
Fort Hays State University
FHSU Scholars Repository

Master's Theses Graduate School

Spring 2017

UAS-Collected Multispectral Imagery For The
Identification Of Rangeland Vegetation In A
Southern Mixed-Grass Prairie
Adam Rusk
Fort Hays State University, arrusk@mail.fhsu.edu

Follow this and additional works at: https://scholars.fhsu.edu/theses

Part of the Geology Commons

This Thesis is brought to you for free and open access by the Graduate School at FHSU Scholars Repository. It has been accepted for inclusion in
Master's Theses by an authorized administrator of FHSU Scholars Repository.

Recommended Citation
Rusk, Adam, "UAS-Collected Multispectral Imagery For The Identification Of Rangeland Vegetation In A Southern Mixed-Grass
Prairie" (2017). Master's Theses. 17.
https://scholars.fhsu.edu/theses/17

https://scholars.fhsu.edu?utm_source=scholars.fhsu.edu%2Ftheses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.fhsu.edu/theses?utm_source=scholars.fhsu.edu%2Ftheses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.fhsu.edu/gradschl?utm_source=scholars.fhsu.edu%2Ftheses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.fhsu.edu/theses?utm_source=scholars.fhsu.edu%2Ftheses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=scholars.fhsu.edu%2Ftheses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.fhsu.edu/theses/17?utm_source=scholars.fhsu.edu%2Ftheses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

 

 

UAS-COLLECTED MULTISPECTRAL IMAGERY FOR THE IDENTIFICATION OF 

RANGELAND VEGETATION IN A SOUTHERN MIXED-GRASS PRAIRIE 

 

Being 

 

A Thesis Presented to the Graduate Faculty  

of the Fort Hays State University, in  

Partial Fulfilment of the Requirements for  

the Degree of Master of Science 

 

By 

 

Adam Rusk 

B.S., Fort Hays State University 

M.S., Antioch University New England 

 

Date: ____________________  Approved____________________________ 

           Major Professor 

 

 

 

      Approved____________________________ 

           Chair, Graduate Council 



 

 

i 

 

PREFACE 

This thesis is written in the style of the Annals of the American Association of 

Geographers. 

 

Keywords: unmanned aerial systems, supervised classification, rangeland, remote sensing  
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ABSTRACT 

The interest in using unmanned aerial systems (UAS) for remote sensing of natural 

resources and ecology has grown rapidly in recent years and continues to develop.  

Recent improvements in the cost, size, and accessibility of consumer-grade UASs are 

now facilitating image collection on low-flying UAS platforms. Rangelands provide a 

unique opportunity to explore the uses of UAS remote sensing due to their large spatial 

extent and spatial and temporal heterogeneity. This study focuses on the use of UAS’s to 

identify rangeland vegetation in a southern mixed-grass prairie in Kansas. Two primary 

questions were asked: 1) Do small UASs with low-cost sensors collect imagery useful for 

mapping rangeland plants? 2) Do different supervised classification techniques yield 

significant differences in their ability to classify rangeland vegetation? Data were 

collected over 100 acres of the Hadley Range in north-east Ellis County. Three separate 

modeling algorithms (Maximum Likelihood Classifiers, Random Forests, and Support 

Vector Machines) were compared to a random dataset to determine if imagery collected 

with UAS could identify land cover better than random assignment. While the 

classification algorithms did perform better than random in most regards, they did not 

perform sufficiently well as to replace, or even compare to field work. However, I expect 

that as technical, and technological improvement in spatial, spectral, and temporal 

resolution occur, UAS remote sensing’s ability to aid in determining stocking rates for 

grazing, locating invasive or rare species, and estimating overall biodiversity will greatly 

increase.  
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INTRODUCTION 

 Sampling vegetation in an effort to quantify structure, function, and composition 

is a fundamental means of assessing ecological differences. Often, studies focused on the 

management of rangelands, which require our ability to quantify habitat, include a 

diversity of flora and fauna. Considerations of time and money tend to influence the 

quality and scope surveying vegetative distributions using traditional methods (Cruzan et 

al. 2016). However, were resources unlimited, the amount of disturbance that would 

occur when intensively sampling a rangeland negatively impacts the ecological system. 

Remote sensing adds value to ecosystem research in that time, money, and effort are 

greatly reduced. Unfortunately, traditional methods of remote sensing often lack 

sufficient resolutions when the ecosystem is heterogeneous. The use of UASs in 

heterogeneous ecosystems, such as rangelands, may be used to bridge this gap between 

insufficient remote sensing resolutions and practical inhibitors by collecting high spatial 

and temporal resolution data on difficult to survey ecosystems.  

The interest in using unmanned aerial vehicles (UAS) for remote sensing of 

natural resources and ecology, such as vegetation cover, ecosystem health, and wildlife 

tracking, has grown rapidly in recent years and continues to increase. Colomina and 

Molina (2014) discuss an increase in the prevalence of unmanned aerial vehicle (UAS) 

and drone online research from 2005 to 2013. Traditionally, aerial photography collected 

using piloted aircraft provided data for rangeland monitoring and mapping. However, 

higher resolution imagery is often required for characterizing and quantifying finer 

spatial patterns and processes within a rangeland. Recent improvements in the cost, size, 

and accessibility of consumer-grade UASs are now facilitating image collection on low-



 

 

2 

 

flying UAS platforms. These platforms are capable of collecting sub-decimeter resolution 

(as low as 1 cm) imagery at a lower cost, at an higher temporal frequency, on shorter 

notice than piloted aircraft, and are safer than manned aircraft (Laliberte and Rango 2011; 

Ishihama, Watabe, and Oguma 2012).  

  Rangelands provide a unique opportunity to explore the uses of UAS remote 

sensing. Rangelands are defined by the Society for Range Management as any land in 

which the climax vegetation is primarily grasses, forbs, or shrubs and is managed as a 

natural ecosystem, where fire, drought, and grazing inhibit the encroachment of 

succession to savannahs or forests. Ranges comprise nearly 40% of the United States and 

between 50 and 70% of the world (Rango et al. 2009), and often vary in expanse, ranging 

from fractions of a hectare, to thousands of hectares. They are spatially and temporally 

diverse, where an individual of a given species of vegetation may occupy no more than 

10 cm2, and species prevalent in the spring may not be prevalent in fall. A diverse 

assemblage of animal species rely on grassland or shrubland as habitat, from amphibians 

(green toad) and reptiles (longnose snake), to birds (greater prairie chicken) and hooved 

mammals (pronghorn). This includes livestock which humans manage for our own 

benefit. Researchers and land managers endeavor to quantify rangeland habitats to 

discern suitability for rangeland obligate species, monitor ecosystem health, and calculate 

stocking rate for livestock. The incorporation of low-altitude remote sensing using UASs 

may facilitate sampling in these vast ecosystems. 

Prior work in the field of rangeland UAS remote sensing has focused on creating 

data collection workflows and collecting imagery using expensive equipment in 
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moderately uniform environments. This study aims to expand on prior research 

conducted primarily in New Mexico (e.g. Laliberte and Rango 2008) with intent to 

identify rangeland vegetative species in Kansas’ southern-mixed grass prairie. 

Specifically, the following questions will be addressed: 1) Do small UASs with low-cost 

sensors collect imagery useful for mapping rangeland plants? and 2) Do different 

supervised classification techniques yield significant differences in their ability to classify 

rangeland vegetation?  

A review of the literature provides context to this research and validates the 

research questions. Discussed below is a background of how remote sensing applies to 

ecological systems and vegetation, a history and description of UASs in rangeland 

research, and modes of image classification and how to assess their accuracy.   
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LITERATURE REVIEW 

Context 

 Remote sensing is a valuable tool for collecting large amounts of data in a 

relatively short period of time. Satellites can capture images with spatial extents 

thousands of kilometers across (MODIS specifications 2330 km), though their spatial 

resolution, or size of a pixel, is poor. Conversely, near-Earth sensing platforms such as 

unmanned aerial vehicles can obtain images with a spatial extent the width and length of 

a hectare or smaller, with very fine resolution (decimeters to millimeters). Depending on 

the scale of a research project, both methods are valuable. Climate can successfully be 

modeled with a resolution of 1 km2 and ecosystems, for example the difference between 

forests and grasslands, can often be separated using 30 m x 30 m (900 m2) pixels. 

However, a 30 m x 30 m pixel is insufficient when looking at a rangeland for feeding 

cattle. 

 UAS remote sensing is being used worldwide to survey animals (Watts et al. 

2010), identify invasive plants (Mitchell et al. 2012), locate and remove weeds (Xiang 

and Tian 2011; Gini et al. 2012; Lopez-Granados et al. 2015), and map fine-scale 

degradation of habitat (Mansour et al. 2015). Small unmanned systems or platforms are 

useful, because they are able to sample expansive and remote locales with minimal time 

commitment, and require minimal direct human contact with the ecosystem (Watts et al. 

2010). These attributes are especially valuable when trying to monitor patches of 

vegetation across the large spatial extent of rangelands.  

