Fort Hays State University FHSU Scholars Repository

Master's Theses

Graduate School

Fall 2015

Effects Of Environmental And Anthropogenic Factors On The Range Contraction Of Bird And Mammal Species

Patrice M. Betz Fort Hays State University

Follow this and additional works at: https://scholars.fhsu.edu/theses Part of the <u>Biology Commons</u>

Recommended Citation

Betz, Patrice M., "Effects Of Environmental And Anthropogenic Factors On The Range Contraction Of Bird And Mammal Species" (2015). *Master's Theses*. 43. https://scholars.fhsu.edu/theses/43

This Thesis is brought to you for free and open access by the Graduate School at FHSU Scholars Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of FHSU Scholars Repository.

EFFECTS OF ENVIRONMENTAL AND ANTHROPOGENIC FACTORS ON THE RANGE CONTRACTION OF **BIRD AND MAMMAL SPECIES**

being

A Thesis Presented to the Graduate Faculty of the Fort Hays State University in Partial Fulfillment of the Requirements for the Degree of Master of Science

by

Patrice M. Betz

B.S., Fort Hays State University

Date

Approved_____ Major Professor

Approved_

Chair, Graduate Council

This Thesis for

The Master of Science Degree

By

Patrice M. Betz

Has Been Approved

Chair, Supervisory Committee

Supervisory Committee

Supervisory Committee

Supervisory Committee

Chair, Department of Biological Sciences

PREFACE

This thesis has been formatted in the style of the journal *Conservation Biology*. Keywords: range contraction, range loss, persistence, extinction, conservation, human influence

ABSTRACT

The largest contributor to biodiversity loss is habitat destruction caused by humans. A common consequence of habitat destruction is a reduction in the geographic range of a species. Little research has been done to separate the contribution of anthropogenic and environmental variables to the extinction or persistence of species that have experienced range contraction. In this thesis, I examined the relative effects of several variables (elevation, mean annual precipitation, mean annual temperature, human population density, distance from roads, and proportion of land converted to built-up land, cropland, and rangeland) on the geographic ranges of declining bird and mammal species from all continents except Antarctica. Species were examined separately to determine which variables might have influenced the contraction in the ranges of individual species. The results of each variable were compiled both by individual species and by continent. My results suggest environmental variables have a greater effect on species persistence and extinction than do the anthropogenic variables I tested. Mean annual precipitation was most often identified as having a positive or negative influence on species persistence. The findings of this study provide a comprehensive assessment of the effects of environmental and anthropogenic variables on the persistence of both individual species and all species from each of the 6 continents included in the analyses. These findings could allow conservation biologists to better predict areas where a declining species will persist, thereby enabling the prioritization of areas for the establishment of wildlife reserves.

ii

ACKNOWLEDGMENTS

First and foremost, I would like to express sincere gratitude to my advisor, Dr. Rob Channell, for his guidance and counsel both before and throughout my graduate career. Without him, this thesis would not have been possible. His constant support and belief in my abilities as a biologist have helped me to become the person I am today. In addition, I thank the other members of my graduate committee, Dr. Brian Maricle, Dr. Bill Stark, and Dr. Lexey Bartlett, for their time and patience during the development of my thesis.

I thank my fellow graduate students for all the support and the laughs, especially during the times when it was badly needed. I express particular gratitude to Jeff Carter, whose unwavering friendship, support, and confidence in my abilities has kept me sane and strong throughout my years at Fort Hays State University.

I thank the many biologists and writers who contributed to the data used in this thesis. Without their dedication, this thesis, and many other studies, would not have been possible.

Lastly, I express sincerest gratitude to my parents, Duart and Patti, for their unwavering support in all endeavors I have chosen over the years, this thesis certainly not the least of which. I will be forever grateful to you both for always being there for me, through all the good times and all the bad, never ceasing to encourage me to pursue my dreams and achieve my goals, no matter how big. As of now I have achieved the biggest goal of my life, and it is all thanks to you.

TABLE OF CONTENTS		
ABSTRACT		
	11	
ACKNOWLEDGEMENIS	111	
TABLE OF CONTENTS	iv	
LIST OF TABLES	vii	
LIST OF FIGURES	ix	
INTRODUCTION	1	
Human Impact and the Biodiversity Crisis	1	
On Habitat Loss and the Risk of Extinction	2	
Range Contraction Analysis and its Use for Conservation	3	
METHODS	4	
Species' Range Data	4	
Environmental Data	6	
Anthropogenic Data	7	
Separation of Continents	7	
Analysis	8	
RESULTS	11	
Overview	11	
Environmental Variables	13	
Elevation	13	
Precipitation	13	
Temperature	14	

Anthropogenic Variables	14
Distance from Roads	14
Human Population Density	15
Built-Up Land	16
Cropland	16
Rangeland	17
DISCUSSION	17
Environmental Variables	17
Overview	17
Elevation	18
Precipitation	19
Temperature	20
Anthropogenic Variables	21
Overview	21
Distance from Roads	21
Human Population Density	22
Built-Up Land	23
Cropland	24
Rangeland	25
CONCLUSION	26
Conclusions for This Study	26
Caveats and Future Research	26
Overview Distance from Roads Human Population Density Built-Up Land Cropland Rangeland CONCLUSION Conclusions for This Study Caveats and Future Research	21 21 21 22 22 24 24 26

Implications for Conservation	
LITERATURE CITED	
TABLES	41
FIGURES	72

LIST OF TABLES

Table Page	Table
1 Bird and mammal species included in the range contraction analysis.	1
A=Aves, M = Mammalia	
2 Sources of species' range maps used in the range contraction analysis.	2
A=Aves, M=Mammalia	
3 Species that did not meet the range contraction analysis target of 200 total	3
data points. A data point for each species was comprised of a $10 \text{ km}^2 \text{ GIS}$	
raster grid cell	
4 Results of logistic regression models by species. Variable coefficients	4
resulting from the logistic regression for each species are listed in their	
respective columns. Red coefficient values indicate statistical significance (p	
= 0.05). Coefficient values that are black were included in the model	
recommended by the backward stepwise regression, but were not shown to be	
significant. A symbol in place of a coefficient value indicates omission of	
that variable for that species: ~ indicates variable omission by stepwise	
regression, \bullet indicates variable omission due to collinearity with another	
variable, \blacklozenge indicates variable omission due to lack of nonzero values, \dagger	
indicates variable omission due to extreme uniform variable nonsignificance	
prior to stepwise regression, and \blacksquare indicates variable omission due to extreme	
uniform variable nonsignificance after stepwise regression	

- 6 Number of bird and mammal species used in the range contraction analysis for each continent. "Total Number" indicates the number of species from each taxon whose range contraction was statistically analyzed. "Number with Significant Variables" indicates the number of species whose persistence was significantly affected by at least one of the variables tested. "Number with No Assessing L. O. F." indicates the number of species whose analysis could not be completed due to an error in the data for those

	-	-
a		
ener		
- ALAC		
	~ · · · · · · · · · · · · · · · · · · ·	-
-		

LIST OF FIGURES

Figure	Page
1	Range contraction of the mountain lion (Puma concolor) in North America
	and South America, overlaid onto the global elevation layer. The lighter shade
	of blue indicates historical range, and the darker shade of blue indicates
	remnant range
2	Global elevation. Areas lighter in color indicate areas of greater elevation73
3	Global mean annual precipitation. Areas lighter in color indicate areas of
	higher mean annual precipitation74
4	Global mean annual temperature. Areas lighter in color indicate areas of
	higher mean annual temperature75
5	Global roads vector layer. Areas with a greater amount of black indicate a
	greater prevalence of roads
6	Global human population density. Areas lighter in color indicate areas of
	higher human population density77
7	Global built-up land. Areas darker in color indicate areas with greater
	proportions of built-up land78
8	Global cropland. Areas that are lighter in color indicate areas with greater
	proportions of land converted to cropland
9	Global rangeland. Areas that are lighter in color indicate areas with greater
	proportions of land converted to rangeland

INTRODUCTION

Human Impact and the Biodiversity Crisis

Biodiversity is threatened. The current extinction rate is estimated to be between 1,000 and 10,000 times greater than the extinction rate expected without the contribution of humans (Wilson 1988). Because of this, it is believed we are in the throes of the sixth mass extinction event (Diamond et al. 1989, Chapin et al. 2000), one that will worsen as the global human population increases, along with its growing demand for natural resources (Erlich 1988).

Since the end of the Pleistocene (Alroy 2001), and especially since the onset of European exploration in the late 15th century (Heywood and Stuart 1992), mankind has been a major contributor to the extinction of numerous species. It is estimated that roughly 40% of the world's primary productivity is put towards human use—that is, towards the use of a single species (Mace and Reynolds 2001). That leaves only 60% available for the millions of other species that inhabit the planet. Because we are highly mobile and capable of making great changes to the landscape, it is easy to disrupt the natural world, both purposely for our own benefit, and accidentally. As put by Gretchen Daily (1997), "Virtually no place remains untouched—chemically, physically, or biologically—by the curious and determined hand of humanity. Although much more by accident than by design, humanity now controls conditions over the entire biosphere." It can be argued that humanity thus controls the fate of millions of species as well.

1

On Habitat Loss and the Risk of Extinction

Species become extinct for a multitude of reasons, and often a combination of them (Pimm et al. 1988, Diamond et al. 1989, Erlich and Daily 1993, Lomolino and Channell 1995, Owens and Bennett 2000). Some slip into extinction naturally, as a result of natural climactic fluctuations or geological processes, but recently many others have declined or become extinct as the direct or indirect result of human action (Mace and Reynolds 2001). The most common cause of species decline is habitat loss (Pimm and Raven 2000). If individuals of a species cannot find habitat adequate for survival and reproduction, the species will decline and eventually become extinct (Hanski and Ovaskainen 2002).

Certain species are more vulnerable to extinction than others based on a variety of factors, such as life history (i.e., fecundity, age of maturity, habitat specialization, diet specialization, etc.) (McKinney 1997), usefulness to humans (Rosser and Mainka 2002), and rarity (McKinney 1997). Island flora and fauna are particularly vulnerable to extinction due to their small geographic ranges, small population sizes, and lack of defenses against introduced species, both predators and competitors (Purvis et al. 2000). Endemics of oceanic islands also cannot typically disperse to new locations due to their insular nature.

A common consequence of habitat loss is habitat fragmentation (With and King 1999). Naturally caused by geographic processes and artificially caused by anthropogenic alteration of the landscape, habitat fragmentation occurs when portions of habitat are degraded or destroyed, leaving only pockets of habitat remaining. Depending on the life histories of the species inhabiting them, habitat fragments can become, in a sense, isolated "islands" of habitat, and thus rife with many of the problems associated with island biodiversity extinction risks (Diamond et al. 1976). If individuals in a population cannot move from one habitat fragment to another, the population becomes isolated from other populations. Small, isolated populations are more susceptible to stochastic events such as genetic drift, population crashes, or natural disasters (Pimm et al. 1988). If habitat fragmentation for a species is severe, the separated populations will become extinct over time, one by one, until there are no individuals of that species remaining.

Range Contraction Analysis and Its Use for Conservation

One of the indicators of decline in a species is a reduction in its geographic range. This reduction in a range occurs when a species has lost habitat within its historical range (Figure 1). I will refer to this range reduction as "range contraction."

The geographic ranges of species are dynamic, their boundaries naturally expanding and shrinking over time as a result of geological processes, natural fluctuations in climate, and interactions with other species (Gaston and He 2002). However, a large portion of the geographic range of a species can also be lost over time as a result of human activity (Lomolino and Channell 1995), most often habitat destruction (Pimm and Raven 2000). This habitat destruction is primarily due to land being converted from natural habitat to cropland, pastures, cities and towns, and roads by humans (Forester and Machlis 1996). My focus in this thesis is range contraction caused by habitat destruction, but it should be noted that range contraction can result from other types of anthropogenic disturbances as well, such as overexploitation, the spread of invasive species, and anthropogenic climate change (Groom 2006).

Research focused on range contraction can be beneficial to species conservation. Range contraction research can enable conservation biologists to more accurately predict where declining species will persist. Such areas of predicted persistence can be protected by establishing wildlife preserves or national parks to create refuges for these species. This research can also lead to more thorough and collaborative surveys which include better data on the changing range limits of species. Lastly, research on range contraction can simply provide conservation biologists with a better understanding of the complexity of the interactions between geographic ranges, threats to biodiversity, and species persistence.

The aim of this study is to examine the effect of several environmental and anthropogenic variables on the persistence of local populations of birds and mammals experiencing range contraction. I sought to determine if the effects of the variables tested differed by continent. I predicted the portion of range lost would coincide with areas of greater human influence. I also predicted species to persist in areas of higher elevation, colder temperatures, and lower precipitation because I expect human influence to be lower in these areas, and thus, the habitats in them less likely to have been altered.

METHODS

Species' Range Data

To conduct the analysis of effects of the environmental and anthropogenic variables on the geographic range contraction of species, range maps with both the

remnant and historical ranges for species were required. The remnant range is the current area of the historical range within which a species persists, with the "current" date for this analysis being anywhere from 1970 to 2014. Unfortunately, range maps for species are not frequently updated, and for the majority of species in this analysis, the most recent range map is from 10-20 years ago. The historical range is the geographic range a species once occupied. The time period the historical range represents differs from species to species and is often not specified in the map sources. Typically in Australia and North America, this period is near the beginning of European settlement. The sources of species' ranges from the other continents, however, are not as explicit in dating the historical range.

Remnant and historical ranges of bird and mammal species from all continents except Antarctica were gathered for this analysis, yielding data for a total of 139 bird species and 148 mammal species (Table 1). Data sources included journal articles, field guides, online databases, and species management plans (Table 2). There were several specifications required for these ranges to be considered for analysis. Only those ranges that included both the historical and remnant ranges could be analyzed; thus, extinct species were excluded. I also excluded species that are, or had been, extinct in the wild or only exist in captive populations, such as the American bison (*Bison bison*), Arabian oryx (*Oryx leucoryx*), and black-footed ferret (*Mustela nigriceps*). Only native ranges of species were included in the analyses. Maps limited to subspecies were excluded. In species whose ranges included areas of reintroduction, those reintroduction sites were not included in the remnant range. For birds, only year-round and breeding ranges were considered for analysis; wintering ranges were excluded. If a map contained elements of uncertainty, such as points of "possible extralimital occurrence" or "presence uncertain," those elements were not included as part of either the remnant or historical ranges in the analysis. When more than one range map was available for the same species, the most recent map was used.

When maps were not available as shapefiles, they were georeferenced and digitized using ArcGIS 10.1 (ESRI 2014). Once digitized, they were converted from vector data to raster data with a cell size of 0.083333° to match the cell size of the environmental and anthropogenic layers. Raster ranges converted from a vector range comprised of multiple polygons often had to be reclassified so all cells in the range had the same value.

Environmental Data

Three environmental variables were used in this analysis: elevation (m) (Figure 2), mean annual precipitation (mm) (Figure 3), and mean annual temperature (°C) (Figure 4). Data for these variables came from Worldclim (Hijmans et al. 2005). Temperature and mean annual precipitation data were gathered that coincided as closely as possible with the time of contraction. The downloaded data were in raster form with a size of 5 arc-minutes (0.083333°), or roughly 10 km².

Because precipitation and temperature were only available as average monthly values, the values of each month for each variable were added together and divided by 12 to yield the mean annual temperature and mean annual precipitation.

Anthropogenic Data

Five measures of human disturbance were used in the analysis: distance from roads (Figure 5), human population density (Figure 6), and proportion of land converted to built-up land (Figure 7), cropland (Figure 8), and rangeland (Figure 9). All anthropogenic data were downloaded as raster GIS layers. Data for roads (CIESIN et al. 2011), human population density (Balk et al. 2006, CIESIN et al. 2011), cropland (Ramankutty et al. 2008, Ramankutty et al. 2010: Cropland), and rangeland (Ramankutty et al. 2008, Ramankutty et al. 2010: Pastures) were downloaded from SEDAC (SEDAC 2013). Built-up land was downloaded from Atlas of the Biosphere (Atlas of the Biosphere 2001).

These five anthropogenic layers had to be prepared for analysis. The largest cell size available for the human population density data was smaller than the cell size for the other layers. To resolve this issue, the aggregate function was used in ArcGIS to merge adjacent cells to form larger cells (cell size of 0.083333°) by using the mean of the aggregated cell values. Using ArcGIS, I constructed a distance to road raster layer from the road layer. Lastly, built-up land, cropland, and rangeland layers were obtained as percentages of the landscape and were divided by 100 to convert the values to proportions.

Separation of Continents

Because the results were compiled by continent, continents which are not geographically distinct from each other needed to be separated. The Ural Mountains and Caucasus Mountains were used as the boundaries to separate Europe and Asia. Four species (*Canis lupus*, Mammalia; *Castor fiber*, Mammalia; *Otis tarda*, Aves; and *Ursus arctos*, Mammalia) occurred in both Europe and Asia, and their ranges in the two continents were also split using the Ural and Caucasus mountain ranges as boundaries. Wallace's line (Lomolino et al. 2010) was used to separate Australia and southeast Asia. The islands of Sulawesi and New Guinea were therefore classified as part of Australia.

Analysis

A separate model was constructed for each species. In ArcGIS, the historical range of each species was converted to a point data layer. The values of the historical range point layer were coded to 1 for points where the species persists (within the remnant range) and 0 for the portion of the historical range where the species is extinct. For each point in the historical range the values of the 3 environmental and 5 anthropogenic layers were then extracted. Thus, for each point in the historical range I had recorded whether the species was persistent or extinct, and the value from each of the environmental and anthropogenic variables at that geographic location.

