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PREFACE 
 

This thesis is written in the style of the Journal of Wildlife Management, to which 

a portion will be submitted for publication. 
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ABSTRACT 
 

With the loss and degradation of wetlands in some areas of the Prairie Pothole 

Region (PPR) reaching 80-90%, it is critical that resource managers ensure that the 

habitat that is put back on the landscape is as high quality as possible.  Resource 

managers have been excavating sediment and topsoil, to promote the “hemi-marsh” 

condition, during the wetland restoration process in the PPR for over 20 years. I refer to 

the commonly held perception that the hemi-marsh condition supports the most diverse 

avian communities in small prairie pothole wetlands as the hemi-marsh condition 

hypothesis. The literature currently does not address the effects of excavation on the 

proportion of vegetative zones (i.e., sedge meadow, emergent vegetation, and open water) 

or avian communities in semi-permanent wetlands that are less than 0.6 ha, yet there are 

thousands of these wetlands throughout the PPR. Understanding the effects of excavation 

and testing the hemi-marsh condition hypothesis in small prairie wetlands is important to 

resource managers because these small wetlands are critical for maintaining the integrity 

of prairie wetland complexes. I conducted vegetation surveys, avian surveys, and 

estimated nest success on 40 small (<0.6 ha), semi-permanent wetlands in the PPR of 

Minnesota to assess the influence of excavation on vegetation and avian communities. 

My data indicated a significant difference in the proportion of all vegetative zones 

between wetlands that were excavated until topsoil was exposed (topsoil excavations) 

and wetlands that were excavated until subsoil was exposed (subsoil excavations) (F3, 148 

= 21.533, P < 0.001, ηp2 = 0.304). The subsoil excavation technique increased the 

proportion of the open water zone (subsoil excavations:  = 20.5%, SD = 18.1 and X 
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topsoil excavations:  = 15.7%, SD = 14.8) by inhibiting plant growth in exposed 

subsoil. Altering the topography within basins decreased the proportion of the sedge 

meadow zone when the subsoil excavation technique was used (subsoil excavations:  = 

46.8%, SD = 20.7 and topsoil excavations:  = 69.9%, SD = 13.6). This technique 

resulted in an increase in the proportion of the emergent vegetation zone (subsoil 

excavations:  = 32.7%, SD = 23.4 and topsoil excavations:  = 14.6%, SD = 12.5) by 

replacing sedge meadow with deeper water habitat. My analyses did not show a 

significant difference in Shannon-Weiner Diversity Index (F2, 70 = 0.770, P = 0.467, ηp2 = 

0.022), Simpson’s Index of Diversity (F1.844 = 0.016, P = 0.979, ηp2 < 0.001), or daily 

survival probability (F1 = 1.334, P = 0.254, ηp2 = 0.029) between topsoil and subsoil 

excavations. However, avian density (F1.688 = 3.497, P = 0.041, ηp2 = 0.047) and nest 

density (F1 = 9.863, P = 0.003, ηp2 = 0.180) were significantly higher in subsoil 

excavations. With red-winged blackbird (Agelaius phoeniceus) and sora (Porzana 

carolina) accounting for over 83.5% of the nests in my study,  I expected to see greater 

avian densities and nest densities in subsoil excavations since these species required 

emergent vegetation for nesting substrate. My statistical models indicated that avian 

diversity is best predicted by a combination of the proportion of emergent vegetation 

spring, proportion of emergent vegetation summer, and wetland area more so than by the 

proportion of emergent vegetation alone which is the basis of the hemi-marsh condition 

hypothesis. Clearly, small, less than 0.6 ha, prairie pothole wetlands function differently 

than their larger counterparts. Resource managers need to recognize the limitations in 

small wetlands; therefore, promoting the hemi-marsh condition in small wetlands is not 

x 

X 

x 

X X 
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the most efficient use of management dollars. My recommendations are to restore small 

prairie wetlands to their historical topography by using the topsoil excavation technique 

because resource managers do not currently know the potential negative impacts that 

exposing subsoil could have on plant and macroinvertebrate communities.   
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INTRODUCTION 

 The conversion of land for agricultural purposes has been the leading cause of 

wetland degradation in the Prairie Pothole Region (PPR) of the Northern Great Plains 

since the nineteenth century (Dahl and Johnson 1991). Prior to the Food Security Act of 

1985, producers were encouraged to drain wetlands to increase agricultural production on 

their lands (Wenzel 1992). In the Minnesota (MN) portion of the PPR, nearly 80% of the 

wetlands have been lost (Wenzel 1992). The loss and degradation of wetlands in this 

region has had far reaching effects on vegetation, wildlife, and humans. Flood-water 

retention, groundwater recharge, and both consumptive and non-consumptive recreational 

uses are a few of the benefits and ecological services that wetlands provide. Additionally, 

there are many native species that depend on wetlands at some point during their life 

cycles. The high level of productivity of wetlands makes them critical stopover sites for 

many migratory bird species, which use them for resting and restoring their energy 

reserves. Wetlands also are required habitat for many breeding bird species. A study of 

the bird communities in the PPR of North Dakota and South Dakota documented 108 bird 

species within wetlands and 124 bird species on the adjacent uplands (Ratti et al. 2001).   

By the mid-1980s, resource managers and the general public recognized that there 

was a need to mitigate the loss of this valuable natural resource. For over 20 years, 

various government agencies and non-governmental organizations have been restoring 

wetlands in the PPR on both public and private lands. The United States Fish and 

Wildlife Service (USFWS) and its partners have restored thousands of prairie wetlands 

throughout the region through its Partner’s for Fish and Wildlife Program and Small 
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Wetlands Acquisition Program. The initial goal of most wetland restoration programs 

was to restore as much habitat as possible for the lowest monetary cost. Consequently, 

detailed assessments of sites have been difficult due to the large number of restored 

basins on the landscape. This is especially true for small, less than 0.5 ha, restored 

wetlands. In the past, small wetlands were often overlooked in regards to their ecological 

significance at both large and small spatial scales. At the landscape level, Naugle et al. 

(2001) found that small wetlands (<0.5 ha) are critical for maintaining the integrity of 

prairie wetlands complexes. According to their models, species that use multiple 

wetlands within a season, such as northern pintail (Anas acuta), are the most vulnerable 

to the loss of small wetlands. Despite the thousands of small basins that have been 

restored in the past 20 years and the thousands that currently are being managed 

throughout the PPR, there has been little research that addresses the habitat attributes 

within small wetlands and their influence on avian communities specifically. Restoration 

and management activities have been based on the management recommendations from 

research that was conducted on much larger (>50 ha) basins (Weller and Spatcher 1965). 

Although restoration and management decisions were made based on the best science that 

was available at the time, it is imperative that resource managers are provided with 

information on the ecology of small prairie wetlands specifically in order to help guide 

restoration and management decisions in the future.  

