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ABSTRACT 

The phenotype of two Andropogon gerardii subspecies, big bluestem and sand 

bluestem, varies broadly throughout the Great Plains of North America, giving rise to 

ecotypes within the species. This study sought to discriminate between genetic and 

environmental variation of big bluestem and sand bluestem by examining gas exchange 

and leaf anatomy in common gardens across a climatic gradient of the Great Plains. 

Thirteen populations of big bluestem and one population of sand bluestem, constituting 

five ecotypes, were planted in community plots and a single plant plots in a common 

garden at each of four sites ranging from western Kansas to southern Illinois. 

Photosynthesis, stomatal conductance, intercellular CO2, transpiration, and intrinsic water 

use efficiency were measured three times in the 2010 growing season. In addition, leaf 

thickness, midrib thickness, bulliform cells, interveinal distance, and vein size were 

assessed by light microscopy. 

Abundant phenotypic variation exists among ecotypes within community plots. At 

all planting sites, big bluestem ecotypes from xeric environments had higher 

photosynthesis, stomatal conductance, and transpiration compared to mesic ecotypes. 

Single plant plots also had abundant phenotypic variation; ecotypes native to xeric 

environments also had higher photosynthesis, stomatal conductance, and transpiration, 

but differences were more distinct. In addition, sand bluestem, which was only planted in 

single plant plots, had similar photosynthesis, stomatal conductance, and transpiration to 

the big bluestem ecotype native to the most xeric environment. Sand bluestem also had 
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higher water use efficiency and lower intercellular CO2 than any big bluestem ecotype. 

Leaf anatomy assessments indicated xeric ecotypes of A. gerardii had thicker leaves and 

fewer bulliform cells. Environmental variation was as important as genetic variation for 

gas exchange and leaf anatomy in both community and single plant plots. Compared to 

xeric sites, mesic sites had higher photosynthesis, stomatal conductance, and water use 

efficiency and lower intercellular CO2 and transpiration in community and single plant 

plots. Leaves from mesic sites also had thicker midribs, larger veins, and a greater 

proportion of bulliform cells. 

Ecotypes of A. gerardii across the Great Plains are adapted to water availability. 

Drought-adapted ecotypes of A. gerardii were shorter in stature and had smaller, thicker, 

narrower leaves, which reduced the evaporative surface area of these plants. Evidently, A. 

gerardii controls water loss by reducing evaporative surface area more than it does by 

increasing the proportion of bulliform cells. This allows drought-adapted ecotypes to 

have higher photosynthetic rates, stomatal conductances, and transpiration rates in both 

mesic and xeric environments compared to ecotypes native to mesic environments.  

This study brings to light potential responses of big bluestem ecotypes to climate 

change. This study also indicates the phenotypic variation among big bluestem could 

prove useful in the restoration of native prairies. 
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PREFACE 

Chapter One is written in the style of Ecology. Chapter Two is written in the style of New 

Phytologist. Chapter Three is written in the style of Annals of Botany. These are peer-

reviewed journals to which a manuscript of each chapter will be submitted.
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CHAPTER 1: GAS EXCHANGE AMONG FOUR ECOTYPES OF ANDROPOGON 

GERARDII ALONG A CLIMATIC GRADIENT 

INTRODUCTION 

Compared to C3 plants, C4 plants are more efficient users of light, water, and 

nitrogen under high temperatures (Williams, 1974; Ripley et al., 2010). C4 plants are 

adapted to hot environments (Boutton et al., 1980) where the majority of yearly rainfall 

comes during the growing season (Nippert et al., 2006). For example, the Great Plains of 

North America is dominated by C4 plants (Epstein et al., 1997).  

Under water stress, photosynthetic rates (A) of C3 species decrease primarily due 

to stomatal limitations (Flexas and Medrano, 2002; Frole, 2008; Ghannoum, 2009). In C3 

plants, stomates close, decreasing stomatal conductance (gs) and causing the internal 

(intercellular) CO2 concentration (Ci) to decrease as A draws down CO2. Stomata of C4 

plants are also sensitive to drought (Morrison and Gifford, 1983), but C4 plants do not 

decrease A until gs and Ci become very low. This is possible because the CO2 

concentrating mechanism of C4 plants saturates Rubisco, even when Ci is low (Dai et al., 

1993; Ghannoum et al., 2003). Under water stress, C4 plants generally experience non-

stomatal (e.g., metabolic) limitations rather than stomatal limitations (Ghannoum et al., 

2003; Ripley et al., 2007; Frole, 2008). Metabolic limitations are common in C4 plants; 

before the plant is under sufficient water stress to lower gs and Ci enough to affect A, 

metabolic pathways have been inhibited (Ghannoum, 2003).  
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Non-stomatal limitations on C4 photosynthesis can result from decreased 

enzymatic activities of Rubisco (Crafts-Bradner and Salvucci, 2002), PEP carboxylase 

(Soares-Cordeiro et al., 2009), and pyruvate Pi dikinase (Du et al., 1996). Other 

non-stomatal limitations of A include photodamage to the light-harvesting system (Melis, 

1999) and a decrease in nitrogen content in stems and newly expanded leaves 

(Heckathorn and DeLucia, 1994), which limits the production of proteins and chlorophyll 

necessary for photosynthesis. Stomatal limitations of A can be discriminated from 

non-stomatal limitations by gas exchange measures. Stomatal limitation in 

environmentally stressed plants is indicated by decreased Ci compared to non-stressed 

plants, whereas Ci will remain constant in stressed and non-stressed plants experiencing 

non-stomatal limitations (Farquhar and Sharkey, 1982). 

Transpiration (E) has a linear relationship with gs when there is sufficient air 

flowing over the leaf (Jarvis and McNaughton, 1986). Guard cells control gs and are 

governed by many environmental factors, including light, CO2, hormones (Schroeder et 

al., 2001), temperature, humidity (Lange et al., 1971; Freeden and Sage, 1999), wind 

(Campbell-Clause, 1998), and soil moisture (Bano et al., 1993). Therefore, measures of 

gs, A, and E can be useful for assessing climatic effects on plants, especially drought. 

Andropogon gerardii Vitman (big bluestem) is a dominant C4 grass in tallgrass 

and mixed grass prairies (Gustafson et al., 2004) and has high phenotypic variation across 

the precipitation gradient of the Great Plains, giving rise to many ecotypes within the 

species (McMillan, 1959). To assess genetic differences in A. gerardii versus 



3 
 

 

environmental effects, a common garden experiment was arranged along the west-east 

precipitation gradient of the Great Plains. Previous common garden experiments have 

demonstrated many functional and developmental differences between ecotypes of plants 

(e.g., Clausen et al., 1939; Etterson, 2004; Oyarzabal, 2008). Etterson (2004) planted 

three ecotypes of Chamaecrista fasciculata (Michx.) Greene in common gardens across 

the climatic gradient of the Great Plains. Local ecotypes produced more seed than non-

local ecotypes, supporting the idea of local adaptation of ecotypes. Similarly, restoration 

projects within the Great Plains using non-local A. gerardii seeds observed shorter plants 

that were more susceptible to insect herbivory, produced fewer culms and inflorescences, 

and were phenologically behind the local A. gerardii ecotypes (Gustafson et al., 2001; 

Gustafson et al, 2005). In the present study, common gardens were established in four 

locations (Table 1.1) and at each location, three ecotypes of A. gerardii were planted. I 

sought to compare responses of A. gerardii ecotypes to decreasing moisture availability 

across sites.  

Climatic gradients generally involve abiotic stress ranging from more intense to 

less intense (Normand et al., 2009). In the case of the Great Plains, a strong precipitation 

gradient exists from drier conditions in the west to wetter conditions in the east. In the 

present study, the climatic gradient compared responses of A. gerardii to differential 

precipitation across common garden sites. Based on the preceding, I expected local 

adaptation of gas exchange in A. gerardii with respect to precipitation, where ecotypes 

have higher gas exchange rates in their native environment.  
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Response of A. gerardii ecotypes to drought might be highly varied based on 

adaptation to differing amounts of annual precipitation across the Great Plains (Lei et al., 

2006). I hypothesized (1) local ecotypes would have higher A, E, and gs in their local 

environment, and (2) the Central KS ecotype, collected from a xeric environment in the 

west, would maintain higher WUE, gs and A compared to ecotypes from more mesic 

environments in the east under water stress. (3) Sites with greater moisture availability 

were expected to have higher A. These hypotheses were evaluated in ecotypes of A. 

gerardii based on measures of A, gs, E, and Ci. 
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MATERIALS AND METHODS 

Seed Collection Sites 

Andropogon gerardii seed was hand collected in autumn 2008 from three 

climatically distinct regions along a precipitation gradient and on at least three dates from 

KS to IL. Plants from each region were considered an ecotype and each ecotype 

contained four populations. Populations originated from native prairies within an 80 km 

radius of the reciprocal garden planting site. Andropogon gerardii seed was analyzed for 

seed filling, germination, and live seed determination by the KS Seed Crop Improvement 

Center, Manhattan, KS. Through this analysis, percent live seed was determined and used 

to calculate the amount of seed of each ecotype to be planted. The four populations 

within each ecotype were mixed in equal quantities for the final seed mix used in plot 

establishment. 

Reciprocal Common Garden Design and Plot Establishment 

Three big bluestem ecotypes were used for this experiment. The Central KS 

ecotype was collected near Hays, KS, the Eastern KS ecotype was collected near 

Manhattan, KS and the Illinois ecotype was collected near Carbondale, IL. Common 

gardens were established at Colby, KS (most xeric), Hays, KS, Manhattan, KS, and 

Carbondale, IL (most mesic), with mean annual precipitation ranging from 400 to 1200 

mm yr-1 (Table 1.1). Although we did not have a Colby, KS ecotype, the Colby location 

was included to test the tolerance of all three ecotypes to a more xeric environment, 

similar to what A. gerardii might experience under climate change if rainfall decreases. 
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The design of the experiment included reciprocally transplanted randomized plots with 

four  4   4 m plots of each ecotype per site. Seeds were planted in June 2009, using 

70:30 ratio of live C4 grass to C3 grass and forb seed. Andropogon gerardii was planted at 

a density of 270 live seeds m-2. Seeds were mixed with damp sand to aid in homogenous 

dispersal. Sand and seed were hand-broadcast into experimental plots and raked into the 

soil. Total seed density for each plot was 600 seeds m-2, as recommended for prairie 

restoration (Packard and Mutel, 1997). To simulate a natural prairie environment, the co-

dominant C4 grass, Sorghastrum nutans (Indiangrass) was collected in the same native 

prairies as big bluestem and was seeded at a density of 90 live seeds m-2 and eight 

commercially purchased sub-dominant species that occur in all regions were each seeded 

at 30 live seeds m-2. The sub-dominant species include the C3 grass, Elymus canadensis, 

and seven C3 forb species, Ruellia humilis, Penstemon digitalis, Monarda fistulosa, 

Asclepias tuberosa, Solidago rigida, Dalea purpurea, and Chamaecrista fasciculata. Big 

bluestem and Indiangrass were the only hand collected seeds, all others were 

commercially purchased. The 2-m border areas between plots were planted with 

commercially purchased Bouteloua curtipendula and Schizachyrium scoparium. 

Data collection 

Four EC-20 soil moisture probes, 20 cm in length (Decagon Devices, Inc., 

Pullman, WA, USA), monitored volumetric water content of soil (%) in representative 

plots arranged diagonally across each site, with one probe per block. Probes were 

positioned vertically at the beginning of the growing season (early May), and allowed to 
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settle before soil water content was measured twice weekly. Precipitation data were 

gathered from local research stations.  

Gas Exchange Measures 

Gas exchange measurements of A. gerardii were taken with three LI-6400 (Li-Cor 

Biosciences Inc., Lincoln, NE, USA) instruments, which were tested against a gas 

standard and accurate within 2.8%. The youngest, fully-expanded one or two leaves were 

placed in the LI-6400 leaf chamber. Measurements were taken with CO2 levels at 385 

ppm, humidity and temperature at ambient levels, and photosynthetically active radiation 

(PAR) at 1500 µmol photons m-2 s-1. Gas flow through the chamber was 400 μmol s-1.  

Gas exchange measurements were taken early in the growing season (26% to 43% 

GDD), mid-season (48% - 67% GDD), and late season (70% - 89% GDD). 

Measurements were made on sunny days between 10:00 h and 15:00 h to minimize 

adjustment time of leaves to leaf chamber conditions. Measurements were made when 

photosynthesis and conductance had stabilized, usually requiring 1-2 minutes. Gas 

exchange measurements included photosynthesis (A), stomatal conductance to water 

vapor (gs), internal (intercellular) CO2 concentration (Ci), transpiration (E), and intrinsic 

water use efficiency (WUE), calculated as A/gs.  

Within each plot at each site, duplicate individuals were measured at random 

during the first measuring period. Plants were chosen randomly by facing away from 

plots and throwing a flag overhead into the plot. The nearest A. gerardii plant to the flag 
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was measured. Flags remained in the plots to mark plants for subsequent measures and all 

plants were averaged for a plot mean.  

Statistical Analysis 

All data were analyzed with JMP 9.0.2 (SAS Institute Inc., Cary, NC, USA). 

Replicate measures were determined as the mean of six duplicate measurements per plot. 

A MANOVA was used; factors were sites, ecotypes, and measurement periods. All 

interactions were analyzed. This was followed by univariate tests and Tukey’s honest 

significant difference (HSD) tests to reveal significant differences between means 

(Appendices 1 – 5). All analyses were run at α=0.05 to determine statistically significant 

differences. 
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RESULTS 

Photosynthesis (A) 

A ranged from 6.5 to 21.9 µmol CO2 m-2 s-1 across sites, months, and ecotypes 

(Figs. 1.1-1.4). A was higher early in the growing season, compared to the middle and 

late measurement periods (F=7.77, df=2, 108, p<0.001), which were not different from 

each other. A was not different between Carbondale, IL and Hays, KS, but both 

maintained higher A than Manhattan, KS and Colby, KS sites (F=51.45, df=3, 108, 

p<0.001), which were not different from each other. No differences were detected among 

ecotypes (F=38.12, df=2, 108, p=0.205), but there was a month by site interaction 

(F=1.61, df=6, 108, p<0.001) (Table 1.2, Appendix 1.1). 

Stomatal Conductance (gs) 

gs ranged from 0.063 to 0.232 mol m-2 s -1 across sites, months, and ecotypes 

(Figs. 1.1-1.4). During the early season, gs was higher than in the late growing season, 

which was higher than mid-growing season (F=8.97, df=2, 108, p<0.001). Across sites, gs 

at Hays, KS and Carbondale, IL was not different, but both were higher than Manhattan, 

KS and Colby, KS (F=66.40, df=3, 108, ANOVA, p<0.001), which were not different 

from each other. An ecotype effect was detected for gs (F=27.38, df=2, 108, p=0.015); the 

Central KS ecotype had higher gs than the Eastern KS and Illinois ecotypes, which were 

not different from each other. There was a month by site interaction (F=4.31, df=6, 108, 

p<0.001) (Table 1.2, Appendix 1.2).  
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Intercellular CO2 (Ci) 

Ci ranged from 99 to 303 ppm across sites, months, and ecotypes (Figs. 1.1-1.4). 