The attribute table of the point data layer was exported from ArcGIS to a text file. The text file was imported into Excel where it was prepared for statistical analysis. The large number of points recorded in the text file inflates the statistical power and causes very small differences to be statistically significant. To reduce this inflated power, a subset of 100 points from the historical range and 100 points from the remnant range were randomly selected for each species. Some species had very small ranges, resulting in less than 100 points in either their historical or remnant ranges (Table 3). For these species, an equal number of points were selected from each range type (historical or

8

remnant) based on the range type which had the lowest number of points. This resulted in less than 200 total data points for analysis. For instance, the historical and remnant ranges of the Javan warty pig (*Sus verrucosus*, Mammalia, Asia) yielded a total of 204 historical points and 69 remnant points available for analysis. Thus, all 69 remnant points and only 69 randomly sampled historical points were used in the analysis of this species. Species with less than 50 historical or remnant points were excluded from analysis because the sample size was considered insufficient. Variables with a very low amount of variability, i.e., variables with fewer than 3 nonzero values, were deleted on a species-by-species basis. When two variables for a species were highly collinear ($r \ge 0.80$), one of the two collinear variables was removed from the model for that species. The values of all remaining variables were then z-score standardized (Urdan 2005).

Statistical analyses were conducted using the statistical program R (R Core Team 2014). Each species was analyzed separately. A logistic regression was conducted to predict species persistence by using the 3 environmental and 5 anthropogenic variables for each species. Because not all variables had a significant effect on persistence, it was unnecessary to include all variables in the model for each species; variables that had little or no effect were excluded from the models on a species-by-species basis. This was done by using a procedure similar to a forward stepwise regression. In this procedure, R built a model with no independent variables, then began an iterative process in which it built more models by subsequently adding independent variables that decreased the Akaike Information Criterion (AIC), a measure of model quality in which low values are desirable. This iterative process was stopped when a variable was added that increased

the AIC. The model with the lowest AIC was then used for the subsequent analysis. Models with an AIC that differed from the previous model by less than 2.00 are not statistically different from each other, but the model with the lowest AIC was still used for the analysis (see "Best Model Not Sig. Different" column of Table 4).

Statistically significant coefficients from the final logistic regression model for each species were noted. These coefficients for a logistic regression are slope coefficients which represent a change in the logit in response to a change of one unit in the independent variable. Although the way in which a logistic regression coefficient is calculated is different from the way in which it is calculated for linear regression, the coefficients can still be interpreted as indicative of a positive or negative relationship between the independent and dependent variables (Hosmer and Lemeshow 2000). An independent variable with a significant coefficient indicates that variable has a significant effect (positive or negative) on the persistence of the species.

After conducting the logistic regression, all assumptions applicable to a logistic regression were tested for each species to ensure that none were violated. Any outliers were also identified and removed, and the logistic regression was repeated. Lack of fit was assessed for each model to ensure model validity. Fit of the model and error rate were also recorded for each species (Table 4).

For certain species, all p values from the logistic regression were close to or equal to 1 and therefore nonsignificant. In some cases, this problem was fixed by excluding a single variable from the model (see description of Table 4). When excluding a variable did not change the significance of the p values, a new model was manually created using

two or three of the variables that had the largest effect on species when a logistic regression was conducted on those variables alone.

RESULTS

Overview

Of the 287 species analyzed, 11 species occurred on 2 or more continents, resulting in 300 separate range maps. However, results were compiled using species counts for both taxa (Aves and Mammalia) by continent (Table 5), so some species are counted more than once. Originally, I intended to compare the results of birds and mammals. However, lack of adequate sample sizes of both taxa for each continent made such comparisons untenable. Results for birds and mammals are therefore compiled together (Tables 4 and 5).

Variable coefficients (Table 4) and species counts (Table 5) were used to indicate relative influence of individual variables on species persistence. Species counts were used to determine the positive or negative effects of each variable on species persistence by continent. Only coefficient values that are significant are noted for each species. For example, in the logistic regression model for the Greater Sage-Grouse (*Centrocercus urophasianus*, Aves, North America), the coefficient value for proportion of land converted to rangeland is both significant and positive (Table 4). This indicates that, as the proportion of rangeland in an area increases, so does the chance that Greater Sage-Grouse persists there. In the case of this species, there is a positive relationship between persistence and rangeland. If, however, a coefficient value is negative, it indicates a negative relationship with species persistence. One of the significant negative coefficients

for the Greater Sage-Grouse is proportion of cropland. As the amount of land converted to cropland increases, the chance that the Greater Sage-Grouse persists there decreases. This is unsurprising because agricultural lands do not meet the habitat requirements of this species (Aldridge et al. 2008).

Of the 287 species analyzed, 284 included at least one variable that significantly affected persistence; 3 species yielded no significant variables (Table 6). Of the 284 species that yielded at least one significant variable, lack of fit could not be assessed for 6 of the species (*Aviceda jerdoni*, Aves, Asia; *Conilurus penicillatus*, Mammalia, Australia; *Mesembriomys gouldii*, Mammalia, Australia; *Pseudomys bolami*, Mammalia, Australia; *Trichosurus vulpecula*, Mammalia, Australia; and *Alces alces*, Mammalia, North America) and for one of the two range maps used for *Gulo gulo* (Mammalia, North America). Because the analyses for these species are incomplete, their models are listed in the results of the logistic regression models by species (Table 4) but are not included in the summarized results by continent (Table 5). Similarly, lack of fit for several species was nonsignificant (p < 0.05), indicating that the model did not perform better than chance at predicting species persistence (denoted by an asterisk in the "L.O.F. p < 0.05" column of Table 4). However, these species and their associated values are included in the final results.

Although these results are listed comprehensively by continent, the effects of the independent variables on each species are also worthy of note; information about the effects of these variables on individual species can be important to the conservation of those species. The results are compiled comprehensively because the effects of the

variables (Table 5) are perhaps more useful for multispecies conservation at a regional level.

Environmental Variables

Elevation

Elevation had a significant positive effect on the persistence of 17 of 39 (43.6%) African species, 47 of 122 (38.5%) Asian species, 18 of 66 (27.3%) Australian species, 1 of 10 (10.0%) European species, 11 of 47 (23.4%) North American species, and 3 of 9 (33.3%) South American species. Globally, this variable had a positive effect on 97 of 293 (33.1%) species.

Elevation had a significant negative effect on the persistence of 2 of 39 (5.1%) African species, 24 of 122 (19.7%) Asian species, 16 of 66 (24.2%) Australian species, 8 of 10 (80.0%) European species, 9 of 47 (19.1%) North American species, and 4 of 9 (44.4%) South American species. Globally, this variable had a negative effect on the persistence of 63 of 293 (21.5%) species.

Precipitation

Mean annual precipitation had a significant positive effect on the persistence of 16 of 39 (41.0%) African species, 36 of 122 (29.5%) Asian species, 28 of 66 (42.4%) Australian species, no European species 18 of 47 (38.3%) North American species, and 3 of 9 (33.3%) South American species. Globally, this variable had a positive effect on 101 of 293 (34.5%) species.

Mean annual precipitation had a significant negative effect on the persistence of 7 of 39 (17.9%) African species, 52 of 122 (42.6%) Asian species, 17 of 66 (25.8%)

Australian species, 1 of 10 (10.0%) European species, 9 of 47 (19.1%) North American species, and 2 of 9 (22.2%) South American species. Globally, this variable had a negative effect on the persistence of 88 of 293 (30.0%) species.

Temperature

Mean annual temperature had a significant positive effect on the persistence of 14 of 39 (35.9%) African species, 25 of 122 (20.5%) Asian species, 22 of 66 (33.3%) Australian species, 1 of 10 (10.0%) European species, 12 of 47 (25.5%) North American species, and 2 of 9 (22.2%) South American species. Globally, this variable had a positive effect on the persistence of 76 of 293 (25.9%) species.

Mean annual temperature had a significant negative effect on the persistence of 3 of 39 (7.7%) African species, 20 of 122 (16.4%) Asian species, 15 of 66 (22.7%) Australian species, 8 of 10 (80.0%) European species, 20 of 47 (42.6%) North American species, and 2 of 9 (22.2%) South American species. Globally, this variable had a negative effect on the persistence of 68 of 293 (23.2%) species.

Anthropogenic Variables

Distance from Roads

Distance from roads is interpreted differently than the other anthropogenic variables. Instead of indicating the severity of a human disturbance, it is comprised of distances from a human disturbance. Increasing distance from a road means a decrease in human disturbance. If species persistence is positively correlated with distance from roads, that species tends to persist in areas where fewer roads exist. If a species is negatively correlated with distance from roads, that species tends to persist in areas with more roads.

Distance from roads had a significant positive effect on the persistence of 8 of 39 (20.5%) African species, 20 of 122 (16.4%) Asian species, 8 of 66 (12.1%) Australian species, 1 of 10 (10.0%) European species, 5 of 47 (10.6%) North American species, and 4 of 9 (44.4%) South American species. Globally, this variable had a positive effect on the persistence of 46 of 293 (15.7%) species.

Distance from roads had a significant negative effect on the persistence of 3 of 39 (7.7%) African species, 7 of 122 (5.7%) Asian species, 7 of 66 (10.6%) Australian species, 1 of 10 (10.0%) European species, 8 of 47 (17.0%) North American species, and 2 of 9 (22.2%) South American species. Globally, this variable had a negative effect on the persistence of 28 of 293 (9.6%) species.

Human Population Density

Human population density had a significant positive effect on the persistence of no African species, 17 of 122 (13.9%) Asian species, 7 of 66 (10.6%) Australian species, no European species, 1 of 47 (2.1%) North American species, and no South American species. Globally, this variable had a positive effect on the persistence of 25 of 293 (8.5%) species.

Human population density had a significant negative effect on the persistence of 11 of 39 (28.2%) African species, 26 of 122 (21.1%) Asian species, 15 of 66 (22.7%) Australian species, 1 of 10 (10.0%) European species, 6 of 47 (12.8%) North American

species, and 1 of 9 (11.1%) South American species. Globally, this variable had a negative effect on the persistence of 60 of 293 (20.5%) species.

Built-Up Land

Proportion of land converted to built-up land had a significant positive effect on the persistence of no African species, 8 of 122 (6.6%) Asian species, 1 of 66 (1.5%) Australian species, 1 of 10 (10.0%) European species, no North American species, and no South American species. Globally, this variable had a positive effect on the persistence of 10 of 293 (3.4%) species.

Built-up land had a significant negative effect on the persistence of no African species, 7 of 122 (5.7%) Asian species, no Australian species, no European species, 5 of 47 (10.6%) North American species, and no South American species. Globally, this variable had a negative effect on the persistence of 12 of 293 (4.1%) species. *Cropland*

Proportion of land converted to cropland had a significant positive effect on the persistence of 3 of 39 (7.7%) African species, 33 of 122 (27.0%) Asian species, 10 of 66 (15.2%) Australian species, no European species, 4 of 47 (8.5%) North American species, and 1 of 9 (11.1%) South American species. Globally, this variable had a positive effect on the persistence of 51 of 293 (17.4%) species.

Cropland had a significant negative effect on the persistence of 13 of 39 (33.3%) African species, 25 of 122 (20.5%) Asian species, 9 of 66 (13.6%) Australian species, 2 of 10 (20.0%) European species, 12 of 47 (25.5%) North American species, and 1 of 9 (11.1%) South American species. Globally, this variable had a negative effect on the persistence of 62 of 293 (21.2%) species.

Rangeland

Proportion of land converted to rangeland had a significant positive effect on the persistence of 4 of 39 (10.3%) African species, 21 of 122 (17.2%) Asian species, 6 of 66 (9.1%) Australian species, 3 of 10 (30.0%) European species, 9 of 47 (19.1%) North American species, and 3 of 9 (33.3%) South American species. Globally, this variable had a positive effect on the persistence of 46 of 293 (15.7%) species.

Rangeland had a significant negative effect on the persistence of 6 of 39 (15.4%) African species, 26 of 122 (21.3%) Asian species, 9 of 66 (12.9%) Australian species, 1 of 10 (10.0%) European species, 7 of 47 (14.9%) North American species, and 2 of 9 (22.2%) South American species. Globally, this variable had a negative effect on the persistence of 51 of 293 (17.4%) species.

DISCUSSION

Environmental Variables

Overview

The effects of the environmental variables on species persistence were split more evenly between positive influence and negative influence than expected based on species counts (Table 5). Precipitation positively affected persistence for the most species. Precipitation also negatively affected persistence for the most species. There was no environmental variable tested that could allow for the accurate prediction of persistence or extinction for all species included in this study.

Elevation

A positive relationship between elevation and species persistence indicates a higher probability that a species will persist at higher elevations. For those species that are affected by elevation in this way, this could be the result of an interaction between elevation and another variable included in this analysis. For example, temperature decreases with increasing altitude (Figures 2 and 4) and human population density tends to be lower at higher elevations (Figures 2 and 6). Some bird species included in this study that are endemic to southern Asia continue to inhabit the piedmont of the Himalayas in Nepal and northwest India, but have lost portions of their range in central and southern India where elevation is lower. This could be attributed to habitat loss brought about by the development of cities and villages, cropland, and rangeland in those areas. Certain other Asian species, such as the snow leopard (*Panthera unica*), have lost areas of their downslope range due to retaliatory hunting by local farmers and herders, as well as loss of natural prey due to both competition with livestock and hunting (Mishra et al. 2003). For species such as these, higher elevation areas could be refuges from human disturbance.

Conversely, the persistence of some species is negatively influenced by elevation. This result is counterintuitive when considering the relationship between elevation and human population density. As with the positive relationship between elevation and the persistence of certain species, this negative relationship is possibly the effect of an interaction between elevation and one or more of the other variables included in this study. For instance, elevation and temperature were often collinear in the logistic regression models of species in this analysis. One of these variables was excluded on a species-by-species basis if the correlation between the two variables was too high ($r \ge 0.80$), but both variables were kept in the analysis if they were not highly correlated (r < 0.80). Although the process used to build a model with the lowest AIC sometimes omitted one of the two variables that were still somewhat correlated, this omission did not always occur. Thus, the negative relationship seen between persistence and elevation could be caused by another environmental variable interacting with elevation.

Precipitation

Of all the variables tested, mean annual precipitation appeared to have the greatest effect on species persistence. Globally, it positively affected the persistence of more species than any other variable, and negatively affected the persistence of more species than any other variable. This indicates that precipitation is likely a very important factor for the ecological requirements of species, and therefore for their persistence.

The contradictory effects of precipitation between the species of this study are probably an overgeneralization of a complex pattern seen among differing environments within the continents, as well as combining results from a diverse assortment of species with different habitat requirements. In Australia, for instance, precipitation was the variable that positively affected persistence for the most species, and negatively affected persistence for the most species. It is unclear how to interpret this, because this importance of precipitation to species persistence is not seen among the other continents. It can be speculated the Australian species included in the study came from more varied habitats than the species from other continents, and the persistence of many of these Australian species were either positively affected by precipitation or negatively affected by precipitation based on their differing habitat requirements. The cause of this result for Australia is still unclear, but these results suggest the persistence of Australian species appears to be more affected by precipitation than the persistence of species from other continents.

Temperature

Mean annual temperature did not have a positive relationship with persistence for the most species on any continent. It did, however exhibit a negative relationship with species persistence for the most North American species. Species in North America therefore tend to persist in cooler areas within their historical geographic range than in warmer areas. However, this pattern is probably more the result of a correlation between temperature and one or more human influence variables than the result of a direct relationship between temperature and persistence. For example, a continental climate dominates central North America (Bailey 1980), and this central portion of the continent is characterized by higher mean temperatures than on the coast. But the center of North America, particularly the center of the continental United States, has also been heavily impacted by agriculture and rangeland (Figures 8 and 9). This habitat loss via land use change is probably the driver of the negative relationship between temperature and species persistence.

Like mean annual precipitation, the differing responses of species persistence to mean annual temperature is probably also due to the differing ecological requirements of the species. Because temperature is correlated with elevation, it is also possible that some species that tend to persist in areas of higher elevation also tend to persist in areas with lower mean temperatures, or vice versa. This pattern is seen in only 5 of the species analyzed (Table 4), but this pattern could be obscured by the fact that elevation or temperature was often excluded from species models due to collinearity. Investigation into this possibility is recommended.

Anthropogenic Variables

Overview

The anthropogenic variables negatively affected the persistence of fewer species than expected. Contrary to prediction, the anthropogenic variables positively affected the persistence of many species. Cropland negatively affected persistence for the most species. Cropland also positively affected persistence for the most species. As with the environmental variables, there was no anthropogenic variable that could allow for the accurate prediction of persistence or extinction for all species included in this study. *Distance from Roads*

More species persisted farther from roads than closer to roads. This is intuitive because roads can be a barrier to the movement of individuals of a species from one patch of habitat to another, and those individuals willing to attempt crossing a road incur risk. However, some species do persist closer to roads than farther from roads. This is interesting because there are few recorded instances of species using roads or roadside ditches as habitat or as corridors for movement (Forman and Alexander 1998). Further research is required to understand the possible causes of species persistence close to roads.

21

Human Population Density

Human population density had a negative effect on the persistence of a smaller number species than expected, and had a positive effect on the persistence of more species than expected. Like with built-up land, I expected the persistence of a much larger number of species to be negatively affected by population density. The reason for this is probably due to population density having a much lower contribution to species extinction than other variables associated with population density, such as the other anthropogenic variables included in this study. A large number of humans could exist in an area, but unless they destroy habitat or harm species directly, the number of humans itself has no effect.

It is surprising that human population density was positively correlated with the persistence of any species analyzed for this study. I expected a uniformly negative relationship between human population density and species persistence. As human population in an area increases, anthropogenic disturbance in that area is expected to increase, thereby causing more local extinctions. This was not the case for 25 species. Perhaps these species have adapted to coexist with humans, even in a highly disturbed environment. Or perhaps they are on the brink of extinction in those areas, and the "extinction debt" (Hanski and Ovaskainen 2002) has yet to be paid. However, the reasons for this positive relationship between species persistence and human population density are unclear and require further inquiry.

