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ABSTRACT 
 

 Implementation of unmanned aerial system (UAS) in conservation biology has 

allowed researchers to extend their surveying range for monitoring wildlife. Wildlife 

biologists have started using UAS technology for detecting large species (i.e. elk, 

manatees) within their surveying range and monitoring changes and disturbance in the 

landscape. Despite this technological advancement, there are few studies that target 

smaller species (reptiles, rodents, amphibians) for UAS surveys. The primary reason for 

this is that these organisms are simply too small for detection for aerial surveying. 

However, certain species are restricted in their range because they have specific 

environmental requirements, and the target for UAS survey could change focus from 

detection of species to detection of their habitat. The Lesser Earless lizard (Holbrookia 

maculata) is smaller species of lizard that inhabits arid, rocky regions in the southwest 

United States, which is known to occupy areas of sparse vegetation and rocky or loamy 

soils. Although this species would be difficult to detect in aerial surveys, their habitat can 

easily be distinguished in aerial imagery. For this project, aerial surveys performed by 

UAS technology and ground surveying of H. maculata were analyzed in combination to 

generate a predictive model of H. maculata presence within a landscape. Three survey 

areas were assigned for this project: one to generate the predictive model from data 

collected from ground and aerial surveys, and two were assigned to assess the accuracy 

of the predictive model based off ground and aerial surveys.  
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RESUMEN 

Aplicación de sistema aéreo no tripulado (UAS) en biología de la conservación ha 

permitido a los investigadores ampliar su gama de topografía para monitoreo de vida 

silvestre. Los biólogos de vida silvestre de la UAS han empezado a utilizar la tecnología 

para detectar las especies grandes (es decir, Elk, manatíes) dentro de su rango de 

topografía y seguimiento de los cambios y la perturbación en el paisaje. A pesar de este 

avance tecnológico, existen pocos estudios que target especies más pequeñas (reptiles, 

roedores, anfibios) de la UAS de encuestas. La razón principal de esto es que estos 

organismos son simplemente demasiado pequeña para detección de levantamientos 

aéreos. Sin embargo, algunas especies están restringidos en su rango porque tienen 

requisitos ambientales específicos, y la meta para la UAS encuesta podría cambiar el foco 

de la detección de especies para la detección de su hábitat. La menor (lagarto Earless 

Holbrookia maculata) es menor especie de lagartija que habita las zonas áridas, las 

regiones rocosas en el suroeste de Estados Unidos, que se sabe que ocupan áreas de 

escasa vegetación y rocas o suelos fértiles. Aunque esta especie sería difícil detectar en 

reconocimientos aéreos, su hábitat, pueden ser fácilmente distinguidos en imágenes 

aéreas. Para este proyecto, reconocimientos aéreos realizados por UAS tecnología y suelo 

topografía de H. maculata fueron analizados en combinación para generar un modelo 

predictivo de H. maculata presencia dentro de un paisaje. Tres áreas de estudio fueron 

asignados para este proyecto: uno para generar el modelo predictivo a partir de los datos 

recopilados a partir de reconocimientos terrestres y aéreos, y dos fueron asignados a 

evaluar la precisión del modelo predictivo basado en reconocimientos terrestres y aéreos 
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PREFACE 

This thesis is written in the style of The Southwestern Naturalist. These methods were 

exempted by the Institutional Animal Care and Use Committee of Fort Hays State 

University (IACUC protocol #17-0012). 
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INTRODUCTION  

 One of the most substantive advancements in remote-sensing technology over the past 

decade has been the commercialization of unmanned aircraft systems (UAS). Unmanned aerial 

systems have transitioned from primarily military applications, to a variety of applications 

among civilian users in earth-sensing reconnaissance and scientific data collection (Watts et al., 

2012).  

There are many advantages of using UAS over similar types of technology. For instance, 

conservation researchers currently rely on satellite-based remote sensing for mapping and 

monitoring land use change (Broich et al., 2011). High-resolution data is often crucial to 

accurately detect and track land use change at the landscape level; less than 1,000 ha (Koh and 

Wich, 2012). These high-resolution images are expensive to access, and freely available low-

resolution satellite images such as Quickbird or IKONOS are secondary alternatives (Koh and 

Wich, 2012).  However, what these low-resolution images make up for in affordability, they lose 

in critical data quality and often fall short of the accuracy necessary for some assessments and 

analyses.  

In addition, satellite imagery is not always available because satellites travel in fixed 

orbits and return intervals (Ozesmi and Bauer, 2002). Cloud coverage affects satellite imagery, 

by distorting spectral signatures reflected from vegetation (Koh and Wich, 2012). This 

phenomenon is pronounced in areas around the tropics. Unmanned aerial systems provide the 

potential for researchers to perform surveys under their own supervision, and on a consistent 

basis instead of being dependent on the schedule of satellite imagery. 
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 Unmanned aerial systems can be time and cost-efficient, compared to ground surveys. 

Most current assessment and monitoring of biodiversity is achieved by ground surveys, which 

cannot only be time consuming and expensive, but can also be challenging in remote areas 

(Gardner et al., 2008). These high cost surveys are often not conducted at the frequency required 

for proper analysis and monitoring of population trends (Meijaard et al., 2012). In Sumatra, 

ground surveys of Sumatran orangutan (Pongo abelii) populations can cost up to $250,000 for a 

two-year survey cycle (Koh and Wich, 2012). However, researchers were able to successfully 

perform UAS surveys of P. albelii with high accuracy at a fraction of the cost (Koh and Wich, 

2012).  

