

System to visualize bands of amplified DNA fragments. Resulting DNA bands were 

compared to detect presence or absence of the three variations of PERV genomes and 

their occurrence in domestic and feral varieties of pigs.  Amplified PCR products were 

purified using QIAquick PCR purification Kit (Qiagen, Hilden, Germany) following 

manufacturer’s instructions and eluted in nuclease-free water. Samples were prepared at a 

concentration of 2 ng μL-1 x kb with a total volume of 10 μL for sequencing, and sent to 

Genewiz (South Plainsfield, New Jersey, USA). Primer sets were sent with samples 

according to instructions from Genewiz. 
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RESULTS 

PERV detection in domestic samples: 

     DNA extracted from 50 tissue samples from domestic pigs was screened by PCR for 

detection of env gene sequence for PERV-A, PERV-B, and PERV-C.  PERV-A and 

PERV-B were ubiquitous in all the samples, whereas PERV-C was present in 21 out of 

50 (42%) samples. Representative examples of the PCR amplicons for PERVs A, B, and 

C from the domestic pigs are shown in Figure 6. For these samples, the breeds of the pigs 

were known, hence, the distribution of PERVs among different breeds (Table 1) was 

analyzed and the results are demonstrated in Table 3. 

PERV detection in feral samples: 

     DNA extracted from 35 tissue samples from feral pigs were screened by PCR process 

using the same primers for PERV-A, PERV-B, and PERV-C. In these samples PERV-A 

and PERV-B were universal and PERV-C was detected in 30 samples out of 35 (85.7%). 

Some examples of PCR amplicons for PERVs A, B, and C from the feral pigs are 

presented in Figure 7.  

Sequencing results: 

     The sequencing attempt failed because the PCR primers were not suitable. 
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DISCUSSION  

We have described a PCR-based analysis for detection of PERV sequences in pigs of 

various breeds. This experiment was designed to detect the frequency of PERVs, 

compare their distribution in breeds of domestic pigs against feral pigs. The gene targeted 

in this experiment was env gene, which encodes viral envelope proteins, and partially 

determines the host tropism of the virus. There was a higher presence of PERV-C in feral 

herds (85.7%) compared to domestic breeds (42%) (Figure 7). This supports the 

hypothesis that frequency of PERV-C is lower in domestic pigs than feral pigs. These 

results favor the idea of selective breeding of herds with low copy number of PERVs in 

their genomes, to avoid transmission and recombination events.  

     Variation in the PERV-C positive samples in the domestic pigs and among individual 

pigs of the same breed demonstrated that presence of PERV-C proviral DNA is variable 

in the same breed. If distribution of PERV-C was breed specific then PERV-C would 

have been present in all pigs belonging to the same breed. However, absence of PERV-C 

in some individuals and presence in other individuals of same breed show that 

distribution of PERV-C is not breed specific and is not as widespread as PERV-A and 

PERV-B (Figure 8). My results suggest that distribution of PERV-C does not depend on 

presence of PERV-C in a breed but depends on individual genetic characteristics of each 

pig. My data are consistent with the findings that PERV-A and PERV-B are present in all 

pigs (Denner 2009; Takeuchi et al. 1998; Patience et al. 1997) (Table 3, Table 4) and so 

the breeding of completely PERV free pigs is not possible. However, PERV-C is not 

ubiquitous so breeding of herds free of PERV-C is possible.  
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     Sequencing of amplified PCR products might have provided more insights as to 

causes of variance in distribution of PERVs in domestic and feral pigs, however due to 

failure in sequencing, I do not have the data to make any inferences. Occasionally, 

primers suitable for PCR amplification, might not be compatible to use as sequencing 

primers because PCR is an exponential process, and as such, even if there is only a small 

proportion of the target DNA present, it can be amplified in multiple cycles to produce 

good PCR amplification results. However, sequencing is a linear process so the target 

DNA cannot be sequenced with the same primer in cases if the primer is inefficient 

(Biomedical Research Core Facilities [https://brcf.medicine.umich.edu/cores/dna-

sequencing/faqs/sanger-sequencing-faqs/]). Inefficiency in priming also could be due to 

reasons intrinsic to structure or sequence of primers, primers forming dimer or hairpin, 

effect of folded structures of DNA template, or any combination of these factors 

(Genewiz, Diagnosing Sanger). 