22

Built-Up Land

Built-up land was omitted from many of the species models in this study. Because the number of nonzero cells for built-up land was very low for the majority of species, the variable was often excluded due to lack of variation. This low number of nonzero cells is due to the fact that, although cities are numerous and continuing to grow with human population density, the actual land surface that urban areas cover is quite low (Figure 5). Thus, the number of cells containing portions of built-up land in the geographic ranges of most species is also low. When built-up land was left in the logistic regression models, it did not have an effect on many of the species included in this study. In fact, built-up land had a significant effect, positive or negative, on the persistence of only 22 species.

Some of these results for built-up land are counterintuitive because the more manmade structures that are in an area, the less habitat there is in that area. For those few species negatively affected by built-up land, it is possible that other factors are working in conjunction with built-up land to cause local extinctions. A city could be surrounded by many kilometers of cropland, such that the cropland plays a much larger role in local extinctions than the city does. Thus, built-up land itself might not be the direct cause of local extinctions, but other factors associated with built-up land, like the other anthropogenic variables included in this study, could be the main contributors.

Cropland

Of the anthropogenic variables included in this study, cropland had a negative effect on persistence for the most species across the world. The only continent on which cropland had a negative effect on persistence for the most species was Africa. It is likely this variable has such a negative effect on the African species analyzed because many of those species are large-bodied with very large home range sizes. As such, they are more susceptible to habitat fragmentation and loss caused by agriculture than smaller-bodied species.

Africa is unique among the continents in terms of the nature in which cropland has manifested over time; unlike in Asia, Australia, and North America, where human disturbance has spread from one end of the continent to the other (Lomolino and Channell 1995), cropland in Africa has appeared around settlements that had already been established for thousands of years (Channell and Lomolino 2000), thus creating a pattern of severe fragmentation. Although this study contains analyses of only a sample of African mammals (and one bird), it is probably an accurate representation of the effects of cropland on the majority of extant, large-bodied African mammals.

Interestingly, of the anthropogenic variables, cropland also had a positive effect on persistence for the most species across the world. It is likely that most of the species whose persistence is positively affected by cropland reside in portions of remnant habitat adjacent to crop fields. However, a positive relationship between cropland and species persistence could also be attributed to the possibility that crops provide a food source for some species.
Rangeland

The effects of rangeland were split more evenly between positive and negative relationships with species persistence than the other human influence variables. Species whose persistence was negatively influenced by rangeland could include those whose habitat was lost in the development of rangeland itself, such as tropical species whose forests are being destroyed to make room for areas to graze livestock (FAO n.d.) Poor grazing practices might degrade grassland habitats within rangelands, thus damaging habitat for native species and making it impossible for them to adequately breed, nest, or forage there. Another possibility is that native grazing species that formerly foraged in areas which now have large amounts of rangeland have been persecuted by ranchers or herdsmen, or simply been outcompeted by livestock.

However, other species persist in areas of rangeland. This could be because areas of rangeland in which they persist are appropriately managed, maintaining the grassland habitat and the species that live there. In North America, for example, the pronghorn antelope (*Antilocapra americana*) can often be found grazing near cattle (Utah DWR 2009). Nests and lekking grounds of the Sharp-Tailed Grouse (*Tympanuchus phasianellus*), another North American species, are often found in rotationally grazed pastures (Kirby and Grosz 1995). If grazing practices are appropriate, then rangeland could potentially be a refuge for grassland-inhabiting species.

CONCLUSION

Conclusions for This Study

In general, the environmental variables tended to have a greater effect on species persistence than did the anthropogenic variables. I expected the anthropogenic variables to have a much greater negative effect on species persistence than they did. Although more species persisted in areas of higher elevation like I expected, more species also persisted in areas of greater precipitation and higher temperatures, contrary to my predictions.

The positive and negative effects of the variables on species persistence were also spread more evenly among species than I had anticipated. I expected persistence for the majority of species on each continent to be negatively affected by all the anthropogenic variables, but this was not always the case. Certain variables, such as human population density and built-up land, likely do not have direct effects on the persistence of species; other anthropogenic variables associated with human population density and built-up land might have a much greater effect. Similarly, the effects of one environmental variable on species persistence are likely not exclusive to that one variable, because environmental variables (such as elevation and temperature) tend to be correlated with each other. The causes and impacts of range contraction on species persistence are clearly complex, and the scope of this study is insufficient for understanding all of them.

Caveats and Future Research

Range contraction analysis is not yet well understood. There have been numerous studies focused on geographic range contraction and decline in species (Towns and

Daugherty 1994, Lomolino and Channell 1995, Channell and Lomolino 2000, Rodríguez and Delibes 2000, Erlich and Ceballos 2002, Rodríguez 2002, Hemerik et al. 2006), but none of them provide adequate understanding of the dynamics and interactions that lead to range contraction. This study, while unique in its approach, is likewise insufficient for generating a comprehensive view of the causes and consequences of range contraction. However, range contraction is still useful to the realm of conservation and is worthy of further study.

There is an element of artificiality to this study that is true of any range contraction analysis. The boundaries of a geographic range are dynamic, and thus inconstant. Species occurrence throughout its geographic range as printed on a map is unlikely, and the map is therefore a flawed metaphor. Range maps are also compiled by different researchers, many of whom use different methods. This would introduce inconsistency into the assumptions used when creating the different range maps. In addition, species detection is not perfect, and species occurrence in an area can be missed. The range maps used in this study should therefore be considered approximate.

The scale of this study was very large. Because of the size of the scale used here, it would have been difficult to use a grain that was small. The data points used in this study were roughly 10 km², a grain size in which small details are aggregated or summarized. A cell size of 1 km² would have been better, but the various GIS data layers used in this study were not always available at this resolution. A larger resolution had to be used across all variable layers for consistency.

These results are not comprehensive; only a small sample of bird and mammal species of the world was included in this study. This is a consequence of limited data availability due to the Wallacean shortfall (Lomolino et al. 2010). Were data on the geographic ranges of more species to be located and added to the analysis, the results might change. Another improvement to this study would be the inclusion of more taxonomic groups, terrestrial or aquatic. Similarly, inclusion of more variables in this study, such as those indicative of the biology and/or life history of the species, such as diet specificity, fecundity, average life span, and home range size, would also be beneficial. Inclusion of these variables would give us a more complete view of the threats imposed upon individual species and the factors that tend to make a species more vulnerable to losing portions of its geographic range.

Implications for Conservation

With biodiversity in peril and the degree of human disturbance increasing across the world, the research and application of conservation is becoming more important. Although this study is not comprehensive, my findings can still be useful to the conservation of biodiversity across the world. The broad results given here by continent and by variable can be valuable for multispecies conservation and the prediction of localities of persistence at a regional or continental scale. However, the results given for individual species that are in decline can also be helpful for single-species conservation; knowledge of the factors that have an effect on the persistence of a single species can assist conservation biologists in protecting that species from further decline. The findings of this study could also assist conservation biologists in predicting where a declining species will eventually persist, an ability which could prove vital to conservation in the future. Clearly, the development and implementation of studies such as this are essential to increasing our knowledge of the connections between range contraction, extinction, persistence, environment, and human disturbance.

LITERATURE CITED

- Aldridge, C. L. et al. 2008. Range-wide patterns of greater sage-grouse persistence. Diversity and Distributions 6:983–994.
- Alroy, J. 2001. A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292:1893–1896.
- Atlas of the Biosphere. 2001. Built-up land. Used by permission of The Center for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, University of Wisconsin-Madison. Available from http://nelson.wisc.edu/sage/data-and-models/atlas/maps.php.
- Bailey, R. G. 1980. Description of the ecoregions of the United States. U.S. Department of Agriculture Forest Service, Ogden, Utah.
- Balk, D.L., Deichmann, U., Yetman, G., Pozzi, F., Hay, S. I., and Nelson, A. 2006.Determining Global Population Distribution: Methods, Applications and Data.Advances in Parasitology 62:119–156.
- Bird Studies Canada. Loggerhead shrike in Ontario. Port Rowan, Ontario. Available from http://www.bsc-eoc.org/research/speciesatrisk/losh/index.jsp?targetpg=index (accessed December 2014).
- Burton, J. A. 1987. The Collins guide to the rare mammals of the world. The Stephen Greene Press, Lexingon.
- Campos, P. F., et al. 2010. Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (*Saiga tatarica*) since the Pleistocene. Molecular Ecology 19:4863–4875.

- Canadian Geographic. 2014. http://www.canadiangeographic.ca/kids/animalfacts/animals.asp (accessed May 2014).
- Channell, R. and Lomolino, M. V. 2000. Dynamic biogeography and conservation of endangered species. Nature 403:84–86.

Chapin et al. 2000. Consequences of changing biodiversity. Nature 405:234–242.

- CIESIN (Center for International Earth Science Information Network), IFPRI (Columbia University, International Food Policy Research Institute), The World Bank, and CIAT (Centro Internacional de Agricultura Tropical). 2011. Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Population Density Grid. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). Available from http://dx.doi.org/10.7927/H4R20Z93.
- Cornell Lab of Ornithology. 2014. Current vs. former range of the golden-winged warbler. Cornell University, Ithaca, New York. Available from http://www.allaboutbirds.org/page.aspx?pid=2679 (accessed December 2014).
- CWS (Canadian Wildlife Service) and USFWS (U.S. Fish and Wildlife Service. 2007. International recovery plan for the whooping crane. Ottawa: Recovery of Nationally Endangered Wildlife, and U.S. Fish and Wildlife Service Albuquerque, New Mexico.
- Daily, G.C. 1997. Nature's services: societal dependence on natural ecosystems. Island Press, Washington, DC.

- Diamond, J., Terborgh, J., Whitcomb, R. F., Lynch, J. F., Opler, P. A., Robbins, C. S., Simberloff, D. S., and Abele, L. G. 1976. Island biogeography and conservation: strategies and limitations. Science 193:1027–1032.
- Diamond, J.M., Ashmole, N.P., and Purves, P.E. 1989. The present, past and future of human-caused extinctions. Philosophical Transactions of the Royal Society of London B. 325:469–477.
- Erlich, P. 1988. "The loss of diversity, causes and consequences." Biodiversity.Eds. Wilson, E. O. and Peter, F. M. National Academy Press, Washington, D.C.
- Erlich P. R. and Ceballos, G. 2002. Mammal population losses and the extinction crisis. Science 296:904–907.
- Erlich, P. R. and Daily, G. C. 1993. Population extinction and saving biodiversity. Ambio 22:64–68.
- ESRI (Environmental Systems Research Institute). 2014. ArcGIS Desktop: Release 10.1. Environmental Systems Research Institute, Redlands, California
- FAO (Food and Agriculture Organization of the United Nations). n.d. Cattle ranching and deforestation. FAO Livestock Information, Sector Analysis and Policy Branch, Rome.
- Forester, D. J. and Machlis, G. E. 1996. Modeling human factors that affect the loss of biodiversity. Conservation Biology 10:1253–1263.
- Forman, R. T. T. and Alexander, L. E. 1998. Roads and their major ecological effects. Annual Review of Ecology and Systematics 29:207–231.

- Gaston, K. J. and He, F. 2002. The distribution of species range size: a stochastic process. Proceedings of the Royal Society of London B 269:1079–1086.
- Grimmett, Richard, Carol Inskipp, and Tim Inskipp. 2012. Birds of India: Pakistan, Nepal, Bangladesh, Bhutan, Sri Lanka, and the Maldives. Princeton University Press, Princeton.
- Hafner, D. J., Yensen, E., and Kirkland, G. L., Jr. 1998. North American rodents: status survey and conservation action plan. IUCN, Gland, Switzerland. Available from http://www.iucn.org/about/work/programmes/species/publications/species_action s_plans/ (accessed April 2014).
- Hanski, I. and Ovaskainen, O. 2002. Extinction debt at extinction threshold. Conservation Biology 16:666–673.
- Hemerik, L., Hengeveld, R., and Lippe, E. 2006. The eclipse of species ranges. Acta Biotheoretica 54:255–266.

Hermes, N. 1990. Australia's endangered wild life. Child & Associates, Frenchs Forest.

- Heywood, V. H. and Stuart, S. N. 1992. "Species extinctions in tropical forests." Tropical Deforestation and Species Extinction. Eds. Whitmore, T.C. and Sawyer, J.A. Chapman & Hall, New York, New York.
- Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965–1978. Available from www.worldclim.org
- Hosmer, D. W. and Lemeshow, S. 2000. Applied logistic regression. 2nd edition. John Wiley & Sons, Inc., Hoboken, New Jersey.

- Howell, S. N. G. and Webb, S. 1995. A guide to the birds of Mexico and northern Central America. Oxford University Press, Oxford.
- International Rhino Foundation (IRF). 2014. IRF, Fort Worth, Texas. www.rhinos.org (accessed May 2014).

IUCN 2015. The IUCN Red List of Threatened Species. Version 2015.2. http://www.iucnredlist.org (accessed on 15 May 2015).

- IUCN/SSC Equid Specialist Group. 2012. IUCN, Gland, Switzerland. www.equids.org (accessed May 2014).
- Johnsgard, P. A. 1983. The grouse of the world. University of Nebraska Press, Lincoln, Nebraska.

Johnsgard, P. A. 1986. The pheasants of the world. Oxford University Press, Oxford.

- Johnsgard, P.A. 1991. Bustards, hemipodes, and sandgrouse: birds of dry places. Oxford University Press, Oxford.
- Johnsgard, P.A. 1993. Cormorants, darters, and pelicans of the world. Smithsonian Institution Press, Washington, D.C.
- Johnsgard, P. A. 2001. Hawks, eagles, and falcons of North America. Smithsonian Institution Press, Washington, D. C.
- Johnson, S. A., Miller, K. E., and Blunden, T. 2012. The Florida scrub-jay: a species in peril. University of Florida IFAS extension, Gainesville, Florida. Available from https://edis.ifas.ufl.edu/pdffiles/UW/UW30600.pdf (accessed January 2015).

- Kingdon, J. 1997. The Kingdon field guide to African mammals. Bloomsbury Publishing Plc, London.
- Kirby, D. R. and Grosz, K. L. 1995. Cattle grazing and sharp-tailed grouse nesting success. Rangelands 17:124–126.
- Laliberte, A. S. and Ripple, W. J. 2004. Range contractions of North American carnivores and ungulates. BioScience 54:123–138.
- Lambert, F. R. and Woodcock, M. 1996. Pittas, broadbills, and asities. Pica Press, Sussex.
- Leopold, A. S., Gutierrez, R. J., and Bronson, M. T. 1981. North American game birds and mammals. Charles Scribner's Sons, New York.
- Lomolino, M. V. and Channell, R. 1995. Splendid isolation: patterns of geographic range collapse in endangered mammals. Journal of Mammalogy 76:335–347.
- Lomolino, M. V., Riddle, B. R., Whittaker, R. J., and Brown, J. H. 2010. Biogeography. 4th edition. Sinauer Associates, Inc., Sunderland, Massachusetts.
- Mace, G. M. and Reynolds, J. D. 2001. "Exploitation as a conservation issue."Conservation of Exploited Species. Eds. Reynolds, J. D., Mace, G. M., Redford, K. H., and Robins, J. D. Cambridge University Press, Cambridge.
- McKinney, M. L. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics 28:495– 516.
- Medici E. P., et al., eds. 2003. Malay tapir conservation workshop final report. IUCN/SSC Conservation Breeding Specialist Group.

- Mishra, C. et al. 2003. The role of incentive programs in conserving the snow leopard. Conservation Biology 6:1512–1520.
- Montana Natural Heritage Program. 2010. Western hemisphere range of the gray wolf. Montana Fish, Wildlife, and Parks, Helena, Montana. Available from http://fieldguide.mt.gov/speciesDetail.aspx?elcode=AMAJA01030 (accessed May 2014).
- Owens, I. P. F., and Bennett, P. M. 2000. Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proceedings of the National Academy of Sciences 97:12144–12148.
- Panthera. 2013. www.panthera.org (accessed December 2013).
- Pimm, S. L., Jones, H. L., and Diamond, J. 1988. On the risk of extinction. The American Naturalist 6:757–785.
- Pimm, S. L., and Raven, P. 2000. Biodiversity: extinction by numbers. Nature 403:843– 845.
- Purvis, A., Gittleman, J. L., Cowlishaw, G., and Mace, G. M. 2000. Predicting extinction risk in declining species. Proceedings of the Royal Society of London B 267:1947–1952.
- Ramankutty, N., Evan, A. T., Monfreda, C., and Foley, J.A. 2008. Farming the planet: 1. geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22 (1): GB1003.

- Ramankutty, N., Evan, A. T., Monfreda, C., and Foley, J.A. 2010. Global agricultural lands: pastures, 2000. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). Available from http://dx.doi.org/10.7927/H47H1GGR.
- Ramankutty, N., Evan, A. T., Monfreda, C., and Foley, J.A. 2010. Global agricultural lands: croplands, 2000. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). Available from http://dx.doi.org/10.7927/H4C8276G.
- R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org.
- Reid, F. 2006. Peterson field guide to mammals of North America. 4th edition. Houghton Mifflin Company, New York, New York.
- Ridgely, R. S., T. F. Allnutt, T. Brooks, D. K. McNicol, D. W. Mehlman, B. E. Young, and J. R. Zook. 2005. Digital distribution maps of the birds of the Western Hemisphere, version 2.1. NatureServe, Arlington, Virginia, USA.
- Rodríguez, A. and Delibes, M. 2002. Internal structure and contraction in the geographic range of the Iberian lynx. Ecography 25:314–328.
- Rodríguez, J. P. 2002. Range contraction in declining North American bird populations. Ecological Applications 12:238–248.
- Rosser, A. M. and Mainka, S. A. 2002. Overexploitation and species extinctions. Conservation Biology 16:584–586.