Another advantage of UAS technology is the ability to survey remote areas that have 

never been surveyed, due to difficult and inaccessible terrain. For example, NASA introduced 

the Sensor Integrated Environmental Remote Research Aircraft (SIERRA) in 2009, and has 

performed several missions that included measuring sea-ice roughness via remote sensing above 

the Arctic Circle, greenhouse gas monitoring in Railroad Valley, Nevada, mapping paths for 

groundwater flow in inaccessible terrain in Oregon and California, and hyperspectral bio-optical 

observations of seagrass around Cedar Key, Florida, and Buccal Reef, Tabago (Watts et al., 

2012) 

 Wildlife researchers have begun to use UAS technology to survey alligators (Alligator 

mississippiensis), manatees (Trichechus manatus), dugongs (Dugong dugon), and black bears 

(Ursus americansus) (Chabot, 2009; Martin et al., 2012; Hodgson et al., 2013; Elsey and 

Trosclair, 2016). Prior to using UAS, wildlife researchers limited to manned aircraft as an aerial 

tool for monitoring wildlife (Patterson, 2015). The reasons for the shift to UAS technology is 
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that manned aircraft are expensive and can be dangerous for the pilot and passengers (Wiegmann 

and Taneja, 2003). In fact, aircraft crashes are one of the largest causes of mortality among field 

biologists (Sasse, 2003). Unmanned aerial systems offer a safer alternative for wildlife 

researchers that can perform the same tasks as manned aircraft. Manned aircraft are also known 

to disturb wildlife, which can negatively impact monitoring methods (Watts et al., 2010).  

However, the small size of most UAS impose limitations on flight time and payload 

capacity relative to manned aircraft, especially when using a multi-rotor aircraft. The multi-rotor 

aircraft do not require a takeoff or landing runway like a fixed-wing aircraft and can fly at 

various altitudes. However, the multi-rotor UAS has high power requirements for flight, which 

reduces the total flight time of these models (Watts et al., 2012).  Fixed-wing models can sustain 

flight for longer periods of time compared to the multi-rotor model, but require more room for 

takeoffs and landing, and do not have the ability to hover over areas of interest.  

Most investigations using UAS for monitoring biodiversity are focused on larger animals 

(i.e., alligators, dugongs, etc.) but a few projects have targeted smaller species. Small animals are 

more difficult to detect in UAS derived imagery due to their small frame and cryptic behavior. 

For example, Watts et al. (2010) attempted to survey shorebirds using UAS technology in 

Florida, specifically targeting the endangered red knot (Calidris canutus). They were unable to 

accurately identify smaller shorebird species, but were successful in identifying larger species 

such as egrets (Ardea alba, Bubulcus ibis, and Egretta spp.), pelicans (Pelecansu spp.), and 

wood storks (Mycteria americana) (Watts et al., 2010). To be able to accurately identify smaller 

animals in UAS imagery, low altitude flights would be necessary, reducing the overall efficiency 

of data gathering and increase the amount of data to be processed. Flying at lower altitudes 
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requires more photos to be captured, because each image would capture a smaller, centralized 

image of the survey area. 

Even though detecting smaller animals with UAS is challenging, specific habitat types 

can easily be detected by UAS aerial imagery. Rodriguez et al. (2012) conducted a project that 

incorporated ground survey data, with UAS data to analyze habitat selection of the Lesser 

Kestrel (Falco naumanni). Kabada (2014) analyzed habitat selection of Desert Kit Fox (Vulpes 

macrotis arsipus) by analyzing aerial imagery of burrows and surrounding vegetation. However, 

researchers have yet to use quantitative data, or airborne imaging spectroscopy (AIS), derived 

from UAS imagery in association with habitat selection. When analyzing different vegetation 

types, studies have shown that there is quantitative spectral difference among species (Gates et 

al., 1965; Gausman, 1985; Gong et al., 1997; Yu et al., 1999; Datt, 2000). Yu et al. (1999) 

analyzed the spectral reflectance patterns among several coniferous species in Sierra Nevada, 

California, and were accurate (76%) in being able to classify each species of conifer.  

The reflectance signatures used to characterize vegetation are typically the red (~670 

nm), green (~510 nm) blue (~470 nm), and near-infrared (~710 nm) wavelengths because plants 

use light in the visible light spectrum for photosynthetic activity and reflect the near-infrared 

(Rabideau et al., 1946; Gates et al., 1965; Loomis, 1965; Woolley, 1971; Gausman and Allen, 

1973; Terashima et al., 2009). Previous studies have had success estimating vegetation diversity 

using spectral reflectance (Rochhini, 2007) as well as in modeling vegetation distributions 

(Pottier et al., 2014) using spectral data acquired from satellite imagery. Using higher resolution 

images available from UAS imagery could be a useful tool in predicting species presence based 

on spectral signatures of specific habitat types.  
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Lizard species that have strict microhabitat requirements are ideal models for testing the 

utility of UAS in characterizing these habitats in a large landscape. Reasons being that species 

that are habitat specialists are only found in certain areas within the landscape. The Lesser 

Earless Lizard (Holbrookia maculata) is a small phrynosomatid lizard that lives in the 

southwestern portion of the United States and inhabits areas associated with sparse, short 

vegetation, loose soil, and relatively level terrain (Degenhardt et al., 1996; Hammerson, 1999). 

In Nebraska, the abundance of these lizards is positively correlated with soil disturbance and 

cattle grazing (Ballinger and Jones, 1985; Ballinger and Watts, 1995). Another study reported 

that H. maculata were positively correlated with the areas of reduced vegetation created by 

prairie dogs (Cynomys spp.) (Davis and Theimer, 2003). In Kansas, populations H. maculata 

have been in decline (Platt, 1985), and recent surveys were unable to detect H. maculata in areas 

where they were formerly abundant (Taggart, pers. comm.).  

My objectives were to determine if UAS technology could be used to identify spectral 

signatures that identify micro-habitat suitable for H. maculata, and use those spectral signatures 

to predict presence in a similar environment. In addition, I will use aero photographic imagery, 

imagery captured by manned aircraft, to determine whether differences in resolution affect 

predictive capabilities. I will also address the potential for UAS in conservation applications. 