By the late 1990s, resource managers across North America began to focus more 

attention on the potential success of their restoration efforts. The success of a wetland 

restoration can be assessed at multiple levels. The most basic measure of the success of a 
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wetland restoration is restoring the hydrology to the basin. However, a fully functioning 

ecosystem is typically the desired goal of restoration projects. Most restored ecosystems 

will never achieve their historical state prior to degradation. Falk et al. (2006:1) explained 

that, “a more realistic goal may [sic] be to move a damaged system to an ecological state 

that is within some acceptable limits relative to a less disturbed system”.  Attributes of 

the plant and avian communities are often used to assess the success of restoration efforts 

and as indicators of environmental quality (Galatowitsch and van der Valk 1996, Ratti et 

al. 2001). Remnant plant seed and invertebrate egg banks typically are relied on for 

regeneration after the hydrology is restored to previously drained wetlands. Galatowitsch 

and van der Valk (1996) referred to the process of rapid recolonization of restored 

wetlands from the remnant plant seed bank as the efficient-community hypothesis. 

Galatowitsch and van der Valk (1996) did not find rapid recolonization in their restored 

wetlands. In their study, the composition of vegetation in restored wetlands is 

significantly different than the vegetation in natural prairie wetlands. Other studies have 

reported similar results, indicating that restoring these dynamic ecosystems is usually 

much more complex than solely restoring the hydrology (Budelsky and Galatowitsch 

2000, Mulhouse and Galatowitsch 2003, Seabloom and van der Valk 2003).  

Many of the wetlands in central MN have been drained through the construction 

of drainage ditches. The soil from the ditching process is either spread on the adjacent 

uplands or deposited within the basin to further prevent water from pooling. After the 

vegetation from upland areas is removed, cultivation and soil erosion often contribute to 

the process of sedimentation within the drained basins (Gleason and Euliss 1998, Gleason 
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et al. 2003). Cultivation also can destroy remnant seed and invertebrate egg banks. 

Studies have documented that even a small accumulation of sediment is enough to inhibit 

emergence of aquatic invertebrates and vegetation by burying the remnant seed and 

invertebrate egg banks (Gleason and Euliss 1998, Gleason et al. 2003). Resource 

managers recognize that removing this accumulated sediment layer would probably be a 

valuable component in many wetland restorations, but developing up a sediment 

excavation protocol is a complex process. Sediment is distributed unevenly within basins 

because of variations in microtopography. This variation makes the precise removal of 

sediment, with conventional excavation machinery, virtually impossible. A recent study 

on the effects of soil removal in restored wetlands reported that the top 10 cm of soil 

contained the greatest number and diversity of plant seeds (Hausman et al. 2007). This 

makes the most valuable layer of the seed bank the most vulnerable layer to destruction 

by machinery during excavation.  

A common technique that has been used to restore wetlands in MN is to construct 

dams across the drainage ditches. These dams also are referred to as earthen berms or 

ditch plugs. Most of these wetlands cannot be restored to their historical hydroperiod and 

function if the sediment and fill material are not removed. For example, if a wetland that 

historically flooded semi-permanently was filled in with sediment, simply plugging the 

drainage ditch might only be sufficient to return a temporary or seasonal hydroperiod to 

the basin. Therefore, restoring the historical topography of the basin is critical. Although 

restoring the historical topography to wetlands is critical, it is not economically feasible 

on basins that are much larger than 0.5 ha since the monetary cost of excavation is high.  
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Resource managers from the Detroit Lakes Wetland Management District 

(WMD) have been using two sediment excavation techniques to restore small prairie 

pothole wetlands for the past 20 years, thus providing an ecological laboratory in which 

to test the effects of multiple sediment removal techniques (Falk et al. 2006). I refer to 

these wetland restoration techniques as the “topsoil excavation technique” and the 

“subsoil excavation technique”. Both techniques involve restoring hydrology to the 

basins with a conventional ditch plug. However, the topsoil excavation technique 

involves excavating sediment and fill material from within a drained basin until topsoil is 

exposed, while the subsoil excavation technique involves excavating sediment, fill 

material, and nutrient rich topsoil from within a drained basin until subsoil is exposed. I 

refer to wetlands restored by these two techniques as “topsoil” and “subsoil excavations” 

respectively. Using the topsoil excavation technique for removal of sediment and fill 

material is hypothesized to restore basins close to their historical topography and 

hydrology while uncovering remnant seed and invertebrate egg banks. Hausman et al. 

(2007) reported that excavation within restored wetlands has a large impact on the plant 

community composition. Excavation reduced the proportion of invasive species and 

promoted obligate wetland plant species in their study sites. In the absence of competition 

from invasive plant species, native plants theoretically have an increased chance of 

becoming established in restored wetlands. With their remnant seed and invertebrate egg 

banks uncovered and reduced competition, excavated wetlands could support more 

diverse plant and invertebrate populations (Gleason et al. 2003). Resource managers soon 

began to see that many of the small restored wetlands were dominated or “choked out” by 
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dense stands of emergent vegetation (Typha spp.) therefore decreasing the proportion of 

open water habitat. This condition is not desirable because research suggests that the 

most diverse avian communities are found on prairie wetlands with an emergent 

vegetation to open water ratio of 50:50 or what is called the “hemi-marsh” condition 

(Weller and Spatcher 1965).  The subsoil excavation technique was designed because 

removing the nutrient rich topsoil alters the topography and substrate within the basin, 

which could influence the horizontal extent of the open water zone. By increasing the 

proportion of open water and thus promoting the “hemi-marsh” condition, the subsoil 

excavation technique is hypothesized to promote higher habitat quality for wildlife in 

restored wetlands (Weller and Spatcher 1965). I refer to the commonly held perception 

that the “hemi-marsh” condition is the ideal management objective in small prairie 

pothole wetlands as the hemi-marsh condition hypothesis. Without empirical evidence 

confirming these assumptions some resource managers are hesitant to use either 

excavation technique until their effects on the ecosystem have been assessed. 

Although plant community composition can be a useful measure of environmental 

quality, the number of variables affecting it makes comparative studies difficult and labor 

intensive. However, the horizontal extent of vegetative zones in prairie wetlands is a 

common and effective method for assessing habitat quality for avian communities 

(Weller and Spatcher 1965). Multiple studies have analyzed the effects of the horizontal 

arrangement of vegetation on avian diversity and density, yet its effects on nest success 

or nest density are largely unknown (Weller and Spatcher 1965, Weller and Frederickson 

1974, Rehm and Baldassarre 2007). An analysis of vegetational attributes within 
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wetlands, such as the proportion of the three major vegetative zones (sedge meadow, 

emergent vegetation, and open water), is much less labor intensive than measuring 

community composition and represents one of the habitat cues that is thought to directly 

influence the avian community (Rehm and Baldassarre 2007). Plant species diversity also 

is expected to be low in restored wetlands because many of the species that are sensitive 

to disturbance already have been eliminated from the plant seed bank (Aronson and 

Galatowitsch 2008, Galatowitsch and van der Valk 1996).  