- Santiapillai, C. and Jackson, P. 1990. The Asian elephant: an action plan for its conservation. 2nd edition. World Conservation Union.
- Schroeder, M. A. et al. 2004. The North American grouse management plan: a prospectus. North American Grouse Partnership, Williamsport, MD.
- Schroeder, M. A., Howard, F., Atamian, M., Finch, M., Stinson, D., Berger, M., and
 Whitney, R. 2010. Re-establishment of viable populations of Columbian sharp-tailed grouse in Washington: progress report. Washington Department of Fish and
 Wildlife, Olympia, Washington. Available from
 http://wdfw.wa.gov/publications/01147/wdfw01147.pdf (accessed April 2014).
- SEDAC (Socioeconomic Data and Applications Center). 2013. http://sedac.ciesin.columbia.edu (accessed November 2013).
- Semiadi, G. and Meijaard, E. 2006. Declining populations of the Javan warty pig *Sus verrucosus*. Oryx 40:50–56.
- Servheen, C., Herrero, S., and Peyton, B. 1999. Bears: status survey and conservation action plan. IUCN, Gland, Switzerland. Available from http://www.iucn.org/about/work/programmes/species/publications/species_action s_plans/ (accessed April 2014).
- Smithsonian National Zoological Park. Historic and present ranges of Eld's deer. Smithsonian National Zoological Park, Washington, D. C. Available from https://nationalzoo.si.edu/SCBI/ConservationGIS/projects/thamin/ (accessed August 2014).

- Strahan, R. and van Dyck, S. 2006. The mammals of Australia. 3rd edition. New Holland Publishers, Sydney, Australia.
- The Grouse Partnership. 2014. Greater prairie-chicken range. North American Grouse Partnership, Waverly, Nebraska. Available from http://www.grousepartners.org/prairie-grouse/ (accessed February 2014).
- Towns, D. R. and Daugherty, C. H. 1994. Patterns of range contractions and extinctions in the New Zealand herpetofauna following human colonisation. New Zealand Journal of Zoology 21:325–339.
- Ultimate Ungulate. 2014. www.ultimateungulate.com (accessed June 2014).
- Urdan, T. C. 2005. Statistics in plain English. 2nd edition. Lawrence Erlbaum Associates, Inc., Mahwah, New Jersey.
- USFWS (U. S. Fish and Wildlife Service). 2011. Lesser prairie-chicken (*Tympanuchus pallidicinctus*) interstate working group estimated range. USFWS, Washington,
 D. C. Available from http://esawatch.org/lesser-prairie-chicken/ (accessed May 2014).
- USFWS (U. S. Fish and Wildlife Service). 2014. Greater sage-grouse range. USFWS, Washington, D. C.
- USFWS (U.S. Fish and Wildlife Service). Locations of New England cottontail populations. USFWS, Washington, D. C. Available from http://newenglandcottontail.org/content/natural-history (accessed December 2014).

- USFWS (U. S. Fish and Wildlife Service). Map of the red wolf historic range. USFWS, Washington, D. C. Available from http://www.fws.gov/redwolf/faq.html (accessed May 2014).
- Utah DWR (Utah Division of Wildlife Resources). 2009. Utah pronghorn statewide management plan. Utah DWR, Salt Lake City, Utah.
- Wellicome, T. I. 2001. Current and historical ranges of the western burrowing owl in North America. Available from http://www.pc.gc.ca/eng/pnnp/sk/grasslands/edu/edu1/b.aspx (accessed January 2014).
- Wilson, E. O. 1988. "The current state of biological diversity." Biodiversity. Eds.Wilson, E. O. and Peter, F. M. National Academy Press, Washington, D.C.
- With, K. A. and King, A. W. 1999. Extinction thresholds for species in fractal landscapes. Conservation Biology 13:314–326.
- WWF (World Wildlife Fund). 2015. Range of the giant panda. WWF, Washington, D. C. Available from

http://wwf.panda.org/what_we_do/endangered_species/giant_panda/panda/where _panda_lives_habitat/ (accessed January 2015).

TABLES

Continent	Taxon	Acronym	Species Name	Common name
Africa	А	ptex	Pterocles exustus	Chestnut-bellied sandgrouse
Africa	М	acju_af	Acinonyx jubatus	Cheetah
Africa	М	adna	Addax nasomaculatus	Addax
Africa	М	amcl	Ammodorcas clarkei	Dibatag
Africa	М	anma	Antidorcas marsupialis	Springbok
Africa	М	behu	Beatragus hunteri	Hirola
Africa	М	caau	Canis aureus	Golden jackal
Africa	М	casi	Canis simiensis	Ethiopian wolf
Africa	М	ceje	Cephalophus jentinki	Jentink's duiker
Africa	М	cesi	Ceratotherium simum	White rhino
Africa	М	ceel_af	Cervus elaphus	Red deer
Africa	М	dapy	Damaliscus pygargus	Bontebok
Africa	М	dibi	Diceros bicornis	Black rhino
Africa	М	eqaf	Equus africanus	African wild ass
Africa	М	eqgr	Equus grevyi	Grevy's zebra
Africa	М	eqqu	Equus quagga	Plains zebra
Africa	М	eqze	Equus zebra	Mountain zebra
Africa	М	feca_af	Felis caracal	Caracal
Africa	М	fese	Felis serval	Serval cat
Africa	М	gasp	Gazella spekei	Speke's gazelle
Africa	М	gica	Giraffa camelopardalis	Giraffe
Africa	М	hiam	Hippopotamus amphibius	Hippo
Africa	М	hybr	Hyaena brunnea	Brown hyena
Africa	М	koko	Kobus kob	Kob
Africa	М	kova	Kobus vardoni	Puku
Africa	М	loaf	Loxodonta africana	African elephant
Africa	М	lypi	Lycaon pictus	African wild dog
Africa	М	nada	Nanger dama	Dama gazelle
Africa	М	naso	Nanger soemmerringii	Soemmerring's gazelle
Africa	М	okjo	Okapia johnstoni	Okapi
Africa	М	orda	Oryx dammah	Scimitar-horned oryx
Africa	М	papa	Pan paniscus	Bonobo
Africa	М	pale	Panthera leo	Lion
Africa	М	papr_af	Panthera pardus	Leopard
Africa	М	paha	Papio hamadryas	Hamadryas baboon
Africa	М	pola	Potamochoerus larvatus	Bush pig
Africa	М	prcr	Proteles cristata	Aardwolf
Africa	М	tade	Taurotragus derbianus	Giant eland
Africa	М	taor	Taurotragus oryx	Common eland
Asia	А	acgi	Acridotheres ginginianus	Bank myna
Asia	А	aeni	Aegithina nigrolutea	Marshall's iora
Asia	А	aeti	Aegithina tiphia	Common iora

Table 1. Bird and mammal species included in the range contraction analysis. A=Aves, M = Mammalia.

Asia	А	amam	Amandava amandava	Red avadavat
Asia	А	amph	Amaurornis phoenicurus	White-breasted waterhen
Asia	А	anme	Anhinga melanogaster	Oriental darter
Asia	А	anti	Anorrhinus tickelli	Brown hornbill
Asia	А	anco	Anthracoceros coronatus	Malabar pied hornbill
Asia	А	ansi	Anthus similis	Long-billed pipit
Asia	А	aqra	Aquila rapax	Tawny eagle
Asia	А	avje	Aviceda jerdoni	Jerdon's baza
Asia	А	avle	Aviceda leuphotes	Black baza
Asia	А	bamo	Batrachostomus moniliger	Sri Lanka frogmouth
Asia	А	buib	Bubalcus ibis	Cattle egret
Asia	А	bubi	Buceros bicornis	Great hornbill
Asia	А	buin	Burhinus indicus	Indian stone-curlew
Asia	А	bust	Butorides striata	Striated heron
Asia	А	capa	Cacmantis passerinus	Grey-bellied cuckoo
Asia	А	caas	Caprimulgus asiaticus	Indian nightjar
Asia	А	chma	Chlamydotis macqueenii	Asian houbara
Asia	А	chmc	Chrysococcyx maculatus	Asian emerald cuckoo
Asia	А	chfe	Chrysocolaptes festivus	White-naped woodpecker
Asia	А	clja	Clamator jacobinus	Jacobin cuckoo
Asia	А	coma	Coracina macei	Large cuckooshrike
Asia	А	cuce	Culicicapa ceylonensis	Grey-headed canary-flycatcher
Asia	А	cuco	Cursorius coromandelicus	Indian courser
Asia	А	diag	Dicaeum agile	Thick-billed flowerpecker
Asia	А	duae	Ducula aenea	Green imperial pigeon
Asia	А	ermo	Eremopsaltria mongolica	Mongolian finch
Asia	А	ergr	Eremopterix griseus	Ashy-crowned sparrow-lark
Asia	А	erni	Eremopterix nigriceps	Black-crowned sparrow lark
Asia	А	euor	Eurystomus orientalis	Dollarbird
Asia	А	fafa	Falcipennis falcipennis	Sharp-winged grouse
Asia	А	faju	Falco jugger	Laggar falcon
Asia	А	fape	Falco peregrinus	Peregrine falcon
Asia	А	frgu	Francolinus gularis	Swamp Francolin
Asia	А	fuat	Fulica atra	Eurasian coot
Asia	А	gade	Garrulax delesserti	Wynaad laughingthrush
Asia	А	gala	Garrulax lanceolatus	Black-headed jay
Asia	А	gala	Garrulax lanceolatus	Black-headed jay
Asia	А	glpr	Glareola pratincola	Collared pratincole
Asia	А	gran	Grus antigone	Sarus crane
Asia	А	gybe	Gyps bengalensis	White-rumped vulture
Asia	А	hasi	Haematospiza sipahi	Scarlet finch
Asia	А	hale	Haliaeetus leucogaster	White-bellied sea eagle
Asia	А	hain	Haliastur indus	Brahminy kite
Asia	А	haer	Harpactes erythrocephalus	Red-headed trogon
Asia	А	heca	Hemicircus canente	Heart-spotted woodpecker
Asia	А	hych	Hydrophasianus chirurgus	Pheasant-tailed jacana
Asia	А	keze	Ketupa zeylonensis	Brown fish owl
Asia	А	lasc	Lanius schach	Long-tailed shrike

Asia	А	lavi	Lanius vittatus	Bay-backed shrike
Asia	А	leso	Leptopoecile sophiae	White-browed tit warbler
Asia	А	loat	Lonchura atricapilla	Chestnut munia
Asia	А	loma	Lonchura malacca	Black-headed munia
Asia	А	lost	Lonchura striata	White-rumped munia
Asia	А	lubr	Luscinia brunnea	Indian blue robin
Asia	А	maab	Malacocincla abbotti	Abbott's babbler
Asia	А	meha	Megalaima haemacephala	Coppersmith barbet
Asia	А	meli	Megalaima lineata	Lineated barbet
Asia	А	meze	Megalaima zeylanica	Brown-headed barbet
Asia	А	mele	Merops leschenaulti	Chestnut-headed bee-eater
Asia	А	meor	Merops orientalis	Green bee-eater
Asia	А	mear	Mesia argentaurius	Silver-eared mesia
Asia	А	mein	Metopidius indicus	Bronze-winged jacana
Asia	А	moma	Motacilla maderaspatensis	White-browed wagtail
Asia	А	neco	Nettapus coromandelicus	Cotton pygmy-goose
Asia	А	nici	Nisaetus cirrhatus	Crested hawk eagle
Asia	А	ortr	Oriolus traillii	Maroon oriole
Asia	А	otta_as	Otis tarda	Great bustard
Asia	А	pacr	Pavo cristatus	Common Peafowl
Asia	А	peca	Pelargopsis capensis	Stork-billed kingfisher
Asia	А	peph	Pelecanus philippensis	Spot-billed pelican
Asia	А	peti	Pellorneum tickelli	Buff-breasted warbler
Asia	А	pefu	Petrochelidon fluvicola	Streak-throated swallow
Asia	А	phni	Phalacrocorax niger	Little cormorant
Asia	А	pifl	Picus flavinucha	Greater yellownape
Asia	А	pigr	Pitta granatina	Garnet pitta
Asia	А	prgr	Prinia gracilis	Graceful prinia
Asia	А	prso	Prinia socialis	Ashy prinia
Asia	А	psda	Pseudibis davisoni	White-shouldered ibis
Asia	А	pspa	Pseudibis papillosa	Red-naped ibis
Asia	А	ptin	Pterocles indicus	Painted sandgrouse
Asia	А	rhau	Rhipidura aureola	White-browed fantail
Asia	А	ryal	Rynchops albicolus	Indian skimmer
Asia	А	saca	Sarcogyps calvus	Red-headed vulture
Asia	А	same	Sarkidiornis melanotos	Knob-billed duck
Asia	А	safu	Saxicoloides fulicatus	Indian robin
Asia	А	stru	Stachyridopsis rufifrons	Rufous-fronted babbler
Asia	А	stac	Sterna acuticaudata	Black-bellied term
Asia	А	stal	Sterna albifrons	Little tern
Asia	А	stau	Sterna aurantia	River tern
Asia	А	sulu	Surniculus lugubris	Square-tailed drongo-cuckoo
Asia	А	tepa	Tersiphone paradisi	Asian paradise-flycatcher
Asia	А	tipi	Timalia pileata	Chestnut-capped babbler
Asia	А	trbi	Treron bicinctus	Orange-breasted green pigeon
Asia	А	trcu	Treron curvirostra	Thick-billed green pigeon
Asia	А	trph	Treron phoenicopterus	Yellow-footed green pigeon
Asia	А	tust	Turdoides striata	Jungle babbler

Asia	А	tusu	Turdoides subrufa	Rufous babbler
Asia	А	tual	Turdus albocinctus	White-collared blackbird
Asia	А	tyal	Tyto alba	Barn owl
Asia	А	urer	Urocissa erythrorhyncha	Red-billed blue magpie
Asia	М	acju_as	Acinonyx jubatus	Asiatic Cheetah
Asia	М	aime	Ailuropoda melanoleuca	Giant panda
Asia	М	bubu	Bubalus bubalis	Water buffalo
Asia	М	calu_as	Canis lupus	Gray wolf
Asia	М	caca	Capreolus capreolus	European roe deer
Asia	М	cafi as	Castor fiber	Eurasian beaver
Asia	М	disu	Dicerorhinus sumatrensis	Sumatran rhino
Asia	М	elma	Elephas maximus	Asian elephant
Asia	М	eqhe	Equus hemionus	Onager
Asia	М	feca as	Felis caracal	Caracal
Asia	М	mazi	Martes zibellina	Sable
Asia	М	pael	Panolia eldii	Eld's deer
Asia	М	papr as	Panthera pardus	Leopard
Asia	М	pati	Panthera tigris	Tiger
Asia	М	paun	Panthera unica	Snow leopard
Asia	М	prgu	Procapra gutturosa	Mongolian gazelle
Asia	М	sata	Saiga tatarica	Saiga antelope
Asia	М	suve	Sus verrucosus	Javan warty pig
Asia	М	tain	Tapirus indicus	Malayan tapir
Asia	М	urar as	Ursus arctos	Brown bear
Australia	А	paqu	Pardalotus quadragintus	Forty-spotted pardalote
Australia	А	peto	Pedionomus torquatus	Plains-wanderer
Australia	А	pefl	Pezoporus flaviventris	Western ground parrot
Australia	А	peoc	Pezoporus occidentalis	Night parrot
Australia	А	pewa	Pezoporus wallicus	Eastern ground parrot
Australia	А	piir	Pitta iris	Rainbow pitta
Australia	А	tume	Turnix melanogaster	Black-breasted buttonquail
Australia	М	acpy	Acrobates pygmaeus	Feathertail glider
Australia	М	aeru	Aepyprymnus rufescens	Rufous rat-kangaroo
Australia	М	bega	Bettongia gaimardi	Eastern bettong
Australia	М	bepe	Bettongia penicillata	Brush-tailed bettong
Australia	М	betr	Bettongia tropica	Northern bettong
Australia	М	ceco	Cercartetus concinnus	Southwestern pygmy possum
Australia	М	cope	Conilurus penicillatus	Brush-tailed rabbit-rat
Australia	М	dabl	Dasycercus blythi	Brush-tailed mulgara
Australia	М	dacr	Dasycercus cristicauda	Crest-tailed mulgara
Australia	М	daby	Dasyuroides byrnei	Kowari
Australia	М	dage	Dasyurus geoffroi	Western quoll
Australia	М	daha	Dasyurus hallucatus	Northern quoll
Australia	М	dama	Dasyurus maculatus	Tiger quoll
Australia	М	davi	Dasyurus viverrinus	Eastern quoll
Australia	М	gyle	Gymnobelideus leadbeateri	Leadbeater's possum
Australia	М	isau	Isoodon auratus	Golden bandicoot
Australia	М	isma	Isoodon macrourus	Northern brown bandicoot