Ci was higher late season than during early season, which was greater than mid-season 

(F=9.22, df=2, 108, p<0.001). Colby, KS had the highest Ci, which was higher than Hays, 

KS and Manhattan, KS, which were not different from each other, but were both higher 

than the Carbondale, IL (F=45.66, df=3, 108, p<0.001). No ecotype effect was detected 

(F=32.16, df=2, 108, p=0.692), but there was a month by site interaction (F=0.37, df=6, 

108, p<0.001) (Table 1.2, Appendix 1.3). 

Transpiration (E) 

E ranged from 2.47 to 7.30 mmol m-2 s-1 across sites, months, and ecotypes (Figs. 

1.1-1.4). E was greater early in the growing season compared to mid-season and late 

season (F=14.93, df=2, 108, p<0.001), which were not different from each other. Hays, 

KS had higher E compared to all other sites (F=14.60, df=3, 108, p<0.001). The Central 

KS ecotype was not different from the Eastern KS ecotype, but was higher than the 

Illinois ecotype (F=31.37, df=2, 108, p=0.039). The Eastern KS and Illinois ecotypes 

were not different from each other. There was a month by site interaction (F=3.34, 108, 

df=6, 108, p<0.001) (Table 1.2, Appendix 1.4). 

Intrinsic Water Use Efficiency (WUE) 

The intrinsic water use efficiency was calculated as A/gs. WUE ranged from 34.2 

to 162.2 µmol CO2 mol-1 H2O across sites, months, and ecotypes (Figs. 1.1-1.4). WUE 

was higher mid-growing season compared to early season, which was higher than late 



11 
 

 

season WUE (F=13.20, df=2, 108, p<0.001). At Carbondale, IL, the WUE was highest, 

followed by Manhattan, KS and Hays, KS, which were not different from each other, 

followed by Colby, KS with the lowest WUE (F=52.13, df=3, 108,  p<0.001). No ecotype 

effects were detected for WUE (F=29.43, df=2, 108, p=0.674), but there was a month by 

site interaction (F=0.40, df=6, 108, p<0.001) (Table 1.2, Appendix 1.5). 
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DISCUSSION 

Many studies of A. gerardii, documenting differences among population, have 

examined ploidy levels (Norrmann et al., 1997; Keeler and Davis, 1999; Keeler, 2004), 

while other studies have quantified differences in genetic diversity (Gustafson et al., 

1999) and Gustafson et al. (2004) observed local ecotypes were larger than non-local 

ecotypes. Previously, no experiments have studied the effects of decreasing moisture 

availability on ecotypes of A. gerardii using multiple common gardens, particularly in 

community plots. The response of A. gerardii (a dominant C4 species in the Great Plains) 

to reduced rainfall could indicate potential responses of other C4 prairie species to 

predicted climate change. Adaptations to xeric climates can explain much of the variation 

between ecotypes of A. gerardii.  

Drought Adaptation 

Previous studies on ecotypes have documented that local ecotypes produced more 

seeds (Etterson, 2004), were taller and more resistant to insect herbivory, produced more 

culms, and were phenologically advanced compared to nonlocal populations (Gustafson 

et al., 2001; Gustafson et al., 2005). Similarly, drought adapted ecotypes of tree species 

have higher photosynthetic rates (A) and stomatal conductance (gs) and experience fewer 

non-stomatal limitation of A than their mesic counterparts (Abrams et al., 1992; Kubiske 

and Abrams, 1992). Knight et al. (2006) observed Boechera holboellii from dry sites had 

higher instantaneous water use efficiencies than plants from wetter sites because of 

reduced rates of transpiration. By contrast, Rice et al. (1992) found few differences in gas 
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exchange among xeric and mesic populations of cheatgrass (Bromus tectorum L.), but 

saw obvious differences in phenology and biomass allocation of these populations. In the 

present study, I observed large phenotypic differences among ecotypes of A. gerardii. 

Among ecotypes, there were no differences in A, internal (intercellular) CO2 (Ci), or 

water use efficiency (WUE), but there were significant differences in gs and transpiration 

(E; Table 1.2).  

Drought tolerance in A. gerardii ecotypes is indicated by an ability to maintain 

high gs in dry conditions. gs was higher for the Central KS ecotype than the Eastern KS 

and Illinois ecotypes. Being native to a more xeric environment, the Central KS ecotype 

likely has adaptations that help it maintain higher gs and E during drought compared to 

the other ecotypes. Other adaptations could include smaller, thicker leaves (Abrams et al., 

1990), increased pigmentation (El-Tayeb, 2006), and the ability to generate more 

negative water potentials (Kolb and Sperry, 1999). Generation of lower water potentials 

could allow higher gs under drought. Consequently, E would be higher in the Central KS 

plants and data indicate E was higher for the Central KS ecotype over the Illinois 

ecotype. Higher E is generally viewed as a liability in xeric climates. However, increased 

E under droughted circumstances might lead to more evaporation and increased cooling 

of leaves, which could reduce damage to photosynthetic proteins and pigments during hot 

summer months.  

The high gs of the Central KS ecotype could be advantageous if it allows A to 

remain high under drought, especially during times when stomates of the Eastern KS and 
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Illinois ecotypes would be closed enough to reduce Ci and A. An ability to maintain high 

gs under drought appears to be an adaptation in the most drought tolerant ecotype of A. 

gerardii. This was somewhat unexpected in A. gerardii, as high affinity of C4 plants for 

inorganic carbon means gs and Ci can remain low and are not typically sensitive to 

drought (Ghannoum et al., 2003). Stomatal closure in the Eastern KS and Illinois 

ecotypes at dry sites indicates an increased sensitivity to drought in mesic ecotypes 

compared to xeric ecotypes.  

Hypotheses regarding drought tolerance were investigated further by planting all 

ecotypes at a dry site in Colby, KS, which is beyond the range where A. gerardii 

commonly occurs. The drought tolerance of the Central KS ecotype was evident at 

Colby, where soil moisture was low for the majority of the season. A was not different 

among ecotypes during the early season at Colby, but differences began to emerge during 

the middle and late growing season. During mid-season, mean Central KS A was 74% 

and 49% higher than means of the Eastern KS and Illinois ecotypes, respectively. Late in 

the growing season, Central KS A was 165% and 138% higher than the Eastern KS and 

Illinois ecotypes, respectively. Although these were not statistically significant 

differences, a larger sample size would likely result in significant differences in A as 

drought increases. The Central KS ecotype was typified by smaller plants with shorter 

leaves compared to the other ecotypes (Johnson and Tetreault, in prep). Instead of 

growing large shoots and leaves, Central KS plants might use more energy creating 

pigmentation and moving nutrients to roots for storage in anticipation of a longer period 

of dormancy, which are other potential drought adaptations. Similarly, the Central KS 
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ecotype intrinsic WUE was not different compared to the other ecotypes, but as soil 

moisture decreased, its mean WUE was 48% and 97% higher than the mean WUE of the 

Illinois ecotype during mid-season and late season, respectively. This was not significant 

but greater replication would likely indicate a significant difference. gs was significantly 

higher for the Central KS ecotype during mid and late season measurements. Mid-season 

and late season measurements at Colby were taken during periods of very dry soil 

(volumetric water content <5%); the higher E and gs of the Central KS ecotype support 

the hypothesis it is more drought adapted compared to the more mesic ecotypes of A. 

gerardii. Drought adaptations of the Central KS ecotype do not reduce A in a mesic 

environment as evident by measures in Manhattan and Carbondale, where A was not 

different among ecotypes. 

A is a good indication of plant performance in an environment. In the present 

study, A decreased from early season to late season across Kansas sites. Andropogon 

gerardii begins to reallocate leaf nitrogen (N) to roots for storage as the season 

progresses (Hayes, 1985). Reallocation of leaf N, coupled with metabolic limitations that 

decrease N production in leaves (Heckathorn and DeLucia, 1994), likely causes a 

reduction in the quantity of photosynthetic proteins and chlorophyll, leading to a 

reduction in A. In addition, high mid-season and late season temperatures can reduce A by 

limiting Rubisco (Crafts-Brandner and Salvucci, 2000; Cui et al., 2006), PEP carboxylase 

(Soares-Cordeiro et al., 2009), and pyruvate Pi dikinase activities (Du et al., 1996). Exact 

mechanisms that decrease A in A. gerardii during the growing season and how they might 

differ between ecotypes, remain an interesting area for future research. 
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The mesic ecotypes of Illinois and Eastern KS were poorly adapted to drought as 

seen by lower gs in Colby, KS. Illinois gs was not different from the other ecotypes in the 

mesic environment of Carbondale, IL, where soil moistures were consistently high 

(volumetric water content >19%). Larger leaves and taller plants of the Illinois ecotype 

create a disadvantage in dry climates based on total evaporative surface area compared to 

the smaller surface area of the Central KS ecotype (Abrams et al. 1990). However, the 

Illinois ecotype appears to recover quickly when large rainfall events happen. At mid-

season when the soil was dry at Hays, KS, gs of the Central KS and Eastern KS ecotypes 

were 11% and 16% higher than the Illinois ecotype, respectively. After a late season 

rainfall event, the Illinois ecotype was 17% and 14% higher than the Central KS and 

Eastern KS ecotypes, respectively. The increase in gs was matched by a similar increase 

in E. The Illinois ecotype seems to be well adapted to wet soils and quickly begins to shut 

down when soil moisture is low.  

Few differences in gas exchange indicate local adaptation of A. gerardii ecotypes 

as indicated by the lack of site   ecotype interaction; rather, most indicate the presence or 

absence of drought adaptation among each ecotype. The Central KS ecotype, native to a 

semi-arid environment, is more adapted to drought compared to the other ecotypes as 

indicated by higher E and gs. The Eastern KS and Illinois ecotypes, from areas of greater 

rainfall, are less adapted to drought than the Central KS ecotype.  
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Site Differences 

Site differences are particularly meaningful for comparisons of A. gerardii 

ecotypes. Differences were detected in all gas exchange measurements across sites. There 

was little variation in mean temperatures along the east-west climatic gradient, differing 

by 3°C across sites. Soil moistures varied greatly across sites, averaging from 20% to 

over 30% at Carbondale, IL and in stark contrast to the dry soil at Colby, KS, which 

averaged 1% to nearly 30% for brief periods after rainfall events. Soil moisture appears 

to be the driving force behind the differences among sites along the climatic gradient.  

Throughout the growing season, Manhattan, KS had unexpectedly low gs, E, and 

A. The soil at the Manhattan site contained fewer nutrients and had a smaller microbial 

biomass than did the soil at other sites (Mendola et al., in prep.). Despite the high 

moisture availability, plants were limited by their ability to take up nutrients. In addition, 

plants at Manhattan were severely impacted by leaf rust (Puccinia andropogonis). Leaf 

rust is a fungal pathogen that reduces leaf chlorophyll content, gs, E, and A of many crops 

(Zhao et al., 2011). At Colby, KS, A and gs were low, which correlated with low soil 

moisture throughout the season.  

Many of the gas exchange parameters followed predictable patterns based on 

available soil moisture. A and gs at Carbondale, IL were high, as expected considering the 

high soil moisture at the site. Interestingly, A and gs at Hays, KS were not different from 

Carbondale early in the growing season, despite the lower soil moisture at Hays. This is 

likely because of the greater soil moisture availability in Hays early in the growing 
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season. Later in the growing season, differences in A and gs emerged between sites when 

there were larger differences in soil moisture.  

At Carbondale, IL, Ci was significantly lower than at the other sites, particularly 

during mid-season. Despite the consistently high soil moisture at Carbondale, there was a 

large decrease in Ci and A from early to mid-growing season. The decrease in Ci and a 

63% decrease in gs indicate there were stomatal limitations to A, which is unusual for C4 

plants. Soil moisture was around 20% during mid-season, which was high compared to 

the other sites. The planting sites in KS maintained higher Ci compared to Carbondale 

throughout the growing season, indicating limitations in A were non-stomatal (Ghannoum 

et al., 2003). 

Conclusion 

The Central KS ecotype is better adapted to drought through its ability to maintain 

higher gs and E under drought compared to its mesic counterparts from Eastern KS and 

Illinois. Ecotypes differed greatly in phenotype, but little evidence of local adaptation 

was seen in gas exchange. The advantage of the Central KS ecotype in its local 

environment was not nearly as substantial as it was at the more xeric Colby, KS site. 

Thus, differences among ecotypes likely correspond to their respective abilities to endure 

drought. Although climate change is predicted to decrease summer and winter 

precipitation for the Great Plains region (Weltzin et al., 2003), rising CO2 levels might 

alleviate the effects of drought (Markelz et al., 2011; Morgan et al., 2011). The Central 

KS ecotype is evidence A. gerardii can survive and adapt to conditions that are more 
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xeric and will continue to be an important and dominant plant throughout much of this 

region. 
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Table 1.1. The location and environmental conditions of the reciprocal garden planting 
sites during 2010. 

Environmental 

Conditions 

Reciprocal Garden Planting Site 

Colby, KS 

KSU Ag. Res 
Center 

(Thomas Co.) 

Hays, KS 

KSU Ag. Res 
Center 

(Ellis Co.) 

Manhattan, KS 

USDA Plant 
Material Center 

(Riley Co.) 

Carbondale, IL 

 SIU Agronomy 
Center 

(Jackson Co.) 

Location 39o 23’N  
101o 04’W 

38o 51’ N  
99o 19’ W 

39o 08’ N 
96o 38’ W 

37°73’ N  
89°22’ W 

Mean annual precipitation in 
2010 (cm) 

44.57 50.11 67.82 66.95 

Growing Season ppt. (cm). 
Mar 15-aug 31, 2010 

38.14 45.72 60.96 53.34 

Mean annual precipitation, 
since 1961 (cm) 

50.47 58.22 87.15 116.73 

Ppt. of driest year 
(cm, yr) 

28.37 
(1967) 

36.27 
(1988) 

39.16 
(1966) 

67.38 
(1963) 

Std dev of MAP (cm) 11.77 13.13 20.04 24.76 

Average growing degree days 
(GDD) * 

3167 3799 4156 4087 

GDD (2010) 3461 4193 4105  4474 
Potential Evapotranspiration 
(PET) (cm) 

144 139 127 99 

Aridity index (moisture 
deficit=PET – ppt.) 