Avian communities commonly are analyzed to assess ecosystem health. 

Analyzing this taxon in restored wetlands is a powerful and efficient tool for a number of 

reasons. In general, avian communities can indicate the health of the ecosystem because 

they usually are supported by diverse plant and invertebrate communities (Smith and 

Smith 2006). Many avian species are affected negatively by invasive plant species and 

the accumulation of environmental contaminants, which are major issues in our modern 

landscape (Conway 2008). Migratory bird conservation also is one of the primary 

management objectives of many conservation agencies and organizations. The cost 

effectiveness of analyzing avian communities can have a role in the preference for this 

method of evaluation, especially compared to the cost of detailed plant community 

composition analyses (Ratti et al. 2001). Avian nest success commonly is used to assess 

habitat quality because it is an indirect measure of reproductive success. Not only could it 

indicate high quality plant and invertebrate communities, but it could also indicate the 

condition of breeding individuals both pre- and post-territory establishment. Individuals 

that are in the best breeding condition should establish territories in the highest quality 
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habitat or areas with the highest potential nest success. Nest success of obligate wetland 

avian communities also can be a useful measure of habitat quality because many of these 

avian species rely exclusively on one wetland during the nesting period of the breeding 

season. However, some species like canvasback (Aythya valisineria) often use multiple 

small wetlands in close proximity (Mowbray 2002). Some examples of common wetland 

avian species in the PPR of Minnesota include the red-winged blackbird (Agelaius 

phoeniceus), sora (Porzana carolina), and marsh wren (Cistothorus palustris). One of the 

difficulties with using avian communities as an indicator of habitat quality is that many 

avian species respond to habitat quality cues at both small and large scales (Cunningham 

and Johnson 2006, Quamen 2007). Multi-scale modeling techniques have allowed 

researchers to gain a better understanding of how avian species respond to landscape 

attributes (Quamen 2007). Although multi-scale modeling is a powerful tool for guiding 

conservation efforts, Rehm and Baldassarre (2007) found that most obligate wetland 

avian species, such as the American bittern (Botaurus lentiginosus), least bittern 

(Ixobrychus exilis), sora, and Virginia rail (Rallus limicola), are more sensitive to 

individual marsh characteristics than to surrounding habitat. Melvin and Gibbs (1996) 

found both the sora and Virginia rail to be area independent when selecting breeding 

wetlands. This suggests that some wetland avian species respond to cues at different 

spatial scales than many upland nesting grassland birds (Cunningham and Johnson 2006); 

therefore, wetland avian research should emphasize attributes at a smaller scale or within 

wetlands.  
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The objectives of my study were to compare the following between topsoil and 

subsoil excavations during the breeding season: (1) the proportion of vegetative zones, 

(2) avian diversity, (3) avian density, (4) nest success, and (5) nest density. I also 

determined if there was empirical evidence supporting the hemi-marsh condition 

hypothesis in small prairie pothole wetlands. 

STUDY AREA AND WETLAND SELECTION 

All wetlands included in my study were semi-permanent wetlands that were 

restored by the USFWS (Stewart and Kantrud 1971). They were drained for more than 20 

years through drainage ditches and located in former agricultural fields. The wetlands 

were located on 8 properties within the Detroit Lakes WMD, which was located within 

the PPR of central MN. The properties included Waterfowl Production Areas and private 

properties. The adjacent uplands consisted of grassland habitat of either restored tallgrass 

prairie or tame grasses, such as smooth brome (Bromus inermis) and Kentucky bluegrass 

(Poa pratensis). The basins were classified as palustrine emergent wetlands according to 

Cowardin et al. (1979) and as semi-permanent wetlands according to Stewart and 

Kantrud (1971). All of the wetlands were 0.03-0.60 ha (  = 0.19 ha) and it had been 2-7 

yr (  = 4 yr) since restoration. 

Using 2008 aerial photos in a Geographic Information System (GIS) and maps 

provided by the Detroit Lakes WMD staff, I initially selected 50 topsoil excavations and 

50 subsoil excavations that fit the above guidelines. The 2008 aerial photos were obtained 

from the MN Geospatial Information Office website. I randomly selected 25 wetlands in 

each restoration category to be included in my study. If I found that any of the first 25 

x 
x 
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wetlands did not fit the above criteria on the first site visit, I used the next closest wetland 

that fit the selection criteria. After visiting all of the properties on-the-ground I included 

21 topsoil excavations and 19 subsoil excavations in my study; all wetlands were studied 

during the 2009 and 2010 breeding seasons.  

METHODS 

Vegetational Attributes 

 Since Weller and Spatcher (1965) reported that the hemi-marsh condition 

supports the most diverse avian communities, the emergent vegetation to open water ratio 

has been used extensively as an indicator of habitat quality in prairie pothole wetlands. 

This is a preferred method because it can be rapidly and accurately assessed in the field. I 

used an adapted version of the mapping technique used by Weller and Spatcher (1965). I 

mapped the proportion of the three major vegetative zones (sedge meadow, emergent 

vegetation, and open water zones), similar to those described by Stewart and Kantrud 

(1971), within prairie wetlands that could be delineated accurately within a single 

growing season.  All wetlands had a similar horizontal arrangement of these vegetative 

zones due to the excavation associated with their restoration. The vegetative zones 

occurred in concentric rings with the sedge meadow zone being the most peripheral and 

shallow zone that is dominated by various sedges (Carex spp.) and grasses (Poaceae 

spp.). The next deepest zone is the emergent vegetation zone that is dominated by various 

cattail (Typha spp.) and bulrush (Schoenoplectus spp.) species. The open water zone has 

the ability to support emergent vegetation; however, the open water state is typically 

dominated by submerged vegetation (Stewart and Kantrud 1971). 
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 I mapped the wetland perimeter and vegetative zones by recording Universal 

Transverse Mercator (UTM) coordinates along the wetland and upland interface and the 

interface between two vegetative zones by using a handheld geographic position system 

(GPS) attached to a backpack antenna. The accuracy of the GPS unit was ± 2-3 m. I 

mapped vegetation two times each field season in order get a measure of the spatial and 

temporal changes in the plant community. The spring survey was conducted in early 

May, which consisted of only residual vegetation from the previous growing season. The 

summer survey was conducted in early July, which consisted of both residual vegetation 

and new vegetation from that current growing season. A patch of vegetation was mapped 

if it was larger than approximately 4 m2 and greater than 75% visual obstruction to the 

water surface. Residual vegetation was not mapped if it was completely knocked over 

and would not provide cover for nesting birds. I downloaded GPS coordinates into a GIS 

and converted those data into shapefiles to calculate the area of the wetlands and the three 

vegetative zones in hectares. 