Australia	М	isob	Isoodon obesulus	Southern brown bandicoot
Australia	М	laco	Lagorchestes conspicillatus	Spectacled hare-wallaby
Australia	М	lala	Lasiorhinus latifrons	Southern hairy-nosed wombat
Australia	М	maeu	Macropus eugenii	Tammar walalby
Australia	М	mapa	Macropus parryi	Whiptail wallaby
Australia	М	mala	Macrotis lagotis	Greater bilby
Australia	М	mego	Mesembriomys gouldii	Black-footed tree-rat
Australia	М	mema	Mesembriomys macrurus	Golden-backed tree-rat
Australia	М	noal	Notomys alexis	Spinifex hopping mouse
Australia	М	noaq	Notomys aquilo	Northern hopping mouse
Australia	М	noce	Notomys cervinus	Fawn hopping mouse
Australia	М	nofu	Notomys fuscus	Dusky hopping mouse
Australia	М	nomi	Notomys mitchelli	Mitchell's hopping mouse
Australia	М	onfr	Onychogalea fraenata	Bridled nail-tail wallaby
Australia	М	pegu	Perameles gunnii	Eastern barred bandicoot
Australia	М	peau	Petaurus australis	Yellow-bellied glider
Australia	М	pela	Petrogale lateralis	Black-flanked rock-wallaby
Australia	М	pepe	Petrogale penicillata	Brush-tailed rock-wallaby
Australia	М	pexa	Petrogale xanthopus	Yellow-footed rock-wallaby
Australia	М	phca	Phascogale calura	Red-tailed phascogale
Australia	М	phpi	Phascogale pirata	Northern brush-tailed phascogale
Australia	М	phta	Phascogale tapoatafa	Brush-tailed phascogale
Australia	М	phci	Phascolarctos cinereus	Koala
Australia	М	pogi	Potorus gilberti	Gilbert's potoroo
Australia	М	psmi	Pseudantechinus mimulus	Carpentarian antechinus
Australia	М	psoc	Pseudocheirus occidentalis	Western ringtail possum
Australia	М	pspe	Pseudocheirus peregrinus	Common ringtail possum
Australia	М	psal	Pseudomys albocinereus	Ash-grey mouse
Australia	М	psau	Pseudomys australis	Plains rat
Australia	М	psbo	Pseudomys bolami	Bolam's mouse
Australia	М	psch	Pseudomys chapmani	Western pebble-mound mouse
Australia	М	psde	Pseudomys desertor	Desert mouse
Australia	М	psna	Pseudomys nanus	Western chestnut mouse
Australia	М	psno	P. novahollandiae	New Holland mouse
Australia	М	pssh	Pseudomys shortridgei	Heath mouse
Australia	М	ptpo	Pteropus poliocephalus	Grey-headed flying fox
Australia	М	ratu	Rattus tunneyi	Pale field rat
Australia	М	ravi	Rattus villosissimus	Long-haired rat
Australia	М	sebr	Setonix brachyurus	Quokka
Australia	М	smgi	Sminthopsis gilberti	Gilbert's dunnart
Australia	М	suce	Sus celebensis	Sulawesi warty pig
Australia	М	thbi	Thylogale billardierii	Tasmanian pademelon
Australia	М	trvu	Trichosurus vulpecula	Common brushtail possum
Australia	М	wabi	Wallabia bicolor	Swamp wallaby
Australia	М	wysq	Wyulda squamicaudata	Scaly-tailed possum
Australia	М	zype	Zyzomys pedunculatus	Central rock rat
Europe	А	otta_eur	Otis tarda	Great bustard

Europe	А	tete	Tetrao tetrix	Black grouse
Europe	А	teur	Tetrao urogallus	Capercaillie
Europe	А	tett	Tetrax tetrax	little bustard
Europe	Μ	calu_eur	Canis lupus	Gray wolf
Europe	Μ	cafi_eur	Castor fiber	Eurasian beaver
Europe	М	gugl_eur	Gulo gulo	Wolverine
Europe	Μ	mica	Microtus cabrerae	Cabrera's vole
Europe	Μ	mulu	Mustela lutreola	European mink
Europe	Μ	urar_eur	Ursus arctos	Brown bear
North Am	А	amne	Ammospermophilus nelsoni	San Joaquin antelope squirrel
North Am	А	apco	Aphelocoma coerulescens	Florida scrub-jay
North Am	А	atcu	Athene cunicularia	Burrowing owl
North Am	А	boum	Bonasa umbellus	Ruffed grouse
North Am	А	busw	Buteo swainsoni	Swainson's hawk
North Am	А	ceur	Centrocercus urophasianus	Greater sage grouse
North Am	А	cybu	Cygnus buccinator	Trumpeter swan
North Am	А	elfo	Elanoides forficatus	American swallow-tailed kite
North Am	А	fafe	Falco femoralis	Aplomado falcon
North Am	А	gram	Grus americana	Whooping crane
North Am	А	gyca	Gymnogyps californianus	California condor
North Am	А	haha	Harpia harpyja	Harpy Eagle
North Am	А	icam	Ibycter americanus	Red-throated caracara
North Am	А	lalu	Lanius ludovicianus	Loggerhead shrike
North Am	А	lebo	Leuconotopicus borealis	Red-cockaded woodpecker
North Am	А	mega	Meleagris gallopavo	Wild turkey
North Am	А	paui	Parabuteo unicinctus	Harris' hawk
North Am	А	roso	Rostrhamus sociabilis	Snail kite
North Am	А	sapa	Sarcoramphus papa	King vulture
North Am	А	tycu	Tympanuchus cupido	Greater prairie chicken
North Am	А	typa	<i>Tympanuchus pallidicinctus</i>	Lesser prairie chicken
North Am	А	typh	Tympanuchus phasianellus	Sharp-tailed grouse
North Am	А	vech	Vermivora chrysoptera	Golden-winged warbler
North Am	М	alal	Alces alces	Moose
North Am	М	anam	Antilocapra americana	Pronghorn antelope
North Am	М	calu na	Canis lupus	Gray wolf
North Am	М	caru	Canis rufus	Red wolf
North Am	М	ceel na	Cervus elaphus	Elk
North Am	М	cylu	Cynomys ludovicianus	Black-tailed prairie dog
North Am	М	diel	Dipodomys elator	Texas kangaroo rat
North Am	М	erdo	Erethizon dorsatum	North American porcupine
North Am	М	gugl na	Gulo gulo	Wolverine
North Am	М	lepa	Leopardus pardalis	Ocelot
North Am	М	loca	Lontra canadensis	North American river otter
North Am	М	lvca	Lvnx canadensis	Canada lvnx
North Am	М	maam	Martes americana	American marten
North Am	М	mapi	Martes pennati	Fisher
North Am	М	oram	Oremnos americanus	Mountain goat
North Am	М	ovmu	Ovibos muschatus	Muskox

North Am	Μ	ovca	Ovis canadensis	Bighorn sheep
North Am	Μ	ovda	Ovis dalli	Dall's sheep
North Am	Μ	paon_na	Panthera onca	Jaguar
North Am	Μ	puco_na	Puma concolor	Mountain lion
North Am	Μ	rata	Rangifer tarandus	Caribou
North Am	Μ	sytr	Sylvilagus transitionalis	New England cottontail
North Am	Μ	urwa	Urocitellus washingtoni	Washington ground squirrel
North Am	Μ	uram	Ursus americanus	Black bear
North Am	Μ	urar_na	Ursus arctos	Brown bear
North Am	Μ	vuve	Vulpes velox	Swift fox
South Am	А	gugu	Guaruba guarouba	Golden parakeet
South Am	Μ	chbr	Chrysocyon brachyurus	Maned wolf
South Am	Μ	hibi	Hippocamelus bisulcus	Patagonia huemul
South Am	Μ	lagu	Lama guanicoe	Guanacoe
South Am	Μ	paon_sa	Panthera onca	Jaguar
South Am	Μ	puco_sa	Puma concolor	Mountain lion
South Am	Μ	tror	Tremarctos ornatus	Spectacled bear
South Am	Μ	vivi	Vicugna vicugna	Vicuna
South Am	М	wioe	Wilfredomys oenax	Greater Wilfred's mouse

Continent	Taxon	Species	Source
Africa	А	Pterocles exustus	Johnsgard 1991
Africa	М	Acinonyx jubatus	Kingdon 1997
Africa	Μ	Addax nasomaculatus	Kingdon 1997
Africa	М	Ammodorcas clarkei	Kingdon 1997
Africa	М	Antidorcas marsupialis	Kingdon 1997
Africa	М	Beatragus hunteri	Kingdon 1997
Africa	М	Canis aureus	IUCN
Africa	Μ	Canis simiensis	Kingdon 1997
Africa	Μ	Cephalophus jentinki	Kingdon 1997
Africa	Μ	Ceratotherium simum	Kingdon 1997
Africa	Μ	Cervus elaphus	Kingdon 1997
Africa	Μ	Damaliscus pygargus	Burton 1987
Africa	Μ	Diceros bicornis	International Rhino Foundation
Africa	Μ	Equus africanus	Kingdon 1997
Africa	Μ	Equus grevyi	Kingdon 1997
Africa	Μ	Equus quagga	IUCN/SSC Equid Specialist Group
Africa	М	Equus zebra	Kingdon 1997
Africa	М	Felis caracal	Burton 1987
Africa	Μ	Felis serval	Kingdon 1997
Africa	Μ	Gazella spekei	Kingdon 1997
Africa	Μ	Giraffa camelopardalis	Kingdon 1997
Africa	Μ	Hippopotamus amphibius	Kingdon 1997
Africa	Μ	Hyaena brunnea	Burton 1987
Africa	Μ	Kobus kob	Kingdon 1997
Africa	Μ	Kobus vardoni	Kingdon 1997
Africa	Μ	Loxodonta africana	Kingdon 1997
Africa	Μ	Lycaon pictus	Kingdon 1997
Africa	Μ	Nanger dama	Kingdon 1997
Africa	Μ	Nanger soemmerringii	Kingdon 1997
Africa	Μ	Okapia johnstoni	Kingdon 1997
Africa	Μ	Oryx dammah	Kingdon 1997
Africa	Μ	Pan paniscus	Kingdon 1997
Africa	Μ	Panthera leo	Panthera 2009
Africa	Μ	Panthera pardus	Kingdon 1997
Africa	Μ	Papio hamadryas	Burton 1987
Africa	Μ	Potamochoerus larvatus	Ultimate Ungulate
Africa	Μ	Proteles cristata	Burton 1987

Table 2. Sources of species' range maps used in the range contraction analysis. A=Aves, M=Mammalia.

Africa	Μ	Taurotragus derbianus	Kingdon 1997
Africa	Μ	Taurotragus oryx	Kingdon 1997
Asia	А	Acridotheres ginginianus	Grimmett et al. 2012
Asia	А	Aegithina nigrolutea	Grimmett et al. 2012
Asia	А	Aegithina tiphia	Grimmett et al. 2012
Asia	А	Amandava amandava	Grimmett et al. 2012
Asia	А	Amaurornis phoenicurus	Grimmett et al. 2012
Asia	А	Anhinga melanogaster	Grimmett et al. 2012
Asia	А	Anorrhinus tickelli	Grimmett et al. 2012
Asia	А	Anthracoceros coronatus	Grimmett et al. 2012
Asia	А	Anthus similis	Grimmett et al. 2012
Asia	А	Aquila rapax	Grimmett et al. 2012
Asia	А	Aviceda jerdoni	Grimmett et al. 2012
Asia	А	Aviceda leuphotes	Grimmett et al. 2012
Asia	А	Batrachostomus moniliger	Grimmett et al. 2012
Asia	А	Bubalcus ibis	Grimmett et al. 2012
Asia	А	Buceros bicornis	Grimmett et al. 2012
Asia	А	Burhinus indicus	Grimmett et al. 2012
Asia	А	Butorides striata	Grimmett et al. 2012
Asia	А	Cacmantis passerinus	Grimmett et al. 2012
Asia	А	Caprimulgus asiaticus	Grimmett et al. 2012
Asia	А	Chlamydotis macqueenii	Johnsgard 1991
Asia	А	Chrysococcyx maculatus	Grimmett et al. 2012
Asia	А	Chrysocolaptes festivus	Grimmett et al. 2012
Asia	А	Clamator jacobinus	Grimmett et al. 2012
Asia	А	Coracina macei	Grimmett et al. 2012
Asia	А	Culicicapa ceylonensis	Grimmett et al. 2012
Asia	А	Cursorius coromandelicus	Grimmett et al. 2012
Asia	А	Dicaeum agile	Grimmett et al. 2012
Asia	А	Ducula aenea	Grimmett et al. 2012
Asia	А	Eremopsaltria mongolica	Grimmett et al. 2012
Asia	А	Eremopterix griseus	Grimmett et al. 2012
Asia	А	Eremopterix nigriceps	Grimmett et al. 2012
Asia	А	Eurystomus orientalis	Grimmett et al. 2012
Asia	А	Falcipennis falcipennis	Johnsgard 1983
Asia	А	Falco jugger	Grimmett et al. 2012
Asia	А	Falco peregrinus	Grimmett et al. 2012
Asia	А	Francolinus gularis	IUCN
Asia	А	Fulica atra	Grimmett et al. 2012
Asia	А	Garrulax delesserti	Grimmett et al. 2012
Asia	А	Garrulax lanceolatus	Grimmett et al. 2012

Asia	А	Garrulax lanceolatus	Grimmett et al. 2012
Asia	А	Glareola pratincola	Grimmett et al. 2012
Asia	А	Grus antigone	Grimmett et al. 2012
Asia	А	Gyps bengalensis	Grimmett et al. 2012
Asia	А	Haematospiza sipahi	Grimmett et al. 2012
Asia	А	Haliaeetus leucogaster	Grimmett et al. 2012
Asia	А	Haliastur indus	Grimmett et al. 2012
Asia	А	Harpactes erythrocephalus	Grimmett et al. 2012
Asia	А	Hemicircus canente	Grimmett et al. 2012
Asia	А	Hydrophasianus chirurgus	Grimmett et al. 2012
Asia	А	Ketupa zeylonensis	Grimmett et al. 2012
Asia	А	Lanius schach	Grimmett et al. 2012
Asia	А	Lanius vittatus	Grimmett et al. 2012
Asia	А	Leptopoecile sophiae	Grimmett et al. 2012
Asia	А	Lonchura atricapilla	Grimmett et al. 2012
Asia	А	Lonchura malacca	Grimmett et al. 2012
Asia	А	Lonchura striata	Grimmett et al. 2012
Asia	А	Luscinia brunnea	Grimmett et al. 2012
Asia	А	Malacocincla abbotti	Grimmett et al. 2012
Asia	А	Megalaima haemacephala	Grimmett et al. 2012
Asia	А	Megalaima lineata	Grimmett et al. 2012
Asia	А	Megalaima zeylanica	Grimmett et al. 2012
Asia	А	Merops leschenaulti	Grimmett et al. 2012
Asia	А	Merops orientalis	Grimmett et al. 2012
Asia	А	Mesia argentaurius	Grimmett et al. 2012
Asia	А	Metopidius indicus	Grimmett et al. 2012
Asia	А	Motacilla maderaspatensis	Grimmett et al. 2012
Asia	А	Nettapus coromandelicus	Grimmett et al. 2012
Asia	А	Nisaetus cirrhatus	Grimmett et al. 2012
Asia	А	Oriolus traillii	Grimmett et al. 2012
Asia	А	Otis tarda	Johnsgard 1991
Asia	А	Pavo cristatus	Grimmett et al. 2012
Asia	А	Pelargopsis capensis	Grimmett et al. 2012
Asia	А	Pelecanus philippensis	Johnsgard 1993
Asia	А	Pellorneum tickelli	Grimmett et al. 2012
Asia	А	Petrochelidon fluvicola	Grimmett et al. 2012
Asia	А	Phalacrocorax niger	Grimmett et al. 2012
Asia	А	Picus flavinucha	Grimmett et al. 2012
Asia	А	Pitta granatina	Lambert and Woodcock 1996
Asia	А	Prinia gracilis	Grimmett et al. 2012
Asia	А	Prinia socialis	Grimmett et al. 2012

Asia	А	Pseudibis davisoni	IUCN
Asia	А	Pseudibis papillosa	Grimmett et al. 2012
Asia	А	Pterocles indicus	Grimmett et al. 2012
Asia	А	Rhipidura aureola	Grimmett et al. 2012
Asia	А	Rynchops albicolus	Grimmett et al. 2012
Asia	А	Sarcogyps calvus	Grimmett et al. 2012
Asia	А	Sarkidiornis melanotos	Grimmett et al. 2012
Asia	А	Saxicoloides fulicatus	Grimmett et al. 2012
Asia	А	Stachyridopsis rufifrons	Grimmett et al. 2012
Asia	А	Sterna acuticaudata	Grimmett et al. 2012
Asia	А	Sterna albifrons	Grimmett et al. 2012
Asia	А	Sterna aurantia	Grimmett et al. 2012
Asia	А	Surniculus lugubris	Grimmett et al. 2012
Asia	А	Tersiphone paradisi	Grimmett et al. 2012
Asia	А	Timalia pileata	Grimmett et al. 2012
Asia	А	Treron bicinctus	Grimmett et al. 2012
Asia	А	Treron curvirostra	Grimmett et al. 2012
Asia	А	Treron phoenicopterus	Grimmett et al. 2012
Asia	А	Turdoides striata	Grimmett et al. 2012
Asia	А	Turdoides subrufa	Grimmett et al. 2012
Asia	А	Turdus albocinctus	Grimmett et al. 2012
Asia	А	Tyto alba	Grimmett et al. 2012
Asia	А	Urocissa erythrorhyncha	Grimmett et al. 2012
Asia	Μ	Acinonyx jubatus	Panthera
Asia	Μ	Ailuropoda melanoleuca	WWF
Asia	Μ	Bubalus bubalis	Burton 1987
Asia	Μ	Canis lupus	Burton 1987
Asia	Μ	Capreolus capreolus	IUCN
Asia	Μ	Castor fiber	Burton 1987
Asia	Μ	Dicerorhinus sumatrensis	International Rhino Foundation
Asia	Μ	Elephas maximus	Santiapillai and Jackson 1990
Asia	Μ	Equus hemionus	IUCN/SSC Equid Specialist Group
Asia	Μ	Felis caracal	Burton 1987
Asia	Μ	Martes zibellina	IUCN
Asia	М	Panolia eldii	Smithsonian National Zoological Park
Asia	Μ	Panthera pardus	Burton 1987
Asia	Μ	Panthera tigris	Panthera
Asia	Μ	Panthera unica	Panthera
Asia	Μ	Procapra gutturosa	Ultimate Ungulate
Asia	Μ	Saiga tatarica	Campos et al. 2010