The identification of small objects, such as bunch grasses or individual forbs, 

requires the use of high spatial resolution imagery. Though high spatial resolution 



 

 

5 

 

imagery can be collected using satellites, with resolutions as low as meters or decimeters, 

on the ground or near-Earth sensors, such as those mounted on UASs are often of higher 

resolution and lower cost. While the use of fine spatial scale (meters to decimeters) 

remote sensing in precision agriculture dates back the 1980s, UAS-based remote sensing 

for rangelands remains relatively new (Mulla 2012). These ecosystems comprise 37% of 

the United States and up to 70% of the world’s ecosystems (Lund 2007; Breckenridge 

and Dakins 2011). Understanding rangeland species assemblages and how those 

assemblages provide wildlife habitat, forage, and affect nutrient and hydrological cycles 

is essential for ecosystem research (Lauenroth, Burke, and Gutmann 1999), 

biodiversity/conservation (Patterson and Best 1996), and rangeland management 

(Ohlenbusch and Watson 1994). Work conducted at Jornada Experimental Range in New 

Mexico has yielded workflows for processing, orthorectification, and classification of 

arid rangeland ecosystems for assessment, monitoring, and management (Laliberte, 

Winters, and Rango 2008; Rango et al. 2009; Laliberte et al. 2010; Laliberte et al. 2011; 

Laliberte and Rango 2011; Laliberte, Winters, and Rango 2011). 

Future research on identifying rangeland vegetation will require technological 

improvements, cost efficiency, and creativity in the field of remote sensing in order to 

effectively identify and map the distribution of vegetation. Knowledge of vegetative 

characteristics and phenology will be essential in determining what attributes of a plant 

can be measured and identified. The skill to use remote sensing software will be 

indispensable for classifying spectral characteristics of vegetation into something 

meaningful to data users.  
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Remote Sensing of Vegetation 

  Remote sensing of vegetation is possible because of the unique reflectance and 

absorbance properties of plant tissues. Vegetation reflectance is determined in part by 

foliar optical and biophysical properties (Asner 1998). Compounds, such as lignin and 

foliar nitrogen, can be measured using reflectance data and have been used classifying 

different tree species (Fourty et al. 1996; Martin and Aber 1997; Martin et al. 1998). 

Other studies have used remotely-sensed data to determine protein and polyphenol 

concentrations in trees and grasses as indicators of soil nutrient concentrations (Skidmore 

et al. 2010). Mutanga and Skidmore (2007) demonstrated that the shifting red edge, or the 

wavelength at which chlorophyll stops absorbing red light and starts reflecting infrared 

light, is a good indicator of nitrogen in grasses. Foliar nitrogen, a common compound in 

proteins and chlorophyll, is a primary determinant of the nutritional value of forage (Van 

Soest 1994).  

 While exact measurements of foliar nitrogen are valuable in remote sensing of 

vegetation, such measurements require more advanced sensors than are currently 

available for UASs. Given that high spectral resolution data is unavailable, researchers 

are forced to find innovative ways to use minimal information. Typically, when 

discussing remote sensing of flora, vegetation indices (VIs) are an important tool to 

consider and can be useful in developing measuring productivity of plants as a proxy for 

health or nitrogen content. However, VIs are beyond the scope of this review. Another 

creative method discussed in Laliberte and Rango (2008) involves incorporating texture, 
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intensity, hue, and saturation into species identification. These four measurements can be 

calculated using three-band imagery and improve rangeland species and other taxonomic 

identifications (Laliberte and Rango 2008). Innovations in spectral analysis methods, in 

addition to the high spatial resolution of UAS-collected imagery, provides managers with 

affordable tools to monitor and map rangelands.  

 

UAS Flight and Data Acquisition 

 The recent increase in UAS popularity among civilians is approximately a decade 

old. As early as 2004, military UASs outnumbered civil and civilian UASs 50 to 1 

(Rango et al. 2010). Since then the number of civilian-owned light UASs (under 150 kg) 

has increased, the use of UASs is expected in natural resource sciences (Rango et al. 

2010). The price of current systems, including fixed-wings, helicopters, and multi-rotor 

copters, ranges from as little as $2,500 with minimal equipment to greater than $350,000 

(Rango et al. 2006; Rango et al. 2009).  

 When determining the feasibility for UAS use in rangeland remote sensing, there 

are some important caveats to consider when compared to aerial photography via manned 

aircraft. While images collected on low-flying platforms have a higher spatial resolution 

than aircraft or satellite acquired data, UAS imagery often has low spectral and 

radiometric resolutions (Laliberte and Rango 2011). Additionally, UAS platforms are 

often less stable than larger aircraft, which makes the task of aligning the images 

correctly and integrating them into a single, cohesive image (registration and mosaicking) 

difficult; the large number of small images collected further complicates this challenge.  
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Similar to flying manned aircraft, the Federal Aviation Administration (FAA) requires a 

special certification (Part 107) to operate UASs commercially. These obstacles suggest 

that implementing UASs in rangeland research may not always be feasible. However, 

where possible, the use of UAS-mounted sensors continues to provide unique 

opportunities for rangeland data collection.  

Additional considerations when using UASs include flight time and duration, 

equipment and logistics, and emergency planning. Flight time should range from two to 

six hours, and flights should occur between 1000 and 1500 hours to take advantage of 

direct sunlight (Rango et al. 2006). Ground control stations, such as ArduPlane, Horizon, 

and Norut Geo Viz, allow for the creation of waypoints to facilitate automated mission 

planning (Stodle, Borch, and Storvold 2013). These stations also allow user control over 

height of flights, image overlap, and speed of flights. Height determines the spatial extent 

and pixel resolution of the images, image overlap affects three-dimensional surface 

models and averaging of reflectance values in pixels, and speed of flights determines the 

amount of time spent in the air based on battery life. FAA regulations, payloads, sensors, 

and navigation are also important aspects of UAS flight to consider but are beyond the 

scope of this literature review (Colomina and Molina 2014).  

Once data have been collected the imagery needs to be processed. Tie points, 

points/pixels common on multiple images, are used to georeference images with useful 

coordinate systems using software, such as Autopano (Kolor; Francin, France) using 

structure from motion techniques (Laliberte et al. 2011; Turner, Lucieer, and Watson 

2012). Georeferencing places all images in appropriate orientation to one another, and in 
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geographical space. With multispectral imagery, radiometric correction may also be 

necessary (Laliberte and Rango 2011; Kelcey and Lucieer 2012). Once images have been 

appropriately aligned in space they are merged together (mosaicked) and corrected for 

topography (orthorectified) using software such as PreSync, Pix4D, or Agisoft Photoscan 

(Laliberte, Winters, and Rango 2008). After images have gone through alignment, 

georeferencing, mosaicking, and orthorectification, classification can begin. 

 

Classification 

 After processing high-resolution imagery to generate a single, cohesive image, 

one common analytical goal is discerning vegetative cover or structure from the data. 

Classification is the act of categorizing all pixels in an image into groups or classes 

(Lillesand, Kiefer, and Chipman 2008). For the purpose of this review, only pixel-based 

supervised and unsupervised methods, and object-oriented classification methods are 

considered.  

 Pixel-based classification uses within-pixel spectral patterns to classify pixels. 

Pixels with similar digital number values, or combinations of values, are placed into 

categories. User input guides supervised pixel-based classification by specifying land 

cover classes of interest. The user delineates cover classes of interest on the image, often 

based on field data, and the program generates a key using attributes of each class. After 

building the key, attributes of other features are classified based on the categories in the 

key. Unsupervised pixel-based classification does not use training areas and instead 

classifies all pixels into a preselected number of clusters, which the analyst must then 
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combine into meaningful groups (Lillesand, Keifer, and Chipman 2008). Mitchell et al. 

(2012) demonstrated that different types of pixel-based classification provide adequate 

identification of vegetation.  

 Though historically pixel-based classification was dominant, object-based 

classification methods are becoming more common due to the increasing availability of 

high-resolution imagery (Hay et al. 2005). Object-based image analysis (OBIA) builds on 

older segmentation, edge detection, feature extraction, and classification concepts 

(Blaschke 2010). OBIA requires segmentation, defining of attributes, and the ability to 

connect objects in space and time (Hay and Castilla 2006). Segmentation is the process of 

partitioning an image into segments or objects. A group of pixels may represent a single 

object on the ground, and OBIA is used to classify that single object as the same category 

rather than each pixel separately. Using color, shape, size, texture, pattern, and context, 

OBIA overcomes intra-class spectral variability issues with high-resolution imagery by 

classifying after segmenting (Yu et al. 2006; Lillesand, Keifer, and Chipman 2008). As 

an example, with high resolution imagery, a single yucca (Yucca glauca) plant may be 

represented by hundreds of pixels. Some pixels may represent shadow, others may 

represent leaves or spaces between leaves. Using traditional pixel-based methods, each 

pixel would be classified differently. Segmentation would group all pixels of the yucca 

into a single object, then OBIA would classify the object as a whole. Many studies led by 

Laliberte, Rango, and Yu suggest that OBIA outperforms pixel-based classification 

methods. 
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 Assessment is an essential component in determining the accuracy of 

classification. An error matrix is an effective tool for determining user, producer, and 

overall accuracy (Congalton and Green 2009). Producer’s accuracy is a measure of 

omission errors and indicates how well an individual area can be classified. User’s 

accuracy is a measure of commission errors and indicates the probability that a classified 

pixel on a map is representative of the material on the ground. Overall accuracy is a ratio 

of correctly identified pixels to the total number of pixels, and is reported as percent 

correct (Congalton and Green 2009). These are a few examples of many classification 

matrix metrics. Approximately fifty samples per category should be used to construct an 

efficient error matrix for accuracy assessment (Congalton 1991).  