     Denner et al. (2009) found PERV-A/C recombinants integrated in DNA of somatic pig 

cells, but not in the pig germ line.  PERV-A/C recombinant viral particles showed a 

higher replication rate than normal PERV variants in human cells after adaptation to 

human cells which may be associated with higher pathogenicity (Denner and Tönjes 

2012). A recombinant virus which carries host cell receptor-binding region of human 

cells, from PERV-A, and the rest of the recombinant genome from PERV-C has a 500 

fold increased infectivity than normal PERV-A variant (Harrison et al. 2004). Kimsa et 

al. (2014), suggested that a lack of PERV-C active loci could reduce the chances of 

PERV-A/C recombination. To decrease the likelihood of a recombinant PERV-A/C 
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provirus, measures can be applied for selectivity of pigs with low copy numbers of 

PERV-A, PERV-B, and free of PERV-C. In cases of such selective breeding, screening 

of each individual pig in multiple stages of growth is necessary for close monitoring of 

PERV-C presence. Long- term studies by Niu et al. (2017), on PERV-inactivated pigs 

produced by applying CRISPR-Cas9, technology might be able to provide insight into the 

role of PERVs in pigs and thus lead to development of novel practices in breeding and 

production of PERV free pigs in the future. 

      PERV originated in African members of the Suidae family about 7.5 million years 

ago. However, PERV-C originated nearly 3.5 million years later than PERV-A and 

PERV-B, due to a recombination event between PERV-A and an unknown ancestor 

(Niebert and Tönjes 2005). This could be the reasoning behind the lack of universal 

presence of PERV-C, unlike other PERV variants. The study was unable to determine if 

the origin of PERV-A and PERV-B was independent integration into the pig genome or 

due to some recombinant event between ancient variants similar to the origin of PERV-C 

(Niebert and Tönjes 2005). Due to the shorter presence of PERV-C in pig genomes, 

PERV-C might not have been subjected to enough mutations to lower its RT activity, and 

as a result is more prone to recombination events (Wood et al. 2009). The role of ERVs 

in various animals is largely unknown, except in a few animals like sheep (Ovis aries). In 

some cases, it has proven to be beneficial for the animals. This is the case in sheep where 

an ERV leads to the formation of the placenta (Dunlap et al. 2006). In most hosts ERVs 

are detrimental, found to be in relation with cancers, germ-line mutations, autoimmune 

disorders, and replication-competent viral particles (Mager and Stoye 2014).  A recent 
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example is the case of transmission of retroviruses similar to PERV, the koala retrovirus 

(KoRV) from unknown rodents to koalas (Phascolarctos cinereus). KoRV has been 

associated with myeloid leukemias, neurogenerative diseases, immunodeficiencies, 

and/or lymphomas in koalas (Denner 2007). KoRV has endogenized into the germ line of 

some Koalas but retains characteristics of exogenous retroviruses in others (Kinney et al. 

2016). An active infection and endogenization process is now occurring in Koalas 

(Tarlington et al. 2006), which gives us an opportunity to study and possibly gain 

invaluable insights into retroviral endogenization (Stoye 2006).   

     Screening of xenograft tissues and organs is a crucial step in determining the viability 

of porcine tissue for xenotransplantation. Along with screening for other infectious agents 

like the influenza virus, Listeria monocytogenes, Yersinia species, porcine 

cytomegalovirus, porcine gammalymphotropic herpesvirus, and swine torque virus, 

screening for PERVs is also a major step in ensuring the safety of such procedures 

(Boneva et al. 2001; Denner and Tönjes 2012). At present, the main strategy for 

prevention against transmission of porcine microorganisms is selective breeding of donor 

pigs.  