METHODS 

Project Design 

 My study was designed to collect data to construct logistic regression models that could 

be used to predict presence of the Lesser Earless Lizard. Within the Hadley Ranch study site, I 

identified three survey plots: one plot, training plot, (~1.46 km2) was used to generate a logistic 
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regression model based on the survey occurrences of H. maculata and remotely-sensed 

reflectance imagery. The remaining tests plots (~0.73 km2) were used to test the accuracy of the 

logistic regression model.  The survey plots were assigned based on whether the areas had 

appropriate habitat for H. maculata. The variables I used to predict occurrence of H. maculata 

were wavelength reflectances. These values were exported from the orthomosaics generated 

from both the UAS based imagery and aerophotographic-based imagery available from NAIP 

(National Agriculture Imagery Program) (Kansas Geological Survey, Kansas, USA). The 

herpetofaunal survey generated dichotomous data, presence and absence points; which meets 

requirements of a logistic regression.  

Study Area 

 Hadley Ranch is a 12.9 km2 prairie located in northeast Ellis County, Kansas.  The local 

land use is primarily fossil fuel production and cattle grazing. The landscape is described as a 

semi-arid prairie ecoregion. Warm season mixed grasses are the dominate vegetation and 

interspersed with patches of sparse vegetation or exposed white chalky limestone rock at the 

surface. Within the study area there is an obvious upland to mesic lowland gradient. The xeric 

upland bluffs (~648 m above ground) (U.S. Department of Agriculture/Natural Resources 

Conservation Service, 2016) support a flora comprised of Little Blue-Stem (Schizachyrium 

scoparium), Smooth Sumac (Rhus glabra), Silver Sage (Artemisia ludoviciana), Yucca (Yucca 

glauca), Maximilian Sunflower (Helianthus maximilliani), Slim-Leaf Scurf-Pea (Pediomelum 

linearifolium), Resinous Skullcap (Scutellaria resinosa), Missouri Evening Primrose (Oenothera 

macrocarpa), and other species.  
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Near the center of the study site, the elevation drops precipitously (~631 m above 

ground) to a spring-fed water course. There are a few small ponds that are located in these areas, 

surrounded by cool season grasses. The common cool season grasses are Western Wheatgrass 

(Pascopyrum smithii) and Cheatgrass (Bromus tectorum), interspersed with patches of Feral 

Cannabis (Cannabis sativa), Ironweed (Vernonia fasciculate), and Western Ragweed (Ambrosia 

psilostachya).  

Ground Survey 

I conducted ground surveys to identify H. maculata from May through September of 

2017. Three survey plots were assigned within the landscape. One plot (~1.46 km2) was used to 

generate a species presence model based on both ground and aerial data. The other two plots 

(~0.73 km2/each) were used to test the accuracy of the model. I performed ground surveys to 

identify and georeference the presence of individuals with Garmin® Oregon 550t in habitat 

space. Searches were timed to calculate catch-per unit effort (CPUE) within each plot. Although 

I did not designate transects, GPS track logs were used as a reference to highlight areas that were 

previously surveyed, to ensure all habitat types were thoroughly examined with minimal bias. At 

least two researchers were present to survey each day of sampling. I performed surveys between 

1000 and 1600 Central Time Zone (CTZ). The target species for this project, H. maculata, was 

chosen based on relative abundance in the area, the uncertainty of its conservation status, and its 

apparent narrow habitat selection. Holbrookia maculata occupy areas of sparse vegetation that 

would be easier to identify and characterize from a UAS imagery and characterized. Other 

common lizard species at the site include Texas Horned Lizard (Phrynosoma cornutum), Six-

lined Racerunner (Aspidoscelis sexlineata), and the Prairie Lizard (Sceloporus consobrinus). 
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Phrynosoma cornutum and A. sexlineata occupy very similar habitats to H. maculata, but S. 

consobrinus is expected in areas of denser vegetation.  

Unmanned Aerial Systems Survey 

 The UAS vehicle I used for this project was an Altimapper, a custom built fixed-wing 

model (Aerovision, South Africa) with a 2 m wingspan. The UAS was designed with a built-in 

sensor compartment that allowed for efficient image capture. The batteries for the UAS were 

lithium ion batteries (10.5 Ah, 22.2 v, 360 w) and capable of supporting 75 minutes of flight 

times. The sensor I used for this project was Sony Alpha 5100 camera with a modified filter to 

allow detection of near-infrared (~710 nm), green (~510 nm), and blue (~470 nm) wavelengths 

of reflectance at image resolutions as fine as 2 cm/pixel or ground sampling distance (GSD).  

All of my flights were conducted between 1000 and 1400 CTZ to capture the optimum 

light reflectance and minimize the effects of shadows. A Pixhawk® autopilot (Computer Vision 

and Geometry Lab, Zurich, Switzerland) was used to control flight characteristics of the aircraft. 

The software interface I used to design and execute flights was Mission Planner (Ardupilot: 

Oborne, 2010). The images were tiled together to construct an orthomosaic of the study area. An 

orthomosaic is a compilation of aerial images constructed from overlapping images and adjusted 

for perspective and scale (Hawkins, 2016). I used Agisoft PhotoScan (Agisoft LLC, St. 

Petersburg, Russia) to generate the orthomosaics. The program detects keypoints in the aerial 

imagery and generates a descriptor for each point. The descriptors are then used to detect 

correspondences across all photos. (Semyonov, pers. comm.). Generally, the more keypoints 

shared among images the higher degree of visual accuracy in the orthomosaics. 
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 To ensure spatial accuracy of the orthomosaic, I placed ground control points (GCPs) in 

each survey area. Ground control points are unique markers planted in each survey plot with a 

known location. These markers were a 0.6 m x 0.6 m piece of corrugated plastic that were 

uniquely patterned to be easily identified in the aerial imagery. I georeferenced the GCPs by 

marking their locations with the Garmin® Oregon 550t and captured in the aerial images during 

flights. When creating an orthomosaic of the study area, these GCPs provide regional accuracy 

of where the orthomosaic was positioned on the earth. This is an important detail of the project, 

especially when transferring the orthomosaic data to other programs (ArcGIS) for data analysis.  

Training plot. I flew a modified Sony α 5100 sensor which was flown 120 m above 

ground level (AGL) and at 16 m/s to capture 1,594 images having a ground resolution of 2.56 

cm/pixel (Figure 1). The total flight time was ~1 hour 10 minutes to survey the 1.6 km2 plot. I 

used all images to generate the orthomosaics of the training plot. The flight was performed in 

July, 2017. 