 

Summary 

 To be effective, or widely used, UAS applications for rangeland rely heavily on 

remote sensing techniques of vegetation, skills in UAS mission planning and deployment, 

imagery processing, and classification. However, the ability to identify vegetative species 

on hundred-hectare to tens-of-thousands-hectare properties to inform conservation and 

management is valuable. Identification of rangeland plants using UASs allow scientists 

and managers to identify rich soil locations, manage habitat for biodiversity, and 

calculate forage for stocking rates at a greater temporal frequency, finer spatial scale, and 

larger spatial extent than previously possible.  
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METHODS 

Site Description 

Hadley Range is a 1214-hectare (3000-acre) grassland in north-central Ellis 

county (Fig 1). The site has been actively grazed since prior to 1900 and is grazed by 

upwards of 500 cattle annually. In the 1940’s oil was discovered on the property, and 

there are approximately 50 wells in production. The property is topographically diverse, 

comprised of lowlands, riparian areas, bluffs, and highlands. Within Hadley Range, a 40-

hectare (100-acre) area was delineated as the study area for this project (Fig. 2). 

Vegetative communities in this study area consisted of ragweed-tall dropseed-sagewort 

lowlands (Ambrosia psilostachya, Sporobolus compositus, Artemisia ludoviciana, 

respectively), bluestem-yucca-grama grass uplands (Schizachyrium//Andropogon spp., 

Yucca glauca, and Bouteloua spp., respectively), and woody ravine areas. Other species 

common to the study area are Maximilian sunflowers (Helianthus maximilianii), 

Pitcher’s sage (Salvia azurea), fragrant and smooth sumac (Rhus aromatic and Rhus 

glaborous), and rigid goldenrod (Solidago rigida).  

 

Unmanned Aircraft and Imagery Collection 

 Aerial photographs were collected using a 3D Robotics (3DR) Iris+ (3D Robotics; 

Berkeley, CA) (Fig. 3). The Iris+ is a light-weight quadcopter weighing 1.2 kg including 

the lithium polymer (LiPo) battery and is 50 cm from motor to motor. A Pixhawk (3D 

Robotics; Berkeley, CA) autopilot system ensures the quadcopter can be launched from 

any flat surface and fly a predetermined path autonomously.  
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Flight plans were generated using Mission Planner (Version 1.3.40, DIY Drones; 

Berkeley, CA), an open-source ground station software. Waypoints, or coordinates for 

directing flight paths, were chosen using a map interface to generate flight lines that 

cover the entire study area (Fig. 4). Missions were planned to generate images with 80 

percent front and side-lap where 80 percent of an image is also represented in the four 

images to the front, back, and sides of that image. Overlap is used to account for the 

effects of bidirectional reflectance, or the change in perceived reflectance based on the 

angle of image capture. Due to limited battery life and therefore flight time, the study 

area was divided into 10 equal sections. Each section was sampled on the same day 

between 10:00 am and 3:00 pm. The UAS carried a single sensor, a modified Sony RX 

100 (Sony Corporation; Minato, Tokyo, Japan). Specific wavelength filters modified the 

sensor to collect imagery in the blue (approx. 400-490 nm), green (approx. 490-540 nm), 

and near-infrared (approx. 700-750 nm) spectral bands. Flying 6 m/s and 100 m above 

ground surface, the spatial resolution of the RX 100 was 9 cm2.  

Two series of flights were conducted in early September. Data collected during 

the first flight were considered the “full data set” with the specifications discussed above 

(Fig. 5). After deploying Daubenmire quadrats for field sampling, a second set of flights, 

known as the “reference data set”, was conducted to allow for easier digitization of 

vegetation within the quadrats (Fig. 6). This data set was collected with reduced image 

overlap, which decreased collection time and a reduced the number of files to 

accommodate time restraints. Long periods of time between data collection events would 
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increase the chance of encountering inclement weather or cattle disturbance to the 

quadrats.  

Field Measurements 

 I used a modified Daubenmire quadrat method to assess vegetation composition 

and arrangement (Daubenmire 1959). One hundred and ten, 1 m2 quadrats were 

systematically placed across the study area using ArcGIS 10.4.1 (Esri; Redlands, CA) 

(Fig. 7) prior to the second data collection flights. Eighteen students of the Fort Hays 

State University Fall 2016 class on Rangeland Management collected the vegetative data 

by estimating percent cover of species based on Daubenmire’s cover classes, drawing the 

distribution of plants within the quadrat on a standard form (Fig. 8), and taking a photo of 

the quadrat (Fig. 9).  

   

Image Processing  

 Images captured in UAS flights had to be processed through a series of steps to 

provide the necessary quantitative information for classification. The workflow for this 

processing consisted of georeferencing, orthorectification, mosaicking, and calculation of 

vegetation indices. Images collected in the Sony RX 100 contained no spatial reference. 

Mission Planner was used to assign each image a geographic coordinate using time and 

telemetry data. Based on the time on the camera and the flight log, which recorded the 

each time the camera was triggered and the GPS location of the quadcopter, Mission 

Planner assigns a coordinate to each photograph. After images were geotagged, or 

assigned a coordinate, they were imported into Agisoft Photoscan (Agisoft LLC; St. 
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Petersburg, Russia) and aligned. Aligning places all images in correct position with 

respect to orientation, other images, and location on Earth’s surface. A preliminary 

texture, or artificial merging of the images, was generated to allow for extended 

georeferencing. With Agisoft, five georeference points were used to further georectify the 

images based on field markers (Fig. 10). Once the images were realigned using the 

additional georeferenced data, they were combined into an orthomosaic, or a single image 

of the study area corrected for topography. This process was repeated for both the final 

data mosaic and the reference mosaic. The orthomosaics for both data sets were exported 

to ArcMap, and a final georectification was performed using a spline technique to ensure 

the images aligned.  

 Vegetation indices were calculated in ArcMap. Given the limited number of 

spectral bands available, only the green normalized difference vegetation index was 

calculated (GNDVI; Gitelson, Kaufman, and Merzylak 1996). Since classifications are 

performed on a single, multiband raster, GNDVI was stacked with the other three spectral 

bands for analysis.   

 

Vegetation Digitization 

The purpose of digitizing vegetation patches is to provide known species for the 

supervised classification. Field drawings and photographs provided the species 

identification and the proportion of quadrats occupied by those species. The vegetation in 

each quadrat was digitized by comparing the reference mosaic raster, field data forms, 

and field photographs. Polygons were used to delineate vegetation regions of interest, or 
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areas on the image where the species of vegetation is known, and were drawn in ArcGIS 

Pro 1.3. Laliberte and Rango (2011) found that digitizing vegetation patches directly on 

an image removed GPS inaccuracy, allowed for larger sample sizes, and reduced time 

and effort. Summaries of the field collected data indicated that approximately ten species 

were more abundant than all others. These ten species, along with classes for trees, easily 

identifiable shrubs, bare ground, litter, rock, and water were used in drawing and 

categorizing each polygon. After digitizing all quadrats on the reference image, 17 cover 

classes were represented by 286 polygons.  

 

Classification and Analysis 

The final data orthomosaic was segmented using ArcMap prior to classification 

(Fig. 11). Segmentation used mean, standard deviation, compactness, rectangularity, 

color, and count to generate “objects”. Objects are groups of pixels that are clumped 

based on the above criteria. In OBIA, objects are classified rather than each pixel within. 

Spectral classification techniques are often insufficient with high-resolution imagery due 

to intra-object variation (Blaschke 2010). For example, shadows between leaves or leaves 

at different angles will yield slightly different spectral signatures. This error is reduced by 

segmenting pixels into objects before classification.  

I iteratively executed three separate classification algorithms using random 

subsets of the vegetation polygons in Python 2.7 (Appendix 1). Eighty percent of the 

polygons were used to construct each model. Twenty percent of the polygons were 

reserved to test each classification’s accuracy. It is important to note that, while the 
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polygons were digitized using the reference data set, the data used for classification was 

attained by extracting information from the segmented final data set. One hundred 

iterations of Random Forests (Breiman 2001), maximum likelihood, and Support Vector 

Machine (Cortes and Vapnik 1995) classifications were executed using different training 

subsets and the segmented final data set. Examples of each classification can be seen in 

Figure 11. Classifications from the classified image were extracted to the testing 

polygons and the attributes were exported as a comma separated values (CSV) file.  

To evaluate the performance of the three classification algorithms listed above, I 

executed a random algorithm. The classifications of all 286 vegetation polygons were 

iteratively randomized with replacement. This processes randomly assigns a predicted 

class to each polygon which is then compared to the true, known class. Similar to above, 

randomization was executed 100 times. 

The files containing the true and predicted values of each vegetation type were 

imported into R (R Development Core Team 2008). Confusion matrices and performance 

metrics were calculated using package “rminer” (Appendix 2) for each model (Cortez et 

al. 2010, Cortez 2016). The metrics were as follows: overall accuracy, classification 

error, balanced error rate, kappa index (Cohen 1960), Cramer’s V (Cramer 1946), macro-

sensitivity (the average of sensitivity), macro-specificity (the average of specificity), 

macro-precision (the average of precision), macro-F1 (the average of F1) (Powers 2011), 

and macro-MCC (the average of Matthews correlation coefficients) (Matthews 1975).  