     In 1997, amidst a putative spread of infectious diseases via pig-to-human transplant 

and inability to assess the risks, the FDA placed a hold on ongoing clinical trials 

involving new drug developments and cellular transplants, pending the development and 

implementation of monitoring strategies (Denner and Tönjes 2012). In recent years, 

research has shown PERVs can replicate and recombine in pigs and although there has 

been no evidence of PERV infection of humans in vivo, PERVs have been shown to 
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infect human embryonic kidney cell (Łopata et al. 2018; Lee et al. 2008; Prabha and 

Verghese 2009), primary human peripheral blood mononuclear cells (Clémenceau et al. 

2001; Specke et al. 2001) and primary aortic endothelial cells (Specke et al. 2001) in 

vitro. 

     A contributing risk factor to transmission of infectious agents by xenografts is the 

need for immunosuppression of the host’s immune system to combat organ rejection. 

Immunosuppression can result in easier for activation of PERV genomes, replication in 

transplanted tissue, recombination between PERV variants, possible recombination 

between PERVs and HERVs, and incorporation of PERVs into the human genome 

(Bartosch et al. 2004; Patience et al. 1997; Löwer 1999; Wilson et al. 2000). 

Furthermore, recombination events might support higher levels of integration of 

recombinant provirus in somatic cells, which can increase the possibility of the infection 

of pig and human cells by viral particles, and their subsequent spread (Denner and Tönjes 

2012). Although rare, such occurrence even at the slightest probability must be taken 

seriously from a public health perspective.  

     Understanding of distribution of PERVs in various breeds, in relation to their genomic 

properties can be helpful in establishing evolutionary history of infections in pigs and 

their effects. The information gained from this can be applied to making the process of 

xenotransplantation safer, thus alleviating the shortage of transplant organs. Therefore, 

study of distribution patterns and evolutionary history is essential to increase the 

feasibility of pig-human xenotransplantation as a viable medical option. PCR analysis 

similar to the one used in this study can be further developed to be more sensitive by 
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designing primers for different sections of the PERV genome, by detecting RT activity, 

and other molecular detection methods in accordance with the International 

Xenotransplantation Association recommendations for detection of PERV free animals 

(Denner et al. 2009). 
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CONCLUSION 

     Based on the data obtained from my research, it can be concluded that PERV-C unlike 

PERV-A and PERV-B is not universal in domestic and feral populations of pigs, with 

higher percentage of PERV-C positive pigs in the feral population than in domesticated 

pigs. The data shows that the distribution of PERV-C is not uniform within breeds of 

domestic pigs. Due to the uneven pattern of distribution of PERV-C in breeds of pigs, it 

is possible to select individuals from various breeds that are free of PERV-C and use 

these pigs as source pigs for new herds of PERV-C free pigs. The PERV-C free pigs can 

be further tested for their PERV-A and PERV-B copy numbers and RNA activity based 

on which, selection of pigs with low copy numbers of PERV-A and PERV-B can be 

done. By this selective procedure, pig herds that have lower PERV-A and PERV-B 

activity and are free of PERV-C can be established having no chances of recombination 

events between PERV-A and PERV-C which can be used in further research and clinical 

trials of pig-to-human xenotransplants.  

Currently, the main strategy for control of PERVs in pigs is selective breeding and 

subsequent genetic modification to possibly rear PERV-free animals. To further progress 

in the field of pig-to-human xenotransplantation, it is imperative to understand the 

characteristics, distribution and evolutionary history of PERVs. Thus, studies in the 

distribution of PERVs in select breeds can contribute to establishing patterns of 

inheritance of PERVs in future generations. Although, there has been significant interest 

in PERV related research, there is still much left to be discovered about PERVs. Hence, 
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further study and development of sensitive methods for detection of PERVs is essential 

for elimination, or at the least, controlling the risk of PERV related zoonoses.  
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  TABLES 

 

Sample no Crossbreeds 

9-1 to 9-11 

23-1 to 23-10 
Dark Cross sow 71 by Blue Butt Boar 

10-1 to 10-7 

22-1 to 22-5 
Pure York sow by Blue Butt Boar 

19-1 to 19-7 

 
Pure Duroc sow by Berkshire Boar 

24-1 to 24-10 
Dark Cross (Half Hampshire by Half Duroc) bred by Blue Butt 

Boar 

 

Table 1. List of sample number and breeds of domestic pigs used for study of PERVs. 