Avian Surveys 

Call-broadcast surveys were used to sample the avian community within each 

wetland during the 2009 and 2010 breeding seasons. All individuals seen or heard during 

the survey period were recorded. My methods were adapted from the Standardized North 

American Marsh Bird Monitoring Protocol, which was published by the Arizona 

Cooperative Fish and Wildlife Research Unit in April 2008 (Conway 2008). The        

call-broadcast survey technique was used to elicit responses from secretive marsh birds, 

which are otherwise rarely seen or heard. 
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There was 1 survey point associated with each wetland and a complete count of 

all birds within the wetland was attempted since the effective range of a call-broadcast 

survey point is larger than 0.6 ha (Gibbs and Melvin 1993). Survey points were located 

on the eastern edge of the study wetlands to aid in visual identification of birds. UTM 

coordinates were recorded during the first survey to allow relocation on all subsequent 

surveys. Survey points were located on the upland-wetland vegetation interface to limit 

disturbance.  

Surveys were conducted 30 min before sunrise to 4.5 hr after sunrise, since 

vocalization probability is greatest during this period (Gibbs and Melvin 1993, Conway 

2008). Each point was surveyed 3 times each season based on the presumed peak in 

marsh bird breeding season and to ensure that at least  1 survey was conducted during the 

peak in each species seasonal response period (Conway 2008). As suggested by Conway 

(2008), survey 1 was conducted 1 May – 14 May, survey 2 the 15 May – 31 May, and 

survey 3 the 1 June – 15 June. 

There was a 5 min passive period at each survey point prior to broadcasting focal 

species vocalizations. All avian species seen or heard during the passive period and 

during the broadcast period were recorded. All birds that were flushed from the study 

wetlands while the observer approached were recorded accordingly and included in the 

analyses. The recorded calls of species that breed in my study area were obtained from 

the National Marsh Bird Survey Coordinator. This ensured that the broadcast sequence 

coincided with the protocol and was consistent throughout the study.  This broadcast 

sequence consisted of 30 sec of the most common vocalizations of each focal species 
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interspersed with 30 sec of silence. The marsh birds that were included in the broadcast 

sequence were the least bittern, yellow rail (Coturnicops noveboracensis), sora, Virginia 

rail, American bittern, American coot (Fulica americana), and pied-billed grebe 

(Podilymbus podiceps). Calls were broadcast in this order because the least bittern has the 

least intrusive vocalization and the pied-billed grebe has the most intrusive vocalization 

(Conway 2008). Each survey period was 12 min, including the 5 min passive period and 

7 min broadcast period. My broadcast equipment consisted of a portable MP3 player 

attached to an electronic predator call that was calibrated with a sound-level meter to 

produce 80 to 90 dB at 1 m in front of the speaker. The broadcast equipment was placed 

on the ground with the speaker facing the center of the wetland.  The observer stood 2 m 

to one side of the speakers while listening for responses.  

Avian diversity was calculated by using both the Shannon-Weiner Diversity Index 

and the Simpson’s Index of Diversity since the Shannon-Weiner Diversity Index is more 

sensitive to differences in rare species and the Simpson’s Index of Diversity is more 

sensitive to differences in common species (Ratti et al. 2001). Avian density is the 

number of individuals detected on each survey per hectare.   

Avian Nesting Analyses  

Nest searching began in late May during the 2009 and 2010 breeding seasons. 

Nests of all avian species found within the study wetlands were monitored. I was able to 

systematically search all wetlands entirely since they were all less than 0.6 ha. The 

majority of the nests were detected within the vegetation. I also located and monitored 

nests via incidental discovery (Kerns et al. 2010). Nest searching took place throughout 
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daylight hours since I was not relying solely on detecting nests by flushing incubating 

adults. Wetlands were searched approximately every 2 weeks to locate new nests. 

Nests were marked by using fluorescent flagging tied to tall vegetation placed 2-4 

m from the nest in a direction that was the most visible to the approaching observer. The 

approach direction was recorded on each visit so that the observers could approach the 

nests from a different direction on subsequent visits. However, once the observers were 

close to the nests, they would approach from the same direction based on microhabitat 

characteristics to alleviate the effects of scent trails around nests and prevent excess 

disturbance to the vegetation at the nest site.  

I estimated the age of a nest after it was located to help me estimate the expected 

fledging dates for altricial species and hatch dates for precocial species. These dates were 

used to determine the fate of the nests. In a precocial species for example, if there was no 

other evidence and the eggs were missing on a nest check that was well before the 

estimated hatch date, then I assumed that the nest was depredated. Natural history data 

for each species were found in Baicich and Harrison (1997) and the Birds of North 

America species accounts. The method for determining the age of nests varied by species. 

For precocial species, I determined the incubation stage by either candling or floating 

eggs. Waterfowl eggs were candled by using the methods of Weller (1965). This is a 

preferred method due to the larger size of waterfowl eggs (Klett et al. 1986). The eggs of 

all other precocial species were floated to determine the approximate incubation stage by 

using the methods of Hays and LeCroy (1971). I estimated the age of altricial nestlings 

based on the degree of feather development. 
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Nests were monitored every 3 to 5 days until the fate of the nest could be 

determined. Nests were recorded as successful, depredated, abandoned, disturbed, or 

unknown. If a nest had 1 or more individuals fledge it was recorded as successful 

regardless of prior disturbances. Membrane and egg shell evidence were analyzed 

according to Klett et al. (1986) and Mabee (1997). If a nest had fewer eggs than the 

previous visit, hatchlings missing early in development, or any other signs of predators, it 

was recorded as depredated if no individuals hatched or fledged. If adults were no longer 

attending nests or if eggs did not hatch, the nest was recorded as abandoned. To aid in 

this determination, I placed vegetation in an X-shape on the nest so that the vegetation 

was disturbed if an adult was still attending the nest. If a nest or eggs were damaged by 

the searchers, it was recorded as disturbed if no individuals hatched or fledged. If the fate 

of a nest could not be determined it was recorded as unknown.  

Using the Mayfield Method (Mayfield 1961), I estimated nest success, which was 

used as a measure of habitat quality for avian communities because it is a common 

technique for indirectly measuring reproductive success. Although there are many 

techniques for analyzing nest success, Jehle et al. (2004) found that the Mayfield Method 

has results similar to program MARK and the Stanley Method as long as there is a short 

temporal interval between nest checks. It also is a preferred method because of its 

simplicity and the ability to make comparison across studies (Jehle et al. 2004). The 

measure of nest success that I reported is daily survival probability (DSP), which was the 

probability that a nest will survive for one day. This measure is calculated by subtracting 

the total number of failed nests divided by the number of exposure days (Mayfield 1961). 
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The number of exposure days is the number of days that a nest is exposed to the 

environment while under observation (Mayfield 1961). DSP was calculated separately for 

each wetland. 