Due to collinearity of performance metrics, the final set of response variables 

included overall accuracy, Cramer’s V, macro-sensitivity, and macro-specificity. The 
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data were evaluated for the assumptions of a parametric multivariate analysis of variance 

(MANOVA). A lack of multivariate normality and apparent heteroscedasticity of the data 

necessitated a non-parametric approach. A permutational analysis of variance on distance 

matrices was conducted using the adonis function in the vegan package of R to identify if 

a difference between model type and performance metrics existed (Anderson 2001, 

Oksanen et al. 2017). While the adonis method may produce significant results due to 

within group variation rather than between group variation, it appears to be more robust 

than other nonparametric MANOVA alternatives such as multiple response permutations 

procedure (MRPP) (Anderson 2001; R package vegan). 
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RESULTS 

Of the 56 different cover types identified through direct observation in the field, 

only 17 were sufficiently identifiable from the aerial imagery to use in classification 

(Table 1). The resulting 286 cover polygons were iteratively divided into groups of 228 

for model training and 57 for model testing. Completion time of the classifications varied 

in duration based on the model. Maximum Likelihood Classifiers and Random Forests 

both averaged 40 minutes per iteration while Support Vector Machines took 

approximately 16 hours to execute each iteration.  

Evaluation of confusion matrices indicated that Random Forests and Support 

Vector Machines successfully removed categories with insufficient sample sizes, while 

Maximum Likelihood Classification maintained and predicted across all categories of 

cover (Table 2-4). Of the 5700 (100 iterations with 57 testing samples each) testing 

samples in the Maximum Likelihood Classifications, 2448 were misclassified as smooth 

sumac. Only buffalo grass was classified correctly more often than misclassified when 

maximum likelihood was the classifier (Table 2). The Random Forests classification 

algorithm most often correctly classified little bluestem, tall dropseed, Louisiana 

sagewort, bare ground, buffalo grass, rock, water, and trees. Sideoats grama was most 

often misclassified as buffalo grass, litter and yucca were most often misclassified as 

little bluestem, and all others were most often misclassified as a tree (Table 3). When 

comparing the classifications of the Support Vector Machine algorithm, little bluestem, 

tall dropseed, western ragweed, Louisiana sagewort, bare ground, buffalo grass, rock, 

water, and trees were most often correctly classified. Yucca, smooth sumac, and litter 

were most often misclassified as little bluestem. All others were most often misclassified 
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as a tree (Table 4). The random model misclassified nearly all classes as western ragweed 

more often than all other species.   

When comparing the final set of classification matrix metrics, Support Vector 

Machines had a higher average overall accuracy, Cramer’s V, and macro-sensitivity than 

the other scenarios. The random model showed a higher mean with regards to macro-

specificity (Table 5).   

The test methods, which were compared using a permutational multivariate 

analysis of variance using distance matrices (adonis), showed a significant difference in 

model performance (F3, 398 = 103.9, p = 0.001). Due to the significant result of the 

multivariate test, individual Kruskal-Wallis tests were performed for each response 

variable to evaluate significant differences and significant results were followed by 

multiple comparison tests. Overall accuracy differed significantly between the algorithms 

(X2 = 249.0, df = 3, p < 0.001). Cramer’s V also differed significantly between the 

classification algorithms (X2 = 240.1, df = 3, p < 0.001). The Kruskal-Wallis test of 

macro-sensitivity also indicated that the four different models differed significantly (X2 = 

227.6, df = 3, p < 0.001). Finally, macro-specificity indicated a significant difference 

between the classification types (X2 = 142.4, df = 3, p < 0.001).  

Given that each Kruskal-Wallis test indicated a significant difference between at 

least two of the modeling algorithms, nonparametric Tukey’s Honestly Significant 

Difference (Tukey’s HSD) tests were performed. Support Vector Machines and Random 

Forests had significantly different overall accuracies from Maximum Likelihood or 

random models but were not different from each other (Table 6; Fig. 12). Maximum 
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likelihood, Support Vector Machines, and Random Forests cannot be statistically 

differentiated with regards to Cramer’s V, but were all significantly different than the 

random model (Table 6; Fig. 12). The random models showed significantly different 

macro-sensitivity than the other models, and Support Vector Machines and Random 

Forests performed significantly different than Maximum Likelihood (Table 6; Fig. 12). 

Finally, Support Vector Machines and Random Forests performed as well as each other 

and significantly different from Maximum Likelihood with regard to macro-specificity. 

The random models performed significantly different from all other models when 

measured by the same metric (Table 6; Fig. 12).  

Due to the nonparametric nature and complex series of steps in these analyses, 

determination of which initial predictor variable was the most important in identifying 

vegetation or cover is extremely difficult. Since the output of the initial classifications did 

not provide variable performances, the importance of each variable cannot be discussed.  

  



 

 

22 

 

DISCUSSION 

This study expands on a body of research that uses low-flying UAS to 

differentiate among types of ground cover (Laliberte, Winters, and Rango 2008; Rango et 

al. 2009; Laliberte et al. 2010; Laliberte et al. 2011; Laliberte and Rango 2011; Laliberte, 

Winters, and Rango 2011). In particular, little effort has been made to identify vegetative 

species in a southern mixed-grass prairie. The cost, quality, and availability of equipment 

and the heterogeneity of the ecosystem studied provide unique and complex challenges to 

this research. Below, I evaluate each performance metric with regards to all model 

scenarios before summarizing common patterns and overall trends. 

 

Overall Accuracy 

Accuracy as calculated here is the total number of correct classifications divided 

by the total number of classifications. This includes true positive and true negative rates. 

All models should, theoretically, outperform a random scenario in overall accuracy 

because they are constructed with parameters used to supervise classifications. Maximum 

Likelihoods inability to perform better than the random classifications suggests poor data 

or an insufficient modeling algorithm. As previously mentioned, Maximum Likelihood 

was unable to vet, or identify and remove, underrepresented categories and therefore 

showed a high number of misclassifications, such that the overall accuracy was worse 

than random. However, this was not the case with Random Forests and Support Vector 

Machines, which were able to reduce the number of predicted cover types to those most 

likely and those best represented.  
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 Random Forests and Support Vector Machines had significantly higher overall 

accuracies than both the Maximum Likelihood and random scenarios, though they were 

not statistically different from each other. Both algorithms created rules for splitting cases 

into a predefined group, and the method for doing such is similar in both algorithms. 

Therefore, it is not surprising that the results were similar and fine adjustment of each 

model’s parameters in a more in depth study of model classification ability might be 

necessary to identify differences in Random Forest and Support Vector Machine 

performance.  

 

Cramer’s V 

Based on the multiple comparison test there is no statistical difference among the 

performance Maximum Likelihood, Support Vector Machines, or Random Forests 

regarding Cramer’s V. Though it can be argued that Support Vector Machines 

outperformed the Maximum Likelihood Classifier, there is no difference between 

Support Vector Machines and Random Forests. Given that Random Forests did not 

perform significantly different than Maximum Likelihood, the three model algorithms 

cannot be statistically differentiated. However, all three classifiers outperformed the 

random model.  

 It is also important to note the variability in model performances. Unlike the other 

performance metrics where the random scenario appears to have the only significantly 

different variance, there is marked difference between variances of all classifiers with 

regards to Cramer’s V. Maximum likelihood appears to be the least consistent, followed 
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by Random Forests, and Support Vector Machines. The distribution of Cramer’s V for 

the random scenario is relatively small. This phenomenon will be further discussed in the 

random models section.  

 

Macro-Sensitivity 

Random Forests and Support Vector Machines were statistically equivalent when 

evaluated by macro-sensitivity. Maximum likelihood had variation to the other models 

but overall performed poorly. The random model had the lowest performance in macro-

sensitivity, suggesting that the true positive rate of random classifiers was almost never 

above ten percent.  

 Overall, the best models when comparing sensitivity showed a true positive rate 

of 50% while the average rates were typically below 20%. This suggests all models were 

poor at correctly identifying cover type. This is contrasted by each model’s ability to 

identify what a cover type should not be classified as, or macro-specificity.  

 

Macro-Specificity 

Macro-specificity is the only performance metric in which the random model 

outperformed the other classification algorithms. As with accuracy and macro-sensitivity, 

Support Vector Machines and Random Forests were not statistically different from one 

another, though both algorithms outperformed the Maximum Likelihood Classifier. The 

average true negative rate for all scenarios was greater than 92% suggesting that all 

models were sufficiently able to identify what a given cover type was not. As an 
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example, all models could classify a portion of the study area as not being big bluestem 

when it was not big bluestem. A benefit to high specificity is the reduction in type I error 

rate, though the type II error rates might be relatively high.  

 The difference in mean specificity between all models was less than two percent. 

Significance was most likely the result of the relatively large variation in the three 

modeling algorithms compared to the small variation in the random scenario.  

 

Random Models 

The construction of the classification matrices for the random models involved 

iteratively randomizing the entire training data set. Rather than calculating metrics based 

on 100 sets of 57 values as was the case in the training subsets of the other three models, 

performance metrics were calculated based on 100 sets of 258 classifications. Though the 

random model was bootstrapped, or randomized with replacement, the overall sample 

sizes likely reduce the variation in performance metrics. This is a confounding factor 

when comparing model performances. Had the data been randomly subsetted for the 

random model as it was for all other models, the performance of the random model would 

likely have decreased.  