97 81 41 -18 

Soil Type Silt-loam 
Roxbury 
Silt-loam 

Sandy-loam Stoy silt-loam 

* GDD = Atmx+Tmin/2-50; if GDD is less than zero set to zero 
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Table 1.2. Results of the MANOVA comparing photosynthesis (A), stomatal conductance (gs), internal CO2 (Ci), transpiration (E), 
and intrinsic water use efficiency (WUE) of A. gerardii ecotypes at 1500 µmol photons m-2 s-1 (df error = 108). 
 

site ecotype 
measurement 

period 
period*site period* 

ecotype 
site*ecotype period*site* 

ecotype 

 df F P df F P df F P df F P df F P df F P df F P 

A 3 51.45 <0.001 2 38.12 0.204 2 7.77 <0.001 6 1.61 <0.001 4 0.64 0.638 6 1.47 0.196 12 1.09 0.379 

gs 3 66.40 <0.001 2 27.38 0.015 2 8.97 <0.001 6 4.31 <0.001 4 1.12 0.348 6 0.85 0.536 12 1.42 0.166 

Ci 3 45.66 <0.001 2 32.16 0.692 2 9.22 <0.001 6 0.37 <0.001 4 1.12 0.348 6 1.98 0.074 12 0.66 0.789 

E 3 14.60 <0.001 2 31.37 0.039 2 14.93 <0.001 6 3.34 <0.001 4 0.64 0.638 6 0.24 0.962 12 0.83 0.628 

WUE 3 52.13 <0.001 2 29.43 0.674 2 13.20 <0.001 6 0.40 <0.001 4 1.15 0.339 6 1.93 0.082 12 0.68 0.763 

Degrees of freedom (df), F-scores (F), and P-values (P) from statistical analysis of variance are presented. Significant values (P<0.05) 
are bold.  
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Table 1.2. The location and environmental conditions of the reciprocal garden planting 
sites during 2010. 

Environmental 

Conditions 

Reciprocal Garden Planting Site 

Colby, KS 

KSU Ag. Res 
Center 

(Thomas Co.) 

Hays, KS 

KSU Ag. Res 
Center 

(Ellis Co.) 

Manhattan, KS 

USDA Plant 
Material Center 

(Riley Co.) 

Carbondale, IL 

 SIU Agronomy 
Center 

(Jackson Co.) 

Location 39o 23’N  
101o 04’W 

38o 51’ N  
99o 19’ W 

39o 08’ N 
96o 38’ W 

37°73’ N  
89°22’ W 

Mean annual precipitation in 
2010 (cm) 

44.57 50.11 67.82 66.95 

Growing Season ppt. (cm). 
Mar 15-aug 31, 2010 

38.14 45.72 60.96 53.34 

Mean annual precipitation, 
since 1961 (cm) 

50.47 58.22 87.15 116.73 

Ppt. of driest year 
(cm, yr) 

28.37 
(1967) 

36.27 
(1988) 

39.16 
(1966) 

67.38 
(1963) 

Std dev of MAP (cm) 11.77 13.13 20.04 24.76 

Average growing degree days 
(GDD) * 

3167 3799 4156 4087 

GDD (2010) 3461 4193 4105  4474 
Potential Evapotranspiration 
(PET) (cm) 

144 139 127 99 

Aridity index (moisture 
deficit=PET – ppt.) 

97 81 41 -18 

Soil Type Silt-loam 
Roxbury 
Silt-loam 

Sandy-loam Stoy silt-loam 

* GDD = Atmx+Tmin/2-50; if GDD is less than zero set to zero 
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Figure 1.1. (A) Photosynthesis rates (A), (B) stomatal conductance (gs), (C) internal CO2 
(Ci), (D) transpiration (E), and (E) intrinsic water use efficiency (WUE) of A. gerardii 
ecotypes at the Carbondale, IL site. All measures were made at 1500 µmol photons m-2 

s-1. Bars are means of four replicate plots ± SE during three measurement periods. 
(Bottom-right) Daily rainfall at Carbondale (left axis, in mm) is represented by histogram 
bars and volumetric water content (right axis, in %) is represented by circles. Lower case 
letters indicate statistical significance between measurement periods; groups of bars 
containing the same letter are not different. Tukey’s HSD comparisons are presented in 
Appendices 1.1-1.5. 
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Figure 1.2. (A-E) A, gs, Ci, E, and WUE of A. gerardii ecotypes at the Manhattan, KS 
site. Panels and abbreviations are as in Fig. 1.1. Bars are means of four replicate plots ± 
SE during three measurement periods. (Bottom-right) Daily rainfall at Manhattan (left 
axis, in mm) is represented by histogram bars and volumetric water content (right axis, in 
%) is represented by circles. Tukey’s HSD comparisons are presented in Appendices 1.1-
1.5. 
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Figure 1.3. (A-E) A, gs, Ci, E, and WUE of A. gerardii ecotypes at the Hays, KS site. 
Panels and abbreviations are as in Fig. 1.1. Bars are means of four replicate plots ± SE 
during three measurement periods. (Bottom-right) Daily rainfall at Hays (left axis, in 
mm) is represented by histogram bars and volumetric water content (right axis, in %) is 
represented by circles. Tukey’s HSD comparisons are presented in Appendices 1.1-1.5. 
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Figure 1.4. (A-E) A, gs, Ci, E, and WUE of A. gerardii ecotypes at the Colby, KS site. 
Panels and abbreviations are as in Fig. 1.1. Bars are means of four replicate plots ± SE 
during three measurement periods. (Bottom-right) Daily rainfall at Colby (left axis, in 
mm) is represented by histogram bars and volumetric water content (right axis, in %) is 
represented by circles. Tukey’s HSD comparisons are presented in Appendices 1.1-1.5. 
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Appendix 1.1. Tukey’s HSD results for photosynthesis. 
 
Site results of Tukey’s HSD for photosynthesis (µmol CO2 m-2 s-1). Sites not  
connected by the same letter are significantly different. 
Site   Least Squares Mean 
Carbondale, IL A  16.58 
Hays, KS A  14.81 
Manhattan, KS  B 10.52 
Colby, KS  B 9.41 
 

 
 
Period   site results of Tukey’s HSD for photosynthesis (µmol CO2 m-2 s-1).  
Levels not connected by the same letter are significantly different. 
Level       Least Squares Mean 
Early, Carbondale A      19.95 
Early, Hays A      18.52 
Late, Carbondale A B     17.33 
Early, Colby A B C    16.06 
Middle, Hays  B C D   13.63 
Early, Manhattan   C D E  12.57 
Middle, Carbondale   C D E  12.47 
Late, Hays   C D E  12.28 
Middle, Manhattan    D E  10.92 
Middle, Colby     E  8.51 
Late, Manhattan     E F 8.10 
Late, Colby      F 3.66 
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Appendix 1.2. Tukey’s HSD results for stomatal conductance. 
 
Site results of Tukey’s HSD for stomatal conductance (mol m-2 s-1). Sites not  
connected by the same letter are significantly different. 
Site   Least Squares Mean 
Hays, KS A  0.160 
Carbondale, IL A  0.149 
Manhattan, KS  B 0.111 
Colby, KS  B 0.104 
 

Ecotype results of Tukey’s HSD for stomatal conductance (mol m-2 s-1).  
Ecotypes not connected by the same letter are significantly different. 
Ecotype   Least Squares Mean 
Central KS A  0.142 
Eastern KS  B 0.126 
Illinois  B 0.125 
 
 
Period   site results of Tukey’s HSD for stomatal conductance (mol m-2 s-1).  
Levels not connected by the same letter are significantly different. 
Level        Least Squares Mean 
Early, Carbondale A       19.95 
Early, Hays  B      18.52 
Late, Hays  B C     17.33 
Early, Colby  B C D    16.06 
Late, Carbondale  B C D E   13.63 
Early, Manhattan   C D E F  12.57 
Middle, Hays    D E F  12.47 
Late, Manhattan     E F G 12.28 
Middle, Manhattan      F G 10.92 
Middle, Colby       G 8.51 
Middle, Carbondale       G 8.10 
Late, Colby       G 3.66 
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Appendix 1.3. Tukey’s HSD results for intercellular CO2. 
 
Site results of Tukey’s HSD for intercellular CO2 (ppm). Sites not  
connected by the same letter are significantly different. 
Site    Least Squares Mean 
Colby, KS A   220 
Hays, KS  B  195 
Manhattan, KS  B  193 
Carbondale, IL   C 150 
 
 
Period   site results of Tukey’s HSD for intercellular CO2 (ppm).  
Levels not connected by the same letter are significantly different. 
Level      Least Squares Mean 
Late, Colby A     282 
Late, Manhattan  B    227 
Late, Hays  B C   222 
Middle, Colby  B C D  200 
Early, Hays  B C D  186 
Early, Manhattan  B C D  185 
Early, Carbondale   C D  182 
Early, Colby    D  179 
Middle, Hays    D  176 
Middle, Manhattan    D  169 
Late, Carbondale    D  161 
Middle, Colby     E 107 
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Appendix 1.4. Tukey’s HSD results for transpiration. 
 
Site results of Tukey’s HSD for transpiration (mmol H2O m-2 s-1).  
Sites not connected by the same letter are significantly different. 
Site   Least Squares Mean 
Hays, KS A  6.03 
Colby, KS  B 4.24 
Manhattan, KS  B 3.85 
Carbondale, IL  B 3.73 
 

Ecotype results of Tukey’s HSD for transpiration (mmol H2O m-2 s-1). 
Ecotypes not connected by the same letter are significantly different. 
Ecotype   Least Squares Mean 
Central KS A  4.79 
Eastern KS A B 4.39 
Illinois  B 4.20 
 
 
Period   site results of Tukey’s HSD for transpiration (mmol H2O m-2 s-1).  
Levels not connected by the same letter are significantly different. 
Level       Least Squares 

Mean 
Early, Colby A      6.79 
Late, Hays A      6.53 
Middle, Hays A B     6.24 
Early, Hays A B C    5.32 
Early, Carbondale  B C D   4.82 
Late, Manhattan   C D E  4.29 
Early, Manhattan   C D E F 3.76 
Middle, Manhattan    D E F 3.51 
Late, Carbondale    D E F 3.49 
Middle, Colby     E F 3.21 
Middle, Carbondale     E F 2.89 
Late, Colby      F 2.70 
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Appendix 1.5. Tukey’s HSD results for intrinsic water-use efficiency. 
 
Site results of Tukey’s HSD for intrinsic water-use efficiency (A/gs). Sites  
not connected by the same letter are significantly different. 
Site    Least Squares Mean 
Carbondale, IL A   125.8 
Manhattan, KS  B  100.9 
Hays, KS  B  96.9 
Colby, KS   C 84.7 
 

 
Period   site results of Tukey’s HSD for intrinsic water-use efficiency (A/gs).   
Levels not connected by the same letter are significantly different. 
Level       Least Squares Mean 
Middle, Carbondale A      157.4 
Late, Carbondale  B     123.2 
Middle, Manhattan  B C    120.0 
Middle, Hays  B C    110.2 
Early, Colby  B C D   108.4 
Early, Hays  B C D   108.0 
Early, Manhattan  B C D   100.1 
Middle, Colby  B C D E  98.2 
Early, Carbondale   C D E  96.6 
Late, Manhattan    D E  82.4 
Late, Hays     E F 72.5 
Late, Colby      F 47.6 
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CHAPTER 2: GAS EXCHANGE IN BIG BLUESTEM (ANDROPOGON GERARDII) 

ECOTYPES AND SAND BLUESTEM (A. GERARDII VAR. HALLII) IN A 

RECIPROCAL COMMON GARDEN EXPERIMENT 

INTRODUCTION 

North American grasslands cover nearly 6.8 million km2 (White et al. 2000). 

Productivity is strongly correlated with growing season precipitation in these grasslands 

(Sala 1988); productivity is higher in eastern tallgrass prairies compared to western 

shortgrass prairies (Wang et al. 2003). In tallgrass prairies, precipitation comes primarily 

during the summer when temperatures are warm (Lauenroth et al. 1999), allowing C4 

grasses and forbs to dominate (Ehleringer 1978, Epstein et al. 1997).  

When considering productivity in grasslands, photosynthesis rates of plants are of 

clear importance. This is especially true when considering potential limitations from 

precipitation. Photosynthesis (A) in C4 plants generally is not limited by internal 

(intercellular) CO2 (Ci) as typically seen in C3 plants during stomatal closure (Farquhar 

and Sharkey 1982). Rather, A in C4 plants is restricted by non-stomatal limitations during 

times of water stress (Ripley et al. 2007). Non-stomatal limitations are often a result of 

reduced nitrogen uptake or a reallocation of nitrogen to roots (Heckathorn et al. 1994). 

Consequences of reduced nitrogen in leaves include decreased ATP synthesis and RuBP 

regeneration, reduced enzymatic activities of Rubisco (Crafts-Brandner and Salvucci 

2002), PEP carboxylase (Soares-Cordeiro et al. 2009), pyruvate Pi dikinase, and NADP-

ME (Du et al. 1996). Decreased nitrogen also reduces the number of light-absorbing 
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pigments in leaves (Ripley et al. 2007), leading to photodamage of photosystem II (Melis 

1999).  

Although stomatal limitations do not generally affect A in C4 plants, stomata are 

the primary regulators of transpiration (E) when there is sufficient air flow over the leaf 

(Vasquez-Robinet et al. 2008). Jarvis and McNaughton (1986) noted gs is linearly related 

to E. Similarly, Morison and Gifford (1983) observed gs decreased linearly as vapor 

pressure deficit increased. At a constant temperature, leaf-air vapor pressure deficit 

increases as an environment becomes more arid (Campbell and Norman 1998), thereby 

increasing potential plant E. This indicates xeric environments have a greater potential 

for E. In xeric environments, plants often reduce total E by reduced leaf surface area, 

which additionally increases sensible heat loss and prevents overheating (Smith 1978, 

Maricle et al. 2007). Reduced leaf temperatures decrease the rate of E and increase water 

use efficiency (WUE). 

Andropogon gerardii (big bluestem) is a dominant C4 grass in tallgrass prairies 

(Gustafson et al. 2004) and can comprise nearly 80% of biomass in some areas (Knapp et 

al. 1998). The ecology of A. gerardii has been studied intensively, but little attention has 

been given to phenotypic variation among A. gerardii populations across the climatic 

gradient of the Great Plains (McMillan 1959). Andropogon gerardii var. hallii (sand 

bluestem) is a subspecies of A. gerardii that is commonly found in sandy soils (Barnes 

1985). Barnes (1985) observed sand bluestem was able to maintain higher mid-day water 

potential than big bluestem, thereby avoiding desiccation. Gustafson et al. (2004) planted 

local and nonlocal populations of big bluestem in greenhouse and field experiments. 

Local populations were generally larger than nonlocal populations, suggesting local 
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adaptation to environment occurs in A. gerardii and variation among populations is a 

mixture of genetics and environment (Gustafson et al. 2004).  

Common garden experiments are frequently used to isolate genetic characteristics 

from environmental characteristics of plants along climatic gradients (Clausen et al. 