Testing plots. Using the same sensors and aircraft, I flew the West and South plots 

(Figures 3 and 4) at 120 m AGL and 16m/s to capture 1,307 images having a ground resolution 

of 2.29 cm/pixel. The total flight area was 2.17 km2 and total flight time of the UAS was ~1 hour 

and 15 minutes. I used all images to generate the orthomosaics of both West and South survey 

plots. The flight was also performed in July, 2017 

Aerophotographic Imagery 

 Aerophotographic imagery was incorporated to compare the utility of UAS imagery to 

predict species presence. The aerial imagery was provided by the United State Department of 

Agriculture (USDA) by the National Agriculture Imagery Program (NAIP). The NAIP file was 
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captured in 2015, during the growing seasons to create orthophotography available for private 

and public use. This could affect our comparisons between data sets. However, the 2015 was 

used in the analysis because it was the most recent data file available, and it is similar to other 

imagery that would be available to wildlife biologists for conservation planning. The imagery 

captured by NAIP for Kansas includes broad width red, green, and blue wavelengths at GSD of 1 

m. The 2015 NAIP imagery was exported from the Kansas Data Access & Support Center 

(DASC) (Kansas Geological Survey, Kansas, USA). 

Statistical Analysis 

 I used a logistic regression analysis to determine if the presence of H. maculata could be 

predicted from reflectance values. My georeferenced observations of H. maculata were imported 

into ArcGIS 10.5 (ESRI Geographic Information Systems, California, USA) along with the 

orthomosaics generated by Agisoft Photoscan (Agisoft LLC, St. Petersburg, Russia). I generated  

pseudo-absence points from a random distribution within our training survey plot. Reflectance 

values of near-infrared (NIR; ~780nm), blue (~470 nm), and green light (~510 nm) were 

extracted at each presence and pseudo-absence point from the orthomosaics. Those values were 

used as predictor variables for the logistic regression model. Reflectance values from the same 

locations were extracted from the NAIP imagery. However, red light (~670 nm) reflectance 

values were extracted instead of near-infrared because the NAIP imagery contained only red, 

blue, and green reflectance values. Each data sets was then used to construct a logistic regression 

model using R (R Core Team, Vienna, Austria) based on light reflectance values extracted from 

both data sets. After the models were constructed, the UAS orthomosaics were transformed 

based on the logit transformation, to generate probability maps to assess prediction accuracy of 
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the UAS predictive model. Probability values predicted to be 0.50 or greater were determined to 

predict presence and vice-versa. 

 I generated a classification matrix to describe the performance of both UAS and NAIP 

generated logistic regression models.  The classification matrix compares the predicted presences 

and absences with the actual presence and pseudo-absence values generated from the logistic 

regression models.  

  I used a Mann-Whitney analyisis (R) to test difference between presence and pseudo-

absence mean probability values within the 2 test plots (West and South), extracted from the 

transformed orthomosaics. The reasoning for this test was to determine if predicted probability 

values where H. maculata are present were statistically different from predicted probability 

values of pseudo-absences. Pseudo-absence points were generated in both South and West 

survey (tests) plots from random points by using ArcGIS. I generated a 5-meter buffer at each 

point, and the zonal statistics tool was used to extract probability values. The 5-meter buffer was 

generated around each point in an attempt to reduce sampling error and compensate for sporadic 

movements of the lizards.  The maximum probability in each buffer was used to perform the 

Mann-Whitney test. Insights should provide with the types of areas H. maculata are likely to 

occur based on blue light reflectance.  

  

RESULTS 

Ground Survey 

 From May to September of 2017, a total of 128 H. maculata observations were recorded 

(Table 1). The majority of observations of H. maculata were in areas of sparse vegetation in 
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exposed gravelly soil between patches of S. scoparium and S. resinosa. The total number of 

person-hours surveying all 3 areas was approximately 380 hours. 

 The total number of person-hours surveyed in the training plot was approximately 114 

hours and resulted in 65 observations of H. maculata (Figure 2). The catch per unit effort 

(CPUE) of H. maculata in the training plot was 0.566 per person-hr (Table 2).  

 In the West plot, the total number of person-hours surveying was 106 hours and resulted 

in 33 observations of H. maculata (Figure 3). The CPUE of H. maculata in the west plot was 

0.311 per person-hr. 

 In the South plot, the total number of person-hours surveying was 160 hours and resulted 

35 observations H. maculata (Figure 4). The CPUE of H. maculata in the South plot was 0.219 

per person-hr (Table 2). 

Logistic Regression 

 Prior to performing the logistic regression models, I examined both data sets with a 

scatterplot matrix that illustrates comparisons between each variable (Figures 7 and 8). When 

analyzing the co-linearity of variables, the green and blue wavelengths were strongly correlated, 

which I took into consideration when executing the logistic regression (Figure 7). Other 

relationships observed in the data set include a few outliers present in the NIR data set, as well as 

the right skewed distribution of the green variable data (Figure 7). In the NAIP imagery data set, 

all 3 bands (RGB) were seen to be multi co-linear (Figure 8). However, there appeared to be no 

issue of normality among the variables, and no outliers were present in the data (Figure 8). 

 The results of the first logistic regression model generated with the UAS data, indicated 

that NIR and blue reflectance may predict the occurrence of H. maculata (df = 126, t = 2.576, p 
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= 0.0111) (Blue: df = 126, t = 4.629, p < 0.001; NIR: df = 126, t = -3.799, p < 0.001) (Table 3) It 

should also be noted that the first logistic regression models generated with UAS reflectance data 

ran into problems with underdispersion (0.363). This suggests that the model is conservative 

(increased Type II errors). Accordingly, I used a quasi-binomial distribution model for these data 

to address the low dispersion, which explains the reasoning for t-score values being presented. 

I generated a second model by using only NIR and blue wavelength reflectance to 

analyze the two significant predictor variables of the first model. The second model was 

statistically significant as well (df = 127, t = 3.205, p = 0.00171); (Blue: df =127, t = 5.402, p < 

0.001; NIR: df = 127, t = -5.184, p < 0.001). However, the relationship between NIR reflectance 

values and presence of H. maculata appeared to be complex, as the presence points were 

distributed evenly among the NIR reflectance values (Figure 5). Therefore, I dismissed NIR from 

the model. 