Statistical Analyses  

A 3-way multivariate analysis of covariance (MANCOVA) was used to determine 

the influence of the factors year (2009 and 2010), survey period (spring and summer), 

and restoration technique (topsoil and subsoil excavation techniques) on the proportion of 

vegetative zones (sedge meadow, emergent vegetation, and open water zones). The Box’s 

test of equality of covariance matrices was used to determine if the assumption of 

equality of covariance matrices was met. I reported the Pillai’s trace test statistic which is 

robust to violations of the equal covariance assumption (Zar 2010).The proportion of 

vegetative zones was calculated by dividing the area of the vegetative zone by the total 

area of the wetland. I used survey period as a factor instead of a repeated measure 

because I was interested in the difference in the proportion of vegetated zones between 

survey periods or seasons. Time since restoration (yr) and wetland area (ha) were the two 

covariates included in my vegetation analysis. Time since restoration was included to 

control for the natural variation in the plant community associated with changing 

successional stages. Wetland area was included because it could have influenced the 

proportion of the basin that was excavated. Although common muskrat (Ondatra 

zibethicus) herbivory can have a major influence on the horizontal extent of the emergent 

vegetation zone I did not have a sufficient number of wetlands with common muskrat 

present to include this as a predictor variable in my analysis (2009 n = 2 and 2010 n = 12) 
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(Weller and Spatcher 1965).  My statistical analysis was conducted by using PASW 

Statistics 18.0 with an alpha level of 0.05.  

I used the 2-way analysis of covariance (ANCOVA) and the 2-way repeated 

measure ANCOVA with factors of year (2009 and 2010) and restoration technique 

(topsoil and subsoil excavation techniques) to analyze their influence on the avian 

communities. Although I studied the same wetlands in 2009 and 2010 I considered 

habitat selection based on site quality in any given year to be more consequential than 

site fidelity, which allowed me to meet the assumption of statistical independence 

between years (Brown and Smith 1998). The following 5 covariates were included in the 

2-way ANCOVA to examine their influence on avian communities: time since restoration 

(yr), wetland area (ha), distance to nearest wetland (m), proportion of emergent 

vegetation spring, and proportion of emergent vegetation summer. Wetland area was 

included to account for the influence of the species area relationship. Distance to nearest 

wetland is the distance to the nearest semi-permanent wetland. Distances were estimated 

by using a GIS and 2008 aerial photography obtained from the MN Geospatial 

Information Office. I visited each wetland on the ground to confirm semi-permanent 

hydrology. I included this measure as a covariate in my analyses because of the close 

proximity of many of the basins in these wetland complexes. Due to their close proximity 

and the small spacial scale I did not consider this to be a landscape level variable. 

Although wetlands in the PPR typically are located in close proximity, pseudoreplication 

was avoided by counting only birds seen and heard within the wetland. Proportion of 

emergent vegetation spring and summer were calculated by dividing the area of emergent 
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vegetation by the sum of the emergent vegetation and open water zones because this is 

the proportion of the wetland that is capable of supporting emergent vegetation. This is 

also a similar measure to the emergent vegetation to open water ratio used by Weller and 

Spatcher (1965). Proportion of emergent vegetation spring accounted for one of the 

within-wetland habitat attributes that breeding birds likely respond to initially when they 

arrive on the breeding grounds (Weller and Spatcher 1965). Proportion of emergent 

vegetation summer accounted for a within-wetland habitat attribute that breeding birds 

likely responded to during the nesting period. Data were arcsine transformed and log-

transformed where appropriate to approximate normality (Zar 2010).  

To test the hemi-marsh condition hypothesis in small prairie wetlands I used the 

backward elimination multiple regression to determine the relationship between the 

proportion of emergent vegetation and avian communities. The predictor variables time 

since restoration (yr), wetland area (ha), distance to nearest wetland (m), proportion of 

emergent vegetation spring, and proportion of emergent vegetation summer were 

included in the tests to control for their potential influence on avian communities. 

Including all of these predictor variables in the multiple regressions allowed me to 

identify the models that best described the functional relationship between the proportion 

of emergent vegetation and various measures of avian communities such as avian 

diversity and DSP (Zar 2010). The proportion of emergent vegetation spring and summer 

were calculated the same as with the ANCOVA analyses. I reported the models with the 

highest adjusted coefficient of determination (R2
a) and which included the fewest 

predictor variables. I reported F-values based on the Wilks’ lambda test statistic. 
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Sphericity was tested with the Mauchly’s Test of Sphericity. The Greenhouse-Geisser 

correction was used and reported if the assumption of sphericity was violated. Partial eta-

squared (ηp2) was reported to indicate effect size. 

RESULTS 

Vegetational Attributes  

 The multivariate tests of the 3-way MANCOVA indicated that both survey period 

(F3, 148 = 25.133, P < 0.001, ηp2 = 0.338) and restoration technique (F3, 148 = 21.533, P < 

0.001, ηp2 = 0.304) were significant predictor variables.  However, year (F3, 148 = 1.539, P 

= 0.207, ηp2 = 0.030) was not a significant factor. Both covariates, time since restoration 

(F3, 148 = 1.713, P = 0.167, ηp2 = 0.034) and wetland area (F3, 148 = 1.807, P = 0.148, ηp2 

= 0.035), were not significant. The tests of between-subjects effects showed that the 

proportions of all three vegetative zones were significantly different between topsoil and 

subsoil excavations: sedge meadow zone (F1 = 53.340, P < 0.001, ηp2 = 0.262), emergent 

vegetation zone (F1 = 33.864, P < 0.001, ηp2 = 0.184), and open water zone (F1 = 4.444, 

P = 0.037, ηp2 = 0.029). 