1939, Etterson 2004, Oyarzabal et al. 2008). Through a common garden experiment, 

Oyarzabal et al. (2008) observed phenotypes of grass species changed over a 

precipitation gradient. This gradient explained 30-85% of variation, depending on the 

species. McMillan (1965) transplanted multiple populations of four dominant prairie 

grasses from across the United States, including A. gerardii, to indicate ecotypic 

variation. Similarly, Etterson (2004) used common gardens across a climatic gradient of 

the Great Plains to study three populations of Chamaecrista fasciculata (Michx.) Greene 

and found strong evidence of local adaptation. Local populations produced more seeds 

than nonlocal populations, indicating fitness was greater in local populations. Other 

common garden experiments along climatic gradients have been carried out within 

grasslands (Leger and Rice 2007, Oyarzabal et al. 2008), across the Great Plains of North 

America (Etterson 2004), and even within A. gerardii (McMillan 1965, Barnes 1985, 

Gustafson et al. 2004). 

The response of a dominant C4 grass such as A. gerardii to drought might indicate 

the response of prairie communities to drought (Arnone et al. 2011). In the present study, 

five ecotypes of A. gerardii, consisting of 14 populations, were planted in single plant 

common gardens across the east-west precipitation gradient of the Great Plains. Gas 

exchange measures of A, E, gs, and Ci were used to evaluate responses of A. gerardii 

ecotypes to decreased moisture availability and the extent to which local adaptation has 
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occurred in each ecotype. However, no previous studies have investigated ecotypes of A. 

gerardii at the scope of this experiment, both in terms of genetic variation and geographic 

extent. By using common gardens over a gradient of decreasing annual precipitation, the 

extent to which local adaptation has taken place and the extent to which ecotypes are 

adapted to drought was identified. 

The response of ecotypes and populations of A. gerardii to drought might be 

highly varied based on differing amounts of annual precipitation across the Great Plains 

and local adaptations of each population to its native environment. In light of this, I 

addressed the following questions. (1) Are A. gerardii ecotypes locally adapted to their 

native environments? (2) Are ecotypes from xeric environments better adapted to drought 

than ecotypes from mesic environments? (3) To what degree are characteristics of gas 

exchange are environmentally controlled or the result of adaptation? 

It was hypothesized (1) A. gerardii ecotypes would have higher photosynthetic 

rates in their local environment compared to non-local ecotypes and (2) plants collected 

from xeric environments in the west would be less sensitive to drought than plants from 

mesic environments in the east as evident by gas exchange rates. (3) A and gs were 

expected to decrease in xeric sites due to non-stomatal limitations on photosynthesis. 

Similarly, plants at more xeric sites were expected to have higher intrinsic WUE. (4) 

Photosynthetic rates at sites with high rainfall were expected to be higher than at sites 

with low rainfall. Questions were assessed by gas exchange measures of A, E, gs, and Ci. 
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MATERIALS AND METHODS 

Seed Collecting and Planting 

Seeds of A. gerardii ecotypes were hand collected within an 80 km radius of 

Hays, KS (38°51’N, 99°19’W); Manhattan, KS (39°08’N, 96°38’W); and Carbondale, IL 

(37°41’N, 89°14’W) in autumn 2008 (Table 2.1). Plants from each region were 

considered an ecotype and each ecotype contained four populations. These ecotypes 

follow a west-east precipitation gradient with the most xeric ecotype originating from 

Hays, KS and the most mesic from Carbondale, IL. In addition to three collected 

ecotypes, seeds of A. gerardii ‘Kaw’ (big bluestem, accession 421276) and A. gerardii 

var. hallii ‘Garden’ (sand bluestem, accession 421277), two cultivars of A. gerardii, were 

obtained from the USDA Manhattan Plant Materials Center (Manhattan, KS). Each 

cultivar was considered an ecotype, totaling five ecotypes and 14 populations.  

In autumn 2008, seeds from each population of A. gerardii were planted in 10 cm 

x 10 cm pots in a greenhouse at Kansas State University in Metromix 510 potting mix 

(Scotts Company, Marysville, OH, USA). In August 2009, A. gerardii plants were 

transplanted from pots into common experimental gardens at Colby, KS; Hays, KS; 

Manhattan, KS; and Carbondale, IL (Table 2.2). Colby, KS was included to test the 

performance of A. gerardii ecotypes to an environment beyond the normal distribution of 

A. gerardii. At each planting site, 10 replicate plants of each of the 14 A. gerardii 

populations were transplanted, totaling 140 plants at each planting site. At Colby, KS, no 

individuals of the Carnahan population were planted due to limited seed supply. At each 

site, plants were arranged in 10 rows, 50 cm apart, with one plant of each population 

occurring in each row. Dewitt Sunbelt landscape fabric (Dewitt Co., Sikeston, MO, USA) 
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was laid down around plants to inhibit growth of  unwanted plants . In addition, plots 

were weeded regularly to remove unwanted species.  

Data Collection 

An EC-20 soil moisture probe, 20 cm in length (Decagon Devices, Inc., Pullman, 

WA, USA), monitored volumetric water content of soil (%) in each garden. Probes were 

placed in the ground under shade cloth at mid-growing season and soil water content was 

recorded twice weekly. In addition, four EC-20 soil moisture probes were positioned 

prior to the field season at each site in ground not covered by shade cloth. Measurements 

were made twice weekly. Rainfall data were obtained from local weather stations within 

4.5 km of each site. 

Gas Exchange Measures 

Photosynthetic measurements were taken with three LI-6400 instruments (Li-Cor 

Biosciences Inc., Lincoln, NE, USA), one at each institution. Each LI-6400 was tested 

against a CO2 gas standard and found to be accurate within 2.8% of actual values. The 

youngest, fully-expanded one or two leaves were placed inside the LI-6400 leaf chamber. 

Measurements were taken with CO2 at 385 ppm, humidity and temperature were ambient, 

gas flow was 400 μmol s-1, and photosynthetically active radiation (PAR) was 1500 µmol 

photons m-2 s-1.  

Gas exchange measurements of each plant were taken early in the 2010 growing 

season (23% - 36% GDD), mid-season (47% - 57% GDD), and late in the growing 

season (70% - 91% GDD). Measurements were taken on sunny days between 10:00 h and 

15:00 h to maximize photosynthetically active radiation and minimize time required by 
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leaves to adjust to leaf chamber conditions. Measurements were taken when 

photosynthesis and stomatal conductance had stabilized, typically requiring 1-2 min. Gas 

exchange measurements included photosynthesis (A), stomatal conductance to water 

vapor (gs), internal (intercellular) CO2 concentration (Ci), transpiration (E), and intrinsic 

water use efficiency (WUE), calculated as A/gs. 

Statistical Analysis 

All data were analyzed with JMP 9.0.2 (SAS Institute Inc., Cary, NC, USA). Each 

plant was a replicate measure. A MANOVA was used; factors analyzed were sites, 

ecotypes, and measurement periods, including all interactions. This was followed with 

univariate tests and Tukey’s honest significant difference (HSD) tests to reveal 

significant differences between means (Appendices 2.1-2.5). To determine statistically 

significant differences, analyses were performed at α=0.05.  
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RESULTS 

 Differences were evident in all factors of each measurement, and in nearly every 

interaction at ecotype and population levels (Tables 2.2, 2.3). No differences were 

detected among populations within a single ecotype (Fig. 2.1). All four populations of 

each collected ecotype were similar in all measurements of gas exchange at sites and 

across measurement periods.  

 Carbondale, IL experienced drought during 2010 and total precipitation (80.3 cm) 

was nearly 40 cm lower than the annual mean (116.6 cm) and similar to precipitation in 

Manhattan, KS (84.7 cm). Growing season precipitation (April through September) in 

Carbondale was 47.0 cm, which was slightly less than the 48.8 cm received in Hays, KS 

but more than Colby, KS (Table 2.2). Volumetric water content of soil was consistently 

higher in Carbondale compared to the Kansas sites and among Kansas sites Manhattan 

maintained higher volumetric water content compared to Hays and Colby (Figs. 1.1-1.4 

in Chapter 1). 

Photosynthesis (A) 

 Central KS and Sand bluestem, the xeric ecotypes, generally had the highest A 

across sites and measurement periods. Mean leaf-level photosynthesis ranged from 10.3 

to 35.4 µmol CO2 m-2 s-1 across sites, measurement periods, and ecotypes (Figs. 2.2-2.5). 

Among ecotypes, sand bluestem and Central KS were not different, but were higher than 

Eastern KS, Illinois, and Kaw (F=42.13, df=4, 1498,  p<0.001), which were not different 

from each other. Mean A at Carbondale, IL was 26.7 µmol CO2 m-2 s-1 and higher than all 

three KS sites (F=137.52, df=3, 1498, p<0.001), which were not different from each 
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other. Mean A at the KS sites ranged from 17.2 to 17.6 µmol CO2 m-2 s-1, or 9 µmol CO2 

m-2 s-1 lower than at Carbondale, IL. A was higher early in the growing season compared 

to mid-season, and A was higher mid-season compared to late season (F=201.44, df=2, 

1498, p<0.001). All interactions except site   ecotype   measurement period were 

significant (Table 2.2, Appendix 2.1).  

Stomatal conductance (gs) 

 The drought-adapted ecotypes of A. gerardii, sand bluestem and Central KS, had 

the highest gs and higher gs was measured at mesic planting sites compared to xeric sites. 

Mean stomatal conductance ranged from 0.107 to 0.356 mol m-2 s -1 across sites, 

measurement periods, and ecotypes (Figs. 2.2-2.5). Sand bluestem and the Central KS 

ecotype were not different, but had higher gs compared to the Manhattan and Illinois 

ecotypes (F=18.15, df=4, 1498, p<0.001). The Kaw ecotype had lower gs compared to 

Central KS, but was not different from sand bluestem, Eastern KS, or Illinois. 

Carbondale, IL had higher gs compared to the KS planting sites (F=70.38, df=3, 1498, 

p<0.001). Among the KS sites, gs at Hays was higher compared to Manhattan, while 

Colby was not different from Hays or Manhattan. Early growing season gs was higher 

compared to mid-season gs, and mid-season gs was higher than late season gs (F=65.55, 

df=2, 1498, p<0.001). All interactions except site   ecotype   measurement period were 

significant (Table 2.2, Appendix 2.2). 

Intercellular CO2 (Ci) 

 Ci was higher in sand bluestem compared to big bluestem and higher at xeric sites 

compared to mesic sites. Mean internal (intercellular) CO2 ranged from 93 to 247 ppm 
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across sites, measurement periods, and ecotypes (Figs. 2.2-2.5). Ci in sand bluestem was 

lower than in the four big bluestem ecotypes (F=12.57, df=4, 1498, p<0.001), which did 

not differ from each other. Ci at Colby, KS was not different from Hays, KS, but both 

were higher compared to Manhattan, KS and Ci at Manhattan was higher compared to 

Carbondale, IL (F=44.51, df=3, 1498, p<0.001). Early season and mid-season 

measurements of Ci were not different from each other, but both were lower than late 

season measurements (F=41.49, df=2, 1498, p<0.001). Site   ecotype and site   

measurement period interactions were significant (Table 2.2, Appendix 2.3). 

Transpiration (E) 

 The highest E was measured in sand bluestem and the Central KS ecotype at xeric 

sites. Mean E ranged from 2.3 to 9.4 mmol m-2 s-1 across sites, measurement periods, and 

ecotypes (Figs. 2.2-2.5). E in sand bluestem did not differ from Central KS, but both were 

higher than Eastern KS, Illinois, and Kaw (F=22.32, df=4, 1498, p<0.001), which were 

not different from each other. E at Colby, KS and Hays, KS was not different, but both 

sites had higher E than Carbondale, IL, and Carbondale had higher E than Manhattan, KS 

(F=48.85, df=3, 1498, p<0.001). E during the early and middle growing seasons was not 

different, but during both periods E was higher than late growing season (F=140.57, 

df=2, 1498, p<0.001). All interactions except site   ecotype   measurement period were 

significant (Table 2.2, Appendix 2.4). 

Intrinsic Water Use Efficiency (WUE) 

 The highest intrinsic WUE was measured in sand bluestem and at mesic sites. 

Mean WUE (A/gs) ranged from 60.6 to 168.7 μmol CO2 mol-1 H2O across sites, 
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measurement periods, and ecotypes (Figs. 2.2-2.5). Sand bluestem had a higher WUE 

than Central KS, Eastern KS, and Illinois (F=8.82, df=4, 1498, p<0.001), which were not 

different from each other; Kaw was not different from any ecotype. Carbondale, IL had a 

higher WUE than Manhattan, KS and Manhattan had a higher WUE than Hays, KS and 

Colby, KS (F=27.37, df=3, 1498, p<0.001); WUE at Hays and Colby was not different. 

Early and middle growing season WUE were not different from each other, but both were 

higher than late season WUE (F=34.19, df=2, 1498, p<0.001). Site   ecotype and site   

measurement period interactions were significant (Table 2.2, Appendix 2.5). 
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DISCUSSION 

Populations of Andropogon gerardii have highly variable phenotypes across the 

Great Plains of North America (McMillan 1959). Variation in leaf length, width, and 

thickness are evident across ecotypes (Barnes 1985, Ravenek et al. in review, Johnson 

and Tetreault in prep., Chapter 3). In addition, variation in fitness (Gustafson et al. 2004), 

phenology, plant height (Tetreault et al. in prep.), and net primary productivity (Goad et 

al. unpublished data) are apparent. In the present study, four common gardens oriented 

across the west-east climatic gradient of the Great Plains were used to distinguish 

between environmentally controlled and genetically controlled characteristics of A. 

gerardii ecotypes. Adaptation to water availability explains much of the morphological 

and functional variation among ecotypes and populations of A. gerardii across the Great 

Plains. 

Adaptation to Xeric Climates 

 Ecotype   site interactions were detected in all gas exchange measures in the 

present study. Under the influence of natural selection and in the absence of other 

evolutionary forces, it is thought local plants evolve an advantage over nonlocal plants by 

adapting to the local environment (Kawecki and Ebert 2004). Local adaptation is 

widespread and commonly seen among plant species (Joshi et al. 2001, Etterson 2004) 

and in Andropogon gerardii (Gustafson et al. 2004). However, genetic drift and gene 

flow often confound local adaptation (Kawecki and Ebert 2004), allowing nonlocal 

populations to outperform local populations. In my study, local adaptation was not 
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observed, rather xeric ecotypes developed adaptations to xeric climates that improved gas 

exchange rates at all sites compared to mesic populations. 

When comparing A. gerardii at the population level rather than the ecotype level, 

it is intriguing to note there were no significant differences in gas exchange 

measurements among populations within a single ecotype (Fig. 2.1). Each collected 

ecotype (Central KS, Eastern KS, and Illinois) contained four populations, collected 

within an 80 km radius of each other. Because of the close proximity of populations 

within an ecotype, gene flow likely occurs, causing closely oriented populations to be 

more similar compared to distant populations. 