Finally, by using only blue wavelength reflectance, the model was also statistically 

significant (df = 128, t = 3.921, p < 0.001); (Blue: df = 128, t = 3.921, p < 0.001) (Table 3). An 

ANOVA indicated a significant difference (F = 34.583, df = 126, p < 0.001) between the reduced 

model (Blue) and the full model (NIR, Green, and Blue); (Table 6).  

 I generated a classification matrix to analyze the accuracy of the reduced logistic 

regression model (Table 4). When determining presence, the model had a true positive rate of 1. 

The misclassification rate of the model was 0.0461. The false positive rate was 0.092, and the 

specificity (correct to predicting absence) was 0.908. The precision of the classification matrix 

was 0.916. I performed a X2 test to analyze the classification matrix, which suggests that the 

predictive model is valid (X2 = 108.22, df = 3, p < 0.0001); (Table 5).  
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 The first logistic regression model I generated based on NAIP derived reflectance 

incorporated all 3 bands (RGB) was significant and predicted presence of Lesser Earless Lizard 

(df = 126, z = 3.995, p < 0.001; Blue: df = 126, z = 4.29, p < 0.001; NIR: df = 126, z = -1.657, p 

= 0.0974; Green: df = 126, z = -0.75, p = 0.4532). The blue light reflectance had the most effect 

on the model (df = 126, z = 4.29, p < 0.001), so I generated a reduced model for the blue 

wavelength values. The reduced model was significant and predicted presence of Lesser Earless 

Lizard (df = 129, z = 6.247, p < 0.001). The dispersion of the reduced model was closer to 1 

(0.76197), so there was not a problem with over or under dispersion of the dependent variable, 

and the binomial dispersion model was used. I performed an ANOVA to assess differences 

between the full and reduced model. As with the UAS analysis, the test detected differences 

between both models (F = -13.366, df = 126, p < 0.001) (Table 10). 

 I generated a classification matrix to analyze the accuracy of the reduced model from the 

NAIP imagery (Table 8).  The true positive rate was lower in comparison to the UAS model 

(0.8548), and had a higher false positive rate (0.1384). Both the precision (0.8548) and the 

specificity (0.8615) were lower than the UAS model, suggesting that the UAS data generated a 

more accurate predictive model compared to the NAIP imagery (Table 11). I performed a X2 test 

to analyze the classification matrix, which suggests that the NAIP model is also valid (X2 = 

59.846, df = 3, p < 0.0001) (Table 9). 

 I transformed the orthomosaics in ArcGIS 10.5 using the raster calculator, to generate 

probability maps based on the logit transformation. The only variable that was included with the 

regression coefficient was blue light reflectance because, it was the only variable that was 

statistically significant (Figures 9 and 10).  
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The cutoff value for predicting presence was p = 0.50; any pixel with a probability value 

of 0.50 or higher was a predicted presence. After I converted the orthomosaics from West and 

South plots (test plots) to probability of presence, I imported occurrence points of H. maculata 

into ArcGIS. Around each presence point, I generated a 5-meter buffer to compensate for variation 

in the movement of each individual and variation in location error of the GPS unit (Figures 11 and 

12). I used the zonal statistics tool in ArcGIS to extract all values within each buffer generated 

around each point of presence. For this project, I used the maximum probability value to determine 

accuracy of the logistic regression model.   

I used maximum values instead of means, because the mean reflectance values would not 

truly represent the habitat in which H. maculata were observed. For example, if an individual was 

marked near the edge of a blowout area, an exposed patch of rocky or sandy substrate with little 

to no vegetation, the buffer zone generated around the presence point could contain more pixels in 

the denser vegetation than in the blowout or sparse vegetation areas. The mean probability values 

would then be lower than expected relative of where the individual was located. For the West 

survey plot, 31 out of the 33 (0.939) presence marks were determined to predict presence of H. 

maculata, and for the South survey plot, 34 out of 35 (0.971) presence marks were also determined 

to predict presence. Based on the model generated from the training plot data and actual presence 

data in both survey (test) plots, the model appears to have high predictive power (65/68; = 0.956). 

I performed a Mann-Whitney test to evaluate the difference in mean probability values (blue light) 

among presence and absence points of H. maculata. The reason the Mann-Whitney was performed 

was to examine the relationship between blue light reflectance and presence or absence H. 

maculata. For both test plots, there was statistically significant difference between maximum 
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probability of presence and absence points (West: W = 71.5, n = 66, p < 0.001; South: W = 133.5, 

n = 70, p < 0.001) (Tables 12 and 13; Figures 13 and 14). This suggests that the occurrence of H. 

maculata is not randomly distributed among the landscape. 

DISCUSSION 

The majority of observations for H. maculata were in areas with sparse vegetation, and 

rocky or gravelly soil. This is consistent with habitat descriptions for H. maculata and their 

natural history (Ballinger et al., 1979; Ballinger and Jones, 1985; Rosenblum, 2008). Because 

these areas characteristically have little to no vegetation, they can be readily detected in satellite 

and UAS aerial imagery. It is possible to quantify habitat by using the reflectance values in the 

orthomosaic generated from aerial imagery. Because habitat used by H. maculata is sparsely 

vegetated, the reflectance of solar radiation is high in these areas (Gates et al., 1965; Gausman 

and Allen, 1973; Loomis, 1965; Rabideau et al., 1946; Woolley, 1971).  This explains the 

relationship (Figure 6) between presence and high values of reflected blue light. When analyzing 

near-infrared reflectance (710 nm) (Figure 5), there is no discernable pattern because live 

vegetation reflects electromagnetic radiation greater than 700 nm (Gates et al., 1965; Gausman 

and Allen, 1973; Loomis, 1965; Rabideau et al., 1946; Woolley, 1971). Areas with rocky 

substrate and dense vegetation both reflect near-infrared light and consequently there is no 

relationship with the presence of H. maculata.  