Quantity of vegetation polygons, per species, used to build the model also 

confounded classification performance. Of the 286 polygons used in classification, 238 

were represented by six cover types. Two classes, western ragweed and little bluestem, 

account for 42% of all samples. When randomly subsetting data, these six classes were 

the most likely to be chosen, with few polygons representing the other classes. In this 
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case, the type II error rate was greatly inflated because incorrect classifications become 

more prevalent. However, this also increases the number of instances where, for each 

cover type, the true condition of any cover type was not classified as that specific cover 

type. For example, for every polygon that was not little bluestem, and was classified as 

not being little bluestem (regardless of how it was classified), the specificity improves. 

An instance where sensitivity and specificity were both high would suggest a low error 

rate and high accuracy, though this was not the case for the random data.  For this reason, 

despite having the highest specificity, the random data model was not better than any 

other model.  

 

Overall Trends 

When looking at all four performance metrics, the random scenario outperformed 

all other models with regards to only one, though its specificity was only slightly higher 

than the other models. Maximum Likelihood Classification was generally worse than the 

other two classification algorithms, except in the case of the Cramer’s V statistic. 

Random forests and Support Vector Machines were never statistically different but 

outperformed the other two methods half the time. Based on these four performance 

metrics, these two algorithms were the best methods for classifying cover in this study.  

As mentioned earlier, execution of the Maximum Likelihood Classifiers and the 

Random Forests classifiers took significantly less time than the Support Vector 

Machines. The nature of machine learning algorithms requires longer processing time 

(Huang et al. 2002, Nitze et al. 2012). Interestingly, this increase in processing time was 
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not apparent in the Random Forest algorithm. Contrary to Nitze et al. (2012), Random 

Forests were computationally less costly than Support Vector Machines and yielded 

similar results. Based on an OBIA demonstration by Esri professionals (2016 User 

Conference), I expected Support Vector Machines to outperform all other algorithms. 

This was not the case. A combination of performance quality and execution time suggest 

that Random Forest is the preferable classification algorithm for conducting object based 

image analysis with high resolution, heterogeneous data.   
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CONCLUSION 

Conclusions for this Study 

The purpose of this study was two-fold: to determine if low-cost sensors and 

platforms collect useful data for mapping rangeland vegetation and to identify differences 

in model performance when attempting to classify rangeland vegetation. In this instance, 

low-cost sensors yielded 3 cm (9 cm2) resolution imagery in only three spectral bands. 

When classifying this imagery based on intensive field methods, cover was accurately 

classified, on average, only 30% of the time. The models with the best performance 

exhibited a 53% accuracy. While this is significantly better than random, these results do 

not suggest that low-cost platforms and sensors are better than rigorous field work. While 

some time and money might be saved in the long run, this study conducted more field 

work than the average study of a similar magnitude, and yielded less-than-satisfactory 

classification results.  

 Despite these models’ inability to adequately map rangeland vegetation 

accurately, I was able to detect differences in model performance. Random forests and 

Support Vector Machines were indistinguishable statistically, but Random Forest models 

executed in a fraction of the time compared to Support Vector Machines. For this reason, 

given the structure and limits of this study, Random Forests are the best modeling 

algorithm of the three tested for classifying rangeland vegetation.  
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Methodological Considerations 

In reviewing sampling and analysis methods, there are several aspects of this 

study that could be improved without expanding or drastically changing the methods. 

When conducting field sampling, prior knowledge of vegetative communities would 

facilitate a stratified random sampling strategy. Stratifying the quadrats in the field would 

yield more even count of samples of each cover class and hopefully improve 

classification accuracy. This could also be achieved by removing all but the most 

dominant cover types rather than using all cover types discernable from the aerial 

imagery.  

 Similar to the issue stated above, the sample size of the random scenario yielded 

some confounding results. By reducing the sample size to the same as the other models, 

comparisons of the four scenarios might yield more realistic results. Similarly, an 

exploration of R packages, and a workflow facilitating the different stages of Object 

Based Image Analysis using available R packages might allow for execution of 

classifications in the R environment, which would allow for more flexibility and control 

than is available in ArcGIS.  

 Finally, this study was initially intended to have been conducted using a fixed 

wing platform. Due to technical limitations, a quadcopter was used instead. Use of a 

fixed wing would have allowed for faster data collection which would have reduced the 

effect of sun movement throughout the data collection period. Though all data were 

collected in an acceptable time span, between 10 AM and 3 PM some spectral streaking 

was noticed along flight paths. Though the streaking did not appear to affect the 
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classifications, a reduction in time between the first and last flight should improve the 

quality of the imagery.  

  

Future Work 

The best ways to improve the results of this study, despite those covered in the 

methodological considerations, involve improvement in three of remote sensing’s 

resolutions: spatial resolution, spectral resolution, and temporal resolution. The short 

duration of the available field season and the available technology limited the above 

resolutions. However, each can be improved in future studies.  

 Vegetation phenology and varying appearance through the year could improve 

identification of rangeland vegetation. Nonnative, cool season, and warm season grasses 

all green-up and senesce at different times, as do forbs and woody plants. Presence of 

flowers, if large enough, could also be beneficial in differentiating between similarly 

structured or colored species. By conducting multiple flights at various stages of the 

growing season, I expect that the ability to differentiate between species improves.  

 Another consideration is the size of most rangeland vegetation. While clusters or 

mats of grasses can occupy square meters of space, individual grass or forbs can occupy 

areas smaller than 9 cm2. By mounting a sensor with a higher spatial resolution on a 

lower, faster flying platform, the increase in spatial resolution could be sufficient to 

identify smaller grasses or forbs. This might allow for the inclusion of small flowers to be 

used in identifying plants such as Pitcher’s sage.  
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 Finally, improvements in spectral resolution pose a unique challenge. Current 

modified cameras only allow for the recording of three spectral ranges. In order to collect 

data in more than three bands, more sensors are needed. While these sensors exist, they 

are generally used in agricultural applications where fine resolution is less important. 

Thus, an increase in spectral resolution would require a forced decrease in spatial 

resolution. As new technology is developed for non-agricultural applications, the use of 

more spectral bands in classifying rangeland vegetation will become more feasible. 

Another plausible method to address the need for spectral resolution would be to use 

multiple modified cameras on the same platform. However, the need to co-register 

images from the two cameras becomes increasingly difficult, especially when the 

proximity of the two sensors might change with every flight.   

 

Implications for Ecology and Management 

Unmanned aerial vehicles provide the opportunity to increase the frequency and 

spatial resolution that remotely sensed data is collected. These considerations are 

especially important when studying fine-spatial-scale and phenologically diverse patterns 

such as those found in the mixed-grass communities of western Kansas. The use of light-

weight, low-cost UASs and sensors in the field of rangeland management can facilitate 

the identification of rangeland vegetation better than random assignment using three 

spectral bands, though aforementioned considerations should be accounted for. It is 

important to accomplish these tasks on a limited budget, thereby stressing the importance 

of low-cost platforms, sensors, and open-source software. As technology improves, 



 

 

32 

 

including the production of high-quality, low-cost sensors and faster computers, the use 

of UASs for determining stocking rates for grazing, locating invasive or rare species, and 

estimating overall biodiversity will become more feasible. Until then, we must work with 

the available technology and work to better understand how increases in spatial resolution 

and modeling paradigms affect our ability, as ecologists and managers, to understand the 

systems with which we work.   
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TABLES 

Table 1: List of all cover types in the study area including common name, scientific name, and code. Highlighted rows 

indicate the final 17 covers included in analyses. 

 

  

Leadplant Amorpha canescens AMCA Switchgrass Panicum virgatum PAVI

Annual Broomweed Amphiachyris dracunculoidesAMDR Scurf pea Pediomelum tenuiflorum PETE

Ragweed Ambrosia psilostachya AMPS Clammyweed Polanisia dodecandra PODO

Big Bluestem Andropogon gerardii ANGE Rose Prunus Prunus

Lousiana Sagewort Artemisia ludoviciana ARLU Fragrant sumac Rhus aromatica RHAR

Purple Threeawn Aristida purpurea ARPU Smooth sumac Rhus glaborous RHGL

Bare ground BG Rock/Gravel ROCK

Sideoats Gramma Bouteloua curtipendula BOCU Blackberry Rubus ostryifolius RUOS

Buffalograss Bouteloua dactloides BODA Pitcher's sage Salvia azurea SAAZ

Blue Gramma Bouteloua gracilis BOGR Little Bluestem Schizachyrium scoparium SCSC

Hairy Gramma Bouteloua hirsuta BOHI Compass plant Silphium laciniatum SILA

Silver Bluestem Bothriochloa laguroides BOLA Indiangrass Sorghastrum nutans SONU

Downy Brome Bromus tectorum BRTE Rigid goldenrod Solidago rigida SORI

Purple Poppy-Mallow Callirhoe involucrata CAIN Tall dropseed Sporobolus compositus SPCO

Ditchweed Cannabis sp. CASP Sand Dropseed Sporobolus cryptandrus SPCR

Marestail Conyza canadensis COCA Prairie Cordgrass Spartina pectinata SPPE

Coroton Croton texensis CRTE Stenosiphon (False Gaura)Stenosiphon linifolius STLI

Black Sampson Echinacea angustifolia ECAN Heath aster Symphyotrichum ericoides SYER

Snow On The Mountain Euphorbia marginata EUMA Aromatic Aster Symphyotrichum oblongifoliumSYOB

Curlycup Gumweed Grindelia squarrosa GRSQ Buckbrush Symphoricarpos orbiculatus SYOR

Broom snakeweed Gutierezzia sarothrae GUSA Intermediate wheatgrass Thinopyrum intermedium THIN

Maximillian sunflower Helianthus maximilianii HEMA Tree (unknown) TREE

Ashy sunflower Helianthus mollis HEMO Baldwins ironweed Vervonia baldwinii VEBA

Eastern Red Cedar Juniperus virginiana JUVI Riverbank grape Vitis riparia VIRI

Dotted Gayfeather Liatris punctata LIPU Water WATER

Litter LITTER Yucca Yucca glauca YUGL
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Table 5: Comparison of classification metrics between the model scenarios. Bolded terms indicate the highest value for 
that metric. 