Asia	Μ	Sus vertucosus	Semiadi and Meijaard 2006
Asia	Μ	Tapirus indicus	Medici E. P. et al. 2003
Asia	Μ	Ursus arctos	Serheen et al. 1999
Australia	А	Pardalotus quadragintus	Hermes 1990
Australia	А	Pedionomus torquatus	Hermes 1990
Australia	А	Pezoporus flaviventris	Hermes 1990
Australia	А	Pezoporus occidentalis	Hermes 1990
Australia	А	Pezoporus wallicus	Hermes 1990
Australia	А	Pitta iris	Lambert and Woodcock 1996
Australia	А	Turnix melanogaster	Johnsgard 1991
Australia	Μ	Acrobates pygmaeus	Strahan and van Dyck 2006
Australia	Μ	Aepyprymnus rufescens	Strahan and van Dyck 2006
Australia	Μ	Bettongia gaimardi	Strahan and van Dyck 2006
Australia	Μ	Bettongia penicillata	Strahan and van Dyck 2006
Australia	Μ	Bettongia tropica	Strahan and van Dyck 2006
Australia	Μ	Cercartetus concinnus	Strahan and van Dyck 2006
Australia	Μ	Conilurus penicillatus	Strahan and van Dyck 2006
Australia	Μ	Dasycercus blythi	Strahan and van Dyck 2006
Australia	Μ	Dasycercus cristicauda	Strahan and van Dyck 2006
Australia	Μ	Dasyuroides byrnei	Strahan and van Dyck 2006
Australia	Μ	Dasyurus geoffroi	Strahan and van Dyck 2006
Australia	Μ	Dasyurus hallucatus	Strahan and van Dyck 2006
Australia	Μ	Dasyurus maculatus	Strahan and van Dyck 2006
Australia	Μ	Dasyurus viverrinus	Strahan and van Dyck 2006
Australia	Μ	Gymnobelideus leadbeateri	Hermes 1990
Australia	Μ	Isoodon auratus	Strahan and van Dyck 2006
Australia	Μ	Isoodon macrourus	Strahan and van Dyck 2006
Australia	Μ	Isoodon obesulus	Strahan and van Dyck 2006
Australia	Μ	Lagorchestes conspicillatus	Strahan and van Dyck 2006
Australia	Μ	Lasiorhinus latifrons	Strahan and van Dyck 2006
Australia	Μ	Macropus eugenii	Strahan and van Dyck 2006
Australia	Μ	Macropus parryi	Strahan and van Dyck 2006
Australia	Μ	Macrotis lagotis	Strahan and van Dyck 2006
Australia	Μ	Mesembriomys gouldii	Strahan and van Dyck 2006
Australia	Μ	Mesembriomys macrurus	Strahan and van Dyck 2006
Australia	Μ	Notomys alexis	Strahan and van Dyck 2006
Australia	М	Notomys aquilo	Strahan and van Dyck 2006
Australia	М	Notomys cervinus	Strahan and van Dyck 2006
Australia	М	Notomys fuscus	Strahan and van Dyck 2006
Australia	М	Notomys mitchelli	Strahan and van Dyck 2006
Australia	Μ	Onychogalea fraenata	Strahan and van Dyck 2006

Australia	Μ	Perameles gunnii	Strahan and van Dyck 2006
Australia	Μ	Petaurus australis	Strahan and van Dyck 2006
Australia	Μ	Petrogale lateralis	Strahan and van Dyck 2006
Australia	Μ	Petrogale penicillata	Strahan and van Dyck 2006
Australia	Μ	Petrogale xanthopus	Strahan and van Dyck 2006
Australia	Μ	Phascogale calura	Strahan and van Dyck 2006
Australia	Μ	Phascogale pirata	Strahan and van Dyck 2006
Australia	Μ	Phascogale tapoatafa	Strahan and van Dyck 2006
Australia	Μ	Phascolarctos cinereus	Strahan and van Dyck 2006
Australia	Μ	Potorus gilberti	Strahan and van Dyck 2006
Australia	Μ	Pseudantechinus mimulus	Strahan and van Dyck 2006
Australia	Μ	Pseudocheirus occidentalis	Strahan and van Dyck 2006
Australia	Μ	Pseudocheirus peregrinus	Strahan and van Dyck 2006
Australia	Μ	Pseudomys albocinereus	Strahan and van Dyck 2006
Australia	Μ	Pseudomys australis	Strahan and van Dyck 2006
Australia	Μ	Pseudomys bolami	Strahan and van Dyck 2006
Australia	Μ	Pseudomys chapmani	Strahan and van Dyck 2006
Australia	Μ	Pseudomys desertor	IUCN
Australia	Μ	Pseudomys nanus	Strahan and van Dyck 2006
Australia	Μ	Pseudomys novahollandiae	Strahan and van Dyck 2006
Australia	Μ	Pseudomys shortridgei	Strahan and van Dyck 2006
Australia	Μ	Pteropus poliocephalus	Strahan and van Dyck 2006
Australia	Μ	Rattus tunneyi	Strahan and van Dyck 2006
Australia	Μ	Rattus villosissimus	Strahan and van Dyck 2006
Australia	Μ	Setonix brachyurus	Strahan and van Dyck 2006
Australia	Μ	Sminthopsis gilberti	Strahan and van Dyck 2006
Australia	Μ	Sus celebensis	Ultimate Ungulate
Australia	Μ	Thylogale billardierii	Strahan and van Dyck 2006
Australia	Μ	Trichosurus vulpecula	Strahan and van Dyck 2006
Australia	Μ	Wallabia bicolor	Strahan and van Dyck 2006
Australia	М	Wyulda squamicaudata	Strahan and van Dyck 2006
Australia	Μ	Zyzomys pedunculatus	Strahan and van Dyck 2006
Europe	А	Otis tarda	Johnsgard 1991
Europe	А	Tetrao tetrix	Johnsgard 1983
Europe	А	Tetrao urogallus	Johnsgard 1983
Europe	А	Tetrax tetrax	IUCN
Europe	Μ	Canis lupus	Burton 1987
Europe	Μ	Castor fiber	Burton 1987
Europe	Μ	Gulo gulo	Burton 1987
Europe	Μ	Microtus cabrerae	IUCN
Europe	Μ	Mustela lutreola	Burton 1987

Europe	Μ	Ursus arctos	Serheen et al. 1999
North Am	А	Ammospermophilus nelsoni	Hafner et al. 1998
North Am	А	Aphelocoma coerulescens	Jonshon et al. 2012
North Am	А	Athene cunicularia	Wellicome 2001
North Am	А	Bonasa umbellus	Schroeder et al. 2004
North Am	А	Buteo swainsoni	Johnsgard 2001
North Am	А	Centrocercus urophasianus	USFWS 2014
North Am	А	Cygnus buccinator	Leopold et al. 1981
North Am	А	Elanoides forficatus	Johnsgard 2001
North Am	А	Falco femoralis	Johnsgard 2001
North Am	А	Grus americana	CWS and USFWS 2007
North Am	А	Gymnogyps californianus	Howell and Webb 1995
North Am	А	Harpia harpyja	Howell and Webb 1995
North Am	А	Ibycter americanus	Ridgely et al. 2005
North Am	А	Lanius ludovicianus	Bird Studies Canada
North Am	А	Leuconotopicus borealis	Ridgely et al. 2005
North Am	А	Meleagris gallopavo	Leopold et al. 1981
North Am	А	Parabuteo unicinctus	Johnsgard 2001
North Am	А	Rostrhamus sociabilis	Johnsgard 2001
North Am	А	Sarcoramphus papa	Howell and Webb 1995
North Am	А	Tympanuchus cupido	The Grouse Partnership
North Am	А	Tympanuchus pallidicinctus	USFWS 2011
North Am	А	Tympanuchus phasianellus	Schroeder et al. 2010
North Am	А	Vermivora chrysoptera	Cornell Lab of Ornithology 2014
North Am	М	Alces alces	Leopold et al. 1981
North Am	Μ	Antilocapra americana	Leopold et al. 1981
North Am	Μ	Canis lupus	Montana Natural Heritage Program
North Am	Μ	Canis rufus	USFWS "Map"
North Am	Μ	Cervus elaphus	Laliberte and Ripple 2004
North Am	М	Cynomys ludovicianus	Reid 2006
North Am	Μ	Dipodomys elator	Reid 2006
North Am	Μ	Erethizon dorsatum	Reid 2006
North Am	М	Gulo gulo	Reid 2006
North Am	М	Leopardus pardalis	Reid 2006
North Am	М	Lontra canadensis	Laliberte and Ripple 2004
North Am	М	Lynx canadensis	Laliberte and Ripple 2004
North Am	М	Martes americana	Laliberte and Ripple 2004
North Am	Μ	Martes pennati	Canadian Geographic 2014
North Am	М	Oremnos americanus	Laliberte and Ripple 2004
North Am	М	Ovibos muschatus	Laliberte and Ripple 2004
North Am	Μ	Ovis canadensis	Canadian Geographic 2014

North Am	Μ	Ovis dalli	Laliberte and Ripple 2004
North Am	Μ	Panthera onca	Panthera
North Am	Μ	Puma concolor	Panthera
North Am	Μ	Rangifer tarandus	Leopold et al. 1981
North Am	Μ	Sylvilagus transitionalis	USFWS "Locations"
North Am	Μ	Urocitellus washingtoni	Hafner et al. 1998
North Am	Μ	Ursus americanus	Serheen et al. 1999
North Am	М	Ursus arctos	Serheen et al. 1999
North Am	Μ	Vulpes velox	Laliberte and Ripple 2004
South Am	А	Guaruba guarouba	IUCN
South Am	Μ	Chrysocyon brachyurus	Burton 1987
South Am	Μ	Hippocamelus bisulcus	Ultimate Ungulate
South Am	Μ	Lama guanicoe	Burton 1987
South Am	Μ	Panthera onca	Panthera
South Am	Μ	Puma concolor	Panthera
South Am	Μ	Tremarctos ornatus	Serheen et al. 1999
South Am	М	Vicugna vicugna	Burton 1987
South Am	М	Wilfredomys oenax	IUCN

				Total Points
Continent	Taxon	Species	Common Name	Used
Africa	Mammalia	Beatragus hunteri	Hirola	186
Asia	Aves	Aegithina tiphia	Common iora	140
Asia	Aves	Buceros bicornis	Great hornbill	136
Asia	Aves	Lanius schach	Long-tailed shrike	126
Asia	Aves	Megalaima zeylanica	Brown-headed barbet	112
Asia	Aves	Merops leschenaulti	Chestnut-headed bee-eater	154
Asia	Aves	Nisaetus cirrhatus	Crested hawk eagle	154
Asia	Aves	Oriolus traillii	Maroon oriole	152
Asia	Aves	Pavo cristatus	Common Peafowl	158
Asia	Aves	Picus flavinucha	Greater yellownape	168
Asia	Mammalia	Sus verrucosus	Javan warty pig	138
Australia	Aves	Pardalotus quadragintus	Forty-spotted pardalote	156
Australia	Aves	Pezoporus wallicus	Eastern ground parrot	102
Australia	Mammalia	Bettongia tropica	Northern bettong	182
Australia	Mammalia	Petaurus australis	Yellow-bellied glider	154
Australia	Mammalia	Potorus gilberti	Gilbert's potoroo	134
Australia	Mammalia	Pseudantechinus mimulus	Carpentarian antechinus	102
Australia	Mammalia	Wyulda squamicaudata	Scaly-tailed possum	144
Europe	Mammalia	Microtus cabrerae	Cabrera's vole	108
North Am	Aves	Ammospermophilus nelsoni	San Joaquin antelope squirrel	124
South Am	Mammalia	Wilfredomys oenax	Greater Wilfred's mouse	104

Table 3. Species that did not meet the range contraction analysis target of 200 total data points. A data point for each species was comprised of a 10 km^2 GIS raster grid cell.

Table 4. Results of logistic regression models by species. Variable coefficients resulting from the logistic regression for each species are listed in their respective columns. Red coefficient values indicate statistical significance (p = 0.05). Coefficient values that are black were included in the model recommended by the backward stepwise regression, but were not shown to be significant. A symbol in place of a coefficient value indicates omission of that variable for that species: ~ indicates variable omission by stepwise regression, • indicates variable omission due to collinearity with another variable, • indicates variable omission due to lack of nonzero values, † indicates variable omission due to extreme uniform variable nonsignificance prior to stepwise regression, and **\blacksquare** indicates variable omission due to extreme uniform variable nonsignificance after stepwise regression.

Contineed	Taxo.	Species	Elevation	Mean Annual	^{val Precipitation} Mean Annual ₅	Distance from C	Human Population	Proportion of D.	Proportion of C	Proportion or c	AIC Algeland	Best Mod .	Fit of Modes	Ellor Rate	$L_{O,F,D,Q,Q}$
Af	А	ptex	3.112	Ť	Ť	Ť	Ť	Ť	Ť	1.668	136.05	N/A	0.53	0.11	
Af	М	acju_af	1.095	0.447	1.036	\sim	-1.369	~	-0.783	0.281	237.38	*	0.19	0.21	
Af	М	adna	2.761	-1.962	4.711	~	~	~	♦	♦	179.46		0.38	0.15	
Af	М	amcl	•	-1.100	0.671	~	~	•	0.388	~	243.92		0.15	0.21	
Af	М	anma	1.756	-2.883	2.979	0.746	~	•	-2.386	-0.392	167.69	*	0.45	0.15	
Af	М	behu	~	~	~	~	-1.939	•	~	-0.403	246.39		0.07	0.23	
Af	М	caau	4.620	-2.936	8.890	~	-11.527	~	~	~	34.28	*	0.91	0.02	*
Af	М	casi	1.312	~	•	~	-0.867	-0.334	0.312	-0.575	214.38	*	0.27	0.18	
Af	Μ	ceje	~	0.614	~	0.685	~	•	~	-0.926	256.68		0.10	0.23	
Af	Μ	cesi	~	0.785	~	-0.312	0.502	•	0.483	~	237.78	*	0.18	0.21	

ä

Af	М	ceel_af	•	2.265	~	\sim	~	-0.369	~	-0.682	168.13		0.42	0.13	
Af	М	dapy	~	\sim	-4.674	~	~	-1.802	1.529	0.997	90.17	*	0.71	0.07	
Af	М	dibi	~	-0.261	•	~	~	•	-0.407	0.319	266.22		0.06	0.24	
Af	М	eqaf	1.308	4.694	3.852	-0.791	~	•	-1.223	~	89.34	*	0.72	0.08	
Af	М	eqgr	~	0.727	•	0.657	-5.347	•	~		230.84		0.19	0.19	*
Af	М	eqqu	•	-0.870	-0.541	-0.447	~	~	~	~	239.94		0.16	0.20	*
Af	М	eqze	1.016	-1.090	1.286	~	~	~	~	~	216.93		0.25	0.18	*
Af	М	feca_af	~	3.606	~	~	~	~	-0.912	-1.003	158.29		0.46	0.13	
Af	М	fese	~	3.505	3.791	~	~	~	~	~	82.15		0.73	0.05	*
Af	М	gasp	~	-1.534	•	~	-1.159	•	•	~	188.36		0.33	0.15	*
Af	М	gica	1.648	0.456	1.433	~	-0.456	•	~	0.699	229.80	*	0.21	0.20	
Af	М	hiam	•	~	~	~	0.335	•	-0.376	~	276.61	*	0.02	0.25	
Af	М	hybr	2.676	0.438	2.798	1.541	~	~	~	~	140.91	*	0.53	0.11	*
Af	М	koko	0.546	-0.317	•	1.028	-3.245	•	-0.593	0.296	202.63	*	0.32	0.17	*
Af	М	kova	-0.477	0.516	~	~	~	•	-0.605	~	256.63		0.10	0.22	
Af	М	loaf	~	1.341	~	~	~	~	-0.370	~	216.59		0.24	0.18	
Af	М	lypi	•	0.631	~	~	~	•	-0.776	~	255.14		0.10	0.23	
Af	М	nada	2.508	\sim	4.000	-0.288	-1.001	•	~	~	196.01	*	0.33	0.17	
Af	М	naso	0.253	\sim	•	0.844	~	•	0.570	~	251.47	*	0.12	0.23	
Af	М	okjo	0.331	~	~	0.656	~	•	-1.327	-42.617	236.47	*	0.18	0.21	*
Af	М	orda	2.367	~	4.419	-0.456	~	•	-17.090	-0.747	186.58		0.37	0.16	
Af	М	papa	-4.229	10.427	•	~	-1.148	~	-2.243	1.337	63.60	*	0.81	0.05	*
Af	М	pale	1.209	0.723	1.427	~	-0.723	•	-1.130	0.333	228.78	*	0.23	0.20	
Af	М	papr_af	0.341	1.833	•	~	~	~	-0.352	~	195.03	*	0.33	0.16	
Af	М	paha	0.826	-0.568	•	-1.514	-0.508	•	~	~	234.42	*	0.19	0.20	
Af	М	pola	0.881	-1.914	•	\sim	1.579	♦	~	0.453	149.91		0.50	0.12	