Avian Surveys 

 I detected a total of 1,156 individuals during my call-broadcast surveys during the 

2009 (582 individuals) and 2010 (574 individuals) field seasons. This consisted of 40 

species from 8 Orders: Anseriformes (7 species), Apodiformes (1 species), 

Charadriiformes (4 species), Ciconiiformes (1 species), Falconiformes (1 species), 

Galliformes (1 species), Gruiformes (3 species), and Passeriformes (22 species). Of the 

40 species that I detected a total of 19 were detected 5 or fewer times. 
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I did not detect a difference in avian diversity between topsoil and subsoil 

excavations. The 2-way repeated measure ANCOVA on the Shannon-Weiner Diversity 

Index showed that year (F2, 70 = 2.760, P = 0.070, ηp2 = 0.073) and restoration technique 

(F2, 70 = 0.770, P = 0.467, ηp2 = 0.022) were not significant factors. This same test 

showed that time since restoration (F2, 70  = 1.091, P = 0.342, ηp2 = 0.030), wetland area 

(F2, 70  = 2.868, P = 0.063, ηp2 = 0.076), distance to nearest wetland (F2, 70  = 0.046, P = 

0.955, ηp2 = 0.001), proportion of emergent vegetation spring (F2, 70  = 0.715, P = 0.493, 

ηp2 = 0.020), and proportion of emergent vegetation summer (F2, 70  = 0.770, P = 0.467, 

ηp2 = 0.022) were not significant covariates. The 2-way repeated measure ANCOVA on 

the Simpson’s Index of Diversity showed that year (F1.844 = 0.501, P = 0.592, ηp2 = 

0.007) and restoration technique (F1.844 = 0.016, P = 0.979, ηp2 < 0.001) were not 

significant factors. Furthermore, time since restoration (F1.844 = 3.636, P = 0.032, ηp2 = 

0.049) and wetland area (F1.844 = 3.424, P = 0.039, ηp2 = 0.046) were significant 

covariates. Distance to nearest wetland (F1.844 = 1.011, P = 0.362, ηp2 = 0.014), 

proportion of emergent vegetation spring (F1.844 = 0.697, P = 0.489, ηp2 = 0.010), and 

proportion of emergent vegetation summer (F1.844 = 0.100, P = 0.891, ηp2 = 0.001) were 

not significant covariates. 

Avian density was significantly different between topsoil and subsoil excavations. 

The 2-way repeated measure ANCOVA showed that restoration technique (F1.688 = 

3.497, P = 0.041, ηp2 = 0.047) was a significant predictor variable, but year (F1.688 = 

2.546, P = 0.092, ηp2 = 0.035) was not significant. This same test showed that proportion 

of emergent vegetation summer (F1.688 = 3.341, P = 0.047, ηp2 = 0.045) was a significant 
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covariate. Time since restoration (F1.688 = 0.100, P = 0.873, ηp2 = 0.001), wetland area 

(F1.688 = 0.416, P = 0.626, ηp2 = 0.006), distance to nearest wetland (F1.688 = 0.260, P = 

0.734, ηp2 = 0.004), and proportion of emergent vegetation spring (F1.688 = 1.084, P = 

0.333, ηp2 = 0.015) were not significant. 

Avian Nesting Analyses  

I located and monitored a total of 170 nests of 11 species during the duration of 

my study, with 61 nests in 2009 and 109 nests in 2010 (Table 1). Red-winged blackbird 

(n = 118) was the most common breeding bird in my study wetlands, accounting for 

69.4% of the nests. Sora (n = 24) was the next most common breeder followed by the 

marsh wren (n = 8). I located 5 or less nests of the following 8 species: American bittern, 

canvasback, clay-colored sparrow (Spizella pallida), mallard (Anas platyrhynchos), ring-

necked duck (Aythya collaris), sedge wren (Cistothorus platensis), Virginia rail, and 

yellow-headed blackbird (Xanthocephalus xanthocephalus).    

There was not a significant difference in DSP between topsoil and subsoil 

excavations. The 2-way ANCOVA showed that year (F1 = 10.100, P = 0.003, ηp2 = 

0.183) was a significant factor. Restoration technique (F1 = 1.334, P = 0.254, ηp2 = 

0.029) was not significant. None of the covariates, time since restoration (F1 = 1.390, P = 

0.245, ηp2 = 0.030), wetland area (F1 = 0.094, P = 0.760, ηp2 = 0.002), distance to nearest 

wetland (F1 = 0.052, P = 0.821, ηp2 = 0.001), proportion of emergent vegetation spring 

(F1 = 0.055, P = 0.816, ηp2 = 0.001), or proportion of emergent vegetation summer (F1 = 

0.363, P = 0.550, ηp2 = 0.008), were found to be significant. 
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I did detect a difference in nest density between topsoil and subsoil excavations. 

The 2-way ANCOVA showed that restoration technique (F1 = 9.863, P = 0.003, ηp2 = 

0.180) was a significant factor and that year (F1 = 0.750, P = 0.391, ηp2 = 0.016) was not 

a significant factor. This same test revealed that wetland area (F1 = 3.201, P = 0.083, ηp2 

= 0.094) was a significant covariate. However, time since restoration (F1 = 3.064, P = 

0.087, ηp2 = 0.064), distance to nearest wetland (F1 = 0.152, P = 0.699, ηp2 < 0.003), 

proportion of emergent vegetation spring (F1 = 0.004, P = 0.952, ηp2 < 0.001), and 

proportion of emergent vegetation summer (F1 = 0.037, P = 0.848, ηp2 = 0.001) were not 

significant covariates. 

Testing the Hemi-marsh Condition Hypothesis 

 The multiple regression model that best predicted the Shannon-Weiner Diversity 

Index included proportion of emergent vegetation spring, proportion of emergent 

vegetation summer, and wetland area as predictor variables. This model did explain a 

significant proportion (R2
a = 0.379) of variation in the data (F3, 76 = 17.104, P < 0.001).  

The multiple regression model that best predicted the Simpson’s Index of 

Diversity included all of the predictor variables: time since restoration, wetland area, 

distance to nearest wetland, proportion of emergent vegetation spring, and proportion of 

emergent vegetation summer. This model did not explain a significant proportion (R2
a = 

0.215) of variation in the data (F5, 74 = 5.338, P < 0.001). 

Time since restoration, wetland area, proportion of emergent vegetation spring, 

and proportion of emergent vegetation summer were the predictor variables included in 

the multiple regression model that best predicted avian density. This model did not 
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explain a significant proportion (R2
a = 0.099) of variation in the data (F2, 77 = 5.333, P = 

0.007). 

 Wetland area, distance to nearest wetland, proportion of emergent vegetation 

spring, and proportion of emergent vegetation summer were the predictor variables 

included in the multiple regression model that best predicted DSP. This model did not 

explain a significant proportion (R2
a = 0.031) of variation in the data (F2, 51 = 1.861, P = 

0.166). 

Wetland area, distance to nearest wetland, proportion of emergent vegetation 

spring, and proportion of emergent vegetation summer were the predictor variables 

included in the multiple regression model that best predicted nest density. This model did 

not explain a significant proportion (R2
a = 0.207) of variation in the data (F2, 51 = 7.898, P 

= 0.001). 