 

  

TEST Overall Accuracy Cramer's V Macro-Sensitivity Macro-Specificity

MLC 13.7 (8.9) 0.48 (0.1) 11.5 (8.0) 92.3 (1.3)

RAND 13.7 (2.0) 0.23 (0.03) 5.8 (1.4) 94.1 (0.1)

RF 28.4 (7.7) 0.53 (0.06) 21.6 (10.1) 93.2 (0.89)

SVM 32.4 (7.3) 0.55 (0.05) 22.3 (9.6) 93.6 (0.8)
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FIGURES 

 

Figure 1: Locus map of Hadley Range within Ellis county. Hadley is the black polygon in the upper right. Ellis county 

is highlighted on the KS map. 
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Figure 2: Map of the 40-hectare study area within Hadley Range. Hadley is outlined in black, the study area is outlined 
in red. 
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Figure 3: 3DR Iris+ quadcopter. 

 

 

Figure 4: Mission Planner displaying waypoints used to calculate flight paths. The distance between paths is 

determined by sideways overlap whereas the frequency of images is determined by forward overlap.  
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Figure 5: Flight paths from the full data collection. Ten total flights with 80% overlap. Takeoff locations are marked 
with a black X. 
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Figure 6: Flight paths from the reference data collection. Five total flights with reduced overlap. Takeoff locations are 
marked with a black X. 
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Figure 7: Locations of 110 systematically placed, one square meter Daubenmire quadrats. 

  



 

 

45 

 

Figure 8: Data collection form where the square represents the Daubenmire quadrat. Polygons drawn inside were used 
in digitization when compared to Figure 9 and aerial imagery.  

 



 

 

46 

 

 
Figure 9: Image taken from beside the quadrat. Used when comparing Figure 8 to aerial imagery for digitization of 
cover types. 
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Figure 10: Image of one on-ground control points used in georectification of imagery. 
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Figure 11: Results of a single classification execution from each modeling algorithm. The colors for each classification 
are uniform. Therefore, what is red in one panel should be red in all three if the models were equal. The bottom right 
corner is the segmented image, present for comparison. 
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APPENDICES 

Appendix 1: Python Code 

1. import arcpy   

2. from arcpy import sa   

3. from arcpy import env   

4. from arcpy.sa import *   

5. arcpy.env.overwriteOutput = True   
6.    

7. #Execute Maximum Likelihood   

8. roi = "I:/Runs/Shape.gdb/Final"   

9. trainwksp = "I:/Runs/Training.gdb/"   
10. testwksp = "I:/Runs/Testing.gdb/"   

11. ecdwksp = "I:/Runs/ECD/"   

12. mtrxwksp = "I:/Runs/Matrix.gdb/"    

13. clsfdwksp = "I:/Runs/Classified.gdb/"   
14. accasswksp = "I:/Runs/Accass.gdb/"   

15. lookup = "I:/Runs/Lookup.gdb/"   

16. updaccasswksp = "I:/Runs/Updaccass.gdb/"   

17. csvwksp = "I:/Runs/CSV/MLC"    
18. image = "I:/Runs/final.tif"   

19. segimage = "I:/Runs/Segment.gdb/Segmented"    

20. attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"   

21.    
22. count = 1   

23. while count <= 100 :   

24.     arcpy.SubsetFeatures_ga(roi, trainwksp + "MLCroitrain" + str(count), testwksp + "MLCroitest" + str(count

), 80, "PERCENTAGE_OF_INPUT")   
25.     train = trainwksp + "MLCroitrain" + str(count)   

26.     test = testwksp + "MLCroitest" + str(count)   

27.     ecd = TrainMaximumLikelihoodClassifier(segimage, train, ecdwksp + "MLCclassifier" + str(count) +".ecd

", image, attributes)   
28.     classied = ClassifyRaster(image, ecd, segimage)   

29.     classied.save(clsfdwksp + "MLclassified" + str(count))   

30.     arcpy.FeatureToPoint_management(test, accasswksp + "accasspt" + str(count), "CENTROID")   

31.     accass = accasswksp + "accasspt" + str(count)   
32.     Look = Lookup(classied, "Classvalue")   

33.     Look.save(lookup + "MLClookup" + str(count))   

34.     lookuprast = lookup + "MLClookup" + str(count)   

35.     ExtractValuesToPoints(accass, lookuprast, updaccasswksp + "updaccasspt" + str(count), "NONE", "ALL")
   

36.     uaa = updaccasswksp + "updaccasspt" + str(count)   

37.     arcpy.ExportXYv_stats(uaa, "OBJECTID;Classvalue;RASTERVALU", "COMMA", csvwksp + str(count)

 + ".csv", "ADD_FIELD_NAMES")   
38.     count = count + 1   

39.    

40. #Execute Random Forests   

41. roi = "I:/Runs/Shape.gdb/Final"   
42. trainwksp = "I:/Runs/Training.gdb/"   

43. testwksp = "I:/Runs/Testing.gdb/"   

44. ecdwksp = "I:/Runs/ECD/"   

45. mtrxwksp = "I:/Runs/Matrix.gdb/"    
46. clsfdwksp = "I:/Runs/Classified.gdb/"   

47. accasswksp = "I:/Runs/Accass.gdb/"   

48. lookup = "I:/Runs/Lookup.gdb/"   
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49. updaccasswksp = "I:/Runs/Updaccass.gdb/"   

50. csvwksp = "I:/Runs/CSV/RF"    
51. image = "I:/Runs/final.tif"   

52. segimage = "I:/Runs/Segment.gdb/Segmented"    

53. attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"   

54.    
55. count = 1   

56. while count <= 100 :   

57.     arcpy.SubsetFeatures_ga(roi, trainwksp + "RFroitrain" + str(count), testwksp + "RFroitest" + str(count), 80

, "PERCENTAGE_OF_INPUT")   
58.     train = trainwksp + "RFroitrain" + str(count)   

59.     test = testwksp + "RFroitest" + str(count)   

60.     ecd = TrainRandomTreesClassifier(segimage, train, ecdwksp + "RFclassifier" + str(count) +".ecd", image, 

"", "", "0",attributes)   
61.     classied = ClassifyRaster(image, ecd, segimage)   

62.     classied.save(clsfdwksp + "RFclassified" + str(count))   

63.     arcpy.FeatureToPoint_management(test, accasswksp + "accasspt" + str(count), "CENTROID")   

64.     accass = accasswksp + "accasspt" + str(count)   
65.     Look = Lookup(classied, "Classvalue")   

66.     Look.save(lookup + "RFlookup" + str(count))   

67.     lookuprast = lookup + "RFlookup" + str(count)   

68.     ExtractValuesToPoints(accass, lookuprast, updaccasswksp + "updaccasspt" + str(count), "NONE", "ALL")
   

69.     uaa = updaccasswksp + "updaccasspt" + str(count)   

70.     arcpy.ExportXYv_stats(uaa, "OBJECTID;Classvalue;RASTERVALU", "COMMA", csvwksp + str(count)

 + ".csv", "ADD_FIELD_NAMES")   
71.     count = count + 1   

72.    

73. #Execute Support Vector Machine   

74. roi = "I:/Runs/Shape.gdb/Final"   
75. trainwksp = "I:/Runs/Training.gdb/"   

76. testwksp = "I:/Runs/Testing.gdb/"   

77. ecdwksp = "I:/Runs/ECD/"   

78. mtrxwksp = "I:/Runs/Matrix.gdb/"    
79. clsfdwksp = "I:/Runs/Classified.gdb/"   

80. accasswksp = "I:/Runs/Accass.gdb/"   

81. lookup = "I:/Runs/Lookup.gdb/"   

82. updaccasswksp = "I:/Runs/Updaccass.gdb/"   
83. csvwksp = "I:/Runs/CSV/SVM"    

84. image = "I:/Runs/final.tif"   

85. segimage = "I:/Runs/Segment.gdb/Segmented"    

86. attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"   
87.    