Plants reflect green light (~510 nm) relative to other colors of the visible light spectrum 

(Terashima et al., 2009). The reason there is a strong association to blue light reflectance and H. 

maculata presence, is that plants most readily absorb light in the blue light spectrum (470 nm), 

and the red light spectrum (670 nm) (Gates et al., 1965; Gausman and Allen, 1973; Loomis, 
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1965; Rabideau et al., 1946; Terashima et al., 2009;Woolley, 1971). Because the sensor was 

modified to capture images in the near-infrared, green, and blue region, instead of a typical 

camera that captures images in RBG spectrum, there is no analysis of what the red light spectrum 

(670 nm) might have in this project. Despite not having red light reflectance data in this project, 

blue light still provides clear insight into the usefulness of aerial imagery.  

When analyzing the orthomosaics in the blue light reflectance, there was a substantial 

amount of variation within the landscape (Figure 16). Densely vegetated areas reflect less blue 

light, and surfaces like roads and gravel reflect more blue light, which creates heterogeneity in 

the orthomosaic that can be used to interpret patterns in the landscape. When analyzing 

orthomosaics in the near-infrared or green reflectance, the features in the vegetation do not 

appear as prominent in the landscape and are arguably more homogenous across the entire study 

area (Figures 17 and 18). Therefore, I observed less variation in wavelength reflectance in the 

near-infrared and green light spectrum in the orthomosaics.   

Based off the rates between the UAS and NAIP classification matrices, the UAS logistic 

regression model appears to have more predictive power compared to the NAIP logistic 

regression model (Table 11). Higher resolution in UAS imagery (< 5cm/pixel) seemed to 

enhance the predictive model, in comparison to the lower resolution images captured by 

aerophotography (1 m/pixel). These high resolution images generated a more detailed 

orthomosaic, containing precise data of the landscape. Because of this, the UAS predictive model 

had a lower misclassification rate (~5%) compared to NAIP model (~16%). It was evident when 

looking at the results of the two test plots (West, South). I was able to have relatively high 

predicting accuracy using the generated predictive model with UAS data (~94%, ~97%). 
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 The spatial scale of a study will determine whether the effort to generate an orthomosaic 

from sUAS imagery or other aerial imagery is more appropriate. Based on the sUAS and the 

orthomosaics, it seemed appropriate for my project and projects of slightly greater extent. When 

comparing other platforms for acquiring remote sense data, such as satellite or manned aircraft, 

UAS are effective in areas in the range of 1-10 km2 (Dandois and Ellis, 2013; Whitehead et al., 

2014). This is supported when comparing the overall effectiveness between the UAS data and 

the aerophotographic data, because UAS data generated a more accurate predictive model (Table 

11). The GSD of UAS data (< 5 cm) compared to the aerophotography data (~1 m) provided 

more detailed and contemporaneous assessment of the landscape. However, using a UAS 

platform to capture imagery of this quality in areas larger than 10 km2 would need to be 

considered carefully, because the computer processing power necessary to assemble the 

orthomosaics would be beyond available desktop microcomputers capabilities.  In addition, 

sUAS flight times would be longer, which might increase variation in the imagery due to 

shadows and changes in the angle of the incidence of solar radiation.  

 Location of H. maculata might have been altered because of the sampling protocol. 

Encounters with H. maculata were the result of walking in the landscape. The actual detection of 

lizards typically occurred when the individuals were retreating. Lizards might have moved from 

other habitats and were unable to be seen until they were in areas that were easier to see 

movement (e.g. blowout areas with little vegetation).  

 Visual inspection of orthomosaics indicated artifacts in the imagery. Streaks of dark 

pixels as seen in some areas of the orthomosaics, which could be the result of several factors. 

These dark areas could be due to insufficient overlap of the UAS survey. During construction of 
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the orthomosaics, the software (Agisoft Photoscan) that aligns the images by identifying pixel 

values in separate images. If several images contain the same pixel value, the software will 

generate a tie point, which provides the software a reference for aligning the images. If an area is 

not surveyed thoroughly, the software cannot detect sufficient tie points and images can be 

misalign.  

The sensor might have shifted during flight, which can inhibit the sensor’s ability to 

capture images. During the flight, the lens angle might have shifted and captured images with the 

shadow of the platform. A dark semi-circle appeared in the top left corner of some the images. 

This could affect the ability of Agisoft Photoscan to align images and therefore create artifacts in 

the orthomosaics. 

 The duration of the surveys were just over an hour. During that time, changes in 

environmental conditions could affect image quality (cloud cover; wind gust; changes in wind 

direction). I considered cloud coverage for each flight to minimize shadows (shadow effect) in 

the images. Shadow effects might alter the images due to different lighting. This could result in 

lower number of tie points. Also, shadow effects reduce reflectance accuracy because images are 

the result of different lighting.   

Wind gusts can unpredictably alter the course of the UAS platform during flight. Each 

aerial survey performed by the UAS is programmed into the autopilot, which directs the UAS 

where to fly, the speed, and altitude of the platform. Even with onboard GPS to guide aerial 

surveys, strong winds might alter the flight path and speed of the UAS, which can either cause 

the UAS to capture images in the wrong pathways or capture too few images if the UAS is 

forced to fly faster than the intended speed.  
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 While H. maculata are not a species of conservation concern in the United States, this 

technique could be useful for assessing habitats of threatened or endangered species. For instance 

the Texas Horned Lizard (P. cornutum) is comparable to H. maculata and occupies similar 

habitat and has similar ecological requirements. In Texas, P. cornutum is a threatened species 

due primarily to habitat loss from urbanization, and the introduction of fire ants (Solenopsis 

invicta). The use of UAS systems could provide more timely and cost effective habitat 

monitoring to aide in conservation efforts in these organisms.  