Among ecotypes, sand bluestem and Central KS maintained higher photosynthetic 

rates (A) in xeric climates than did the Eastern KS, Illinois, or Kaw ecotypes. In a 

greenhouse study, Ravenek et al. (in review) found no difference in A between sand 

bluestem and big bluestem. In the present study, stomatal conductance (gs) correlated 

well with A, indicating an ability to maintain high gs was related with high A. Barnes 

(1985) measured lower gs in sand bluestem than in big bluestem in the field, whereas 

Ravenek et al. (in review) measured no difference in stomatal conductance between sand 

bluestem and big bluestem in field experiments. Sand bluestem in the present study had 

gs similar to the xeric ecotype of big bluestem. Further, both sand bluestem and the xeric 

ecotype of big bluestem maintained higher gs than the more mesic ecotypes of big 

bluestem. Like most drought-tolerant grasses (Redmann 1983), stomata do not close in A. 

gerardii until plants are sufficiently stressed. An ability to maintain high gs under low 

water potentials appears to be an adaptation to drought (Maricle and Adler 2011), 

although C4 plants can maintain high photosynthetic rates even when gs is low through 
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their CO2 concentrating mechanism (Farquhar and Sharkey 1982, Dai et al. 1993, 

Ghannoum et al. 2003). As a result, non-stomatal limitations typically reduce A in C4 

plants (Ripley et al. 2010). Low gs paired with unchanged Ci in A. gerardii is an indicator 

non-stomatal limitations are decreasing A (Ghannoum et al. 2003). Despite higher A in 

sand bluestem and Central KS, these ecotypes were generally the shortest plants and had 

the smallest leaves (Johnson and Tetreualt in prep.). Ravenek et al. (in review) state sand 

bluestem has a slower growth rate than big bluestem. Sand bluestem and Central KS 

plants might allocate a larger proportion of resources toward increasing below ground 

production of roots and storage material (Skinner et al. 2006). This might be an 

adaptation of xeric ecotypes of A. gerardii to xeric environments, helping them endure 

prolonged drought.  

 In xeric climates, transpiration rates (E) can be very high, particularly if a 

constant water source is available (Rahman and Batanouny 1965). High E in xeric 

climates can result in loss of turgor if water supply is limited, but this not commonly 

found because stomates typically close before turgor loss occurs (Redmann 1983). Sand 

bluestem and Central KS had higher E than Eastern KS, Illinois, and Kaw, largely due to 

their inherently high gs. Comparable to high E, these plants had higher gas exchange rates 

at all four planting sites. Short, narrow leaves reduced total leaf surface area and total 

transpiration (Abrams et al. 1990) of sand bluestem (Ravenek et al. in review) and the 

Central KS ecotype (Tetreault et al. in prep., Chapter 3), giving them an advantage over 

their more mesic counterparts in xeric climates. The Eastern KS and Illinois ecotypes 

commonly had long, wide leaves with large surface areas compared to xeric ecotypes 

(Tetreault et al. in prep., Chapter 3), resulting in high total transpiration despite lower 
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transpiration rates per unit area. In addition, high E might be an advantage in hot 

environments by increasing evaporative leaf cooling (Abrams 1990, Campbell and 

Norman 1998) and nutrient transport to leaves (Cintrón et al. 1978). This could result in 

reduced damage to enzymes and photosynthetic proteins of drought-stressed plants on 

hot, dry days (Ludlow and Björkman 1984). Furthermore, drought-adapted big bluestem 

populations might also have greater quantities of epicuticular wax than mesic 

populations. Barnes (1985) A greater quantity of epicuticular wax has been observed in 

sand bluestem compared to big bluestem (Barnes 1985, Shelton et al. in prep) and 

Ravenek et al. (in review) measured up to five times greater epicuticular wax in sand 

bluestem than big bluestem, offering another advantage of sand bluestem to reduced 

water loss.  

It can be expected maintaining high gs will result in low intrinsic water use 

efficiency (WUE), unless A is sufficiently high. Sand bluestem had high gs and high A, 

yet still maintained the highest WUE of any ecotype. However, the Central KS ecotype 

had high gs and high A, but a relatively low WUE, similar to that observed in other big 

bluestem ecotypes. Ravenek et al. (in review) also observed WUE in sand bluestem was 

higher than in big bluestem. Sand bluestem appears to be better adapted to drought 

through its high A, WUE, epicuticular wax load, and small leaf area compared to big 

bluestem ecotypes. Among big bluestem ecotypes, Central KS holds an advantage over 

Eastern KS, Illinois, and Kaw in regards to gas exchange.  

Adaptations of A. gerardii to hot, xeric environments might also include other 

common physiological factors such as increased pigmentation in leaves (El-Tayeb 2006), 

an ability to generate low water potentials (Kolb and Sperry 1999), and bulliform cells to 
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facilitate leaf rolling (Maricle et al. 2009, Chapter 3). Increased pigmentation absorbs 

more energy from the sun and reduces damage to photosynthetic pigments by excess 

radiation (Flint et al. 1985). An ability of xeric ecotypes to maintain net photosynthesis 

during prolonged periods of drought by generating low plant water potentials compared 

to mesic ecotypes is likely an adaptation to xeric environments (Odening et al. 1974, 

Abrams 1990). 

Through drought adaptations, sand bluestem and Central KS were able to 

maintain higher A in xeric climates compared to Eastern KS, Illinois, and Kaw (Appendix 

2.1). Interestingly, these same adaptations were beneficial at the mesic Manhattan, KS 

and Carbondale, IL sites. At Manhattan and Carbondale, the same pattern measured at 

xeric sites was evident, with sand bluestem and Central KS maintaining higher A than 

Eastern KS, Illinois, or Kaw. An ability to maintain high gs is evidently beneficial in both 

mesic and xeric environments for A. gerardii. Because sand bluestem and Central KS are 

generally shorter and small-leafed (Tetreault et al. in prep.), they might be out-competed 

by taller, large-leaved mesic ecotypes when competition is primarily above ground. The 

shorter, small-leaved sand bluestem and Central KS ecotypes are well suited for below 

ground competition (Burke et al. 1998). However, in our single plant plots, sand bluestem 

and Central KS maintained more advantageous gas exchange rates at xeric and mesic 

sites.  

Plant photosynthesis declined as the growing season progressed. Among A. 

gerardii ecotypes, A decreased during each measurement period at each site with the 

most pronounced decreases coming between midseason and late season measurements. 

Early season measurements of A were consistently higher than midseason or late season 
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measurements. Hayes (1985) observed A. gerardii reallocates leaf nitrogen and amino 

acids to roots late in the growing season as a preparation for dormancy and as an 

adaptation to drought. Nitrogen removal and increased amino acid concentrations in 

leaves are the result of leaf proteins being broken down into amino acids, thereby 

reducing A (Hayes 1985). In addition, as the growing season progresses, light can damage 

photosynthetic pigments and further reduce A (Flint et al. 1985). Both nitrogen 

reallocation and light damage likely contribute to decreased photosynthesis in A. gerardii 

as it senesces. 

Environmental Differences 

 Although common garden experiments are often used to separate genetic 

differences from environmental differences, there is not always an overriding genetic or 

environmental control. In the case of A. gerardii, all gas exchange measures exhibited 

significant differences at the ecotype (genetic) and site (environmental) levels, including 

site   ecotype interactions, indicating both factors and how they interact are important 

for gas exchange.  

 Soil at the Manhattan site contained significantly fewer nutrients and microbes 

than soils at other sites (Mendola et al. in prep). This correlates well with the generally 

low photosynthetic rates at Manhattan, KS, despite the high soil moisture there (Figures 

1.1-1.4 in Chapter 1). No difference in A was seen between Manhattan, KS and Hays, KS 

or Colby, KS. In addition, plants at the Manhattan site were infected prominently by leaf 

rust (Puccinia andropogonis). Leaf rust is often responsible for crop losses and is known 

to reduce A in affected leaves (Robert et al. 2005). A in rust-affected plants is reduced 
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primarily by decreased chlorophyll content and lower gs (Zhao et al. 2011). Leaf rust was 

present at other planting sites, but in small enough quantities to have negligible effects on 

A. gerardii at these sites. Soil moisture content was higher at eastern mesic sites and 

lower at western xeric sites. Although Carbondale, IL had lower than typical rainfall, it 

consistently had the highest soil moisture content, and Colby, KS consistently had the 

lowest soil moisture content. High soil moisture at Carbondale might be a result of stored 

ground water from previous years or hydraulic redistribution of moisture by plants 

coupled with a high water table. The high soil moisture at Carbondale corresponded well 

with the high photosynthetic rates (A) and stomatal conductance (gs) measured there. 

Barnes (1985) noted A and gs in sand bluestem and big bluestem remained high when soil 

moisture was high and decreased as soil moisture decreased. Mean A at Carbondale was 

50% higher than mean A at each of the KS planting sites. The primary factor limiting A at 

Colby and Hays was most likely low soil moisture.  

 Intrinsic water use efficiency increased in Carbondale, IL, but decreased at all 

other sites as the season progressed. At Carbondale, early season and midseason gs was 

0.32 and 0.28 mol m-2 s-1, respectively. From midseason to late season, gs dropped 57% 

to 0.12 mol m-2 s-1. From midseason to late season, A only dropped by 40%, causing 

intrinsic WUE to increase. Because soil moisture remained high throughout the growing 

season at Carbondale, A was not limited by water availability. Instead, A had stomatal 

limitations late in the season. Ci dropped from 142 to 118 ppm between midseason and 

late season. Low Ci indicates stomatal limitations are present (Ghannoum et al. 2003), 

despite high soil moisture. Field (1987) noted gs decreased sharply as leaves began to 

senesce, explaining the large drop in gs at Carbondale late in the growing season. Kansas 
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sites did not have a sharp drop in gs during the late season because gs at these sites was 

already limited by low soil moisture. Ci at Kansas sites increased as the season 

progressed due to a decrease in A.  

 

Conclusion  

 Sand bluestem and big bluestem are subspecies of A. gerardii, but sand bluestem 

is better adapted to xeric climates compared to big bluestem ecotypes used in this study 

with the exception of the Central KS ecotype. The drought tolerant ecotypes sand 

bluestem and Central KS had the highest A, gs, and E and sand bluestem had a higher 

intrinsic WUE than all big bluestem ecotypes. Other drought tolerant traits of sand 

bluestem and Central KS were also typified by shorter plants and shorter, narrower leaves 

when compared to Eastern KS, Illinois, or Kaw ecotypes. When below ground 

competition is high, as seen in xeric environments (Burke et al. 1998), these 

characteristics are beneficial; however, the short stature of sand bluestem and Central KS 

could be a liability under mesic environments where above ground competition is 

generally high (Burke et al. 1998) and short plants are quickly shaded by taller plants. 

Local adaptation of gas exchange was not observed among populations within the Central 

KS, Eastern KS, or Illinois ecotypes; rather performance of ecotypes corresponds well 

with adaptations to xeric environments where more the more drought adapted ecotypes  

of Central KS and sand bluestem had higher gas exchange rates. Strong environmental 

influences were also observed, where sites with higher precipitation had higher 

photosynthesis rates. Within the Great Plains, temperatures are expected to rise and 
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summer precipitation is expected to decline (Weltzin et al. 2003), threatening to change 

plant distribution. Andropogon gerardii has demonstrated an ability to adapt to reduced 

rainfall and it will likely remain a dominant grass of the prairies.  
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Table 2.1. Collection sites for A. gerardii populations that constitute each ecotype. 

Ecotype Seed collection site of populations Latitude 
(N) 

Longitude 
(W) 

Central 
KS* 

Relict Prairie 38o 51’ 99o 22’ 
Webster Reservoir 39o 24’ 99o 32’ 

Saline Experimental Range 39o 02’ 99o 14’ 
Cedar Bluff Reservoir 38o 45’ 99o 46’ 

Eastern 
KS* 

Carnahan Cove at Tuttle Creek Reservoir 39o 20’ 96o 38’ 
Konza Prairie Natural Area 39o 05’ 96o 36’ 

Tallgrass Prairie National Park 38o 25’ 96o 33’ 
Top of the World Park 39o 13’ 96o 37’ 

Illinois* 

(Desoto) Faulkner-Franke Pioneer Railroad 
Prairie Natural Preserve 37°51’ 89o 14’ 

Twelve Mile Prairie 38°46' 88o 50' 

Fults Hill Prairie State Natural Area 37°58’ 89o 48’ 
Walters Prairie 38°59' 88o 09' 

Kaw† Manhattan Plant Material Center 39°14' 96o 63’ 

Sand 
Bluestem† Manhattan Plant Material Center 39°14' 96o 63’ 

*Indicates ecotype was hand collected. 
†Indicates ecotype is a cultivar. 
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Table 2.2. The location and environmental conditions of the reciprocal garden planting 
sites during 2010. 

Environmental 

Conditions 

Reciprocal Garden Planting Site 

Colby, KS 

KSU Ag. Res 
Center 

(Thomas Co.) 

Hays, KS 

KSU Ag. Res 
Center 

(Ellis Co.) 

Manhattan, KS 

USDA Plant 
Material Center 

(Riley Co.) 

Carbondale, IL 

 SIU Agronomy 
Center 

(Jackson Co.) 

Location 39o 23’N  
101o 04’W 

38o 51’ N  
99o 19’ W 

39o 08’ N 
96o 38’ W 

37°73’ N  
89°22’ W 

Mean annual precipitation in 
2010 (cm) 

44.57 50.11 67.82 66.95 

Growing Season ppt. (cm). 
Mar 15-aug 31, 2010 

38.14 45.72 60.96 53.34 

Mean annual precipitation, 
since 1961 (cm) 

50.47 58.22 87.15 116.73 

Ppt. of driest year 
(cm, yr) 

28.37 
(1967) 

36.27 
(1988) 

39.16 
(1966) 

67.38 
(1963) 

Std dev of MAP (cm) 11.77 13.13 20.04 24.76 

Average growing degree days 
(GDD) * 

3167 3799 4156 4087 

GDD (2010) 3461 4193 4105  4474 
Potential Evapotranspiration 
(PET) (cm) 

144 139 127 99 

Aridity index (moisture 
deficit=PET – ppt.) 