88. count = 1   

89. while count <= 100 :   

90.     arcpy.SubsetFeatures_ga(roi, trainwksp + "SVMroitrain" + str(count), testwksp + "SVMroitest" + str(count
), 80, "PERCENTAGE_OF_INPUT")   

91.     train = trainwksp + "SVMroitrain" + str(count)   

92.     test = testwksp + "SVMroitest" + str(count)   

93.     ecd = TrainSupportVectorMachineClassifier(segimage, train, ecdwksp + "SVMclassifier" + str(count) +".e
cd", image, "0", attributes)   

94.     classied = ClassifyRaster(image, ecd, segimage)   

95.     classied.save(clsfdwksp + "SVclassified" + str(count))   

96.     arcpy.FeatureToPoint_management(test, accasswksp + "accasspt" + str(count), "CENTROID")   
97.     accass = accasswksp + "accasspt" + str(count)   

98.     Look = Lookup(classied, "Classvalue")   

99.     Look.save(lookup + "SVMlookup" + str(count))   

100.     lookuprast = lookup + "SVMlookup" + str(count)   



 

 

52 

 

101.     ExtractValuesToPoints(accass, lookuprast, updaccasswksp + "updaccasspt" + str(count), "NONE", "ALL")

   
102.     uaa = updaccasswksp + "updaccasspt" + str(count)   

103.     arcpy.ExportXYv_stats(uaa, "OBJECTID;Classvalue;RASTERVALU", "COMMA", csvwksp + str(count)

 + ".csv", "ADD_FIELD_NAMES")   

104.     count = count + 1   

Appendix 2: R Code 

1. setwd("B:\\FHSU_Thesis\\CSV_Data\\MLC\\") #set the path name to the CSVs   

2. file.names <- dir(pattern ="*.csv")   
3. finaldata <- as.data.frame(matrix(0, ncol= 11, nrow=1))   

4. names <-

 c("TEST", "ACC", "CE", "BER", "KAPPA", "CRAMERV", "MACRO_SENS", "MACRO_SPEC", "MACR

O_PREC", "MACRO_F1", "MACRO_MCC")   
5. colnames(finaldata) <- names   

6. library(rminer)   

7. library(plyr)   

8.    
9. for(i in 1:length(file.names)){   

10.   mat <- read.csv(file.names[[i]])   

11.   conf <- mmetric(factor(mat$CLASSVALUE), factor(mat$RASTERVALU), metric="ALL")   

12.   confmat <- as.data.frame(conf)   
13.   title <- 1    

14.   ACC <- confmat[1,]   

15.   CE <- confmat[2,]   

16.   BER <- confmat[3,]   
17.   KAPPA <- confmat[4,]   

18.   CRAMERV <- confmat[5,]   

19.   MACRO_SENS <- mean(subset(confmat, grepl("TPR", rownames(confmat)), drop=TRUE))   

20.   MACRO_SPEC <- mean(subset(confmat, grepl("TNR", rownames(confmat)), drop=TRUE))   
21.   MACRO_PREC <- mean(subset(confmat, grepl("PREC", rownames(confmat)), drop=TRUE))   

22.   MACRO_F1 <- mean(subset(confmat, grepl("F1", rownames(confmat)), drop=TRUE))   

23.   MACRO_MCC <- mean(subset(confmat, grepl("MCC", rownames(confmat)), drop=TRUE))   

24.   run <-
 c(title, ACC, CE, BER, KAPPA, CRAMERV, MACRO_SENS, MACRO_SPEC, MACRO_PREC, MACR

O_F1, MACRO_MCC)   

25.   finaldata <- rbind(finaldata, run)   

26. }   
27.    

28. setwd("B:\\FHSU_Thesis\\CSV_Data\\SVM\\") #set the path name to the CSVs   

29. file.names <- dir(pattern ="*.csv")   

30. for(i in 1:length(file.names)){   
31.   mat <- read.csv(file.names[[i]])   

32.   conf <- mmetric(factor(mat$CLASSVALUE), factor(mat$RASTERVALU), metric="ALL")   

33.   confmat <- as.data.frame(conf)   

34.   title <- 3    
35.   ACC <- confmat[1,]   

36.   CE <- confmat[2,]   

37.   BER <- confmat[3,]   

38.   KAPPA <- confmat[4,]   
39.   CRAMERV <- confmat[5,]   

40.   MACRO_SENS <- mean(subset(confmat, grepl("TPR", rownames(confmat)), drop=TRUE))   

41.   MACRO_SPEC <- mean(subset(confmat, grepl("TNR", rownames(confmat)), drop=TRUE))   

42.   MACRO_PREC <- mean(subset(confmat, grepl("PREC", rownames(confmat)), drop=TRUE))   
43.   MACRO_F1 <- mean(subset(confmat, grepl("F1", rownames(confmat)), drop=TRUE))   
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44.   MACRO_MCC <- mean(subset(confmat, grepl("MCC", rownames(confmat)), drop=TRUE))   

45.   run <-
 c(title, ACC, CE, BER, KAPPA, CRAMERV, MACRO_SENS, MACRO_SPEC, MACRO_PREC, MACR

O_F1, MACRO_MCC)   

46.   finaldata <- rbind(finaldata, run)   

47. }   
48.    

49. setwd("B:\\FHSU_Thesis\\CSV_Data\\RF\\") #set the path name to the CSVs   

50. file.names <- dir(pattern ="*.csv")   

51. for(i in 1:length(file.names)){   
52.   mat <- read.csv(file.names[[i]])   

53.   conf <- mmetric(factor(mat$CLASSVALUE), factor(mat$RASTERVALU), metric="ALL")   

54.   confmat <- as.data.frame(conf)   

55.   title <- 2    
56.   ACC <- confmat[1,]   

57.   CE <- confmat[2,]   

58.   BER <- confmat[3,]   

59.   KAPPA <- confmat[4,]   
60.   CRAMERV <- confmat[5,]   

61.   MACRO_SENS <- mean(subset(confmat, grepl("TPR", rownames(confmat)), drop=TRUE))   

62.   MACRO_SPEC <- mean(subset(confmat, grepl("TNR", rownames(confmat)), drop=TRUE))   

63.   MACRO_PREC <- mean(subset(confmat, grepl("PREC", rownames(confmat)), drop=TRUE))   
64.   MACRO_F1 <- mean(subset(confmat, grepl("F1", rownames(confmat)), drop=TRUE))   

65.   MACRO_MCC <- mean(subset(confmat, grepl("MCC", rownames(confmat)), drop=TRUE))   

66.   run <-

 c(title, ACC, CE, BER, KAPPA, CRAMERV, MACRO_SENS, MACRO_SPEC, MACRO_PREC, MACR
O_F1, MACRO_MCC)   

67.   finaldata <- rbind(finaldata, run)   

68. }   

69.    
70. finaldata <- finaldata[-c(1),]   

71.    

72. random <- read.csv("B:/FHSU_Thesis/CSV_Data/random.csv")   

73. random <- random[,1:2]   
74.    

75. count = 3   

76.    

77. while(count < 103){   
78.   random[,count] <- sample(random$CLASSVALUE, replace=TRUE)   

79.   count = count + 1   

80. }   

81.    
82. true <- random$CLASSVALUE   

83. pred <- random[,3:length(random)]   

84.    

85. for(i in names(pred)){   
86.   y <- pred[i]   

87.   y <- unlist(y)   

88.   conf <- mmetric(factor(true), factor(y), metric="ALL")   

89.   confmat <- as.data.frame(conf)   
90.   title <- 4    

91.   ACC <- confmat[1,]   

92.   CE <- confmat[2,]   

93.   BER <- confmat[3,]   
94.   KAPPA <- confmat[4,]   

95.   CRAMERV <- confmat[5,]   

96.   MACRO_SENS <- mean(subset(confmat, grepl("TPR", rownames(confmat)), drop=TRUE))   

97.   MACRO_SPEC <- mean(subset(confmat, grepl("TNR", rownames(confmat)), drop=TRUE))   
98.   MACRO_PREC <- mean(subset(confmat, grepl("PREC", rownames(confmat)), drop=TRUE))   
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99.   MACRO_F1 <- mean(subset(confmat, grepl("F1", rownames(confmat)), drop=TRUE))   

100.   MACRO_MCC <- mean(subset(confmat, grepl("MCC", rownames(confmat)), drop=TRUE))   
101.   run <-

 c(title, ACC, CE, BER, KAPPA, CRAMERV, MACRO_SENS, MACRO_SPEC, MACRO_PREC, MACR

O_F1, MACRO_MCC)   

102.   finaldata <- rbind(finaldata, run)   
103. }   

104.    
105. ### Testing Assumptions ###   

106. final <- finaldata   
107.    
108. library(mvoutlier)   

109.    
110. alg_m <- final[final$TEST=="MLC",]   
111. alg_rf <- final[final$TEST=="RF",]   

112. alg_s <- final[final$TEST=="SVM",]   

113. alg_rnd <- final[final$TEST=="RAND",]   

114.    
115. outliers <-

 aq.plot(final[c("ACC", "BER", "CE", "CRAMERV", "KAPPA", "MACRO_SENS", "MACRO_SPEC", "M

ACRO_PREC")])   

116.    
117. x <- finaldata[,2:length(finaldata)]   

118. View(cor(x, method="spearman"))   

119.    
120. par(mfrow=c(2,4))   
121. qqnorm((finaldata$ACC)^0.66, xlab="ACC")   

122. qqline((finaldata$ACC)^0.66, col="red")   

123. qqnorm((finaldata$CE)^2.3, xlab="CE")   

124. qqline((finaldata$CE)^2.3, col="red")   
125. qqnorm((finaldata$BER)^5.8, xlab = "BER")   

126. qqline((finaldata$BER)^5.8, col="red")   