Af	М	prcr	•	-1.981	-4.802	\sim	1.495	•	-1.478	-0.925	92.28	*	0.71	0.07	
Af	М	tade	1.063	~	•	0.959	-8.954	•	~	~	139.69		0.53	0.11	
Af	М	taor	1.055	~	2.162	0.348	-5.342	~	~	~	202.53	*	0.31	0.17	
As	А	acgi	1.510	-1.392	~	1.310	\sim	0.363	0.786	~	174.39	*	0.41	0.15	*
As	А	aeni	•	4.941	1.854	-0.963	\sim	-10.585	-2.024	~	55.58	*	0.84	0.04	
As	А	aeti	-0.778	-1.006	~	\sim	\sim	0.729	0.387	-0.399	153.19	*	0.27	0.17	*
As	А	amam	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
As	А	amph	-1.163	-2.077	٠	\sim	0.591	-0.662	~	-0.627	123.23	*	0.47	0.13	
As	А	anme	Ť	-4.017	-1.776	-1.655	\sim	~	-0.639	\sim	88.54	*	0.72	0.05	*
As	А	anti	2.924	4.949	٠	\sim	2.181	~	~	-2.373	83.07	*	0.74	0.06	
As	А	anco	-2.484	~	٠	\sim	-0.594	~	-1.218	0.885	148.42	*	0.50	0.10	*
As	А	ansi	6.124	-4.861	٠	3.033	0.498	~	-1.937	\sim	55.26	*	0.84	0.03	
As	А	aqra	-4.282	12.146	٠	\sim	\sim	~	0.902	\sim	44.58	*	0.87	0.04	
As	А	avje	139.513	1.6192	•	~	\sim	~	2.6675	-4.1971	25.515		0.94	0.02	N/A
As	А	avle	-1.570	0.538	٠	\sim	-2.365	~	-0.742	4.014	146.25		0.52	0.12	
As	А	bamo	1.441	0.447	٠	~	\sim	~	0.463	-2.991	157.85		0.47	0.12	*
As	А	buib	2.707	3.589	\sim	2.658	4.654	~	0.743	0.582	84.16	*	0.75	0.05	*
As	А	bubi	27.514	-0.717	٠	~	•	~	1.220	-2.751	44.24	*	0.82	0.04	*
As	А	buin	•	1.723	0.777	-0.429	\sim	~	1.385	-0.371	132.00	*	0.57	0.07	*
As	А	bust	~	-3.166	•	~	\sim	~	2.374	0.420	101.88	*	0.66	0.07	*
As	А	capa	4.422	1.694	5.210	~	-1.165	~	-0.666	\sim	89.06		0.72	0.06	
As	А	caas	Ť	6.397	4.356	-1.131	-2.736	-1.715	-1.473	\sim	58.84	*	0.84	0.05	
As	А	chma	2.789	-0.611	1.831	0.641	\sim	~	~	\sim	139.98	*	0.53	0.11	
As	А	chmc	2.450	~	٠	~	0.515	~	0.573	\sim	202.59		0.30	0.17	
As	А	chfe	1.147	-1.314	•	-0.409	\sim	~	1.706	-0.910	130.73	*	0.57	0.09	*
As	А	clja	•	4.055	•	•	1.650	•	•	•	113.83	N/A	0.61	0.08	

As	А	coma	3.359	-1.827	0.914	-0.468	-2.858	1.073	1.262	~	110.03	*	0.66	0.08	
As	А	cuce	~	3.273	•	~	\sim	~	-0.514	0.648	168.44		0.42	0.14	
As	А	cuco	-3.323	~	-4.733	~	-1.779	~	1.150	~	127.68		0.58	0.10	
As	А	diag	0.552	-2.794	~	1.149	-1.088	~	~	-0.610	118.33		0.62	0.08	*
As	А	duae	~	0.107	•	~	~	~	1.821	-0.187	191.83		0.34	0.16	
As	А	ermo	-1.705	2.584	•	3.010	Ť	•	~	35.075	61.04		0.82	0.04	*
As	А	ergr	3.815	-2.281	1.566	~	~	~	1.624	~	92.46		0.70	0.07	
As	А	erni	1.631	1.511	~	-1.660	~	~	-0.603	-1.265	169.87	*	0.43	0.12	*
As	А	euor	-1.272	-0.480	٠	-0.303	~	-3.921	-0.761	1.357	205.81	*	0.31	0.16	*
As	А	fafa	-2.353	3.549	~	0.881	~	~	-0.400	~	137.23	*	0.54	0.12	
As	А	faju	•	-1.699	3.253	0.697	-3.692	~	-1.426	~	83.62		0.74	0.06	*
As	А	fape	•	-1.012	-2.722	0.512	~	~	0.820	-0.448	186.26	*	0.37	0.14	*
As	А	frgu	•	-0.917	-1.123	~	-0.860	~	0.822	~	239.16		0.17	0.21	
As	А	fuat	•	-0.666	-0.605	~	~	~	~	0.584	246.24		0.14	0.22	*
As	А	gade	0.504	-0.545	٠	0.274	3.293	-0.913	~	-1.345	180.59	*	0.40	0.14	*
As	А	gala	~	~	~	0.398	~	~	-0.757	-0.516	252.48		0.12	0.22	
As	А	gala	~	~	٠	0.398	~	~	-0.757	-0.516	252.48		0.12	0.22	
As	А	glpr	1.819	4.949	4.337	-3.525	-5.732	5.477	-1.414	~	86.52		0.74	0.08	
As	А	gran	-1.407	-3.058	-2.589	~	~	~	-0.417	0.595	157.95	*	0.47	0.12	*
As	А	gybe	•	0.788	Ť	~	-1.219	0.810	1.988	~	189.81		0.35	0.15	*
As	А	hasi	-2.470	•	•	1.089	-1.761	•	-5.189	~	149.16		0.50	0.11	*
As	А	hale	•	-0.418	5.167	0.653	1.832	~	~	~	147.06	*	0.51	0.11	*
As	А	hain	-5.032	•	٠	~	†	~	~	-3.010	33.93		0.90	0.02	
As	А	haer	~	1.726	٠	0.401	-0.607	•	-0.709	-0.609	177.37	*	0.40	0.15	
As	А	heca	1.642	-0.656	٠	~	~	3.808	1.387	~	74.40		0.41	0.14	
As	А	hych	7.687	Ť	9.409	~	-2.572	~	1.776	~	39.09		0.89	0.02	*
As	А	keze	5.993	-1.263	3.200	-1.226	~	\sim	0.757	-0.740	91.10	*	0.72	0.05	*
----	---	---------	--------	--------	---------	--------	--------	--------	--------	--------	--------	---	------	------	---
As	А	lasc	Ť	-3.365	•	\sim	43.787	-5.790	5.409	~	53.29		0.75	0.04	*
As	А	lavi	•	-5.899	1.609	\sim	-1.253	~	~	~	73.94		0.76	0.05	
As	А	leso	1.050	3.610	•	-1.373	5.197	•	-0.713	~	73.71		0.78	0.05	
As	А	loat	13.871	-1.002	•	~	~	~	0.403	-0.724	153.26	*	0.48	0.11	*
As	А	loma	-0.656	-2.300	•	0.569	-0.747	0.860	0.570	-0.363	127.63	*	0.60	0.10	*
As	А	lost	-0.398	0.244	•	0.413	-0.726	1.378	0.644	~	261.57	*	0.11	0.23	
As	А	lubr	7.570	-3.881	•	~	~	~	2.009	1.804	36.73	*	0.90	0.03	
As	А	maab	38.907	2.165	•	~	-2.714	~	1.460	-1.084	51.95		0.86	0.04	*
As	А	meha	•	-3.474	-0.556	34.903	-0.858	~	0.650	-0.459	99.75	*	0.69	0.08	
As	А	meli	•	-2.056	-10.109	-3.357	~	4.150	~	0.758	85.11	*	0.74	0.07	
As	А	meze	~	-2.754	0.652	~	1.029	5.784	1.091	0.560	68.55	*	0.65	0.09	*
As	А	mele	•	-0.559	0.480	0.869	~	1.104	-0.394	\sim	181.32	*	0.21	0.20	*
As	А	meor	•	-2.903	-2.709	1.780	~	~	2.349	-0.861	83.87		0.74	0.05	*
As	А	mear	1.824	2.279	•	~	-1.175	~	~	\sim	129.01		0.56	0.09	
As	А	mein	-3.655	1.160	-4.775	~	~	~	0.661	\sim	118.12		0.61	0.09	
As	А	moma	22.171	-4.047	~	~	~	~	2.050	-4.976	33.90		0.91	0.02	*
As	А	neco	5.739	~	2.196	-0.940	0.465	~	1.167	1.044	107.14	*	0.66	0.08	*
As	А	nici	-0.846	-2.077	•	0.336	~	1.714	~	\sim	114.47	*	0.51	0.11	
As	А	ortr	~	3.415	•	-0.974	~	•	~	9.209	84.12		0.64	0.08	*
As	А	otta_as	~	~	~	~	~	~	~	0.374	274.46		0.02	0.24	
As	А	pacr	Ť	~	•	1.337	~	~	13.857	~	43.08		0.83	0.04	
As	А	peca	9.129	-1.549	~	~	-0.981	1.190	~	-0.952	90.71	*	0.71	0.06	
As	А	peph	•	0.824	0.898	-0.850	1.014	-0.573	-0.696	\sim	220.04	*	0.26	0.19	
As	А	peti	1.610	-0.523	•	0.406	0.586	~	~	-4.151	138.44	*	0.54	0.10	
As	А	pefu	4.196	1.583	~	0.773	0.948	\sim	~	-0.926	83.40	*	0.74	0.05	*

As	А	phni	-0.937	-2.385	•	0.518	~	~	~	~	123.85	*	0.58	0.08	*
As	А	pifl	0.743	Ť	•	0.677	5.230	~	-1.685	~	120.14		0.52	0.11	
As	А	pigr	~	-0.634	•	~	-3.745	~	-0.532	~	241.19		0.16	0.21	
As	А	prgr	5.456	Ť	6.287	4.596	~	~	1.227	\sim	92.82	*	0.70	0.07	*
As	А	prso	4.067	-3.845	1.537	~	~	2.825	~	~	43.88		0.88	0.03	
As	А	psda	~	1.242	•	~	-95.327	~	2.910	3.380	75.58		0.76	0.06	
As	А	pspa	Ť	15.060	-3.901	~	~	~	1.152	~	44.95		0.87	0.02	*
As	А	ptin	~	-2.691	•	Ť	~	5.300	~	3.043	96.71		0.68	0.08	
As	А	rhau	2.959	Ť	1.448	~	15.145	~	-0.733	\sim	92.71		0.70	0.07	
As	А	ryal	~	5.682	1.175	~	~	~	1.012	-1.348	66.13	*	0.80	0.04	*
As	А	saca	•	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
As	А	same	Ť	-2.857	~	~	-11.519	~	~	-0.685	49.15	*	0.85	0.04	
As	А	safu	1.188	Ť	~	0.878	11.475	-7.023	-1.464	0.687	112.33		0.65	0.09	
As	А	stru	6.282	~	~	~	~	~	-0.705	0.957	150.35		0.49	0.12	*
As	А	stac	-4.485	Ť	~	4.148	-6.659	4.120	~	5.324	73.19		0.78	0.05	
As	А	stal	-2.660	-4.323	-4.531	~	3.200	-1.735	~	~	56.96	*	0.84	0.05	*
As	А	stau	~	-3.180	4.718	~	~	1.187	~	0.719	61.78		0.81	0.05	
As	А	sulu	~	1.189	•	~	~	-0.467	-0.907	~	199.67		0.31	0.16	*
As	А	tepa	8.403	-1.621	~	~	-0.498	~	~	-0.705	137.73	*	0.54	0.10	*
As	А	tipi	~	-0.567	-4.963	0.530	-0.553	0.460	~	-1.003	157.08	*	0.48	0.12	
As	А	trbi	-2.198	-1.038	-1.963	-0.297	-6.061	0.309	~	-0.968	207.27	*	0.31	0.16	*
As	А	trcu	2.426	~	•	~	•	~	~	-0.851	193.83		0.32	0.15	*
As	А	trph	3.299	4.173	0.956	-10.447	~	-5.371	~	-2.468	53.25	*	0.86	0.04	*
As	А	tust	5.990	~	3.734	0.967	3.482	~	~	~	75.14		0.77	0.07	
As	А	tusu	0.384	-0.478	•	0.611	2.390	-2.387	~	~	214.26	*	0.27	0.18	
As	А	tual	6.593	-12.402	•	•	-	•	-	•	18.99	N/A	0.95	0.01	N/A

As	А	tyal	6.731	-0.762	1.733	0.704	~	1.724	1.792	~	91.93		0.72	0.07	
As	А	urer	1.066	-3.130	•	~	~	~	1.604	2.476	119.68		0.60	0.09	*
As	М	acju_as	1.477	-13.687	-1.748	~	-22.459	~	~	-0.753	144.88		0.52	0.11	*
As	М	aime	1.798	-0.530	•	0.518	~	~	-0.676	-0.733	146.87	*	0.51	0.11	
As	М	bubu	•	0.519	-0.474	~	~	~	0.587	-0.812	256.15	*	0.11	0.23	
As	М	calu_as	-2.022	~	-3.511	~	-0.808	~	~	~	99.91	*	0.67	0.07	
As	М	caca	0.382	~	•	0.496	-0.464	-1.653	-0.240	~	231.66		0.21	0.20	
As	М	cafi_as	-0.847	1.317	1.069	~	0.493	~	0.352	-0.692	180.35	*	0.40	0.15	
As	М	disu	•	~	~	~	-1.968	~	0.622	~	252.94		0.11	0.22	*
As	М	elma	-1.106	0.776	•	~	-0.288	~	-0.304	-1.166	222.94	*	0.24	0.19	
As	М	eqhe	0.732	-1.472	~	~	~	0.426	~	-0.378	207.25		0.29	0.16	*
As	М	feca_as	~	~	•	-0.454	7.375	~	~	4.113	181.08		0.38	0.16	
As	М	mazi	-1.790	~	-11.117	~	1.505	~	~	~	42.01		0.88	0.03	*
As	М	pael	•	-0.242	-0.782	~	~	~	-0.961	-0.529	215.70	*	0.26	0.18	*
As	М	papr_as	~	3.396	-1.170	-0.497	~	~	0.867	~	123.05		0.59	0.09	
As	М	pati	~	1.017	1.161	~	-2.354	-1.607	-0.579	-1.336	165.20		0.45	0.14	
As	М	paun	2.190	-0.874	0.661	1.684	~	♦	-0.435	~	159.02	*	0.47	0.13	
As	М	prgu	-1.631	~	~	~	~	♦	-0.670	0.508	212.92	*	0.26	0.17	*
As	М	sata	~	0.424	0.977	-0.273	~	~	-0.936	0.534	227.31	*	0.22	0.19	*
As	М	suve	•	0.423	~	~	-0.304	~	~	~	187.33	*	0.05	0.25	
As	М	tain	-0.324	~	~	~	~	-22.509	-1.095	~	233.29		0.19	0.20	*
As	М	urar_as	-0.268	~	-1.805	1.275	~	~	~	~	177.12	*	0.39	0.15	*
Aus	А	paqu	-1.560	~	•	~	2.043	~	-0.603	-0.603	155.97		0.33	0.17	
Aus	А	peto	-1.577	-3.979	-6.412	1.299	~	♦	~	~	79.01		0.75	0.05	*
Aus	А	pefl	0.893	-0.388	Ť	~	-187.591	~	-2.423	~	131.88	*	0.56	0.10	
Aus	А	peoc	-0.354	-2.065	2.689	~	-11.906	♦	~	~	169.38	*	0.43	0.14	

Aus	Α	pewa	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Aus	А	piir	~	0.545	~	-2.587	92.301	♦	-3.930	-2.574	130.75	*	0.57	0.08	*
Aus	А	tume	~	1.138	-1.188	-0.038	~	0.634	\sim	~	203.80		0.30	0.16	*
Aus	Μ	acpy	~	10.670	5.834	~	-184.877	104.850	~	-0.033	63.94	*	0.81	0.06	
Aus	Μ	aeru	♦	-2.668	20.279	~	~	~	-2.741	~	23.74		0.94	0.01	*
Aus	Μ	bega	♦	-1.154	-4.003	~	~	~	~	-0.369	144.03	*	0.51	0.11	*
Aus	Μ	bepe	2.017	-4.620	-6.492	~	~	♦	4.795	1.529	61.78		0.82	0.04	*
Aus	Μ	betr	Ť	Ť	3.455	Ť	†	Ť	†	-2.345	107.82	N/A	0.60	0.09	
Aus	М	ceco	-0.642	3.910	2.134	1.018	-42.042	~	0.747	~	141.49		0.53	0.12	
Aus	Μ	cope	~	1.539	0.8302	0.5679	18.72	•	~	234.9	170.23	*	0.42	0.14	N/A
Aus	Μ	dabl	2.610	-2.606	2.466	~	~	♦	•	~	143.12		0.52	0.11	
Aus	Μ	dacr	~	-8.644	4.940	~	~	~	~	2.105	53.15		0.84	0.04	
Aus	Μ	daby	-3.249	~	0.713	0.427	-8.511	~	~	~	131.68		0.56	0.11	
Aus	Μ	dage	~	1.313	†	-0.870	66.018	♦	0.553	-0.549	144.95		0.52	0.12	
Aus	Μ	daha	0.440	~	1.052	~	40.871	~	~	~	245.93	*	0.14	0.21	*
Aus	Μ	dama	1.546	2.502	1.474	0.429	~	~	~	~	138.29	*	0.54	0.09	*
Aus	Μ	davi	-0.454	1.515	†	~	~	~	-0.419	~	217.43	*	0.24	0.18	
Aus	Μ	gyle	~	0.919	~	~	~	~	~	~	247.14		0.12	0.22	*
Aus	Μ	isau	4.840	Ť	14.102	1.305	5.112	♦	5.584	-1.197	52.35		0.86	0.03	*
Aus	Μ	isma	~	7.164	11.573	1.696	5.944	-2.240	~	-1.445	62.75	*	0.82	0.05	*
Aus	Μ	isob	-0.804	1.549	-0.888	~	1.874	~	-1.147	~	155.30	*	0.48	0.12	
Aus	Μ	laco	-0.755	13.804	~	~	5.031	~	-1.461	~	64.59		0.80	0.05	
Aus	Μ	lala	-1.329	-2.368	•	~	-52.279	~	~	~	68.78		0.78	0.05	
Aus	Μ	maeu	~	1.428	-2.790	~	-8.318	~	0.711	~	151.03		0.49	0.13	
Aus	М	mapa	-2.544	0.643	-0.948	~	~	~	~	-0.446	176.32	*	0.40	0.15	
Aus	М	mala	1.264	-0.879	6.058	~	-29.330	•	~	~	105.46	*	0.66	0.08	