97 81 41 -18 

Soil Type Silt-loam 
Roxbury 
Silt-loam 

Sandy-loam Stoy silt-loam 

* GDD = Atmx+Tmin/2-50; if GDD is less than zero set to zero 
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Table 2.3. Ecotype level results of the MANOVA comparing photosynthesis (A), stomatal conductance (gs), internal CO2 (Ci), 
transpiration (E), and intrinsic water use efficiency (WUE) of A. gerardii ecotypes at 1500 µmol photons m-2 s-1 (df error=1498). 
 

site ecotype 
measurement 

period 
period*site period*ecotype site*ecotype period*site*ecotype 

 df F P df    F   P df    F    P  df F      P df   F     P df    F     P df F P 

A 3 137.52 <0.001 4 42.13 <0.001 2 201.44 <0.001 6 19.97 <0.001 8 3.66 <0.001 12 2.34 0.006 24 1.19 0.244 

gs 3 70.38 <0.001 4 18.15 <0.001 2 65.55 <0.001 6 42.85 <0.001 8 18.52 0.018 12 2.73 0.001 24 1.24 0.195 

Ci 3 44.51 <0.001 4 12.57 <0.001 2 41.49 <0.001 6 29.15 <0.001 8 1.76 0.082 12 2.38 0.005 24 0.87 0.648 

E 3 48.85 <0.001 4 22.32 <0.001 2 140.57 <0.001 6 14.02 <0.001 8 2.11 0.033 12 5.05 <0.001 24 1.05 0.400 

WUE 3 27.37 <0.001 4 8.82 <0.001 2 34.19 <0.001 6 70.00 <0.001 8 1.61 0.119 12 2.36 0.005 24 1.05 0.390 

Degrees of freedom (df), F-scores (F), and P-values (P) from statistical analysis of variance are presented. Significant values (P<0.05) 
are bold. 
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Table 2.4. Population level results of the MANOVA comparing photosynthesis (A), stomatal conductance (gs), internal CO2 (Ci), 
transpiration (E), and intrinsic water use efficiency (WUE) of A. gerardii populations at 1500 µmol photons m-2 s-1 (df error=1327). 
 

site population 
measurement 

period 
period*site period*population site*population 

period*site* 
population 

 df F P df F P df F P df F P df F P df F P df F P 

A 3 197.54 <0.001 12 14.85 <0.001 2 285.56 <0.001 6 25.26 <0.001 24 1.97 0.003 36 1.51 0.028 72 0.99 0.496 

gs 3 97.57 <0.001 12 7.02 <0.001 2 87.60 <0.001 6 60.62 <0.001 24 1.46 0.070 36 1.45 0.042 72 1.16 0.170 

Ci 3 70.87 <0.001 12 4.82 <0.001 2 77.83 <0.001 6 38.46 <0.001 24 1.23 0.208 36 1.39 0.063 72 0.85 0.807 

E 3 57.81 <0.001 12 7.73 <0.001 2 185.01 <0.001 6 19.57 <0.001 24 1.06 0.382 36 1.87 0.002 72 0.72 0.962 

WUE 3 43.62 <0.001 12 3.51 <0.001 2 68.77 <0.001 6 80.00 <0.001 24 1.12 0.318 36 1.41 0.056 72 0.92 0.676 

Degrees of freedom (df), F-scores (F), and P-values (P) from statistical analysis of variance are presented. Significant values (P<0.05) 
are bold. Values near significance are italicized.  
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Figure 2.2. (A) Photosynthesis rates (A), (B) stomatal conductance (gs), (C) internal CO2 
(Ci), (D) transpiration (E), and (E) intrinsic water use efficiency (WUE) of A. gerardii 
ecotypes at the Carbondale, IL site. Central KS, Eastern KS, and Illinois bars are 
averages of their four respective populations (see Table 2.1). All measures were made at 
1500 µmol photons m-2 s-1. Bars are means of 10 replicate plots ± SE during each of the 
three measurement periods. Tukey’s HSD comparisons are presented in Appendices 2.1-
2.5. 
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Figure 2.3. (A-E) A, gs, Ci, E, and WUE of A. gerardii ecotypes at the Manhattan, KS 
site. Panels and abbreviations are as in Fig. 2.2. Bars are means of 10 replicate plots ± SE 
during three measurement periods. Tukey’s HSD comparisons are presented in 
Appendices 2.1-2.5. 

  

Manhattan, KS, USA 
40 ------------------------~ 0.4 

' (J) 30 
N 

'E 
N 

O 20 l) 

0 
E 
2, 10 
<:( 

0 

A - Central KS B 
Eastern KS 

- Illinois 
= Kaw 
- Sand 

250 C D 

200 -[ 150 
-3: 
cs 100 

50 

0 

150 

w 
:::i 100 
(.) 
·u5 
C 
·c 50 c 

0 

E 

Early Middle Late 
Measurement Period 

Early Middle Late 
Measurement Period 

0.3 :p 
3 

0.2 

0.1 

0 .0 
12 

10 

8 

6 

2 

0 

Q. 

3 
"' 

rn 
3 
3 
Q. 

3 
"' 



75 
 

 

  

  

Figure 2.4. (A-E) A, gs, Ci, E, and WUE of A. gerardii ecotypes at the Hays, KS site. 
Panels and abbreviations are as in Fig. 2.2. Bars are means of 10 replicate plots ± SE 
during three measurement periods. Tukey’s HSD comparisons are presented in 
Appendices 2.1-2.5. 
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Figure 2.5. (A-E) A, gs, Ci, E, and WUE of A. gerardii ecotypes at the Colby, KS site. 
Panels and abbreviations are as in Fig. 2.2. Bars are means of 10 replicate plots ± SE 
during three measurement periods. There were no individuals of the Carnahan population 
at Colby, KS. Tukey’s HSD comparisons are presented in Appendices 2.1-2.5. 
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 Appendix 2.1. Tukey’s HSD results for photosynthesis. 
 
Site results of Tukey’s HSD for photosynthesis (µmol CO2 m-2 s-1).  
Sites not connected by the same letter are significantly different. 
Site   Least Squares Mean 
Carbondale, IL A  26.69 
Hays, KS  B 17.74 
Manhattan, KS  B 17.62 
Colby, KS  B 17.19 
 

Ecotype results of Tukey’s HSD for photosynthesis (µmol CO2 m-2 s-1). 
Ecotypes not connected by the same letter are significantly different. 
Ecotype   Least Squares Mean 
Sand A  23.16 
Central KS A  21.54 
Kaw  B 18.95 
Eastern KS  B 18.16 
Illinois  B 17.23 
 
 
Measurement period results of Tukey’s HSD for photosynthesis (µmol CO2 m-2 s-1). 
Measurement period not connected by the same letter are significantly different. 
Measurement 
Period 

   Least Squares Mean 

Early A   24.06 
Middle  B  20.99 
Late   C 14.37 
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Appendix 2.2. Tukey’s HSD results for stomatal conductance. 
 
Site results of Tukey’s HSD for stomatal conductance (mol m-2 s-1). 
Sites not connected by the same letter are significantly different. 
Site    Least Squares Mean 
Carbondale, IL A   0.242 
Hays, KS  B  0.173 
Colby, KS  B  0.170 
Manhattan, KS   C 0.153 
 

Ecotype results of Tukey’s HSD for stomatal conductance (mol m-2 s-1). 
Ecotypes not connected by the same letter are significantly different. 
Ecotype    Least Squares Mean 
Central KS A   0.206 
Sand A B  0.196 
Kaw  B C 0.179 
Eastern KS   C 0.174 
Illinois   C 0.167 
 
 
Measurement period results of Tukey’s HSD for stomatal conductance (mol m-2 s-1). 
Measurement period not connected by the same letter are significantly different. 
Measurement 
Period 

   Least Squares Mean 

Early A   0.218 
Middle  B  0.179 
Late   C 0.155 
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Appendix 2.3. Tukey’s HSD results for intercellular CO2.  
 
Site results of Tukey’s HSD for intercellular CO2 (ppm).  
Sites not connected by the same letter are significantly different. 
Site    Least Squares Mean 
Colby, KS A   181 
Hays, KS A   177 
Manhattan, KS  B  166 
Carbondale, IL   C 138 
 

Ecotype results of Tukey’s HSD for intercellular CO2 (ppm).  
Ecotypes not connected by the same letter are significantly different. 
Ecotype   Least Squares Mean 
Illinois A  174 
Eastern KS A  174 
Central KS A  170 
Kaw A  165 
Sand  B 144 
 
 
Measurement period results of Tukey’s HSD for intercellular CO2 (ppm).  
Measurement period not connected by the same letter are significantly different. 
Measurement 
Period 

  Least Squares Mean 

Late A  185 
Middle  B 157 
Early  B 155 
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Appendix 2.4. Tukey’s HSD results for transpiration.  
 
Site results of Tukey’s HSD for transpiration (mmol H2O m-2 s-1).  
Sites not connected by the same letter are significantly different. 
Site    Least Squares Mean 
Colby, KS A   6.49 
Hays, KS A   6.48 
Carbondale, IL  B  5.14 
Manhattan, KS   C 4.50 
 

Ecotype results of Tukey’s HSD for transpiration (mmol H2O m-2 s-1).  
Ecotypes not connected by the same letter are significantly different. 
Ecotype   Least Squares Mean 
Sand A  6.51 
Central KS A  6.12 
Eastern KS  B 5.35 
Kaw  B 5.31 
Illinois  B 4.97 
 
 
Measurement period results of Tukey’s HSD for transpiration (mmol H2O m-2 s-1).  
Measurement period not connected by the same letter are significantly different. 
Measurement 
Period 

  Least Squares Mean 

Early A  6.60 
Middle A  6.37 
Late  B 3.98 
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Appendix 2.5. Tukey’s HSD results for intrinsic water-use efficiency.  
 
Site results of Tukey’s HSD for intrinsic water-use efficiency (A/gs).  
Sites not connected by the same letter are significantly different. 
Site    Least Squares Mean 
Carbondale, IL A   124.2 
Manhattan, KS  B  117.4 
Hays, KS   C 106.6 
Colby, KS   C 104.3 
 

Ecotype results of Tukey’s HSD for intrinsic water-use efficiency (A/gs).  
Ecotypes not connected by the same letter are significantly different. 
Ecotype   Least Squares Mean 
Sand A  123.9 
Kaw A B 114.3 
Central KS  B 109.9 
Eastern KS  B 108.9 
Illinois  B 108.7 
 
 
Measurement period results of Tukey’s HSD for intrinsic water-use efficiency (A/gs).  
Measurement period not connected by the same letter are significantly different. 
Measurement 
Period 

  Least Squares Mean 

Middle A  120.3 
Early A  116.3 
Late  B 102.9 
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CHAPTER 3: LEAF ANATOMY VARIATION AMONG POPULATIONS OF 

ANDROPOGON GERARDII ALONG A PRECIPITATION GRADIENT 

 

INTRODUCTION 

Many plant species show clinal variation of phenotype across latitudinal, 

longitudinal, or altitudinal gradients (Clausen et al., 1939;Banks and Whitecross, 1971; 

Chapin and Chapin, 1981; Ehleringer and Cooper, 1988; Hogan et al., 1994; Etterson, 

2004; Ingvarsson et al., 2006). The Great Plains of North America has a west-east 

climatic gradient, where annual precipitation ranges from 30 cm in the west to more than 

120 cm in the east (Sala et al., 1988; Epstein et al., 1998). Much of the phenotypic 

variation among plants across this gradient is environmentally caused (Scheiner and 

Goodnight, 1984). 

Grasses, which are abundant across the Great Plains, can have either the C3 or C4 

photosynthetic pathway. Conditions in the Great Plains favor C4 species (Ehleringer, 

1978; Epstein et al., 1997), as most precipitation comes during the growing season when 

temperatures are warm (Adler and HilleRisLambers, 2008). There are prominent 

structural differences between C3 and C4 leaves. C4 grasses can be differentiated from C3 

grasses by Kranz anatomy in leaves, characterized by enlarged bundle sheath cells 

containing chloroplasts rich in starch (Dengler et al., 1994; Muhaidat et al., 2007). In 

addition, few mesophyll cells separate the closely arranged vascular bundles of C4 

grasses compared to the wide spacing and many mesophyll cells between C3 vascular 

bundles (Sudderth et al., 2007). 
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Many grasses are well adapted to xeric environments. Narrow leaves and leaf 

rolling are common in drought tolerant grasses (Redmann, 1985). Narrow leaves increase 

the efficiency of heat exchange, can decrease intercepted irradiance (Parkhurst and 

Loucks, 1972) by half, and increase conductance to heat loss by a factor of three 

(Redmann, 1983). Specialized epidermal cells, called bulliform cells, facilitate leaf 

rolling or folding by decreased turgor pressure as plant water potential decreases 

(O’Toole and Cruz, 1980; Barnes, 1985, 1986; Maricle et al., 2009).  

Drought is a prominent environmental stress that influences leaf structure (Smith 

and Nobel, 1978; Carmo-silva et al, 2009). Decreased soil water potential can decrease 

leaf length and growth rate (Smith and Nobel, 1978). Carmo-Silva et al. (2009) found 

specific leaf area and the relative water content of leaves decreased with soil water 

content. They also measured an increase in the mesophyll to bundle sheath ratio in 

droughted leaves. Anatomical variation is expected within and among ecotypes in 

response to water availability.  

Common garden experiments are frequently used to determine whether 

characteristics of a population are influenced by genetic or environmental factors. Leaf 

anatomy has been studied in common gardens over climatic gradients (Cordell et al., 

1998; Hovenden and Schoor, 2004) and variation has generally been attributed to 

environmental factors (Dickison, 2000). For example, leaf form and function can differ 

greatly under high and low light conditions. High light can lead to larger and thicker 

leaves, large and abundant mesophyll cells, increased photosynthetic rates, and higher 
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stomatal density (Nobel et al., 1975; Lichtenthaler et al., 1981). Altitudinal variation in 

temperature, partial pressure of CO2, and irradiation affects leaf size (Williams and 

Black, 1993), stomatal density, and leaf thickness (Körner et al., 1986; Cordell et al., 

1998). Increased salinity leads to decreased stomatal pore area and thinner epidermal and 

mesophyll tissue (Parida et al., 2004). Much published work indicates environment plays 

the primary role in shaping leaf anatomy of populations within a species (Smith and 

Nobel, 1978; Hovenden and Schoor, 2004; Carmo-Silva et al., 2009), showing the 

plasticity of leaf anatomy, but natural selection could shape leaf structure in populations 

adapted to dry or wet climates. 

General leaf anatomy between many grass species has been documented (Brown, 

1958; Brown et al., 1985; Garnier and Laurent, 1994; Garnier et al., 1999; Maricle et al., 

2009), while anatomical variation and adaptations of leaves among populations of a 

single species has received relatively little attention. Stace (1991) suggested anatomical 

features in grasses might be more important than morphological features because 

anatomical features are less susceptible to environmental change. Among populations, 

differences have been described in chloroplast shape (Zheng et al., 2000), vascular 

bundle area, midrib succulence, and stomatal density (Hameed et al., 2009). Ferris et al. 

(1996) observed leaves of Lolium perenne L. and determined stomatal density, mesophyll 

area, and epidermal cell length varied with CO2 and temperatures.  

Andropogon gerardii Vitman (big bluestem) is dominant in tallgrass and mixed 

grass prairies (Gustafson et al., 2004) and A. gerardii has high variation of phenotypes 

across the climatic gradient of the Great Plains (McMillan, 1959). The present study 

investigated variation in leaf anatomy to differentiate environmental and genotypic 
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characters in A. gerardii. Leaves of five populations of A. gerardii, including sand 

bluestem (A. gerardii var. hallii = A. hallii Hack.), were sampled from four common 

gardens across a climatic gradient of the Great Plains and evaluated by light microscopy. 