127. qqnorm(finaldata$KAPPA, xlab="KAPPA")   

128. qqline(finaldata$KAPPA, col="red")   
129. qqnorm(finaldata$CRAMERV, xlab="Cramer V")   

130. qqline(finaldata$CRAMERV, col="red")   

131. qqnorm(sqrt(finaldata$MACRO_SENS), xlab="SENS")   

132. qqline(sqrt(finaldata$MACRO_SENS), col = "red")   
133. qqnorm(finaldata$MACRO_SPEC, xlab="Spec")   

134. qqline(finaldata$MACRO_SPEC, col="red")   

135. qqnorm(finaldata$MACRO_PREC, xlab="Prec")   

136. qqline(finaldata$MACRO_PREC, col="red")   
137.    
138. library(vegan)   

139. library(pgirmess)   

140. library(multcompView)   
141.    
142. finaldata2 <- finaldata[ -c(3,4,5, 9, 10, 11)] #remove collinear variables   

143.    
144. d <- vegdist(finaldata2[2:5], method="manhattan")   
145. x <- betadisper(d, finaldata2$TEST, type = c("median", "centroid"))   

146. anova(x)   

147. plot(x)   

148. boxplot(x, ylab= "Distance to centroid")   
149. TukeyHSD(x) #Variances are unequal   

150.    
151. ###Proceed with nonparametric tests###   

152.    
153. attach(finaldata)   
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154. adonis.final <-

 adonis(ACC + CRAMERV + MACRO_SENS + MACRO_SPEC + MACRO_PREC~TEST, data = finaldata
2, method = "manhattan")   

155. adonis.final   

156. #This shows a significant result; let this be OK because while variances are unequal,   

157. #there are "large" samples and sample sizes are equal   
158.    
159. ag <- aggregate(.~TEST, finaldata2, function(x) c(mean=mean(x), sd=sd(x)))   

160.    
161. #Following up on a significant adonis with multiple Kruskal-Wallis tests   
162. kruskal.test(ACC~TEST, data=finaldata2)   

163. kruskal.test(CRAMERV~TEST, data=finaldata2)   

164. kruskal.test(MACRO_SENS~TEST, data=finaldata2)   

165. kruskal.test(MACRO_SPEC~TEST, data=finaldata2)   
166.    
167. kruskalmc(ACC~TEST, data=finaldata2)   

168. kruskalmc(CRAMERV~TEST, data=finaldata2)   

169. kruskalmc(MACRO_SENS~TEST, data=finaldata2)   
170. kruskalmc(MACRO_SPEC~TEST, data=finaldata2)   

171.    
172. mlcacc <- finaldata$ACC[finaldata$TEST=="MLC"]   

173. mlcce <- finaldata$CE[finaldata$TEST=="MLC"]   
174. mlcber<- finaldata$BER[finaldata$TEST=="MLC"]   

175. mlckap<- finaldata$KAPPA[finaldata$TEST=="MLC"]   

176. mlccrv <- finaldata$CRAMERV[finaldata$TEST=="MLC"]   

177. mlcmacsen <- finaldata$MACRO_SENS[finaldata$TEST=="MLC"]   
178. mlcmacspec<- finaldata$MACRO_SPEC[finaldata$TEST=="MLC"]   

179. mlcmacprec<- finaldata$MACRO_PREC[finaldata$TEST=="MLC"]   

180. mlcmac51<- finaldata$MACRO_F1[finaldata$TEST=="MLC"]   

181. mlcmacmcc<- finaldata$MACRO_MCC[finaldata$TEST=="MLC"]   
182.    
183.    
184. svmacc <- finaldata$ACC[finaldata$TEST=="SVM"]   

185. svmce <- finaldata$CE[finaldata$TEST=="SVM"]   
186. svmber<- finaldata$BER[finaldata$TEST=="SVM"]   

187. svmkap<- finaldata$KAPPA[finaldata$TEST=="SVM"]   

188. svmcrv <- finaldata$CRAMERV[finaldata$TEST=="SVM"]   

189. svmmacsen <- finaldata$MACRO_SENS[finaldata$TEST=="SVM"]   
190. svmmacspec<- finaldata$MACRO_SPEC[finaldata$TEST=="SVM"]   

191. svmmacprec<- finaldata$MACRO_PREC[finaldata$TEST=="SVM"]   

192. svmmac51<- finaldata$MACRO_F1[finaldata$TEST=="SVM"]   

193. svmmacmcc<- finaldata$MACRO_MCC[finaldata$TEST=="SVM"]   
194.    
195. rfacc <- finaldata$ACC[finaldata$TEST=="RF"]   

196. rfce <- finaldata$CE[finaldata$TEST=="RF"]   

197. rfber<- finaldata$BER[finaldata$TEST=="RF"]   
198. rfkap<- finaldata$KAPPA[finaldata$TEST=="RF"]   

199. rfcrv <- finaldata$CRAMERV[finaldata$TEST=="RF"]   

200. rfmacsen <- finaldata$MACRO_SENS[finaldata$TEST=="RF"]   

201. rfmacspec<- finaldata$MACRO_SPEC[finaldata$TEST=="RF"]   
202. rfmacprec<- finaldata$MACRO_PREC[finaldata$TEST=="RF"]   

203. rfmac51<- finaldata$MACRO_F1[finaldata$TEST=="RF"]   

204. rfmacmcc<- finaldata$MACRO_MCC[finaldata$TEST=="RF"]   

205.    
206. randacc <- finaldata$ACC[finaldata$TEST=="RAND"]   

207. randce <- finaldata$CE[finaldata$TEST=="RAND"]   

208. randber<- finaldata$BER[finaldata$TEST=="RAND"]   

209. randkap<- finaldata$KAPPA[finaldata$TEST=="RAND"]   
210. randcrv <- finaldata$CRAMERV[finaldata$TEST=="RAND"]   
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211. randmacsen <- finaldata$MACRO_SENS[finaldata$TEST=="RAND"]   

212. randmacspec<- finaldata$MACRO_SPEC[finaldata$TEST=="RAND"]   
213. randmacprec<- finaldata$MACRO_PREC[finaldata$TEST=="RAND"]   

214. randmac51<- finaldata$MACRO_F1[finaldata$TEST=="RAND"]   

215. randmacmcc<- finaldata$MACRO_MCC[finaldata$TEST=="RAND"]   

216.    
217. ###boxplots with letters###   

218. par(mfrow=c(1,4))   

219. mct_acc <- kruskalmc(ACC~TEST, data=finaldata2)   

220. test_acc <- mct_acc$dif.com$difference   
221. names(test_acc) <- row.names(mct_acc$dif.com)   

222. let_acc <- multcompLetters(test_acc, compare = "<", threshold = 0.05)   

223. let_acc   

224. boxplot(mlcacc, svmacc, rfacc, randacc, main="Accuracy", ylab="Accuracy", ylim=c(0,60), names=c("MLC
", "SVM", "RF", "RAND"))   

225. mtext(c("a", "b", "b", "a"), at=1:4, line = -2)   

226.    
227. mct_crv <- kruskalmc(CRAMERV~TEST, data=finaldata2)   
228. test_crv <- mct_crv$dif.com$difference   

229. names(test_crv) <- row.names(mct_crv$dif.com)   

230. let_crv <- multcompLetters(test_crv, compare = "<", threshold = 0.05)   

231. let_crv   
232. boxplot(mlccrv, svmcrv, rfcrv, randcrv, main = "Cramer's V", ylab = "V", ylim=c(0.2,0.8), names=c("MLC", 

"SVM", "RF", "RAND"))   

233. mtext(c("a", "c", "ac", "b"), at=1:4, line = -2)   

234.    
235. mct_sens <- kruskalmc(MACRO_SENS~TEST, data=finaldata2)   

236. test_sens <- mct_sens$dif.com$difference   

237. names(test_sens) <- row.names(mct_sens$dif.com)   

238. let_sens <- multcompLetters(test_sens, compare = "<", threshold = 0.05)   
239. let_sens   

240. boxplot(mlcmacsen, svmmacsen, rfmacsen, randmacsen, main="Macro Sensitivity", ylab = "Sensitivity (aver

age)", ylim=c(0,60),names=c("MLC", "SVM", "RF", "RAND"))   

241. mtext(c("a", "c", "c", "b"), at=1:4, line =-2)   
242.    
243. mct_spec <- kruskalmc(MACRO_SPEC~TEST, data=finaldata2)   

244. test_spec <- mct_spec$dif.com$difference   

245. names(test_spec) <- row.names(mct_spec$dif.com)   
246. let_spec <- multcompLetters(test_spec, compare = "<", threshold = 0.05)   

247. let_spec   

248. boxplot(mlcmacspec, svmmacspec, rfmacspec, randmacspec, main="Macro Specificity", ylab = "Specificity (

average)", ylim = c(89,97), names=c("MLC", "SVM", "RF", "RAND"))   
249. mtext(c("a", "c", "c", "b"), at=1:4, line = -2)   

250.    
251. ###export csvs ###   

252. setwd("K:/Thesis/FHSU/Excel/MCT")   
253. write.csv(mct_acc, "MCT_ACC.csv")   

254. write.csv(mct_crv, "MCT_CRV.csv")   

255. write.csv(mct_sens, "MCT_SENS.csv")   

256. write.csv(mct_spec, "MCT_SPEC.csv")   
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