Increases in anthropogenic disturbance associated with agriculture, fossil fuels extraction, 

and urbanization, will increase pressure for conservationists and agency professionals to monitor 

land use (Sieg et al., 1999). Performing surveys with UAS systems will allow land managers to 

quickly survey the land and the possible presence of threatened or endangered species, i.e. P. 

cornutum. This could allow for conservationists to focus time and effort in areas that are more 

suitable to these species, and use limited resources most efficiently. Using UAS systems for 

surveying or monitoring potential habitat and should be considered for landscape and 

conservation planning. 
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Table 1: Summary table of all H. maculata encountered during ground surveys at Hadley Ranch 
in all survey plots from May-September 2017. 

 

 

 

 

 

 
Training Plot South Plot West Plot 

Lesser Earless Lizard 
(Holbrookia maculata) 

65 35 33 

n = 133   
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Table 2: The catch per unit effort (CPUE) of each survey plot from May – September 2017 at Hadley Ranch. CPUE is the proportion 
of the total number of species observed by the number of total person-hours surveyed (person/hr).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Training Plot South Plot West Plot 

CPUE (Earless Lizard) 0.566 person/hr 0.219 person/hr 0.311 person/hr 

CPUE (total species) 0.775 person/hr 0.525 person/hr 0.368 person/hr 
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Table 3: List of all the variables included to generate the logistic regression model from the UAS data, the descriptive statistics of that 
data, and the results of each logistic regression model generated. All reflectance values were extracted with ArcGIS at presence and 
pseudo-absence occurrences in the training plot. Analysis was performed in R software. 

 
 
 

 
 

 
 
 

Variables  Variable Description 
NIR Near-infrared light reflectance values (780 nm) 
Green Green light reflectance values (510 nm) 
Blue Blue light reflectance values (470 nm) 

 N Minimum Maximum Mean Std. Deviation 
NIR 130 37 222 135.2923 38.60081 
Green 130 23 169 69.66923 36.00891 
Blue 130 19 214 113.4 56.90147 

 Model 1 Model 2 Model 3 

Variable Coefficient t-stat Coefficient t-stat Coefficient t-stat 

Constant -7.89077 -2.546 -9.4757 -3.205 -8.89495 -3.605 

Blue 0.30927 4.629 0.28252 5.402 0.07494 3.921 

NIR -0.31103 -3.799 -0.21251 -5.184   

Green 0.09596 1.753     

Degrees of Freedom 126 127 128 
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Table 4: The classification matrix is the results of the most reduced logistic regression model (Model 3 in Table 3) from UAS data, 
and the calculated rates. Classification matrix was performed using R software. Misclassification rate is the how often is the model 
wrong (False predictions/Total size), True Positive Rate is when the model correctly predicts presence (Predicted Presence/Actual 
Presence), False Positive Rate is the when the model predicts absence when its actually presence (False Absence/Actual Absence), 
Specificity is when its actually absence, how often does the model predict absence (Predicted Absence/Actual Absence), Precision is 
when the model predicts presence and is correct (Predicted Presence/Actual Presence), and the Prevalence is how often does presence 
actually occur (Actual Presence/Total size). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

n=130 Predicted Absence Predicted Presence  

Actual Absence 59 6 65 

Actual Presence 0 65 65 

59 71 
 
 
    

Misclassification Rate  0.046153846 

True Positive Rate 1 

False Positive Rate 0.092307692 

Specificity 0.907692308 

Precision 0.915492958 

Prevalence 0.5 
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Table 5: Results of the Chi-squared test of independence performed in R software of the reduced UAS logistic regression model. Data 
is based on the classification matrix table generated in Table 4. This test determines whether or not there is a relationship between 
presence and absence variables. 

 
 

X2 df p 
108.22 3 < 0.0001 
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Table 6: Results of the ANOVA performed in R software, of the reduced UAS logistic regression model (blue only), to the full model 
(NIR, green, blue). This test determines whether or not the performance of the reduced model is comparable to the full model. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

F Df p 
34.583 126 < 0.0001 
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Table 7: List of all the variables included to generate the logistic regression model from the NAIP data, the descriptive statistics of that 
data, and the results of each logistic regression model generated. All reflectance values were extracted with ArcGIS at presence and 
pseudo-absence occurrences in the training plot. Analysis performed in R software 

 
 
 

 
 
 

 
 
 

Variables  Variable Description 
Red Red light reflectance values (710 nm) 
Green Green light reflectance values (510 nm) 
Blue Blue light reflectance values (470 nm) 

 N Minimum Maximum Mean Std. Deviation 
Red 130 24 214 142.5462 44.56184 
Green 130 33 216 143.4154 42.31099 
Blue 130 37 202 122.8692 43.37426 

 Model 1 Model 2 

Variable Coefficient F Coefficient F 

Constant -4.99357 3.995 -6.76136 6.247 

Blue 0.16183 4.290 0.05588 6.277 

Red -0.06161 1.657   

Green 0.09596 1.753   

Degrees of Freedom 126 128 
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Table 8: The classification matrix is the results of the most reduced logistic regression model (Model 2) from the NAIP data, and the 
calculated rates. Classification matrix was performed using R software. Misclassification rate is the how often is the model wrong 
(False predictions/Total size), True Positive Rate is when the model correctly predicts presence (Predicted Presence/Actual Presence), 
False Positive Rate is the when the model predicts absence when its actually presence (False Absence/Actual Absence), Specificity is 
when its actually absence, how often does the model predict absence (Predicted Absence/Actual Absence), Precision is when the 
model predicts presence and is correct (Predicted Presence/Actual Presence), and the Prevalence is how often does presence actually 
occur (Actual Presence/Total size). 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

Misclassification Rate  0.161538461 

True Positive Rate 0.854838709 

False Positive Rate 0.138461538 

Specificity 0.861538461 

Precision 0.854838709 

Prevalence 0.5 

 
n=130 Predicted Absence Predicted Presence  

Actual Absence 56 9 65 

Actual Presence 12 53 65 

68 62 
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Table 9: Results of the Chi-squared test of independence performed in R software, of the reduced NAIP logistic regression model. 
Data is based on the classification matrix table generated in Table 8. This test determines whether or not there is a relationship 
between presence and absence variables. 
X2 df p 
59.846 3 < 0.0001 
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Table 10: Results of the ANOVA performed in R software, of the reduced NAIP logistic regression model (blue only), to the full 
model (NIR, green, blue). This test determines whether or not the performance of the reduced model is comparable to the full model. 
F Df p 
-13.366 126 0.001252 
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Table 11: Table compares the different rates of both classification matrices generated in Tables 4 and 8. Misclassification rate is the 
how often is the model wrong (False predictions/Total size), True Positive Rate is when the model correctly predicts presence 
(Predicted Presence/Actual Presence), False Positive Rate is the when the model predicts absence when its actually presence (False 
Absence/Actual Absence), Specificity is when its actually absence, how often does the model predict absence (Predicted 
Absence/Actual Absence), Precision is when the model predicts presence and is correct (Predicted Presence/Actual Presence), and the 
Prevalence is how often does presence actually occur (Actual Presence/Total size). 
 