Because of conspicuous phenotypic differences, populations were expected to have 

genetic differences in leaf thickness and internal structure, in addition to 

environmentally-controlled phenotypic plasticity. 

Anatomical and morphological differences have been documented among 

populations of a single grass species grown at a common site (McWhorter, 1971; Barnes, 

1986) and following this, I expected leaf anatomy of A. gerardii populations to vary 

when grown at common sites. I hypothesized (1) xeric populations, sand bluestem and 

Central KS, would be more drought adapted than mesic populations by containing a 

higher percentage of bulliform cells for leaf rolling or folding. (2) All populations would 

have a higher percentage of bulliform cells when grown at dry sites compared to wet sites 

and (3) plants grown at mesic sites would have larger veins and a greater proportion of 

the leaf would consist of veins than at xeric sites. (4) Leaves of sand bluestem and 

Central KS, the xeric populations, would be thicker and based on previous research (5) 

environment would influence leaf anatomy of populations more than genetics. 
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MATERIALS AND METHODS 

Seed Collection and Planting of Common Gardens 

Seeds of five populations of A. gerardii were planted in four common gardens 

along the west-east precipitation gradient of the Great Plains as part of a large reciprocal 

common garden experiment. Seeds for three A. gerardii populations were hand collected 

in 2008 from Cedar Bluff Reservoir in western Kansas (38°45'N, 99°46'W), Konza 

Prairie in eastern Kansas (39°05'N, 96°36'W), and Twelve Mile Prairie in southern 

Illinois (38°46'N, 88°50'W). Seeds of two widely used cultivars, A. gerardii ‘Kaw’ (big 

bluestem, accession 421276) and A. gerardii var. hallii ‘Garden’ (sand bluestem, 

accession 421277), were obtained from the USDA Manhattan Plant Materials Center in 

Manhattan, KS.  

In autumn 2008, seeds from each population of A. gerardii were planted in 

Metromix 510 potting mix (Scotts Company, Marysville, OH, USA) in 10 cm x 10 cm 

pots in a greenhouse at Kansas State University. In August 2009, A. gerardii plants were 

transplanted from pots into four common experimental gardens arranged from west to 

east in Colby, KS (39°24'N 101°04'W), Hays, KS (38°52'N, 99°20'W), Manhattan, KS 

(39°12'N, 96°35'W), and Carbondale, IL (37°44'N, 89°10'W), following a precipitation 

gradient ranging from 50 cm annually in Colby, KS, to 120 cm annually in Carbondale, 

IL. Plants were arranged 50 cm apart and were surrounded by Dewitt Sunbelt landscape 

fabric (Dewitt Co., Sikeston, MO, USA) to decrease competition from unwanted plants. 

Common gardens were arranged in 10 rows with one plant of each population in each 

row, totaling 10 plants of each population at each common garden site. Plants grew under 

ambient conditions at each site. 
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Collecting and Fixing of Leaf Tissue  

In the middle of the growing season, one leaf from each of three randomly-

selected plants of each population was sampled at each common garden site, totaling 60 

leaves. The middle portion of the youngest, fully-expanded leaf was taken from these 

plants. Leaves were fixed in FAA (50% ethanol, 5% glacial acetic acid, 10% 

formaldehyde, 35% dH2O), stored at 4°C, and were washed for one hour with 50% 

ethanol prior to embedding. 

Dehydration and Embedding  

Leaves were dehydrated and infiltrated with paraffin over a series of ethanol and 

tert-butyl alcohol solutions after Ruzin (1999) with a minimum of 30 minutes per 

solution. A final step was added with 33% tert-butyl alcohol and 67% paraffin oil. Leaves 

were embedded in Carowax (Carolina Biological Supply Co., Burlington, NC, USA) by 

melting the wax at 58°C and immersing leaves into melted wax for a minimum of 12 

hours. 

Sectioning, Mounting, and Staining  

Embedded leaves were sectioned at thicknesses from 10 - 20 µm with a Spencer 

Model 815 Microtome (American Optical Co., Buffalo, NY, USA) to find the optimal 

thickness for each leaf. Glass slides were prepared by smearing a drop of Haupt’s 

adhesive uniformly over the surface of the slide and then flooding the surface with 4% 

aqueous formaldehyde. Microtome ribbons were placed on the flooded slide and the slide 

was placed on a warming tray at 37°C for a minimum of 10 minutes, then removed and 
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stored horizontally overnight. Leaf sections underwent a xylene-alcohol series to dewax 

and rehydrate. Sections were stained with 1% Safranin and 0.05% Toluidine blue. 

Dehydration followed with an alcohol-xylene series. 

A drop of Kleermount (Carolina Biological Supply Co., Burlington, NC, USA) 

was placed on the processed slides and a coverslip was placed on the slide. Slides were 

stored horizontally overnight. 

Measurements  

An Olympus BX51 microscope (Olympus Corporation, Center Valley, PA, USA) 

with an attached Olympus DP71 digital camera was used to take brightfield images of 

leaf sections. Images were analyzed with Image J (National Institute of Health, Bethesda, 

MD, USA). Measurements on each section included maximum leaf thickness at the 

midrib, maximum and minimum leaf thickness at a non-midrib area, interveinal distance, 

minor and major vein area, percent bulliform cells, and percent vascular tissue. 

Interveinal distance was measured as the minimum distance between the two nearest 

bundle sheath cells of adjacent vascular bundles. Maximum and minimum leaf 

thicknesses at a non-midrib area were measured at a minimum of 200 µm from the 

midrib, but at least 200 µm from the leaf edge. Minor and major vein areas include the 

vascular bundle and bundle sheath. Measurements for each leaf are the mean of six 

duplicate veins to account for small variations in vein size. 

Statistical Analysis 

All data were analyzed with JMP 9.0.2 (SAS Institute Inc., Cary, NC, USA). 

Replicate measures were from three plants of the same population at each site. A 
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MANOVA was used; factors were site, population and the site   population interaction. 

This was followed with univariate tests and Tukey’s honest significant difference tests to 

determine significant differences between means (Appendix 1). To determine statistically 

significant differences, analyses were performed at α=0.05. 
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RESULTS 

Vascular Tissue 

 Leaves from all populations and sites had Kranz anatomy (Dengler and Nelson, 

1999) with two distinct types of photosynthetic cells and closely spaced veins (Fig. 3.1). 

Photosynthetic tissue was comprised of a single layer of large chlorenchymatous bundle 

sheath cells encircled by one layer of chlorenchymatous mesophyll cells. Each mesophyll 

cell was in direct contact with a bundle sheath cell. In some cases, colorless parenchyma 

cells separated mesophyll cells from those of neighboring veins. Bundle sheath cells were 

large and contained centrifugal chloroplasts. Frequently the bundle sheath of major veins 

was connected to the epidermis by a bundle sheath extension. Bundle sheath extensions 

were especially notable in the sand bluestem population (Fig. 3.1). In all leaves, major 

veins contained an inner mestome sheath of sclerenchymatous cells. Mestome sheaths 

surrounded the phloem, but not the entire vascular bundle, similar to observations by 

Brown (1975). In all populations except sand bluestem, bundle sheath cells on the xylem 

side of major veins had thick secondary walls. The most heavily lignified bundle sheath 

cells contained no chloroplasts. Additionally, the abaxial side of major and minor veins 

and the adaxial side of major veins were protected by sclerenchymatous fiber bundles, 

which were particularly conspicuous in the sand bluestem population. Large bulliform 

cells were aligned with the adaxial side of minor veins. Interveinal distances ranged from 

21 µm to 53 µm across sites and populations (Fig. 3.2D). In some leaves, interveinal 

distances were short because mesophyll cells of neighboring vascular bundles were 

directly contacting each other. In other leaves, colorless parenchyma cells separated 

mesophyll cells of neighboring vascular bundles, increasing the interveinal distance. 
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Interveinal distance varied from leaf to leaf (Table 3.1) and was not a site (F=0.96, df=3, 

p=0.422) or population (F=1.67, df=4, p=0.176) difference. No interactions were detected 

(F=0.70, df=12, p=0.736). 

Cross-sectional areas of major veins ranged from 4,925 to 23,925 µm2 per vein 

across sites and populations (Fig. 3.3A). Vein sizes differed by site because of differences 

in phloem and xylem cross-sectional area, often with larger sieve tubes and vessel 

elements at the mesic Carbondale site compared to other sites. At Carbondale, IL, major 

veins were 47% and 49% larger than at Manhattan, KS and Hays, KS, respectively 

(F=5.18, df=3, p=0.004). At Colby, KS, major veins were not different from other sites. 

No differences were detected among populations (F=1.22, df=4, p=0.316) and no 

interactions were detected (F=1.04, df=12, p=0.428). 

 Minor veins were surrounded by large chlorenchymatous bundle sheath cells with 

no lignification and no mestome sheath similar to observations of Brown (1975). The 

cross-sectional area of minor veins ranged from 1,184 to 3,688 µm2 per vein across sites 

and populations (Fig. 3.3B). No differences were detected across sites (F=0.88, df=3, 

p=0.462), or among populations (F=1.29, df=4, p=0.291), and no interactions were 

detected (F=0.78, df=12, p=0.670). 

 The percentage of leaves comprised of vascular bundles ranged from 15% to 33% 

across sites and populations (Fig. 3.3D). Variation arose from abundances of bulliform 

cells, colorless parenchyma cells, and mesophyll cells. No differences in percentage of 

vascular bundles were detected across sites (F=1.71, df=3, p=0.181). Among populations, 

the vascular bundle areas of 12 Mile and Kaw were 15% and 16% greater than in Cedar 
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Bluff (F=2.41, df=4, p=0.065), whereas sand bluestem and Konza were not different from 

other populations. No interaction was detected (F=0.86, df=12, p=0.593). 

Bulliform Cells 

 Bulliform cells occurred in groups of two to eight adjacent cells, and occupied 

most of the epidermis adaxial to minor veins (Fig. 3.1). Bulliform cells were not present 

on the abaxial side of leaves. Bulliform cells were the largest cells in leaves, but differed 

considerably in size among populations and sites (Table 3.1), with larger bulliform cells 

at the mesic Carbondale, IL site and smaller bulliform cells at xeric sites. The percentage 

of the leaf comprised of bulliform cells ranged from 15% to 35% across sites and 

populations (Fig. 3.3C). Across sites, Colby, KS had a 27% higher percentage of 

bulliform cells compared to plants at Manhattan, KS (F=5.23, df=3, p=0.004). At Hays, 

KS and Carbondale, IL, percentage of bulliform cells did not differ from other sites. 

Among populations, 12 Mile and Konza had a 27% and 33% greater proportion of 

bulliform cells than did sand bluestem (F=4.73, df=4,  p=0.003), while Cedar Bluff and 

Kaw were not different from other populations. No interaction was detected (F=0.70, 

df=12, p=0.739). 

Midribs 

 Midribs consisted of large, colorless parenchyma cells on the adaxial side of 

leaves and chlorenchyma and vascular tissue on the abaxial side, with a large abaxial 

bundle of sclerenchymatous fibers protecting the midvein (Fig. 3.4). Midveins typically 

had a prominent mestome sheath. In some cases, mechanical cells lined the adaxial side 

of the midrib. Leaf midrib thickness ranged from 198 µm to 740 µm across sites and 
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populations (Fig. 3.2A). Variation in midrib size was predominantly due to the number 

and size of colorless parenchyma cells. The abundance of colorless parenchyma cells in 

each midrib cross-section ranged from under 20 to well over 100 cells. Variation in the 

size of vascular bundles and thickness of abaxial fiber bundles were minor contributions 

to midrib thickness. Midribs were 41% and 67% thicker in Carbondale, IL than in 

Manhattan, KS or Hays, KS, respectively (F=6.89, df=3, p<0.001). Midrib thicknesses at 

Manhattan and Hays were not different from each other, and midrib thicknesses at Colby, 

KS were not different from other sites. There were no differences among populations 

(F=0.57, df=4,  p=0.687) and there were no interactions (F=0.35, df=12, p=0.972). 

Leaf Thickness (non-midrib) 

 Leaf blades retained a consistent thickness at distances from 200 µm outside the 

midrib to 200 µm inside the leaf edge (Figs. 3.1, 3.4). The majority of leaf volume 

consisted of vascular bundles, chlorenchyma, epidermal cells, and bulliform cells, with 

minor contributions from intercellular spaces and colorless parenchyma cells. Leaf 

thickness varied primarily due to sizes of bulliform cells and vascular bundles. Maximum 

leaf thickness ranged from 104 µm to 243 µm across sites and populations (Fig. 3.2B). 

Maximum leaf thickness did not differ across planting sites (F=2.05, df=3, p=0.122). 

Among populations, sand bluestem leaves were not different from Konza leaves, but 

were 20%, 28%, and 42% thicker than Cedar Bluff, 12 Mile, and Kaw, respectively 

(F=8.56, df=4, p<0.001). Konza was not different from Cedar Bluff or 12 Mile, but was 

23% thicker than Kaw. Cedar Bluff, 12 Mile, and Kaw were not different from each 

other. No interaction was detected (F=1.27, df=12, p=0.276). 
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 Minimum leaf thickness ranged from 85 to 208 µm across sites and populations 

(Fig. 3.2C). Minimum leaf thickness was not different across sites (F=1.94, df=3, 

p=0.138). Sand bluestem and Konza were not different, but had minimum thicknesses 

28% and 23% thicker than Kaw, respectively (F=3.58, df=4, p=0.014), whereas Cedar 

Bluff and 12 Mile were not different from any other populations. No interactions were 

detected (F=0.54, df=12, p=0.875). 
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DISCUSSION 

General Leaf Anatomy of Andropogon gerardii 

 Studies of grass leaf anatomy have included variation across seasons (Ferris et al., 

1996), between perennials and annuals (Garnier and Laurent, 1994), between C3 and C4 

species (Dengler et al., 1994), within C4 subtypes (Carmo-Silva et al., 2009), across C4 

species (Magai et al., 1994), between species of a single genus (Maricle et al., 2009), and 

adaptations of species to water stress (Maricle et al., 2007; Hameed et al., 2009). Other 

studies have compared variation among multiple species along a precipitation gradient 

(Cunningham et al., 1999), but few studies have addressed variation in leaf anatomy of a 

single species over a precipitation gradient (Vasellati et al., 2001). In my study, five 

populations of A. gerardii were planted in common gardens across a precipitation 

gradient to investigate which anatomical characteristics of leaves are environmentally 

controlled, and which are genetically controlled. All populations of A. gerardii from all 

sites exhibited Kranz anatomy in the “classical” NADP-ME type, with one layer of large 

bundle sheath cells containing centrifugally-arranged chloroplasts, similar to observations 

by Dengler and Nelson (1999). Variation in leaf anatomy was due to a combination of 

drought adaptation of populations and plasticity of anatomical characteristics. 