 

Gene Primer Sequence Fragment size (bp) Ref 

 

env-A 

F:5′-TGGAAAGATTGGCAACAGCG-3′ 

R:5′-AGTGATGTTAGGCTCAGTGG-3′ 

359 Liu et al. 

(2011) 

env-B 

F: 5′-TTCTCCTTTGTCAATTCCGG-3′ 

R:5′-TACTTTATCGGGTCCCACTG-3′ 

263 Liu et al. 

(2011) 

env-C 

F:5′-CTGACCTGGATTAGAACTGG-3′ 

R:5′-ATGTTAGAGGATGGTCCTGG-3′ 

281 Liu et al. 

(2011) 

    

Table 2. Primer sequences used for detection of three distinct variants of the env gene PERV-A, 

PERV-B, and PERV-C from domestic and feral pig tissue samples. 
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Sample no Sample 

size 

Results 

PERV-A PERV-B PERV-C 

Positive Negative Positive Negative Positive Negative 

9-1 to 9-11 

23-1 to 23-10 

21 21 0 21 0 6 15 

10-1 to 10-7 

22-1 to 22-5 

12 

 

12 0 12 0 7 5 

19-1 to 19-7 

 

7 7 0 7 0 5 2 

24-1 to 24-10 10 10 0 10 0 3 7 

  

 Table 3. Results of PCR analysis with PERV primer sequences in domestic pig samples 

obtained from the FHSU farm. 

 

Sample no Sample 

size 

Results 

PERV-A PERV-B PERV-C 

Positive Negative Positive Negative Positive Negative 

P-1 to P-35 35 35 0 35 0 30 5 

 

Table 4. Results of PCR analysis with PERV primer sequences in feral pig samples obtained from 

Texas. 
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     FIGURES 

 

 

 

 

 

Figure 1. Retrovirus particle (not to scale) illustrating general structure. (Source: Retroviridae-

figures, ICTV 9th report, 2011) 
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Figure 2. PERVs produced by infected human cells as shown by transmission (A) and scanning 

(B) electron microscopy. (Source: Denner & Tönjes 2012) 
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Figure 3. Structure of proviral PERV. Genes and open reading frames are shown as open boxes. 

LTR, long terminal repeat; gag, group-specific antigen gene; ppro/pol, protease/polymerase gene; 

env, envelope protein gene. Schematic presentation of the subtypes of PERV and the 

recombination events and increase in the length of the LTR during passaging on human cells. 

Boxes in the LTR indicate sequence repeats. (Source: Denner & Tönjes 2012) 
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Figure 4. Phylogeny of Retroviruses: genera that include endogenous genomes are marked with 

an asterisk. Gamma-retroviruses category, and PERV are marked with boxes. (Source: Weiss 

2006) 
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Figure 5. Texas county map showing towns Trenton and Ravenna from where the feral samples 

were obtained (Source: US Census Bureau) 
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Figure 6. Detection of PERV proviral DNA in domestic porcine tissue samples. Lane L represents 

the DNA 1 kb DNA ladder. Lanes 1, 2, 3 are for env-A, env-B and env-C respectively for sample 

9-1. Lanes 4, 5, 6 are env-A, env-B and env-C for sample 9-2, and lanes 7, 8, 9 are env-A, env-B, 

and env-C for sample 10-2. 
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Figure 7. Detection of PERV proviral DNA in feral porcine tissue samples. Lane L represents the 

1 kb DNA ladder. Lanes 1, 2, 3 are env-A, env-B and env-C respectively for sample P1. Lanes 4, 

5, 6 are env-A, env-B and env-C for sample P2, and lanes 7, 8, 9 are env-A, env-B, and env-C for 

sample P12. 
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Figure 8. PERV Distribution in domestic and feral pigs in percentage values.  

 

Figure 9. PERV Distribution in domestic breeds of pigs in percentage values. 
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     APPENDIX  

Appendix 1. Institutional Care and Use Committee approval.  
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