DISCUSSION 

Vegetational Attributes 

My data suggested that the subsoil excavation technique increased the proportion 

of the open water zone (subsoil excavations:  = 20.5%, SD = 18.1 and topsoil 

excavations:  = 15.7%, SD = 14.8) just as it was designed to do. The consensus among 

resource managers is that open water areas and interspersion in semi-permanent wetlands 

tend to attract certain wetland bird species such as waterfowl (Weller and Spatcher 1965), 

whereas wetlands with a low proportion of open water provide lower quality habitat. The 

open water zone is thought to provide critical pair-bonding and foraging habitat, 

especially when it supports diverse submerged vegetation and macroinvertebrate 



 

 24 

communities. The increase in the proportion of the open water zone in subsoil 

excavations is because exposed subsoil does not provide a suitable substrate for the 

growth of most emergent and submerged plant species. Many subsoil excavations did not 

support any vegetation in areas of exposed subsoil even after several years of flooding. 

Whereas, all topsoil excavations supported vegetation throughout the entire basin.  

Without emergent or submerged vegetation to support macroinverterate populations 

exposed subsoil cannot provide high quality foraging habitat for avian communities.  

The subsoil excavation technique also decreased the proportion of the sedge 

meadow zone (subsoil excavations:  = 46.8%, SD = 20.7 and topsoil excavations:  = 

69.9%, SD = 13.6) by altering the topography within the basins. Removing the topsoil 

horizon causes subsoil excavations to become substantially deeper, resulting in water 

consolidation within the center of the basin. Consolidating water within the center of the 

basins drains the peripheral sedge meadow zone. This is particularly evident not only 

when slopes increase due to excavation associated with topsoil removal, but also when 

ditch plug construction material is excavated from within or directly adjacent to wetlands. 

The sedge meadow zone is often the most degraded vegetative zone, since it becomes 

farmable during dry years and even when wetlands are drained partially. Cultivation 

destroys and significantly alters much of the remnant seed and invertebrate egg banks 

(Aronson and Galatowitsch 2008). Therefore, using a restoration technique that further 

degrades the sedge meadow zone could have negative ramifications on all obligate sedge 

meadow species.  

X X 



 

 25 

An unanticipated outcome of the subsoil excavation technique was an increase in 

the proportion of the emergent vegetation zone (subsoil excavations:  = 32.7%, SD = 

23.4 and topsoil excavations:  = 14.6%, SD = 12.5), since this technique originally was 

meant to decrease the proportion of the emergent vegetation zone by increasing the 

proportion of open water within restored wetlands. Based on my data and site visits I 

attributed this increase to the conversion of portions of the sedge meadow into emergent 

vegetation zone. Removing topsoil from the sedge meadow zone increased the water 

depth and hydroperiod, allowing the newly exposed substrate to support emergent 

vegetation.  

Another component of my vegetation analysis was the change in the proportion of 

vegetative zones between the survey periods. Most resource managers would expect to 

see major changes in the vertical structure of wetland plant communities; however, it 

seems that the spatial and temporal changes that occur naturally to the proportion of 

vegetative zones is not as well recognized. Many small wetlands are managed to provide 

open water areas for waterfowl pair-bonding. My data suggested that almost all topsoil 

and subsoil excavations provide some open water habitat in the spring prior to the 

growing season. Since waterfowl pair bonding occurs during the spring, resource 

managers should recognize that excavating within small wetlands to provide open water 

habitat in July is not appropriate. 

Avian Communities 

My data indicated that avian diversity and nest success were not significantly 

different between topsoil and subsoil excavations. However, avian density (subsoil 
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excavations:  = 32.04, SD = 29.84 and topsoil excavations:  = 23.95, SD = 18.11) and 

nest density (subsoil excavations:  = 18.71, SD = 11.87 and topsoil excavations:  = 

12.78, SD = 7.66) were significantly higher in subsoil excavations. These seemingly 

contradictory outcomes were explained by the results of my multiple regressions, 

MANCOVA, and by applying the natural history characteristics of the common breeding 

bird species in the study wetlands.  

The models chosen by the backward elimination multiple regressions that best 

predicted avian diversity included the proportion of emergent vegetation spring, 

proportion of emergent vegetation summer, and wetland area (ha) as predictor variables 

with both diversity indexes. This indicated that a combination of the proportion of 

emergent vegetation zone and wetland area can have an effect on avian diversity in small 

prairie pothole wetlands. These statistical models suggested that avian diversity tended to 

increase as the proportion of emergent vegetation increased. Since the results of the 

MANCOVA showed that the proportion of emergent vegetation was higher in subsoil 

excavations, I would have expected avian diversity to be higher in these wetlands. 

However, this was not the case because avian diversity was inherently lower in small 

wetlands compared to much larger wetlands (>50 ha). Given that red-winged blackbird 

and sora accounted for over 83.5 % of the nests in my study, it was intuitive that I saw 

greater avian densities and nest densities in subsoil excavations or within the wetlands 

with a higher proportion of the emergent vegetation zone. These species are known to 

have low habitat specificity and to thrive in wetlands with dense stands of emergent 

vegetation and few open water areas (Yasukawa and Searcy 1995, Melvin and Gibbs 

x x 
X X 
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1996). I attributed the greater number of nests located in 2010 (2009: n = 61 and 2010: n 

= 109) to a difference in the proportion of the emergent vegetation spring between years. 

Although there was not a statistically significant difference (F1 = 1.272, P = 0.261, ηp2 = 

0.008), the proportion of the emergent vegetation spring was greater in 2010 (2009:  = 

13.1 %, SD = 16.39 and 2010:  = 19.0%, SD = 19.6). High water levels early in spring 

2009 eliminated most of the residual emergent vegetation. Lower water levels in spring 

2010 allow for more residual emergent vegetation to remain standing which provided 

more nesting substrate for red-winged blackbird and sora. 

Testing the Hemi-marsh Condition Hypothesis 

 Although the results of my multiple regression analyses indicated that the 

proportion of emergent vegetation was a crucial variable for predicting avian diversity in 

small wetlands, my results were not consistent with the hemi-marsh condition (Weller 

and Spatcher 1965). There was a positive linear correlation between the proportion of 

emergent vegetation and avian diversity in small prairie pothole wetlands and not a peak 

in avian diversity at intermediate proportions of emergent vegetation. My statistical 

models indicated that avian diversity is best predicted by a combination of the proportion 

of emergent vegetation spring, the proportion of emergent vegetation summer, and 

wetland area more so than by the proportion of emergent vegetation alone which is the 

basis of the hemi-marsh condition hypothesis. Resource managers need to recognize that 

there are thresholds when managing prairie wetlands. There is a limit when wetlands 

become small enough that the hemi-marsh management strategies are no longer 

appropriate. There also is a limit when wetlands become large enough that the lack of 

x 
x 
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open water habitat decreases avian diversity. Although my data did not identify these 

thresholds, they suggested that promoting the hemi-marsh condition in wetlands that are 

small enough to excavate, which are typically less than 1 ha, is not an efficient use of 

management dollars. In general, habitat quality increased as the proportion of emergent 

vegetation increased and open water habitat is not a vital component to the ecology of 

small prairie pothole wetlands. Future research should focus on identifying these 

thresholds and the effects of wetland restoration techniques on plant community 

composition and macroinvertebrate communities.   