Drought Adaptations 

Many grasses are well adapted to xeric environments; typical adaptations are 

narrow leaves (Redmann, 1985) and specialized epidermal cells called bulliform cells. 

Bulliform cells facilitate leaf folding and rolling, decreasing the surface area of leaves 

and reducing water loss (O’Toole and Cruz, 1980; Maricle et al., 2009). Bulliform cells 
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decrease in volume as turgor pressure and plant water potential decrease, leading to the 

rolling or folding action of the leaf. Andropogon gerardii has abundant bulliform cells 

(Magai et al., 1994) and the percentage of the leaf that consists of bulliform cells varied 

among populations and sites. Although bulliform cells were under considerable 

environmental control, there was also a significant genetic component. Sand bluestem 

had a lower percentage of bulliform cells compared to big bluestem populations. Previous 

observations indicate sand bluestem rolls leaves to a greater degree than big bluestem 

(Barnes, 1985, 1986). While bulliform cells are involved in leaf rolling, perhaps 

proportion of bulliform cells in leaf does not directly relate to leaf rolling ability. 

Placement of bulliform cells in a leaf might be more important than size. The mesic big 

bluestem populations generally had greater proportions of bulliform cells than did the 

xeric population. These findings were contrary to our expectation that the most xeric 

population, Cedar Bluff, would have the greatest proportion of bulliform cells. A large 

proportion of bulliform cells was anticipated to be a drought adaptation to enhance leaf 

rolling and folding. While having larger and more abundant bulliform cells might allow a 

leaf to roll more under drought, it requires more water to produce large bulliform cells 

and maintain their turgor pressure. Furthermore, leaf rolling and folding in grasses might 

have a limited role in water loss, as stomata typically close prior to leaf rolling or folding 

during times of water stress (Redmann, 1983). Perhaps more important were prominent 

differences in leaf size between populations of A. gerardii. Plants of mesic populations 

had longer and wider leaves compared to xeric populations (Tetreault et al. in prep.). The 

smaller leaf size of xeric populations reduces evaporative surface area and might reduce 

the need for water conservation by other strategies like leaf rolling. In xeric 
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environments, narrower and shorter leaves must be more beneficial than large bulliform 

cells for conserving water. 

Studies have indicated leaf thickness increases as annual precipitation decreases 

(Abrams, 1990), indicating increased thickness of leaves is an adaptation to drought. 

Hovenden and Schoor (2004) reported leaf thickness of southern beech was dependent on 

population origin rather than the planting site. Similarly, we found maximum and 

minimum thicknesses of A. gerardii leaves to be influenced by the population of origin 

and not the planting site. Sand bluestem had leaves 28% thicker than the Kaw leaves, 

supporting sand bluestem as the most drought-adapted population. This is consistent with 

the work of Barnes (1986) and Ravenek et al. (in review), who measured thicker leaves in 

sand bluestem compared to big bluestem. Sand bluestem generally grows in sandy soils 

that have poor water retention (Barnes, 1985). Having a thicker leaf decreases the surface 

area to volume ratio, decreasing the evaporative surface of the leaf. Thicker leaves often 

have greater quantities of mesophyll, increasing photosynthetic capabilities at a rate of 

transpiration similar to an equally-sized, thin leaf (Nobel et al., 1975; Sims and Pearcy, 

1992). Moreover, in the present study, all plants were grown in bright sunlight and leaves 

subjected to bright sunlight are expected to be thicker than shaded leaves. Our measures 

were consistent with sun leaf measures in A. gerardii by Knapp and Gilliam (1985). 

Big bluestem populations have a greater density of leaf trichomes compared to 

sand bluestem (Caudle and Maricle, unpublished data), consistent with descriptions by 

Rydberg (1932). Leaves of sand bluestem can also have trichomes (McGregor et al., 

1986), but instead typically have glaucous leaves (Rydberg, 1932; McGregor et al., 

1986). Sand bluestem has five times more epicuticular wax than big bluestem (Ravenek 
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et al., in review), likely an alternative strategy for water conservation in sand bluestem 

(Barnes, 1986). Consistent with our observations of bulliform cells, drought adaptation in 

A. gerardii leaves might be primarily based on area of the evaporative surface, and less 

dependent on factors like leaf rolling (Redmann, 1983).  

C4 plants have closely-spaced veins, maintaining short diffusive distances for 

metabolite transfer (McKown and Dengler, 2007). In A. gerardii, the percentage of leaf 

area consisting of vascular tissue was lower in populations from xeric regions compared 

to the mesic populations. The area of vascular tissue often decreases as soil moisture 

decreases (Barss, 1930; Penfound, 1931). As soils become drier, less water is available to 

pass through plants and leaves, reducing the need for vascular tissue to transport water. 

Contrary to this, Oppenheimer et al. (1960) stated an increase in vascular area is a 

drought adaptation and Jacobsen et al. (2007) discovered C3 species under high water 

stress generally had a greater density of xylem. Proportion of vascular tissue in C4 leaves 

is dependent on the size of veins and interveinal distance. It is unlikely C4 plants will 

change proportion of vascular tissue as a response to drought because veins are already 

closely spaced. Within C4 grasses, vascular bundles are closely arranged and there is 

likely no advantage to decreasing this already short distance. In addition, no differences 

were detected between populations or sites for interveinal distances or the size of minor 

veins. Drought-adapted populations had greater leaf thickness; when paired with equally 

sized veins and interveinal distances, thicker leaves resulted in a lower proportion of 

cross-sectional area of vasculature. 

Percentage of vascular tissue is an adaptation among populations but was not 

influenced by drought in this study. By contrast, major vein size was environmentally 
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influenced, but did not differ among populations. Consequently, various features of 

vasculature are important in drought responses of A. gerardii, either from genetic or 

environmental influences. 

Plastic Characteristics  

Size of leaf major veins in A. gerardii was controlled by water availability, as the 

drier site had smaller veins compared to mesic sites. Major veins decreased in size as soil 

moisture decreased. Sizes of major veins in this study were similar to measures by Knapp 

and Gilliam (1985), who demonstrated vein cross-sectional area in A. gerardii increased 

with bright sunlight. The results of the present study indicate veins can also become 

larger with increasing moisture availability. The largest veins for all populations were in 

Carbondale, IL, where soil moisture was consistently high. Similarly, Villar-Salvador et 

al. (1997) noted maximum size of xylem vessels of many Quercus species increased in 

size with annual precipitation. An increase in area of major veins would allow passage of 

greater volumes of water as it becomes available. However, Barnes (1986) measured the 

reverse pattern, where size of major veins increased in bluestems grown in sand dunes 

compared to those grown in meadows. This suggests vascular development in A. gerardii 

leaves might depend on more than soil water content. Increased vein size might be an 

adaptation to sandy soils, allowing sand bluestem to take up water quickly when 

available, because sandy soils have poor water retention (Campbell and Norman, 1998). 

Interactions between soil water potential, soil type, and the resulting plant development 

could be an interesting area for future research. 
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Leaf midrib thickness increased across sites as soil moisture increased. Midribs 

primarily consisted of large, colorless parenchyma cells that were highly vacuolated and 

likely functioned to store water. Carmo-Silva et al. (2009) noted leaves of Paspalum 

dilatum had prominent midribs, causing folding of leaves rather than rolling. Barnes 

(1985, 1986) noted big bluestem leaves generally fold, whereas sand bluestem leaves roll 

into cylinders. Thick midribs of the mesic big bluestem populations might induce leaf 

folding rather than rolling. Leaves at the Carbondale site had larger colorless parenchyma 

cells compared to leaves at xeric sites. Small cells are adapted to maintain lower water 

potentials compared to large cells (Cutler et al., 1977), enabling the plant to retain turgor 

pressure in drier soils. As soil moisture increased, more water was available for cell and 

leaf expansion. Andropogon gerardii grown in mesic environments evidently has an 

increased ability to fold leaves at the midrib. Nevertheless, how leaf thickness in A. 

gerardii is affected by soil type and moisture remains an open question. In a field 

experiment, Barnes (1986) measured increased leaf thickness in bluestems grown in sand 

dunes compared to those grown in meadows. By contrast, a greenhouse experiment by 

Ravenek et al. (in review) measured lower specific leaf area (thicker leaves) in big 

bluestem and sand bluestem grown in prairie soil compared to sand. Measurements of 

Barnes (1986) and Ravenek et al. (in review) are likely different due to soil type, water 

availability, and environmental variation between field and greenhouse such as radiation, 

wind, and humidity during leaf development of A. gerardii.  

Size of bulliform cells was influenced by the environment (Table 3.1). At 

Manhattan, KS, where rainfall was abundant, bulliform cells were 26% larger than at 

Colby, KS where conditions were dry; however, Hays, KS and Carbondale, IL were not 
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different from Colby and Manhattan. The 2010 growing season in Carbondale was drier 

than average, which contributed to the smaller-than-expected area of bulliform cells in 

leaves at Carbondale. In addition, the large and abundant colorless parenchyma cells in 

leaf midribs at Carbondale might offset the benefit of large bulliform cells adaxial to 

minor veins. Leaf folding potentially reduces the need for large bulliform cells. These 

data support leaf rolling or folding, facilitated by bulliform cells and midrib parenchyma 

cells, as less beneficial than narrower, shorter leaves in xeric environments. 

Conclusion 

Whereas environmental factors are highly influential on leaf anatomy, a genetic 

predisposition for certain characteristics plays an equal role. Within A. gerardii, clear 

differences in characteristics were evident between drought-adapted and mesic 

populations. Genetic characteristics in drought-adapted leaves of A. gerardii included a 

smaller proportion of bulliform cells, a smaller proportion of vascular tissue, and thicker 

leaves with a reduced evaporative surface area compared to leaves of A. gerardii from 

mesic sites. Plastic characteristics of drought-adapted leaves included decreased midrib 

thickness, smaller major veins, and a smaller proportion of bulliform cells within each 

leaf. Leaves at xeric sites responded to smaller volumes of water by having smaller major 

veins and a decreased surface area, thereby reducing transpiration. 

Leaves from mesic environments genetically had more and larger bulliform cells, 

more vascular tissue, and thinner, longer, and wider leaves. As precipitation in an 

environment increased, leaf midribs became thicker and major veins and bulliform cells 

became larger. Leaves at mesic sites had larger major veins to increase water transport 
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and thick midribs with abundant colorless parenchyma (water storage) cells. In addition, 

large bulliform cells were available to increase leaf rolling, potentially reducing water 

loss when conditions became dry.  
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Table 3.1. Main and interactive effects of the population of A. gerardii and the planting site on leaf anatomy (df 
error = 40) 
 Population Site    Population*Site 
 df F   P df F   P df F P 
Midrib thickness 4 0.57 0.687 3 6.89 <0.001 12 0.35 0.972 
Maximum thickness (non-midrib) 4 8.56 <0.001 3 2.05 0.122 12 1.27 0.276 
Minimum thickness 4 3.58 0.014 3 1.94 0.138 12 0.54 0.875 
Interveinal distance 4 1.67 0.176 3 0.96 0.422 12 0.70 0.736 
Major veins (area) 4 1.22 0.316 3 5.18 0.004 12 1.04 0.428 
Minor veins (area) 4 1.29 0.291 3 0.88 0.462 12 0.78 0.670 
% Bulliform cells 4 4.73 0.003 3 5.23 0.004 12 0.70 0.739 
% Vascular bundles 4 2.41 0.065 3 1.71 0.181 12 0.86 0.593 

Degrees of freedom (df), F-scores (F), and P-values (P) from statistical analysis of variance are presented. 
Significant values (P<0.05) are bold and values close to significance are italicized.  
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Figure 3.1. Leaf cross-sections of five populations of A. gerardii leaves (rows) at each 
planting site (columns), arranged from most xeric site on the left to most mesic site on the 
right. Scale bars, 100 µm. 
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Figure 3.2. (a) Maximum midrib thickness, (b) maximum leaf thickness outside of the 
midrib, (c) minimum leaf thickness, (d) interveinal distance, in five A. gerardii 
populations at the four planting sites. Bars are means from three replicate leaves ± SE. 
Tukey’s HSD comparisons are presented in Appendix 3.1.  
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Figure 3.3. (a) Cross-sectional area of major veins, (b) cross-sectional area of minor 
veins, (c) cross-sectional area of leaf consisting of bulliform cells, and (d) cross-sectional 
area of leaf consisting of vascular bundles in five A. gerardii populations at the four 
planting sites. Bars are means from three replicate leaves ± SE. Tukey’s HSD 
comparisons are presented in Appendix 3.1. 
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Figure 3.4. Leaf cross-sections of A. gerardii leaves showing midribs of each population 
(rows) at each planting site (columns), arranged from most xeric site on the left to most 
mesic site on the right. Scale bars, 200 µm. 
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Appendix 3.1. Tukey’s HSD results for leaf anatomy characteristics.  

 
Site results of Tukey’s HSD for maximum midrib thickness (µm).  
Sites not connected by the same letter are significantly different. 
Site   Least Squares Mean 
Carbondale, IL A  562.5 
Colby, KS A B 459.9 
Manhattan, KS  B 398.8 
Hays, KS  B 337.1 
 

 
Populations results of Tukey’s HSD for maximum leaf thickness (µm)  
at a non-midrib area. Populations not connected by the same letter  
are significantly different. 
Ecotype    Least Squares Mean 
Sand A   201.0 
Konza A B  174.9 
Cedar Bluff  B C 168.5 
12 Mile  B C 157.9 
Kaw   C 142.3 
 
 
Populations results of Tukey’s HSD for minimum leaf thickness (µm)  
at a non-midrib area. Populations not connected by the same letter  
are significantly different. 
Ecotype   Least Squares Mean 
Sand A  143.4 
Konza A  138.2 
Cedar Bluff A B 131.2 
12 Mile A B 126.6 
Kaw  B 112.5 
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Site results of Tukey’s HSD for maximum midrib thickness (µm2).  
Sites not connected by the same letter are significantly different. 
Site   Least Squares Mean 
Carbondale, IL A  13541 
Colby, KS A B 12082 
Manhattan, KS  B 9188 
Hays, KS  B 9062 
 

Populations results of Tukey’s HSD for proportion of   
leaf consisting of bulliform cells. Populations not  
connected by the same letter are significantly different. 
Ecotype   Least Squares Mean 
Konza A  0.255 
12 Mile A  0.243 
Cedar Bluff A B 0.236 
Kaw A B 0.233 
Sand  B 0.191 
 
 
Site results of Tukey’s HSD for proportion of   
leaf consisting of bulliform cells. Sites not connected  
by the same letter are significantly different. 
Site   Least Squares Mean 
Manhattan, KS A  0.260 
Hays, KS A B 0.235 
Carbondale, IL A B 0.227 
Colby, KS  B 0.205 
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