Aus	Μ	mego	1.3988	2.0901	•	~	47.8525	•	84.0376	106.416	132.86		0.56	0.11	N/A
Aus	Μ	mema	~	0.720	٠	1.354	~	•	0.628	~	199.83		0.31	0.17	
Aus	Μ	noal	13.022	-6.184	1.390	1.709	114.859	•	~	-2.430	57.11	*	0.84	0.04	
Aus	Μ	noaq	Ť	•	5.399	~	-1.497	•	♦	*	49.09		0.80	0.03	*
Aus	Μ	noce	~	-2.206	5.906	-0.898	-1.471	•	♦	~	111.71		0.63	0.09	
Aus	Μ	nofu	-2.272	1.735	~	-2.992	2.597	•	♦	~	158.19		0.47	0.13	
Aus	М	nomi	-9.355	~	~	~	~	~	1.702	1.893	63.54		0.80	0.04	
Aus	М	onfr	~	2.010	2.309	-0.089	~	0.493	~	~	157.55		0.47	0.12	*
Aus	М	pegu	~	2.803	•	~	~	~	-1.420	-0.326	143.49	*	0.51	0.12	
Aus	М	peau	-31.250	~	-9.000	~	~	~	~	~	19.77		0.94	0.01	
Aus	М	pela	-0.704	3.303	~	~	-2.241	•	~	~	180.27	*	0.38	0.14	*
Aus	М	pepe	~	0.933	•	~	~	~	0.385	~	252.89		0.11	0.21	*
Aus	М	pexa	1.804	~	0.574	-0.468	3.316	•	~	~	188.66		0.35	0.15	
Aus	М	phca	~	5.367	7.037	-5.130	-2.923	•	1.474	1.280	51.97	*	0.86	0.04	
Aus	М	phpi	0.962	2.506	٠	~	-2.340	•	♦	*	176.52		0.39	0.15	
Aus	М	phta	-0.650	0.878	-0.544	0.263	0.436	~	0.510	~	262.22	*	0.10	0.23	
Aus	М	phci	~	2.665	-1.675	~	~	\sim	~	0.415	153.94	*	0.47	0.12	*
Aus	М	pogi	•	-3.059	•	•	•	•	1.219		69.59	N/A	0.64	0.08	
Aus	М	psbo	65.289	33.311	67.718	-5.363	~	•	~	~	25.723		0.94	0.03	N/A
Aus	М	psmi	Ť	•	٠	Ť	-2.963	•	♦	•	55.08	N/A	0.64	0.06	*
Aus	М	psoc	-1.053	~	-1.786	~	~	\sim	-1.004	~	171.19		0.41	0.14	
Aus	М	pspe	-3.431	12.107	\sim	~	~	\sim	~	~	70.86		0.77	0.05	
Aus	М	psal	•	•	1.528	•	•	•	-1.832		177.45	N/A	0.38	0.14	
Aus	М	psau	1.971	-12.684	-1.271	0.510	~	•	~	0.726	104.15	*	0.67	0.08	
Aus	М	psch	3.739	-0.689	5.242	~	-0.777	•	♦	~	127.56		0.58	0.09	
Aus	М	psde	0.786	0.436	2.192	0.384	~	•	~	-0.784	157.32	*	0.48	0.12	*

Aus	М	psna	-1.254	Ť	Ť	7.037	Ť	♦	†	†	157.55	N/A	0.45	0.12	*
Aus	М	psno	2.365	~	3.450	~	-2.009	~	~	~	122.19		0.59	0.08	*
Aus	М	pssh	~	-1.553	-4.076	~	~	~	-0.998	-0.498	148.83		0.50	0.15	
Aus	М	ptpo	1.846	~	Ť	-0.804	0.328	~	~	-0.964	190.38	*	0.35	0.16	
Aus	М	ratu	~	0.613	0.850	0.678	40.399	♦	~	0.770	198.36		0.32	0.17	
Aus	М	ravi	6.496	-8.870	18.274	~	~	♦	~	\sim	35.34		0.90	0.03	
Aus	М	sebr	~	0.955	-2.300	~	~	~	0.390	\sim	196.97	*	0.32	0.17	*
Aus	М	smgi	3.017	•	-1.871			♦		•	118.87	N/A	0.59	0.08	*
Aus	М	suce	0.439	-1.708	•	0.617	-3.761	~	-0.465	\sim	174.18		0.41	0.13	*
Aus	Μ	thbi	~	2.138	~	~	~	~	~	-0.316	187.33	*	0.35	0.16	
Aus	М	trvu	-2.498	12.121	-3.427	~	294.358	•	\sim	4.100	38.07		0.91	0.03	N/A
Aus	М	wabi	6.249	2.907	5.518	~	~	♦	~	\sim	39.01		0.89	0.02	*
Aus	М	wysq	Ť	2.049	٠	Ť	Ť	♦	Ť	-1.083	96.48	N/A	0.55	0.10	
Aus	М	zype	7.604	-5.137	٠	-1.494	21.914	~	•	•	78.70		0.75	0.05	*
Eur	А	otta_eur	1.889	-1.935	2.139	~	0.562	-0.557	~	~	146.44	*	0.52	0.12	
Eur	А	tete	-1.144	~	-4.852	~	-1.775	~	~	~	84.23	*	0.73	0.05	*
Eur	А	teur	-1.630	~	-3.052	1.398	~	~	-0.778	~	88.56	*	0.72	0.06	*
Eur	А	tett	-2.384	~	-1.007	~	-3.930	4.640	~	-0.844	117.13		0.62	0.09	
Eur	М	calu_eur	-2.602	~	-1.447	~	~	~	0.383	0.720	191.01	*	0.35	0.16	*
Eur	М	cafi_eur	~	~	-1.382	-0.764	~	~	~	~	233.86		0.18	0.20	
Eur	М	gugl_eur	-5.487	~	-5.373	1.332	5.783	~	~	6.081	65.21	*	0.81	0.06	
Eur	М	mica	-3.065	~	٠	~	~	~	-1.665	~	71.37		0.58	0.12	
Eur	М	mulu	-3.072	٠	-3.385	~	~	~	~	0.634	120.61		0.59	0.10	*
Eur	М	urar_eur	-0.494	~	-3.203	~	~	-0.450	~	\sim	121.45	*	0.59	0.08	*
NA	А	amne	~	\sim	-1.177	-1.228	~	~	~	1.507	116.58		0.37	0.16	
NA	А	apco	~	\sim	~	~	-0.369	•	~	\sim	275.68		0.02	0.25	

NA	А	atcu	3.304	-1.619	1.425	~	~	\sim	0.992	0.710	133.74		0.59	0.10	
NA	А	boum	1.080	1.332	-2.551	~	~	~	-1.330	-1.210	125.80	*	0.60	0.10	
NA	А	busw	1.700	0.497	-2.430	~	~	~	2.461	1.193	86.35	*	0.73	0.07	
NA	А	ceur	~	-0.626	-1.281	~	-0.516	~	-1.512	0.624	199.45	*	0.32	0.17	
NA	А	cybu	~	5.721	-3.223	-1.820	~	0.416	-1.115	1.032	138.95	*	0.55	0.12	
NA	А	elfo	4.439	6.243	12.673	-1.382	3.146	-1.389	-1.854	~	47.45	*	0.89	0.06	
NA	А	fafe	•	4.034	~	-0.834	1.268	-2.962	~	-1.118	131.57	*	0.57	0.11	
NA	А	gram	3.725	9.715	7.178	1.350	~	~	-2.460	~	49.04	*	0.87	0.03	*
NA	А	gyca	3.250	0.498	3.711	~	~	-0.252	0.895	~	176.95	*	0.41	0.14	*
NA	А	haha	0.616	0.719	~	-0.583	~	-0.685	-1.362	~	206.77		0.30	0.17	
NA	А	icam	~	1.039	~	-0.335	-1.649	~	-6.308	2.764	151.60	*	0.50	0.13	
NA	А	lalu	-1.352	0.560	-0.752	~	~	~	-0.878	0.250	216.67	*	0.26	0.18	
NA	А	lebo	-0.903	0.712	0.367	-0.381	~	~	-0.915	~	209.51		0.29	0.18	*
NA	А	mega	~	0.713	0.713	~	-2.326	~	0.713	~	205.68		0.29	0.18	*
NA	А	paui	~	5.049	~	-0.868	~	~	~	~	152.56		0.47	0.12	
NA	А	roso	7.001	~	8.746	~	~	~	~	~	27.22		0.92	0.02	
NA	А	sapa	~	1.687	1.660	~	-0.735	~	-0.555	-0.330	191.45	*	0.35	0.16	*
NA	А	tycu	~	-0.995	0.419	-0.303	~	-0.989	~	~	241.87	*	0.16	0.21	
NA	А	typa	~	0.657	-1.603	~	0.549	~	~	~	220.94		0.24	0.19	*
NA	А	typh	-3.686	~	-3.686	~	~	~	~	1.295	117.94		0.60	0.09	
NA	А	vech	0.700	~	-1.314	~	~	•	-0.660	~	196.36		0.32	0.16	
NA	М	anam	~	-0.540	-0.976	~	~	~	~	0.540	230.07		0.20	0.20	
NA	М	alal	~	1.320	-6.246	~	~	~	~	~	69.267	*	0.79	0.05	N/A
NA	М	calu_na	~	~	-12.697	~	~	~	~	-4.591	31.32		0.91	0.03	
NA	М	caru	~	2.081	5.171	0.343	~	-0.369	~	~	95.81		0.69	0.06	
NA	М	ceel_na	2.496	0.754	~	-0.492	~	~	-0.633	~	154.48	*	0.48	0.13	

NA	М	cylu	-9.716	1.794	-10.066	0.758	~	~	~	1.134	40.45	*	0.90	0.03	*
NA	М	diel	•	•	~	\sim	0.556	-0.823	~	-0.412	273.26		0.04	0.24	
NA	М	erdo	1.146	\sim	-8.070	21.918	~	~	~	11.291	47.19	*	0.87	0.04	
NA	М	gugl_na	~	~	-3.170	~	~	-149.200	~	-2687	105.92	*	0.65	0.08	N/A
NA	М	lepa	-31.361	~	~	1.144	~	~	1.438	~	49.81		0.85	0.03	*
NA	М	loca	-0.754	1.016	-2.172	-1.158	~	~	-1.926	-0.552	128.08		0.59	0.09	
NA	М	lyca	-1.050	~	-4.401	6.247	~	~	-0.689	-1.151	71.53		0.79	0.04	*
NA	М	maam	1.455	~	-0.550	~	~	~	~	-0.743	235.14		0.18	0.21	
NA	М	mapi	~	-0.537	0.583	\sim	-15.210	~	-0.731	-0.484	229.64	*	0.22	0.19	*
NA	М	oram	-1.820	-0.553	-2.210	2.805	~	~	~	~	119.27	*	0.61	0.08	
NA	М	ovmu	0.953	-2.421	-0.812	2.541	-87.530	♦	♦	•	112.40	*	0.64	0.09	*
NA	М	ovca	~	-0.356	\sim	0.259	-0.327	~	-0.284	-0.791	255.75	*	0.12	0.23	
NA	М	ovda	1.025	\sim	-0.466	\sim	~	~	~	~	232.80		0.18	0.20	*
NA	М	paon_na	•	2.422	\sim	\sim	-1.382	~	-0.319	~	187.75	*	0.35	0.15	
NA	М	puco_na	5.344	\sim	2.535	0.712	~	~	-0.433	~	106.23	*	0.65	0.08	
NA	М	rata	\sim	-0.490	\sim	~	-6.646	~	-5.194	~	249.28	*	0.13	0.22	
NA	М	sytr	\sim	0.454	1.012	~	~	-0.771	~	~	239.27		0.17	0.21	
NA	М	urwa	-1.030	-0.592	٠	~	~	-0.577	~	~	225.39		0.22	0.19	*
NA	М	uram	-0.384	0.700	-2.398	-0.929	-0.484	~	-1.340	~	152.18	*	0.50	0.12	
NA	М	urar_na	\sim	\sim	-3.671	~	\sim	~	~	-3.192	52.65		0.83	0.04	
NA	М	vuve	2.038	-0.613	4.778	~	\sim	~	~	~	101.42	*	0.66	0.09	
SA	А	gugu	3.899	\sim	\sim	1.676	-6.163	♦	~	~	89.62		0.71	0.07	
SA	М	chbr	1.744	\sim	2.176	-3.341	\sim	~	~	0.629	164.33		0.44	0.13	
SA	М	hibi	-0.546	\sim	-1.349	-1.255	\sim	~	-0.911	-0.711	212.68	*	0.28	0.18	
SA	М	lagu	-0.766	-0.591	-0.727	0.504	~	~	-1.610	0.473	194.74		0.35	0.15	*
SA	М	paon_sa	-0.844	2.088	•	5.034	-0.548	~	-0.463	~	133.36	*	0.56	0.11	

SA	Μ	puco_sa	0.916	0.708	1.540	~	~	-1.593	~	~	190.21	*	0.35	0.15
SA	М	tror	~	0.392	•	0.557	~	~	~	~	262.50		0.07	0.24
SA	М	vivi	-0.623	-2.950	•	-0.985	~	~	2.660	-8.027	142.39	*	0.53	0.13
SA	М	wioe	\sim	~	•	2.455	~	~	~	16.709	23.79		0.88	0.03

Table 5. Individual variable influences by continent. Numbers indicate the total number of species whose persistence was positively influenced (+) by each variable, and the number of species whose persistence was negatively influenced (-) by each variable. "Most Positive" indicates the variable that had a positive influence on persistence of the most species for that continent, and "Most Negative" indicates the variable that had a negative influence on persistence of the most species for that continent.

			Provident on Provident Provident	Terres Terre	Roc.	ads Por	upulation	unite Up Land	Cropland	^{Nangeland} Most p.	^{- ostti} ve Environmental Most _{No.}	Most Ports	Most Negative II unan Influence	Overall Mose S	Overall Most Negative Variable	^v allable
Africa	+ -	17 2	16 7	14 3	8 3	0 11	0 0	3 13	4 6	Elev	Precip	Roads	Crop	Elev	Crop	
Asia	+	47 24	36 52	25 20	20 7	17 26	8 7	33 25	21 26	Elev	Precip	Crop	Pop/ Range	Elev	Precip	
Australia	+	18	28 17	20 22	8 7	20 7 15	1	10 0	6 0	Precip	Precip	Crop	Рор	Precip	Precip	
Europe	+	1	0	1	, 1 1	0	1) 0 2	3	Elev/ Temp	Elev/ Temp	Range	Crop	Range	Elev/ Temp	
North	+	11 0	18 0	12 20	5	1	0	4 12	1 9 7	Precip	Temp	Range	Crop	Precip	Temp	
South	+	3	3	20 2 2	4	0	0	1	, 3 2	Elev/ Precip	Elev	Roads	Range/ Roads	Roads	Elev	
America	-	+	2	2	2	1	0	1	4	Treep			Rouds			
Global Totals	+	97 63	101 88	76 68	46 28	25 60	10 12	51 62	46 51	Precip	Precip	Crop	Crop	Precip	Precip	

Table 6. Number of bird and mammal species used in the range contraction analysis for each continent. "Total Number" indicates the number of species from each taxon whose range contraction was statistically analyzed. "Number with Significant Variables" indicates the number of species whose persistence was significantly affected by at least one of the variables tested. "Number with No Assessing L. O. F." indicates the number of species whose analysis could not be completed due to an error in the data for those species.

		Total	Number with	Number with No
Continent	Taxon	Number	Significant Variables	Assessing L.O.F.
Africa	Aves	1	1	0
Africa	Mammalia	38	38	0
Asia	Aves	103	101	1
Asia	Mammalia	20	20	0
Australia	Aves	7	6	0
Australia	Mammalia	63	63	4
Europe	Aves	4	4	0
Europe	Mammalia	6	6	0
North America	Aves	23	23	0
North America	Mammalia	26	26	2
South America	Aves	1	1	0
South America	Mammalia	8	8	0
Total	S	300	297	7

FIGURES

Figure 1. Range contraction of the mountain lion (*Puma concolor*) in North America and South America, overlaid onto the global elevation layer. The lighter shade of blue indicates historical range, and the darker shade of blue indicates remnant range.

Figure 2. Global elevation. Areas lighter in color indicate areas of greater elevation.

Figure 3. Global mean annual precipitation. Areas lighter in color indicate areas of higher mean annual precipitation.

Figure 4. Global mean annual temperature. Areas lighter in color indicate areas of higher mean annual temperature.

Figure 5. Global roads vector layer. Areas with a greater amount of black indicate a greater prevalence of roads.

Figure 6. Global human population density. Areas lighter in color indicate areas of higher human population density.

Figure 7. Global built-up land. Areas darker in color indicate areas with greater proportions of built-up land.

Figure 8. Global cropland. Areas lighter in color indicate areas with greater proportions of land converted to cropland.

Figure 9. Global rangeland. Areas lighter in color indicate areas with greater proportions of land converted to rangeland.