Management Implications 

Although ecological restoration is not a new practice, its application to modern 

society is immense (Falk et al. 2006). It gives the environment a chance to recover from 

exploitation and degradation, while allowing resource managers to test ecological 

principles (Falk et al. 2006). Wetland restoration programs have provided the laboratories 

for assessing many ecological phenomena. The primary goal of my study was to 

determine the most ecologically and economically efficient techniques for restoring small 

prairie pothole wetlands that have been degraded through drainage and sedimentation. 

Due to the large number of wetland restorations that will be completed in the future, it is 

imperative that resource managers are provided with high quality information about the 

effects of various sediment removal techniques associated with wetland restorations. 

Because the monetary costs of excavating are high, understanding the limitations and 

impacts of excavating within wetland basins is crucial (Hausman et al. 2007). 
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My data suggested that small, less than 0.6 ha, prairie pothole wetlands function 

differently than larger wetlands. Resource managers need to recognize that there are 

limitations in these small prairie wetlands. Wetland area is likely the limiting factor 

associated with avian diversity since small wetlands only support a subset of the potential 

wetland breeding birds, i.e., those species that are not area sensitive. Resource managers 

can now adapt their management and restoration strategies because they know that 

manipulating local vegetational attributes within small wetlands will not significantly 

influence avian communities. Therefore, promoting the hemi-marsh condition in small 

wetlands is not the most efficient use of management dollars. My recommendations are to 

restore small prairie wetlands to their historical topography by using the topsoil 

excavation technique because the potential negative impacts that exposing subsoil could 

have on plant and macroinvertebrate communities are not fully understood. The topsoil 

excavation technique should restore wetland slopes similar to the adjacent topography to 

prevent “flashy” hydrology associated with the edges of excavated areas and borrow pits 

(Aronson and Galatowitsch 2008). This technique should limit the negative impacts on 

the sedge meadow zone that are associated with the subsoil excavation technique. With 

thousands of these small wetlands across the PPR, the ultimate goal of my project was to 

provide resource managers throughout the PPR with both valuable information and 

guidelines allowing them to make more well-informed decisions on-the-ground.   
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Table 1.  Avian species detected during call-broadcast surveys in Minnesota, USA, 

2009-2010. 

Species Scientific name Order 

American goldfinch Spinus tristis Passeriformes 

American redstart* Setophaga ruticilla Passeriformes 

Barn swallow Hirundo rustica Passeriformes 

Black tern* Chlidonias niger Charadriiformes 

Blue-winged teal Anas discors Anseriformes 

Bobolink Dolichonyx oryzivorus Passeriformes 

Brown-headed cowbird* Molothrus ater Passeriformes 

Canada goose* Branta canadensis Anseriformes 

Canvasback Aythya valisineria Anseriformes 

Clay-colored sparrow Spizella pallida Passeriformes 

Cliff swallow Petrochelidon pyrrhonota Passeriformes 

Common yellowthroat Geothlypis trichas Passeriformes 

Eastern phoebe* Sayornis phoebe Passeriformes 
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Table 1. Continued. 

  Species Scientific name Order 

Hooded merganser Lophodytes cucullatus Anseriformes 

Le Conte's sparrow Ammodramus leconteii Passeriformes 

Least bittern* Ixobrychus exilis Ciconiiformes 

Least flycatcher* Empidonax minimus Passeriformes 

Mallard Anas platyrhynchos Anseriformes 

Marsh wren Cistothorus palustris Passeriformes 

Palm warbler* Dendroica palmarum Passeriformes 

Red-winged blackbird Agelaius phoeniceus Passeriformes 

Ring-necked duck* Aythya collaris Anseriformes 

Ring-necked pheasant* Phasianus colchicus Galliformes 

Ruby-throated hummingbird* Archilochus colubris Apodiformes 

Sandhill crane* Grus canadensis Gruiformes 

Savannah sparrow Passerculus sandwichensis Passeriformes 

Sedge wren Cistothorus platensis Passeriformes 
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Table 1. Continued. 

  Species Scientific name Order 

Sharp-Shinned hawk* Accipiter striatus Falconiformes 

Solitary sandpiper* Tringa solitaria Charadriiformes 

Song sparrow Melospiza melodia Passeriformes 

Sora Porzana carolina Gruiformes 

Swamp sparrow Melospiza georgiana Passeriformes 

Tree swallow Tachycineta bicolor Passeriformes 

Upland sandpiper* Bartramia longicauda Charadriiformes 

Virginia rail Rallus limicola Gruiformes 

Wilson's snipe* Gallinago delicata Charadriiformes 

Wood duck* Aix sponsa Anseriformes 

Yellow warbler* Dendroica petechia Passeriformes 

Yellow-headed blackbird Xanthocephalus xanthocephalus Passeriformes 

Yellow-rumped warbler* Dendroica coronata Passeriformes 

* Species with less than 5 detections 
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Table 2.  Avian diversity, avian density, daily survival probability, and nest density on 

40 topsoil and subsoil excavations in Minnesota, USA, 2009-2010. 

 

Topsoil excavations 

 

Subsoil excavations 

Variable Mean SE   Mean SE 

Shannon-Weiner Diversity Indexa,b 1.019 0.820 

 

1.196 0.799 

Simpson's Index of Diversitya,b 0.640 0.364 

 

0.668 0.317 

Avian Densitya,b 23.95 18.11 

 

32.04 29.84 

Daily Survival Probabilityb 0.959 0.054 

 

0.950 0.050 

Nest Densityb 12.78 7.55 

 

18.71 11.87 

                    

a Averaged across survey periods. 

b Means and SE are reported from untransformed data. 
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Figure 1. Map of the Detroit Lakes Wetland Management District in Minnesota, USA, with 8 study sites represented by 
gray circles. 
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Figure 2-. Map of Prirate Property 1 study site in Polk County, Minnesota, USA. 
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Figure 3. Map oft.be Sandhill Lake Waterfowl Production Area study site in Polk County, Minnesota, USA. 
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Figure 4. Map of the Nelson Praire Waterfowl Production Area study site in Mahnomen County, Minnesota, USA. 
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Figure 5. Map of Private Property 2 study site in Mahnomen County, Minnesota, USA. 
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Figure 6. Map of Private Property 3 study site in Mahnomen Cou.nty, Minnesota, USA. 



 

 45 

Figure 7. Map of the Buehl Waterfowl Production Area study site in Becker County, Minnesota, USA. 
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Figure 8. Map of Private Property 4 study site in Becker County, Minnesota, USA. 
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Figure 9. Map of Private Property 5 study site in Becker County, Minnesota, USA. 
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