 UAS Imagery NAIP Imagery 
Misclassification Rate 0.046153846 0.161538461 
True Positive Rate 1 0.854838709 
False Positive Rate 0.092307692 0.138461538 
Specificity 0.907692308 0.861538461 
Precision 0.915492958 0.854838709 
Prevalence 0.5 0.5 
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Table 12: Mann-Whitney test statistics to determine difference of probability values among presence (n = 35) and pseudo-absence (n 
= 35) buffers in the South plot. Probability values were extracted from the transformed orthomosaics using ArcGIS in Figure 10. The 
maximum reflectance value was extracted from each buffer.  
 
Variable N Std. Deviation Minimum Maximum Median 

Present 35 16.537 17.6535 99.9633 99.7427 

Absent 35 32.2537 8.0173 99.9964 47.1282 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

W α p-value 

133.5 0.05 1.564 e-08 
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Table 13: Mann-Whitney test statistics to determine difference of probability values among presence (n = 33) and pseudo-absence (n 
= 33) buffers in the West plot. Probability values were extracted from the transformed orthomosaics using ArcGIS in Figure 9. The 
maximum reflectance value was extracted from each buffer. 
 
Variable N Std. Deviation Minimum Maximum Median 

Present 33 10.59438 41.5809 99.9964 99.9163 

Absent 33 25.13266 12.842 99.9964 54.6119 

 
 
W α p-value 

71.5 0.05 6.753 e-10 
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Figure 1: Map of the three survey plots (Training, West, and South plots) throughout the 
months of May-September of 2017, at the study site Hadley Ranch, located just north of 
Hays, Kasas, USA.   

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus
DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community
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Figure 2. Map of all 65 H. maculata presence points in the Training Plot at Hadley 
Ranch, with 65 pseudo-random generated absence points. Surveys performed from May-
September, 2017. 
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Figure 3: Map of all 33 H. maculata presence points observed in Hadley Ranch with a 5 
meter buffer in the West Plot. Surveys performed from May-September, 2017. 
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Figure 4: Map of all 35 H. maculata presence points observed in Hadley Ranch with a 5 
meter buffer in the South Plot. Surveys performed from May-September, 2017. 
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Figure 5: Graph that describes the relationship between presence points and near infrared 
light (~710 nm) reflectance values from the UAS data. Points with a value of 1 are 
determined to predict presence and points with a value of 0 are determined to predict 
absences. 
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Figure 6: Graph that describes the relationship between presence points and blue light 
(~470 nm) reflectance values from the UAS data. Points with value of 1 are determined 
to predict presence and points with a value of 0 are determined to predict absences. 
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Figure 7: Scatterplot matrix that analyzes the relationships between all variables in the 
UAS data set. Boxes labeled Presence, NIR, Green, and Blue illustrate the 
presence/pseudo-absence data, and the other matrices compare each variable among each 
other to assess linear correlations. 
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Figure 8: Scatterplot matrix that analyzes the relationships between all variables in the 
NAIP data set. Boxes labeled Presence, NIR, Green, and Blue illustrate the 
presence/pseudo-absence data, and the other matrices compare each variable among each 
other to assess linear correlations. 
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Figure 9: Graph that describes the relationship between presence points and blue light 
(~470 nm) reflectance values from the NAIP data. Points with a value of 1 are 
determined to predict presence and points with a value of 0 are determined to predict 
absences. 
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Figure 10: Map that represents presence probability values based on the logit 
transformation of blue light reflectance within the West Plot of Hadley Ranch. Image 
captured in July, 2017. 
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Figure 11: Map that represents presence probability values based on the logit 
transformation of blue light reflectance within the South Plot of Hadley Ranch. Image 
captured in July, 2017. 
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Figure 12: Map of all 33 H. maculata individuals with a generated 5 meter buffer and the 
presence probability of the West plot reclassified into two groups; predicted presence (p 
> 0.50) and predicted absence (p < 0.05).  
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Figure 13: Map of all 35 H. maculata individuals with a generated 5 meter buffer and the 
presence probability of the South plot reclassified into two groups; predicted presence (p 
> 0.50) and predicted absence (p < 0.05). 
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Figure 14: Graphs that represent the total frequency of both H. maculata presence points 
and their probabilities of predicting presence, and pseudo-random generated absent points 
and their probabilities of predicting presence in the West plot. Values were extracted 
from the orthomosaic generated in Figure 10 with ArcGIS. 
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Figure 15: Graphs that represent the total frequency of both H. maculata presence points 
and their probabilities of predicting presence, and pseudo-random generated absent points 
and their probabilities of predicting presence in the South plot. Values were extracted 
from the orthomosaic generated in Figure 11 with ArcGIS. 
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Figure 16: Orthomosaic of the Training plot generated in Agisoft Photoscan at Hadley 
Ranch and the Blue light (~470 nm) reflectance values. Images were captured in July, 
2017. 
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Figure 17: Orthomosaic of the Training plot generated in Agisoft Photoscan at Hadley 
Ranch and the Green light (~510 nm) reflectance values. Images captured in July, 2017. 
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Figure 18: Orthomosaic of the Training plot generated in Agisoft Photoscan at Hadley 
Ranch and the Near-infrared light (~710 nm) reflectance values. Images were captured in 
July, 2017. 
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